CA2584124A1 - Flavonoid composition for treating oral diseases - Google Patents

Flavonoid composition for treating oral diseases Download PDF

Info

Publication number
CA2584124A1
CA2584124A1 CA002584124A CA2584124A CA2584124A1 CA 2584124 A1 CA2584124 A1 CA 2584124A1 CA 002584124 A CA002584124 A CA 002584124A CA 2584124 A CA2584124 A CA 2584124A CA 2584124 A1 CA2584124 A1 CA 2584124A1
Authority
CA
Canada
Prior art keywords
free
group
composition
flavan
isolated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002584124A
Other languages
French (fr)
Inventor
Qi Jia
Yuan Zhao
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unigen Inc
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CA2584124A1 publication Critical patent/CA2584124A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/55Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having seven-membered rings, e.g. azelastine, pentylenetetrazole
    • A61K31/553Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having seven-membered rings, e.g. azelastine, pentylenetetrazole having at least one nitrogen and one oxygen as ring hetero atoms, e.g. loxapine, staurosporine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/35Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom
    • A61K31/352Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom condensed with carbocyclic rings, e.g. methantheline 
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/35Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom
    • A61K31/352Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom condensed with carbocyclic rings, e.g. methantheline 
    • A61K31/3533,4-Dihydrobenzopyrans, e.g. chroman, catechin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7042Compounds having saccharide radicals and heterocyclic rings
    • A61K31/7048Compounds having saccharide radicals and heterocyclic rings having oxygen as a ring hetero atom, e.g. leucoglucosan, hesperidin, erythromycin, nystatin, digitoxin or digoxin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/11Pteridophyta or Filicophyta (ferns)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/13Coniferophyta (gymnosperms)
    • A61K36/15Pinaceae (Pine family), e.g. pine or cedar
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • A61K36/28Asteraceae or Compositae (Aster or Sunflower family), e.g. chamomile, feverfew, yarrow or echinacea
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • A61K36/47Euphorbiaceae (Spurge family), e.g. Ricinus (castorbean)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • A61K36/48Fabaceae or Leguminosae (Pea or Legume family); Caesalpiniaceae; Mimosaceae; Papilionaceae
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • A61K36/48Fabaceae or Leguminosae (Pea or Legume family); Caesalpiniaceae; Mimosaceae; Papilionaceae
    • A61K36/484Glycyrrhiza (licorice)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • A61K36/48Fabaceae or Leguminosae (Pea or Legume family); Caesalpiniaceae; Mimosaceae; Papilionaceae
    • A61K36/486Millettia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • A61K36/53Lamiaceae or Labiatae (Mint family), e.g. thyme, rosemary or lavender
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • A61K36/53Lamiaceae or Labiatae (Mint family), e.g. thyme, rosemary or lavender
    • A61K36/539Scutellaria (skullcap)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • A61K36/54Lauraceae (Laurel family), e.g. cinnamon or sassafras
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • A61K36/60Moraceae (Mulberry family), e.g. breadfruit or fig
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/88Liliopsida (monocotyledons)
    • A61K36/906Zingiberaceae (Ginger family)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/88Liliopsida (monocotyledons)
    • A61K36/906Zingiberaceae (Ginger family)
    • A61K36/9062Alpinia, e.g. red ginger or galangal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/49Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds
    • A61K8/4973Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds with oxygen as the only hetero atom
    • A61K8/498Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds with oxygen as the only hetero atom having 6-membered rings or their condensed derivatives, e.g. coumarin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/60Sugars; Derivatives thereof
    • A61K8/602Glycosides, e.g. rutin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/02Stomatological preparations, e.g. drugs for caries, aphtae, periodontitis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q11/00Preparations for care of the teeth, of the oral cavity or of dentures; Dentifrices, e.g. toothpastes; Mouth rinses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/74Biological properties of particular ingredients
    • A61K2800/78Enzyme modulators, e.g. Enzyme agonists
    • A61K2800/782Enzyme inhibitors; Enzyme antagonists
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Health & Medical Sciences (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Botany (AREA)
  • Medical Informatics (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Alternative & Traditional Medicine (AREA)
  • Mycology (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Birds (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Pain & Pain Management (AREA)
  • Rheumatology (AREA)
  • Neurosurgery (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Molecular Biology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines Containing Plant Substances (AREA)
  • Medicinal Preparation (AREA)
  • Cosmetics (AREA)

Abstract

The present invention provides a novel composition of matter comprised of a mixture of two specific classes of compounds --Free-B-Ring flavonoids and flavans-- for use in the prevention and treatment of diseases and conditions associated with mouth, gums and teeth. This composition of matter simultaneously inhibits cyclooxygenase (COX) and lipoxygenase (LOX) enzymatic activity and reduces cytokine production at the mRNA level in normal, aged and damaged periodontal cells and tissues. This invention further provides a method for the prevention and treatment of diseases and conditions of the mouth, gums and teeth. The method for preventing and treating diseases and conditions of the mouth, teeth and gums is comprised of administering to a host in need thereof a therapeutically effective amount of a composition comprising a mixture of Free-B-Ring flavonoids and flavans synthesized and/or isolated from a single plant or multiple plants, preferably in the Scutellaria, Oroxylum, Acacia or Uncaria genus of plants and pharmaceutically and/or cosmetically acceptable carriers. Finally the present invention provides a method for the prevention and treatment of diseases and conditions of the mouth, teeth or gums, including but not limited to periodontal diseases, such as gingivitis, periodontitis, pulpitis, periodontal conditions caused by the physical implantation of oral dentures, trauma, injuries, bruxism, neoplastic and other degenerative processes; material alba, pellicles, dental plagues, calculus, and stains. Use of the composition described herein also affords the benefit of maintaining optimum saliva production and pH, minimizing bacterial growth, reducing the formation of pellicles and plague, inhibiting tooth decalcification and tooth caries (decay), promoting remineralization, which yields healthy gums, whitening teeth, maintaining healthy oral hygiene and reducing oral malodour (halitosis).

Description

FORMULATION OF DUAL EICOSANOID SYSTEM AND CYTOKINE SYSTEM
INHIBITORS FOR USE IN THE PREVENTION AND TREATMENT OF
ORAL DISEASES AND CONDITIONS
FIELD OF THE INVENTION

[0001] This invention relates generally to a novel composition of matter comprised of a mixture of a blend of two specific classes of compounds --Free-B-Ring flavonoids and flavans-which target the eicosanoid and cytokine pathways for use in the prevention and treatment of diseases and conditions of the mouth, teeth and gums.
Specifically, the diseases and conditions of the mouth, teeth and gums include but not limited to periodontal diseases, such as gingivitis, periodontitis, pulpitis, periodontal conditions caused by the physical implantation of oral dentures, trauma, injuries, bruxism, neoplastic and other degenerative processes; inaterial alba, pellicles, dental plagues, calculus, and stains.
Use of the composition described herein also affords the benefit of maintaining optimuln saliva production and pH, minimizing bacterial growth, reducing the formation of pellicles and plague, inhibiting tooth decalcification and tooth caries (decay), promoting remineralization, yielding healthy gums, whitening teeth, maintaining healthy oral hygiene and reducing oral malodour (halitosis).

BACKGROUND OF THE INVENTION

10002J Periodontal disease is a combination of inflammation and infection of soine or all of the tooth support structures (gingiva, cementum, periodontal ligament, alveolar bone and other tissues surrounding the teeth). Gingivitis (gums) and periodontitis (gums and bone) are the two main fonns of periodontal disease. According to National Oral Infonnation distributed by the National Institute of Dental and Craniofacial Research, an estimated 80 percent of American adults currently have some form of periodontal disease.
Periodontal disease is initiated when a pellicle fonns on a clean tooth or teeth. This pellicle attracts aerobic grain-positive bacteria (mostly actinoinyces and streptococci), which adhere to the tooth forming plaque. Within days the plaque thickens, the underlying bacteria run out of oxygen and anaerobic motile rods and spirochetes begin to populate the subgingival area.
Endotoxins released by the anaerobic bacteria cause inflammation, gum tissue destruction and even bone loss. There are four primary stages of periodontal disease that can be characterized as indicated below. The destructive impact of periodontal disease goes beyond I

dental hygiene and health, in that microscopic lesions re'sulting from periodontal disease have been found in the liver, kidneys, and brain of some affected persons.
Four Sta es of Periodontal Disease Grade I Inflammation Grade 2 Inflammation, edema, gingival bleeding upon probing Grade 3 Inflamniation, edema, gingival bleeding upon probing, pustular dischar e-- slight to moderate bone loss Grade 4 Inflammation, edema, gingival bleeding upon probing, pustular discharge, mobility -- severe bone loss 100031 The inflammation resulting fi=om periodontal disease is mainly related to two biological systems: --the eicosanoid system and the cytokine system. The release and metabolism of arachidonic acid (AA) from the cell membrane results in the generation of pro-inflammatory metabolites by several different pathways. Two of the inost important pathways to inflammation are mediated by the enzyines lipoxygenase (LOX) and cyclooxygenase (COX). These are parallel pathways that result in the generation of leukotrienes and prostaglandins, respectively, which play important roles in the initiation and progression of the inflammatory response. These vasoactive compounds are chemotaxins, which both proinote infiltration of inflainmatory cells into guin tissue and serve to prolong the inflammatory response that may lead to bone loss. Consequently, the enzymes responsible for generating these mediators of inflammation can be targeted to develop therapeutic agents to prevent and treat diseases and conditions related to the mouth, teeth and gums.
100041 The cytokine system is a very potent force in homeostasis when activation of the network is local and the cytokines act vicinally in surface-bound or diffusible fonn. But when cytokine production is sustained and/or systemic, cytokines contribute to the signs, symptoms, and pathology of inflammatory, infectious, autoimmune, and malignant diseases.
TNF-a is a potent pleiotropic cytokine produced by macrophages, neutrophiles, fibroblasts, keratinocytes, NK cells T and B cell and tumor cells. IL-1(3, together with TNF-a, plays a central role in inflammatory responses. Administration.of antagonists, such as IL-Ira (IL-1 receptor antagonist), soluble fragment of IL-1 receptor, or inonoclonal antibodies to TNF-a and soluble TNF receptor, all block various acute and chronic responses in animal inodels of inflammatory diseases. Nuclear factor kappa B(NFxB) is a transcription factor that controls gene expression of interleukin-1 beta (IL-l (3), tumor necrosis factor-alpha (TNFa), interleukin-6 (IL-6) and many other proteins. Some of these antagonists are beginning to be utilized as anti-intlammatory agents in diseases such as sepsis, periodontal diseases and rheumatoid arthritis. (Dinarello (2004) Curr Opin Pharmacol. 4:378-385). Anti-TNF-a antibodies were not only found to induce striking remissions in rheumatoid arthritis, but also to reduce tissue inflammation in Crohn's disease, an inflainmatory bowel disease (Maini and Feldmann. (2002) Arthritis Res. 4 Suppl 2: S22-8).
[0005] Periodontal ligament (PDL) cells exhibit osteoblast-like features and are capable.of differentiating into cells of either cementogenic or osteogenic lineage. These cells are crucial for the maintenance of the integrity and regeneration of the periodontium (Somerman et al.
(1990) Arch Oral Biol. 35: 241-47; Pitaru et al. (1994) J Periodontal Res.
29:81-94). Chronic infections in the periodontium, initiated by bacterial colonization, induce synthesis of pro-inflammatory cytokines, which can potentially affect PDL cell phenotype and function.
These cytokines not only activate and recruit immune cells to the site of infection (Le and Vilcek (1987) J. Immunol. 139: 3330; Kunkel et al. (1994) Ann. N.Y. Acad. Sci.
730:134), but also induce loss of supporting bone and ligamentous attachment (Pitaru et al. (1994) J
Periodontal Res. 29:81-94). TNFa, for example, has been shown to modulate the PDL cell osteoblast-like phenotype and functions (Agarwal et al. (1998) Infect. Immun.
66:932-937).
Additionally, TNFa and IL-1 0 change the phenotypic characteristics of osteoblasts by down-regulation of alkaline phosphatase (Kuroki et al. (1994) Rheuinatology 33:224) and by the modulation of collagen, collagenase, proteoglycan, and prostaglandin syntheses (Agarwal et al. (1998) Infect. Immun. 66:932-93 7).
[0006] In the isolated PDL cells, IL-1P induces phenotypic changes (Agarwal et al. (1998) Infect. Immun. 66:932-937). PDL cells from healthy periodontium do not recognize bacterial lipopolysaccharide (LPS) nor do they elicit pro-inflammatory cytokines in response to LPS.
Following IL- I (3 treatment, PDL cells lose their osteoblast-like characteristics while assuniing a new LPS-responsive phenotype. Thus, IL-1(3 is an important regulator of PDL
cell function and directs these cells to participate actively in an immune response during infections. IL-10 stimulates bone resorption and inhibits bone formation (Stashenko et a1.
(1987) J Bone Miner Res. 2:559-65; Nguyen et al. (1991) Lymphokine Cytokine Res. 10:15-21; Tatakis (1993) J Periodontol (1991) 64:416-31). In addition, IL-1(3 synergizes the bone-resorptive actions of TNF-a (Bertolini et al. (1986) Nature 3l 9:516-18; van der Pluijin et al.
(1991) Endocrinology 129:1596). Another iinportant activity of IL-1(3 in the pathological process of periodontitis is to induce the production of inatrix metalloproteinases (MMPs) (Havemose-Poulsen and Holmstrup (1997) Crit. Rev. Oral. Biol. Med 8:217). IL-1(3 gives nse to an elevated level of procollagenase in both gingival fibroblasts and PDL cells (Meikle et al. (1989) J Periodontal Res. 24:207-13; Lark et al. (1990) Connect Tissue Res. 25:49-65;
Tewari et al. (1994) Arch Oral Biol. 39 657-64). In addition, IL-1(3 stimulates plasminogen activator in gingival fibroblasts, resulting in the generation of plasmin, which is an activator of several matrix metalloproteinases (Mochan et al. (1988) J Periodontal Res.
23:28-32).
Furthermore, Stashenko and co-workers reported a positive correlation between IL-1(3 levels in gingival tissues and recent attachment loss (Stashenko et al. (1991) J Clin Periodontol 18:548-54).
100071 TNFa is another key mediator of immune and inflammatory responses and has been found in measurable quantities in the areas of active periodontal inflammation (Rossomando et al. (1990) Arch Oral Biol. 35:431-34; Stashenko et al. (1991) J Clin Periodontol 18:548-54). TNFa changes the osteoblastic features of PDL cells (Quintero et al.
(1995) J. Dent.
Res.74: 1802). This is substantiated by their ability to express other pro-inflammatory cytokines, such as 1L-1 p, IL-6, and IL-8, in response to LPS. TNFa induces the secretion of collagenase by fibroblasts, resorption of cartilage and bone, and has been implicated in the destruction of periodontal tissue in periodontitis (Elias et al. (1987) J.
Iinmunol. 138:3812;
Meikle et al. (1989) J Periodontal Res. 24:207-13; Chaudhary et al. (1992) Endocrinology 130:2528). In resting macrophages, TNFa induces the synthesis of IL-1(3 and prostaglandin E2. TNF-ct also activates osteoclasts and thus induces bone resorption. TNF-a has synergistic effects with the bone-resorptive actions of IL-1(3 ((van der Pluijm et al. (1991) Endocrinology 129:1596; Bertolini et al. (1986) Nature 319:516-8; Johnson et al. (1989) Endocrinology 124:1424).
100081 In inflammatory periodontal lesions, a variety of cell types-such as T-cells, macrophages, endothelial cells, and fibroblasts-were shown to have increased IL-6 expression at both the mRNA and protein levels (Kono et al. (1991) J. Immunol. 146:1812;
Matsuki et al. (1992) Immunology 76:42-47; Fujihashi et al. (1993) Am. J. Pathol.
142:1239; Yamazaki et al. (1994) J Oral Pathol Med. 23:347-53). Since IL-6 is of particular impot-tance in human B cell responses, it has been speculated that the expansion of B-cells/plasma cells seen in periodontitis lesions may result from an increased production of IL-6 at diseased sites (Fujihashi et al. (1993) J Periodontol 64:400-406). Additionally, IL-6 plays an important role in the local regulation of bone turnover (Lowik et al. (1989) Biochem Biophys Res Commun.
162:1546-52; Ishimi et al. (1990) J. Immunol. 145:3297; Kurihara et al. (1990) J. Immunol.
144:4226) and appears to be essential for bone loss caused by estrogen deficiency (Horowitz (1993) J Bone Miner Res. 8:1 l 63-71). In vitro studies also demonstrated that simultaneous treatment of mouse osteoblastic cells and bone marrow cells with IL-6 and soluble IL-6 receptor strikingly induced osteoclast fonnation (Tamura et al. (1993) PNAS
90:11924) Furthennore, it was also suggested that IL-6 may act as an autocrine and/or paracrine factor in bone resorption in pathologic states by stimulating the fonnation of osteoclasts and the activation of osteoclastic bone resorption (Ohsaki et al. (1992) Endocrinology 131: 2229).
These findings imply the involvement of IL-6 in the pathogenesis of periodontal tissue destruction in periodontitis.
100091 Inhibition of the COX enzyme is the mechanism of action attributed to most non-steroidal anti-inflammatory drugs (NSAIDS). There are two distinct isofonns of the COX
enzyme (COX-1 and COX-2), which share approximately 60% sequence homology, but differ in expression profiles and function. COX-1 is a constitutive form of the enzyme that has been linked to the production of physiologically important prostaglandins, which help regulate nonnal physiological functions, such as platelet aggregation, protection of cell function in the stomach and maintenance of normal kidney function. (Dannhardt and Kiefer (2001) Eur. J. Med. Chem. 36:109-26). The second isofonn, COX-2, is a fonn of the enzyme that is inducible by pro-inflammatory cytokines, such as interleukin-1(3 (IL-1 P) and other growth factors. (Herschmann (1994) Cancer Metastasis Rev. 134:241-56; Xie et al. (1992) Drugs Dev. Res. 25:249-65). This isoform catalyzes the production of prostaglandin E2 (PGE2) from arachidonic acid (AA). Inhibition of COX is responsible for the anti-inflammatory activity of conventional NSAIDs.
100101 Inhibitors that demonstrate dual specificity for COX and LOX would have the obvious benefit of inhibiting multiple pathways of arachidonic acid metabolism. Such inhibitors would block the inflammatory effects of prostaglandins (PG), as well as, those of multiple leukotrienes (LT) by limiting their production. This includes the vasodilation, vasopermeability and chemotactic effects of PGE2, LTB4, LTD4 and LTE4, also known as the slow reacting substance of anaphalaxis. Of these, LTB4 has the inost potent chemotactic and chemokinetic effects. (Moore (1985) in Prostanoids: phannacolo 71~ =cal, physiological and clinical relevance, Cambridge University Press, N.Y., pp. 229-230).
100111 Because the mechanism of action of COX inhibitors overlaps that of most conventional NSAID's, COX inhibitors are used to treat many of the saine symptoms, including pain and swelling associated with inflammation in transient conditions and chronic diseases in which inflammation plays a critical role. However, most of the known NSAIDs are not suitable for periodontal diseases due to their poor solubility and bioavailability.

(00121 Current methods for treating periodontal disease are limited with control of the infection being the primary goal (Genco et al. (1990) in Contenporary Periodontics, The C.V.
Mosby Company, St. Louis, pp. 361-370). Common anti-microbial or anti-plaque agents include chlorhexidine, Triclosan, stannous fluoride, Listerine, hydrogen peroxide, cetylpyridimiun chloride and sanguinarine alkaloids. Prescription anti-microbial mouth rinse, antiseptic chip, antibiotic gel/micro-spheres and enzyine suppressant-doxycycline are the preferred non-mechanical/physical options to treat and control periodontal disease. Applicant is unaware of any reports of a fonnulation combining Free-B-Ring-Flavonoids and flavans as the priinary biologically active components targeting the eicosanoid and cytokine pathways for the treatment of oral diseases and conditions.
[0013) Flavonoids or bioflavonoids are a widely distributed group of natural products, which have been reported to have antibacterial, anti-inflammatory, antiallergic, antimutagenic, antiviral, antineoplastic, anti-thronibic and vasodilatory activity. The structural unit common to this group of compounds includes two benzene rings on either side of a 3-carbon ring as illustrated by the following general structural formula:

IA CI
p ig Various coinbinations of hydroxyl groups, sugars, oxygen and methyl groups attached to this general three ring structure create the various classes of flavonoids, which include flavanols, flavones, flavan-3-ols (catechins), anthocyanins and isoflavones.
100141 Free-B-Ring flavones and flavonols are a specific class of flavonoids, which have no substituent groups on the aromatic B ring (referred to herein as Free-B-Ring flavonoids), as illustrated by the following general structure:
Ri 0 IA cI

3 / ~ \

wherein Ri, R2, R3, R4, and R5 are independently selected from the group consisting of -H, -OH, -SH, OR, -SR, -NH2, -NHR, -NR2, -NR3+X-, a glycoside of a single or combination of multiple sugars, wherein said glycoside is linked to the 7-hydroxy chroinone by a carbon, oxygen, nitrogen or sulfur, and wherein said single or combination of multiple sugars include, but are not limited to aldopentoses, methyl-aldopentose, aldohexoses, ketohexose and their chemical derivatives thereof;
wherein R is an alkyl group having between 1-10 carbon atoms; and X is selected from the group of pharmaceutically acceptable countei- anions including, but not limited to hydroxyl, chloride, iodide, fluoride, sulfate, phosphate, acetate, carbonate, etc.

100151 Free-B-Ring flavonoids are relatively rare. Out of 9,396 flavonoids synthesized or.
isolated from natural sources, only 231 Free-B-Ring flavonoids are known (The Combined Chemical Dictionary, Chapman & Hall/CRC, Version 5:1 June 2001). Free-B-Ring flavonoids have been reported to have diverse biological activity. Typically, flavonoids have been tested for biological activity randomly based upon their availability.
Occasionally, the requirement of substitution on the B-ring has been emphasized for specific biological activity, such as the B-ring substitution required for high affinity binding to p-glycoprotein (Boumendjel et al. (2001) Bioorg. Med. Chem. Lett. 11(l):75-77); cardiotonic effect (Itoigawa et al. (1999) J. Ethnopharmacol. 65(3): 267-272), protective effect on endothelial cells against linoleic acid hydroperoxide-induced toxicity (Kaneko and Baba (1999) Biosci Biotechnol. Biochem 63(2):323-328), COX-1 inhibitory activity (Wang (2000) Phytomedicine 7:15-19) and prostaglandin endoperoxide synthase (Kalkbrenner et al. (1992) Phai-macology 44 1:1-12). Few publications have mentioned the significance of the unsubstituted B ring of the Free-B-Ring flavonoids. One example is the use of 2-phenyl flavones, which inhibit NADPH quinone acceptor oxidoreductase, as potential anticoagulants. (Chen et al. (2001) Biochem. Pharmacol. 61 11 :1417-1427).
100161 The mechanism of action of the anti-inflammatory activity of various Free-B-Ring flavonoids has been controversial. The anti-inflammatory activity of the Free-B-Ring flavonoids, chiysin (Liang et al. (2001) FEBS Lett. 496(l):12-18), wogonin (Chi et al. (2001) Biochern. Pharmacol. 61:1195-1203) and halangin (Raso et al. (2001) Life Sci.
668):921-931), has been associated with the suppression of inducible cyclooxygenase and nitric oxide synthase via activation of peroxisome proliferator activated receptor gamma (PPARy) and influence on degranulation and AA release. (Tordera et al. (1994) Z. Naturfoi-sch [C]

49:235-240). It has been reported that oroxylin, baicalein and wogonin inhibit the activity of 12-lipoxygenase without affecting cyclooxygenase. (You et al. (1999) Arch.
Pharm. Res.
22(1):18-24). More recently, the anti-inflammatory activity of wogonin, baicalin and baicalein has been reported as occurring via inhibition of inducible niti-ic oxide synthase and cox-2 gene expression induced by nitric oxide inhibitors and lipopolysaccharide. (Chen et al.
(2001) Biochem. Phannacol. 61 1 l:1417-1427). It has also been reported that oroxylin acts via suppression'of NFxB activation. (Chen et al. (2001) Biochem. Pharmacol. 61 1 l:1417-1427). Finally, wogonin reportedly inhibits inducible PGE2 production in macrophages.
(Wakabayashi and Yasui (2000) Eur. J. Phannacol. 406(3):477-481).
100171 The Chinese medicinal plant, Scutellaria bai.calensis contains significant amounts of Free-B-Ring flavonoids, including baicalein, baicalin, wogonin and baicalenoside.
Traditionally, this plant has been used to treat a number of conditions including clearing away heat, purging fire, dampness-warm and summer fever syndromes; polydipsia resulting from high fever; carbuncle, sores and other pyogenic skin infections; upper respiratory infections, such as acute tonsillitis, laryngopharyngitis and scarlet fever;
viral hepatitis;
nephritis; pelvitis; dysentery; hematemesis and epistaxis. This plant has also traditionally been used to prevent miscarriage. (Encyclopedia of Chinese Traditional Medicine, ShangHai Science and Technology Press, ShangHai, China, 1998). Clinically Scutellai-ia is now used to treat conditions such as pediatric pneumonia, pediatric bacterial diarrhea, viral hepatitis, acute gallbladder inflammation, hypertension, topical acute inflammation, resulting from cuts and surgery, bronchial asthma and upper respiratory infections. (Encyclopedia of Chinese Traditional Medicine, ShangHai Science and Technology Press, ShangHai, China, 1998).
The phannacological efficacy of Scutellaria roots for treating bronchial asthma is reportedly related to the presence of Free-B-Ring flavonoids and their suppression of eotaxin associated recruitment of eosinophils. (Nakajima et al. (2001) Planta Med. 67(2):132-135).
(0018( To date, a number of naturally occurring Free-B-Ring flavonoids have been coinmercialized for varying uses. For example, liposome fonnulations of Scutellaria extracts have been utilized for skin care (U.S. Pat. Nos. 5,643,598; 5,443,983).
Baicalin has been used for preventing cancer, due to its inhibitory effects on oncogenes (U.S.
Pat. No.
6,290,995). Baicalin and other compounds have been used as antiviral, antibacterial and iminunomodulating agents (U.S. Pat. No. 6,083,921 and W098/42363) and as natural anti-oxidants (W098/49256 and Poland Pub. No. 9,849,256). Flavonoids fonnulates with terpenoids have been used as inhibitors of surface-bound glusosyltransferase for treating and inhibiting dental caries (US#20040057908). Japanese Pat. No. 63027435 describes the extraction, and ent-ichment ot baicalem and Japanese Pat. No. 61050921 describes the purification of baicalin.
100191 U.S. Application Serial No. 10/091,362, filed March 1, 2002, entitled "Identification of Free-B-Ring Flavonoids as Potent COX-2 Inhibitors," and U.S. Application Serial No.
10/427,746, filed July 22, 2003, entitled "Formulation of a Mixture of Free-B-Ring Flavonoids and Flavans as a Therapeutic Agent" disclose a method for inhibiting the cyclooxygenase enzyme COX-2 by administering a composition coinprising a Free-B-Ring flavonoid or a composition containing a mixture of Free-B-Ring flavonoids to a host in need thereof. This is the first report of a link between Free-B-Ring flavonoids and inhibitory activity. These applications are specifically incorporated herein by reference in their entirety.
[0020) Flavans include compounds illustrated by the following general structure:

R, O

R, wherein Ri, R2, R3, R4 and R5 are independently selected from the group consisting of H, -OH, -SH, -OCH3, -SCH3, -OR, -SR, -NH2, -NRH, -NR,, -NR3+X-, esters of the mentioned substitution groups, including, but not limited to, gallate, acetate, cinnamoyl and hydroxyl-cinnamoyl esters, trihydroxybenzoyl esters and caffeoyl esters, and their chemical derivatives thereof; a glycoside of a single or combination of multiple sugars, wherein said glycoside is linked to the 7-hydroxy chromone by a carbon, oxygen, nitrogen or sulfur, and wherein said single or combination of multiple sugars include, but are not Iimited to aldopentoses, inethyl-aldopentose, aldohexoses, ketohexose and their chemical derivatives thereof and other polymerized flavans;
wherein R is an alkyl group having between 1-10 carbon atoms; and X is selected from the group of pharmaceutically acceptable counter anions including, but not limited to hydroxyl, chloride, iodide, sulfate, phosphate, acetate, fluoride, and carbonate, etc.
[0021) Catechin is a flavan, found primarily in green tea, having the following structure:

OH
OH

HO ~ O ~ I
OH
OH
Catechin Catechin works both alone and in conjunction with other flavonoids found in tea, and has both antiviral and antioxidant activity. Catechin has been shown to be effective in the treatment of viral hepatitis. It also appears to prevent oxidative damage to the heart, kidney, lungs and spleen and has been shown to inhibit the growth of stoinach cancer cells.
100221 Catechin and its isomer epicatechin inhibit prostaglandin endoperoxide synthase with an IC50 value of 40 M. (Kalkbrenner et al. (1992) Pharmacol. 44:1-12).
Commercially available pure (+)-catechin inhibits COX-1 with an IC50 value of around 183 to 279 uM
depending upon the experimental conditions, with no selectivity for COX-2.
(Noreen et al.
(1998) J. Nat. Prod. 61:1-7). Green tea catechin, when supplemented into the diets of Sprague Dawley male rats, lowered the activity level of platelet PLA2 and significantly reduced platelet cyclooxygenase levels. (Yang et al. (1999) J. Nutr. Sci.
Vitaminol. 45:337-346). Catechin and epicatechin reportedly weakly suppress cox-2 gene transcription in huinan colon cancer DLD-1 cells (IC50 = 415.3 M). (Mutoh et al. (2000) Jpn.
J. Cancer Res.
91:686-691). The neuroprotective ability of (+)-catechin from red wine results from the antioxidant properties of catechin, rather than inhibitory effects on intracellular enzymes, such as cyclooxygenase, lipoxygenase, or nitric oxide synthase (Bastianetto et al. (2000) Br.
J. Pharmacol. 131:711-720). Catechin derivatives purified from green and black tea, such as epigallocatechin-3-gallate (EGCG), epigallocatechin (EGC), epicatechin-3-gallate (ECG), and theaflavins showed inhibition of cyclooxygenase and lipoxygenase dependent metabolism of AA in huinan colon mucosa and colon tumor tissues (Hong et al.
(2001) Biochem. Pharmacol. 62:1175-1183) and induce cox-2 expression and PGE2 production (Park et al. (2001) Biochem. Biophys. Res. Connnun. 286:721-725).
100231 Acacia is a genus of leguminous trees and shrubs. The genus Acacia includes more than 1000 species belonging to the family of Leguminosae and the subfainily of Mimosoideae. Acacias are distributed worldwide in tropical and subtropical areas of Central and South America, Africa, parts of Asia, as well as, Australia, which has the largest number of endemic species. To date, approxiinately 330 compounds have been isolated from various Acacia species. Flavonoids are the major class of compounds isolated from Acacias.

Approximately 180 different tlavonoids have been identified, 111 of which are flavans.
Terpenoids are second largest class of compounds isolated from species of the Acacia genus, with 48 compounds having been identified. Other classes of compounds isolated from Acacia include, alkaloids (28), amino acids/peptides (20), tannins (16), carbohydrates (15), oxygen heterocycles (15) and aliphatic compounds (10). (Buckingham, The Combined Chemical Dictionary, Chapman & Hall CRC, version 5:2, Dec. 2001).
100241 Phenolic compounds, particularly flavans are found in moderate to high concentrations in all Acacia species. (Abdulrazak el al. (2000) Journal of Animal Sciences.
13:935-940). Historically, most of the plants and extracts of the Acacia genus have been utilized as astringents to treat gastrointestinal disorders, diarrhea, indigestion and to stop bleeding. (Vautrin (1996) Universite Bourgogne (France) European abstract 58-O1C:177;
Saleem et al. (1998) Hamdard Midicus. 41:63-67). The extract from the bark of Acacia has been patented in Japan for external use as a whitening agent (Abe, JP10025238), as a glucosyl transferase inhibitor for dental applications (Abe, JP07242555), as a protein synthesis inhibitor (Fukai, JP 07165598), as an active oxygen scavenger for external skin preparations (Honda, JP 07017847, Bindra U.S. Pat. No. 6,1266,950), and as an inhibitor of hyaluronidase to prevent inflammation, pollinosis and cough (Ogura, JP
07010768).
100251 The Uricaria genus, includes 34 species many of which are well known as medicinal plants. Uiicai-ia plants have been utilized by different cultures for treatment of wounds, and ulcers, fevers, headaches, gastrointestinal illnesses and microbial/gungal infections. Uncaria plants contain significant amounts of catechin and other flavones. Other components that have been reported in Uncaria genus include alkaloids, terpenes, quinovic acid glycosides, coumarins, and flavonoids. Uncaria ganibir is a species common in Malaysia, Singapore, India and other South East Asian countries. Catechins are inajor components in the whole plant of Unccti-ia gainbir.

SUMMARY OF THE INVENTION

100261 The present invention includes methods that are effective in simultaneously inhibiting both the eicosanoid system and the cytokine system for use in the prevention and treatment of diseases and conditions related to the mouth, teeth and gums. The inethod for the simultaneous dual modulation of both the eicosanoid system and the cytokine system is comprised of administering, systemically or locally, a composition comprised of a mixture of Free-B-Ring flavonoids and flavans synthesized and/or isolated froin a single plant or multiple plants to a host in need thereof. This composition of matter is referred to herein as UP676. The efficacy and safety of this method is deinonstrated with purified enzymes, in different cell lines, in multiple aninlal models and eventually in a human clinical study. The ratio of the Free-B-Ring flavonoids to flavans in the composition is in the range of 99.9:0.1 of Free-B-Ring flavonoids:flavans to 0.1:99.9 Free-B-Ring flavonoids:tlavans. In specific embodiments of the present invention, the ratio of Free-B-Ring flavonoids to flavans is selected from the group consisting of approximately 90:10, 80:20, 70:30, 60:40, 50:50, 40:60, 30:70, 20:80 and 10:90. In a preferred embodiment of this invention, the ratio of Free-B-Ring flavonoids:flavans in the composition of matter is 80:20. In a preferred embodiment, the Free-B-Ring flavonoids are isolated from a plant or plants in the Scutellaria genus of plants and the flavans are isolated from a plant or plants in the Acacia or Uncaria genus of plants.
100271 The present invention also includes methods for the prevention and treatment of diseases and conditions of the mouth, teeth and gums. The method for preventing and treating said diseases and conditions of the mouth, teeth and gums is comprised of administering, systemically or topically, to a host in need thereof an effective amount of a coinposition comprising a mixture of Free-B-Ring flavonoids and flavans synthesized and/or isolated from a single plant or multiple plants and a phannaceutically acceptable carrier. The ratio of the Free-B-Ring flavonoids to flavans in the composition is in the range of 99.9:0.1 of Free-B-Ring flavonoids:flavans to 0.1:99.9 Free-B-Ring flavonoids:flavans. In specific embodiments of the present invention, the ratio of Free-B-Ring flavonoids to flavans is selected from the group consisting of approxiinately 90:10, 80:20, 70:30, 60:40, 50:50, 40:60, 30:70, 20:80 and 10:90. In a prefei-red embodiment of this invention, the ratio of Free-B-Ring flavonoids:flavans in the composition of matter is 80:20. In a preferred embodiment, the Free-B-Ring flavonoids are isolated from a plant or plants in the Scutellaria genus of plants and the flavans are isolated froni a plant or plants in the Acacia or Uncaria genus of plants.
100281 The Free-B-Ring flavonoids, also referred to herein as Free-B-Ring flavones and flavonols, that can be used in accordance with the following invention include compounds illustrated by the following general structure:

Ri 0 I A c I
R3 p B

wherein Ri, R2, R3, R4, and R5 are independently selected from the group consisting of -H, -OH, -SH, OR, -SR, -NH2, -NHR, -NR2, -NR3+X-, a glycoside of a single or combination of multiple sugars, wherein said glycoside is linked to the 7-hydroxy chromone by a carbon, oxygen, nitrogen or sulfur, and wherein said single or combination of multiple sugars include, but are not limited to aldopentoses, methyl-aldopentose, aldohexoses, ketohexose and their chemical derivatives thereof;
wherein R is selected from an alkyl group having between 1-10 carbon atoms; and X is selected from the group of pharmaceutically acceptable counter anions including, but not limited to hydroxyl, chloride, iodide, sulfate, phosphate, acetate, fluoride, carbonate, etc.
100291 The Free-B-Ring flavonoids of this invention may be obtained by synthetic methods or extracted from the family of plants including, but not limited to Annonaceae, Asteraceae, Bignoniaceae, Combretaceae, Conzpositae, Euphorbiaceae, Labiatae, Laitranceae, Leguminosae, Moraceae, Pinaceae, Pteridaceae, Sinopteridaceae, Ulmaceae and Zingiberacea. The Free-B-Ring flavonoids can be extracted, concentrated, and purified from the following genus of high plants, including but not limited to Desmos, Achyrocline, Oroxylum, Buchenavia, Anaphalis, Coti.ila, Gnaphaliamz, Helichrysum, Centaurea, Eupatoritun, Baccharis, Sapium., Scutellaria, Molsa, Colebrookea, Stachys, Origanum, Ziziphora, Lindera, Actinodaphne, Acacia, Derris, Glycyrrhiza, Millettia, Pongamia, 7'ephrosia, Artocai pus, Ficus, Pityrogranxma, Notholaena, Pinus, Ubnus and Alpinia.
100301 The flavans that can be used in accordance with the following invention include compounds illustrated by the following general structure:

R, O

R, wherein RI, R2, R3, R4 and R5 are independently selected from the group consisting of H, -OH, -SH, -OCH3, -SCH3, -OR, -SR, -NH2,, -NRH, -NR2, -NR3+X-, esters of the mentioned substitution groups, including, but not limited to, gallate, acetate, cinnamoyl and hydroxyl-cinnamoyl esters, trihydroxybenzoyl esters and caffeoyl esters, and their chemical derivatives thereof; a glycoside of a single or combination of multiple sugars, wherein said glycoside is linked to the 7-hydroxy chromone by a carbon, oxygen, nitrogen or sulfur, and wherein said single or combination of multiple sugars include, but are not limited to aldopentoses, methyl-aidopentose, aldohexoses, ketohexose and their chemical derivatives thereof and other polymerized flavans;
wherein R is selected from an alkyl group having between l-10 carbon atoms; and X is selected from the group of pharmaceutically acceptable counter anions including, but not limited to hydroxyl, chloride, iodide, sulfate, phosphate, acetate, fluoride, carbonate, etc.
10031] The flavans of this invention may be obtained from a plant or plants selected from the genus of Acacia or Uncaria. In a preferred embodiment, the plant is selected from the group consisting of Acacia catechu, Acacia concinna, Acacia farnesiana, Acacia Senegal, Acacia speciosa, Acacia arabica, A. caesia, A. pennata, A. sinuata. A.
mearnsii, A.
picnantha, A. dealbata, A. auriculifoi-niis, A. holoserecia and A. n2angiun2;
and Uncaria gainbir, Uncaria lanosa, Uncaria lzirsute, Uncaria africana, Uncaria elliptica, Un.caria orientalis, Uncaria attenuate, Uncaria acida, Uncaria honiornalla, Un.caria sessilifi-uctus, Uncaria sterrophylla, Uncaria bei-iiaysii, Uncaria sinensis, Uncaria callophylla, Uncai-ia rliychophylla, Uncaria tomentosa, Uncaria longifloi-a, Uncaria hirsirte, Uncaria coi-data, and Uncaria borneensis.
100321 In one embodiinent, the present invention includes a method for preventing and treating a number of diseases and conditions related to the mouth, gums and teeth including, but not limited to periodontal (gum) diseases such as gingivitis, aggressive periodontitis, chiori'1'c pe'riodonti't'is; peri'~pical"~'irri'tidontitis, periodontitis as a manifestation of systemic diseases, and necrotizing periodontal disease, wherein the causes of said periodontal diseases include, but are not limited to chronic bacterial infection, plaque accumulation, tobacco usage by smoking and/or chewing, genetically susceptibility, caused by pregnancy and puberty, stress, medications, and diabetes, poor nutrition and other systemic diseases.
[0033] In another embodiment, the present invention includes a method for the prevention and treatment of sensitive gums and teeth, sequelae, pulpitis, irritation, pain and inflammation caused by the physical implantation of oral dentures, trauma, injuries, bruxism and other minor wounds in mouth, on the gums or on the tongue, dental plague and calculus, tooth decalcification, proteolysis and caries (decay).
100341 The present invention further includes therapeutic compositions comprising the therapeutic agents of the present invention. In addition to their use for the prevention and treatment of the above described diseases and conditions of the mouth, teeth and gums, the therapeutic compositions described herein can also be useful for maintaining optimum saliva production, saliva pH value, minimizing bacterial growth, reducing the formation of plague acids, inhibiting mineral loss, promoting remineralization, reducing the prevalence of caries, yielding a healthy gums, whitening teeth, maintaining healthy oral hygiene and reducing oral malodour (halitosis).
[0035] The method of prevention and treatment according to this invention comprises administering systemically or topically to a host in need thereof a therapeutically effective amount of the formulated Free-B-Ring flavonoids and flavans isolated froin a single source or multiple sources. The purity of the individual and/or a mixture of inultiple Free-B-Ring flavonoids and flavans includes, but is not limited to 0.01 % to 100%, depending on the methodology used to obtain the compound(s). In a preferred embodiment, doses of the mixture of Free-B-Ring flavonoids and flavans containing the same are an efficacious, nontoxic quantity generally selected from the range of 0.001 % to 100% based on total weight of the topical formulation. Persons skilled in the art using routine clinical testing are able to detennine optimum doses for the particular aihnent being treated.
100361 The present invention includes an evaluation of different compositions of Free-B-Ring flavonoids and flavans using enzymatic and in vivo models to optimize the formulation and obtain the desired physiological activity. The efficacy and safety of this formulation is demonstrated in human clinical studies. The compositions of this invention can be adininistered by any method known to one of ordinary skill in the art. The inodes of administration include, but are not limited to, enteral (oral) administration, parenteral (iritra'venous; "sub(UtUhi/oit'!~,"'and i'ty'tramuscular) administration and topical application. In the one embodiment the method of treatment according to this invention comprises administering topically to a host in need thereof a therapeutically effective amount of a mixture of Free-B-Ring flavonoids and flavans synthesized and/or isolated froin a single plant or multiple plants. Methods for topical administration include, but are not limited to a toothpaste, gel, ointment, mouthwash, chewing.gum, tinctures, drinks and as well as other known pharmaceutical formulations.
100371 To date, the applicants of the current invention are unaware of any reports of a fonnulation combining Free-B-Ring-Flavonoids and flavans as the primary biologically active components for the treatment of diseases and conditions related to the mouth, teeth and gums. The lack of substitution of one of the aromatic rings of the Free-B-Ring flavonoid plays very important role in making these coinpounds efficacious for use in oral care. Unlike many other anti-inflammatory drugs and natural occurring compounds, Free-B-Ring flavonoids, such as baicalin, has a low polarity aromatic ring on one side of the molecule and high polarity glucuronide and two hydroxyl groups on the other side. This structural arrangement allows these compounds to easily penetrate and remain in guin tissue. The combination of Free-B-Ring-flavonoids with flavans to produce the composition of matter referred to herein as UP676, offers a synergistic and potent modulator of both the eicosanoid system and the cytokine system that will help to control inflammation of the periodontal tissues, including inflainination in all four stages of periodontal disease.
Additionally, due to the different biological availability, i.e. rate and percentage of biologically active compounds penetrating the epithelial cell meinbrane and the local concentrations of biologically active compounds in periodontal tissues, the combination of the two different type of compounds (higher polarity flavans vs. lower polarity Free-B-Ring flavonoids) offers both quick, on-site pain and acute-inflammatory relief by the biologically active flavans, as well as, longer lasting modulation of chronic inflammation in periodontal tissues by the biologically active Free-B-Ring flavonoids. Finally, in the preferred einbodiment fonnulation of significant amounts of free-B-Ring flavonoids (80% by weight) with coinparatively lower concentration of flavans (20% by weight), the more potent anti-oxidative flavans will function both as natural preservatives against oxidative degradation of the Free-B-Ring flavonoids and to neutralize and buffer the composition allowing delivery of the major active components -- the Free-B-Ring flavonoids at the optimum pH and ionization conditions.

[0039]' " It is"'fo'be"'uHderStbbd tliff both the foregoing general description and the following detailed description are exeinplary and explanatory only and are not restrictive of the invention as claimed.

BRIEF DESCRIPTION OF THE DRAWINGS

100391 Figure 1 depicts graphically a profile of the inhibition of COX-1 and COX-2 by a standardized Free-B-Ring flavonoid extract (83% baicalin based on HPLC), which was isolated from S. baicaleiasis. The extract was examined for its inhibition of the peroxidase activity of recombinant ovine COX-l (*) and ovine COX-2 (~). The data is presented as percent inhibition vs. inhibitor concentration ( g/mL). The IC50 for COX-1 was calculated as 0.24 g/mL/unit of enzyme while the IC50 for COX-2 was calculated as 0.48 g/mL/unit.
[0040] Figure 2 depicts graphically a profile of the inhibition of COX-1 and COX-2 by the purified component baicalin, which was isolated from S. baicalerisis. The compound was examined for its inhibition of the peroxidase activity of recoinbinant ovine COX-1 (*) and ovine COX-2 (~). The data is presented as percent inhibition vs. inhibitor concentration ( g/mL). The IC50 for COX-1 was determined to be 0.44 g/mL/unit of enzyme and the IC50 for COX-2 was determined to be 0.28 g/mL/unit.
[0041] Figure 3 depicts graphically a profile of the inhibition of COX-1 and COX-2 by the purified component baicalein isolated from S. baicalensis. The compound was examined for its inhibition of the peroxidase activity of recombinant ovine COX-1 (*) and ovine COX-2 (m). The data is presented as percent inhibition vs. inhibitor concentration ( g/mL). The IC50 for COX-1 was determined to be 0.18 g/mL/unit of enzyme and the IC50 for COX-2 was determined to be 0.28 gg/mL/unit.
100421 Figure 4 depicts graphically a profile of the inhibition of COX-1 and COX-2 by a standardized flavan extract containing 50% total flavans, which was isolated from A. catechcr.
The extract was examined for its inhibition of the peroxidase activity of recombinant ovine COX-1 (*) and ovine COX-2 (a). The data is presented as percent inhibition vs.
inhibitor concentration (gg/mL). The IC50 for COX-1 was calculated as 0.17 g/mL/unit of enzyme and the IC50 for COX-2 was calculated as 0.41 g/mL/unit.
[0043J Figure 5 depicts graphically a profile of the inhibition of COX-1 and COX-2 by a composition of matter comprised of greater than 90% flavans isolated from A.
catechu. The composition was examined for its inhibition of the peroxidase activity of recombinant ovine COX-1 (*) and ovine COX-2 (a). The data is presented as percent inhibition vs.
inhibitor concentratiori ( g/inL). The IU50 for COX-1 was calculated as 0.11 g/mL/unit of enzyme and the IC50 for COX-2 was calculated as 0.42 gg/mL/unit.
100441 Figure 6 depicts graphically a profile of the inhibition of COX-l and COX-2 by a formulation produced by combining an extract of Free-B-Ring flavonoids isolated from the roots of S. baicalensis and an extract of flavans isolated from the bark of A.
catechu in a ratio of 80:20. This coinposition of matter, referred to hereinafter as UP676, was examined for its inhibition of the peroxidase activity of recombinant ovine COX-1 (+) and ovine COX-2 (0).
The data is presented as percent inhibition vs. inhibitor concentration ( g/inL). The IC50 for COX-1 was 2 glmLlunit of enzyme while the IC50 for COX-2 was 4 gg/mL/unit.
100451 Figure 7 depicts graphically a profile of the inhibition of COX-1 and COX-2 by a fonnulation produced by combining an extract of Free-B-Ring flavonoids isolated froin the roots of S. baicalensis and an extract of flavans isolated from the bark of A.
catechu in a ratio of about 50:50. The composition was examined for its inhibition of the peroxidase activity of recombinant ovine COX-l (*) and ovine COX-2 (a). The data is presented as percent inhibition vs. inhibitor concentration ( g/mL). The IC50 for COX-1 was calculated as 0.38 g/mL/unit of enzyme and the IC50 for COX-2 was deteimined to be 0.84 g/mL/unit.
100461 Figure 8 depicts graphically a profile of the inhibition of COX-1 and COX-2 by a fonnulation produced by combining an extract of Free-B-Ring flavonoids isolated from the roots of S. baicalensis and an extract of flavans isolated from the bark of A.
catechu in a ratio of about 20:80. The composition was examined for its inhibition of the peroxidase activity of recombinant ovine COX-1 (+) and ovine COX-2 (~). The data is presented as percent inhibition vs. inhibitor concentration ( g/mL). The IC50 of this coinposition for COX-1 was 0.18 g/mL/unit of enzyme and the IC50 for COX-2 was 0.41 g/mL/unit.
[00471 Figure 9 clepicts graphically a profile of the inhibition of 5-LO by the tlavan extract from A. cateclut. The composition was examined for its inhibition of recombinant potato 5-lipoxygenase activity (*) as described in Example 4. The data is presented as percent inhibition of assays without inhibitor. The IC50 for 5-LO was 1.38 g/mL/unit of enzyme.
[0048[ Figure 10 illustrates the High Pressure Liquid Chromatography (HPLC) chromatogram of a typical fonnulation comprised of a mixture of Free-B-Ring flavonoids isolated from the roots of S. baicalensis and flavans isolated from the bark of A. catechu in a ratio of 80:20 carried out under the conditions as described in Example 9.
100491 Figure 11 depicts graphically the effect of increasing concentrations of UP676 on the amount of LPS-induced newly synthesized LTBa (+) as detennined by ELISA in or'HT-29 cells (ATCC) a"sPdesc"ribed'in Example 10. The UP676 was produced through the combination of standardized extracts of Free-B-Ring flavonoids isolated from the roots of S.
baicalensis and flavans isolated from the bark of A. catechu in a ratio of 80:20. The activity of the UP676 formulation is expressed as % inhibition of induced LTB4 synthesis.
100501 Figure 12 compares the LTB4levels as detennined by ELISA that remain in cells after treatment with 3 g/mL UP676 in non-induced cells to treatment with 3 g/mL
ibuprofen as described in Example 10. The UP676 formulation demonstrated 80%
inhibition of LTB4 production in the HT-29 cells after two days of treatment.
100511 Figure 13 illustrates graphically ear-swelling data as a measure of inhibition of inflammation as described in Example 12. UP676 produced through the combination of standardized extracts of Free-B-Ring flavonoids isolated from the roots of S.
baicalensis and flavans isolated from the bark of A. catecha{ in a ratio of 80:20 was compared to untreated mice and mice given indomethacin (1.5 mg/kg) via oral gavage. The data is presented as the difference in micron measurement of the untreated vs. the treated ear lobe for each mouse.
[0052] Figure 14 depicts graphically the changes in hairless inice skin erytheina scores in different treatment groups as a function of time following irradiation of the mice with UV
light as described in Example 13. The rnice in Groups B-1, A-1, B-2 and A-2 were treated with UP676 either before (Groups B-1 and B-2) or after (A-1 and A-2) ir-radiation. The UP676 was produced through the combination of standardized extracts of Free-B-Ring flavonoids isolated from the roots of S. baicalensis and flavans isolated from the bark of A.
catechir in a ratio of 80:20. With reference to Figure 14, it can be seen that topical applications of UP676, both before and after UV radiation, significantly reduced erythema scores as compared with the control group and the group that was administered the standard treatment agent-Sooth-a-caine.
100531 Figure 15 depicts graphically the change in concentration of pure catechin in various aqueous solutions on days 1, 3, 6, 8 and 13 under the conditions set forth in Exainple 15.
100541 Figure 16 depicts graphically various chemical preservatives that can be used to protect pure catechin in aqueous solution at a pH 7.5 from decomposition and color change.
100551 Figure 17 depicts graphically the average serum Free-B-Ring flavonoid concentration against time from ten healthy subjects (n=10, 6 female and 4 male) after oral administration of a single dose of 300 ing UP676. The average C,,,aX was 0.93 g/mL
(%RSD=84.9) and the average Tinax was approximately 5.8 hours (%RSD=43.4).

DETA'IGED DESCRIPTION OF"TH'E PREFERRED EMBODIMENT

100561 Various tenns are used herein to refer to aspects of the present invention. To aid in the clarification of the description of the coinponents of this invention, the following definitions are provided.
100571 It is to be noted that the term "a" or "an" entity refers to one or more of that entity;
for exainple, a flavonoid refers to one or more flavonoids. As such, the terms "a" or "an", "one or more" and "at least one" are used interchangeably herein.
100581 "Free-B-Ring Flavonoids" as used herein are a specific class of flavonoids, which have no substitute groups on the aroinatic B-ring, as illustrated by the following general structure:
R, O

Rz R5 IA c I
o a B
Rq wherein Ri, R2, R3, R4, and R5 are independently selected from the group consisting of -H, -OH, -SH, OR, -SR, -NH2, -NHR, -NR2, -NR3+X-, a glycoside of a single or combination of inultiple sugars, wherein said glycoside is linked to the 7-hydroxy chromone by a carbon, oxygen, nitrogen or sulfur, and wherein said single or combination of inultiple sugars include, but are not limited to aldopentoses, methyl-aldopentose, aldohexoses, ketohexose and their chemical derivatives thereof;
wherein R is an alkyl group having between 1-10 carbon atoms; and X is selected from the group of phannaceutically acceptable counter anions including, but not limited to hydroxyl, chloride, iodide, sulfate, phosphate, acetate, fluoride, carbonate, etc.
100591 "Flavans" as used herein refer to a specific class of flavonoids, which can be generally represented by the following general sti-ucture:

RZ

wherein Ri, R-), R3, R4 and R5 are independently selected from the group consisting of H, -OH, -SH, -OCH3, -SCH3, -OR, -SR, -NH2, -NRH, -NR2, -NR3+X-, esters of the mentioned substitution groups, including, but not limited to, gallate, acetate, cinnamoyl and hydroxyl-cinnamoyl esters, trihydroxybenzoyl esters and caffeoyl esters, and their chemical derivatives thereof; a glycoside of a single or combination of multiple sugars, wherein said glycoside is linked to the 7-hydroxy chromone by a carbon, oxygen, nitrogen or sulfur, and wherein said single or combination of multiple sugars include, but are not limited to aldopentoses, methyl-aldopentose, aldohexoses, ketohexose and their chemical derivatives thereof and other polymerized flavans;
wherein R is an alkyl group having between 1-10 carbon atoins; and X is selected from the group of phannaceutically acceptable counter anions including, but not limited to hydroxyl, chloride, iodide, sulfate, phosphate, acetate, fluoride, carbonate, etc.
100601 "Therapeutic" as used herein, includes treatment and/or prophylaxis.
When used, therapeutic refers to humans as well as other animals.
[0061] "Pharmaceutically or therapeutically effective dose or ainount" refers to a dosage level sufficient to induce a desired biological result. That result may be the alleviation of the signs, symptoms or causes of a disease or any other alteration of a biological system that is desired. The precise dosage will vary according to a variety of factors, including but not limited to the age and size of the subject, the disease and the treatment being effected.
100621 "Placebo" refers to the substitution of the phannaceutically or therapeutically effective dose or amount dose sufficient to induce a desired biological that may alleviate the signs, symptoins or causes of a disease with a non-active substance.
100631 A "host" or "patient" is a living subject, human or animal, into which the compositions described herein are administered. Thus, the invention described herein inay be used for veterinary as well as human applications and the tenns "patient" or "host" should not be construed in a limiting manner. In the case of veterinary applications, the dosage ranges can be detennined as described below, taking into account the body weight of the animal.
100641 As used herein a"phannaceutically acceptable carrier" refers to any carrier, which does not interfere with effectiveness of the biological activity of the active ingredient and which is not toxic to the host to which it is administered. Examples of "phannaceutically acceptable carriers" include, but are not limited to, any of the standard pharmaceutical car"rie"rs such 'as*a saline solution, i.e. Ringer's solution, a buffered saline solution, water, a dextrose solution, serum albumin and other excipients and preservatives for tableting and capsulating foi-mulations.
100651 "Gene expression" refers to the transcription of a gene to mRNA.
100661 "Protein expression" refers to the translation of mRNA to a protein.
100671 "RT-qPCR" as used herein refers to a method for reverse transcribing (RT) an mRNA molecule into a cDNA molecule and then quantitatively evaluating the level of gene expression using a polymerase chain reaction (PCR) coupled with a fluorescent reporter.
100681 Note that throughout this application various citations are provided.
Each citation is specifically incorporated herein in its entirety by reference.
[0069] The current invention provides methods for the extraction (Example 1, Table 1) of plants that contain Free-B-Ring flavonoids, including three species from the Scutellaria genus and Oroxulum indicunz and plants that contain flavans, including Acacia cateclzit and three species from the Uncaria genus with organic and aqueous solvents. The crude extracts were assayed for cyclooxygenase inhibitory activity (Example 2, Tables 2 and 3). Purified Free-B-Ring flavonoids and flavans demonstrated inhibitory activity against cyclooxygenase (COX) and lipoxygenase (LOX), respectively, as shown in Examples 3 and 4 and Table 4.
Methods for analyzing and quantifying the extracts are described in Examples 5 and 6 and the procedures to generate standardized Free-B-Ring flavonoids and flavans from botanical origins are provided in Examples 7 and 8.
[0070] In one embodiment of the present invention, the standardized Free-B-Ring flavonoid extract is comprised of the active compounds having a purity of between 1-99%
(by weight) of total Free-B-Ring flavonoids as defined in Exainples 1, 2, 5 and 8. Baicalin is the major active component in the extract derived from Scutellaria species, which accounts for approximately 50-90% (by weight) of the total Free-B-Ring flavonoids. In a preferred embodiment (Example 9), the standardized extract derived from Scutellaria species contains >82% total Free-B-Ring flavonoids in which the inajor component by weight of Free-B-Ring flavonoids is baicalin (see Table 11).
10071] In one embodiment, the standardized flavan extract is comprised of the active coinpounds having a purity of between 1-99% (by weight) total flavans as defined in Examples 1, 4, 6 and 7. Catechin is the major active component in the extracts derived from both Acacia catechu and Uncaria gainbir that accounts for 30-95% (by weight) of the total flavans. In a preferred embodiment (Example 9), the standardized flavan extract derived from Acacia catechu contains >80% of catechins.

100721 In orie embodiment, UP676"is produced by mixing the above two exti-acts or synthetic compounds in a ratio from 99:1 to 1:99. The preferred weight by weight ratios of Free-B-Ring flavonoids to flavans are 80:20 as defined in Example 9 and Table 11.
(00731 The concentration of Free-B-Ring flavonoids in UP676 can be from about l% to 99% and the concentration of flavans in UP676 can be from 99% to l%. In a preferred embodiment of the invention as set forth in Example 9 and Table 11, the concentration of total Free-B-Ring flavonoids in UP676 is approximately 75% with a baicalin content of approximately 60% of total weight of the UP676; and the concentration of total flavans in UP676 is approximately 10% with a catechin content of approximately 9.9%. In this embodiment, the total active components (Free-B-Ring flavonoids plus flavans) in UP676 are >85% of the total weight.
100741 The present invention includes methods that are effective in simultaneously inhibiting both the eicosanoid and cytokine pathways, for use in the prevention and treatment of periodontal diseases and gingival conditions. The method for the dual modulation of the eicosanoid and cytokine pathways is comprised of administering, systemically or topically a composition comprised of a mixture of Free-B-Ring flavonoids and flavans synthesized and/or isolated from a single plant or multiple plants to a host in need thereof. This composition of matter is referred to herein as UP676. The efficacy of this method is demonstrated with purified enzymes, in different cell lines, in multiple animal models and eventually in a human clinical study. The ratio of the Free-B-Ring flavonoids to flavans in the composition is in the range of 99.9:0.1 of Free-B-Ring flavonoids:flavans to 0.1:99.9 Free-B-Ring flavonoids:flavans. In specific embodinients of the present invention, the ratio of Free-B-Ring tlavonoids to flavans is selected from the group consisting of approximately 90:10, 80:20, 70:30, 60:40, 50:50, 40:60, 30:70, 20:80 and 10:90. In a preferred embodiment of this invention, the ratio of Free-B-Ring flavonoids:flavans in the composition of matter is 80:20. In a preferred embodiment, the Free-B-Ring flavonoids are isolated fi-om a plant or plants in the Scutellaria genus of plants and the flavans are isolated from a plant or plants in the Acacia genus of plants.
10075J The present invention also includes methods that simultaneously inhibit cycloxygenase (COX) and lipoxygenase (LOX) enzymatic activity. The method for simultaneously inhibititing cycloxygenase (COX) and lipoxygenase (LOX) enzymatic activity is comprised of administering, systemically or topically, to a host in need thereof an effective amount of a composition comprised of a mixture of Free-B-Ring flavonoids and flavans synthesized and/or isolated froin a single plant or multiple plants and a p}iarmaceutically acceptable carner. I'he ratio of the Free-B-Ring flavonoids to flavans in the composition can be in the range of 99.9:0.1 of Free-B-Ring flavonoids:flavans to 0.1:99.9 Free-B-Ring flavonoids:flavans. In specific einbodiments of the present invention, the ratio of Free-B-ring flavonoids to flavans is selected from the group consisting of approximately 90:10, 80:20, 70:30, 60:40, 50:50, 40:60, 30:70, 20:80 and 10:90. In a preferred embodiment of this invention, the ratio of Free-B-Ring flavonoids:flavans in the composition of matter is 80:20. In a preferred embodiment, the Free-B-Ring flavonoids are isolated from a plant or plants in the Scutellaria genus of plants and the flavans are isolated from a plant or plants in the Acacia genus of plants.
[0076] Also included in the present invention is a method for the simultaneous reduction of IL-1(3, TNFa and IL-6, as well as, other proteins related to inflammation for use in the prevention and treatinent of diseases and conditions related to the mouth, gums and teeth.
While not limited by theory it is believed that the mechanism for reducing these proteins is the result of the down regulation of their gene expression by the coinposition of inatter of the instant invention. The pro-inflaminatory cytokines, especially IL-1(3, TNFa and IL-6, play key roles in the chronic infections in the periodontium. Induction of the synthesis of the pro-inflainmatory cytokines affects PDL cell phenotype and function. These cytokines not only activate and recruit immune cells to the site of infection, but also induce loss of supporting bone and ligamentous attachment. The method for the simultaneous suppression of the pro-inflammatory cytokine gene expression, especially of IL-1(i, TNFa and IL-6, is comprised of administering, systemically or topically to a host in need thereof a composition comprised of ainixture of Free-B-Ring flavonoids and flavans synthesized and/or isolated from a single plant or multiple plants to a host in need thereof. This composition of matter is referred to herein as UP676. The ratio of the Free-B-Ring flavonoids to flavans in the composition is in the range of 99.9:0.1 of Free-B-Ring flavonoids:flavans to 0.1:99.9 Free-B-Ring flavonoids:flavans. In specific embodiments of the present invention, the ratio of Free-B-Ring flavonoids to flavans is selected from the group consisting of approximately 90:10, 80:20, 70:30, 60:40, 50:50, 40:60, 30:70, 20:80 and 10:90. In one preferred embodiment of this invention, the ratio of Free-B-Ring flavonoids:flavans in the composition of matter is 20:80. In another preferred embodiinent, the Free-B-Ring flavonoids are isolated from a plant or plants in the Scutellai-ia genus of plants and the flavans are isolated from a plant or plants in the Acacia genus of plants.
100771 In one einbodiment, the present invention includes a method for preventing and treating a number of diseases and conditions related to the mouth, gums and teeth including, but not limited to periodontai (gum) aiseases including gingivitis, aggressive periodontitis, chronic periodontitis, periapical periodontitis, periodontitis as a manifestation of systemic diseases, and necrotizing periodontal disease, wherein the causes of said periodontal diseases include, but are not limited to chronic bacterial infection, plaque accumulation, tobacco usage by smoking and/or chewing, genetically susceptible, caused by pregnancy and puberty, stress, medications, and diabetes, poor nutrition and other systemic diseases.
100781 In another embodiment, the present invention includes a method for the prevention and treatment of sensitive gums and teeth, sequelae, pulpitis, irritation and pain caused by physical implantation of oral dentures and other materials, a method for promoting wound healing, reducing pain and inflammation caused by trauma, injuries, bruxism and other minor wounds in mouth, on the gums or on the tongue. In yet another embodiment, the present invention includes a method for the prevention and treatment of dental plague and calculus, tooth decalcification, proteolysis and caries (decay).
100791 The present invention further includes therapeutic compositions comprising the therapeutic agents of the present invention. In addition to their use for the prevention and treatlnent of the above described diseases and conditions of the mouth, teeth and gums, the therapeutic compositions described herein can also be useful for maintaining optimum saliva production, saliva pH value, minimizing bacterial growth, reducing the formation of plague acids, inhibiting mineral loss, promoting remineralization, reducing the prevalence of caries, yielding a healthy gums, whitening teeth, maintaining healthy oral hygiene and reducing oral malodour (halitosis).
100801 The Free-B-Ring flavonoids that can be used in accordance with the instant invention include compounds illustrated by the general structure set forth above. The Free-B-Ring flavonoids of this invention inay be obtained by synthetic methods or may be isolated from the family of plants including, but not limited to Annonaceae, Asteraceae, Bignoniaceae, Combretaceae, Compositae, Euphorbiaceae, Labiatae, Laur-a.siceae, Leguminosae, Mor=aceae, Pinaceae, Pteridaceae, Sinoptei-idaceae, Ulmaceae, and Zingiberacea. The Free-B-Ring flavonoids can be extracted, concentrated, and purified from the following genus of high plants, including but not limited to Desnros, Achvrocline, Oroxyla.rin, Buchenavia, Anaphalis, Cotula, Gr7aphaliunZ, Helichryszun, Centaui-ea, Etipatoritim, Baccharis, Sapiuin, Scutellaria, Molsa, Colebrookea, Staclzys, Origanuna, ZiZiphora, Lindera, Actinodaphne, Acacia, Der-r=is, Glycyrrhiza, Millettia, Pongamia, Tephrosia, Artocarpats, Ficus, Pityrogranima, Notholaeiza, Pinars, Ulmiis and Alpinia. The flavonoids can be found in different parts of plants, including but not limited to stems, stem ba'r"ks;-twigs, fubers, roots, root barks, young shoots, seeds, rhizoines, flowers and other reproductive organs, leaves and other aerial parts.
100811 Methods for the isolation and purification of Free-B-Ring flavonoids are described in U.S. Application Serial No. 10/091,362, filed March 1, 2002, entitled "Identification of Free-B-Ring Flavonoids as Potent Cox-2 Inhibitors," and U.S. Application Serial No.
10/469,275, filed August 27, 2003, entitled "Identification of Free-B-Ring Flavonoids as Potent Cox-2 Inhibitors," each of which is incorporated herein by reference in its entirety.
100821 The flavans that can be used in accordance with the method of this invention include compounds illustrated by the general structure set forth above. The flavans of this invention are isolated from a plant or plants selected from the Acacia or Uncaria genus of plants. In a preferred embodiment, the plant is selected from the goup consisting of Acacia cateclzu (A. catechu), A. concinna, A. farnesiana, A. Senegal, A. speciosa, A.
-arabica, A.
caesia, A. pennata, A. sinuata. A. mearnsii, A. picnantha, A. dealbata, A.
auriculiformis, A.
holoserecia and A. mangium; or Uncaria gambir, Uncaria lanosa, Uncaria hirsiite, Uncaria africana, Uncaria elliptica, Uncaria orientalis, Uncaria attenuate, Uncaria acida, Uncaria homomalla, Uncaria sessilifi-uctits, Uncaria sterrophylla, Uncaria berizaysii, Uncaria sinensis, Uncaria ealloplzylla, Uncaria rl2ychophylla, Uncaria tomentosa, Uncar-ia long{flora, Uncaria hirsute, Uncaria cordata, and Unca1-ia borneensis. The flavans can be found in different parts of plants, including but not liinited to stems, stem barks, trunks, trunk barks, twigs, tubers, roots, root barks, young shoots, seeds, rhizomes, flowers and other reproductive organs, leaves and other aerial parts.
10083] Methods for the isolation and purification of flavans are described in U.S.
Application Serial No. 10/104,477, filed March 22, 2002, entitled "Isolation of a Dual Cox-2 and 5-Lipoxygenase Inhibitor froin Acacia," which is incorporated herein by reference in its entirety.
100841 The present invention implements a strategy that combines a series of in vivo inflammation and toxicity studies as well as in vitro biochemical, cellular, and gene expression screens to identify active plant extracts that specifically inhibit COX and LOX
enzymatic activity, impact mRNA gene expression and reduce inflammation. The methods used herein to identify active plant extracts that specifically inhibit COX
and LOX are described in Examples I and 2, as well as in U.S. Application Serial No.
10/091,362, filed March 1, 2002, entitled "Identification of Free-B-Ring Flavonoids as Potent Cox-2 Inhibitors;" U.S. Application Serial No. 10/104,477, filed March 22, 2002, entitled "Isolation of a Dual Cox-2 and 5-Lipoxygenase Inhibitor from Acacia," and U.S.
Application Serial No.

107427,746, filed Aprii 30;'2003, entit1ed "Formulation With Dual Cox-2 And 5-Lipoxygenase Inhibitory Activity," each of which is incorporated herein by reference in its entirety.

[0085] Various uses of the composition of this invention are described in U.S.
Application Serial No. 10/785,704, filed February 24, 2004, entitled "Inhibition of Carbohydrate Induced Obesity with a Defined Plant Extract," U.S. Application Serial No. 10/817,330, filed April 2, 2004, entitled "Formulation of Dual COX-2 and 5-Lipoxygenase Inhibitors for Mammal Skin Care," U.S. Application Serial No. 10/932,571, filed September 1, 2004, entitled "Formulation With Dual COX-2 and 5-Lipoxygenase Inhibitoiy Activity for Use in the Prevention and Treatment of Cognitive Decline and Age-Related Memory Impainnents, and "
U.S. Application Serial No. 60/605,110, filed August 27, 2004, entitled "Therapeutic Agent for the Down-Regulation of Multiple Cytokine Genes." Each of these applications is incorporated herein by reference in its entirety.
100861 The biochemical assay, used to measure inhibition of COX, relies on the protein's peroxidase activity in the presence of heme and arachidonic acid. This study which is described in Example 3 shows that the purified Free-B-Ring flavonoids, baicalin and baicalein isolated from S. baicalensis and the flavan extract isolated frorn A. catechu, and each individual standardized extract containing high concentrations of Free-B-Ring flavonoids and flavans inhibited COX activity (Figures 1-5). Additionally, compositions having different ratios of each of the individual standardized extracts (i.e., 80:20, 50:50 and 20:80 Free-B-Ring flavonoids: flavans), prepared as illustrated in Example 9, were all highly effective at inhibiting the COX activity in vitro (Figures 6-8).
100871 It is also clearly demonstrated that the combination of Free-B-Ring flavonoids and flavans provides a more balanced modulation of the COX-1 and COX-2 enzymes.
For example, aspirin, a COX-l selective inhibitor, which is more than 150 times more potent against COX-1 than COX-2, causes gastrointestinal side effects. Conversely, Vioxx, celebrex and Bextra, which are selective COX-2 inhibitors having 50-200 times more potency against the COX-2 enzyme than the COX-1 enzyme, do not cause as much gastrointestinal damage, however, these COX-2 selective drugs increase cardiovascular risks.
The fonnulation of Free-B-Ring flavonoids and flavans, on the other hand, provides a balance between the greater COX-2 activity of baicalin and the greater COX-1 activity of catechin. The moderate selectivity (2.3 fold) of catechin in the UP676 formulation against the COX-1 enzyme functions to reduce the cardiovascular risks caused by selective COX-2 inhibitors.

10089J' ' I't is also significant that the mechanism of action is completely different between the currently available drugs referenced above and the natural formula --UP676. Aspirin, Vioxx, celebrex and Bextra irreversibly bind to the COX enzyme through covalent bonds to form tightly bound enzyme-inhibitor complexes. Such dramatic interaction completely changes the active site of the enzyme and the side pocket and destroys the enzyme. (Walker MC., Kurumbal RG., et al. (2001) Biochem. 357:709-718). The flavonoids in UP676, on the other hand, inhibit the COX enzyme through a weaker and reversible binding due to their antioxidant properties. In this interactive process, the structure and function of the COX
enzyme are not irreversibly altered which results in a much better tolerance and safety profile for UP676.
100891 The inhibition of LOX activity by a flavan extract isolated from A.
catechu, was assessed using a lipoxygenase screening assay in vitro as described in Example 4. The results are illustrated in Figure 9. Through the addition of flavans to the Free-B-ring flavonoids, UP676 also inhibits the activity of 5-LOX. The inhibition of 5-LOX results in a decrease in the accumulation of phagocytic leukotrienes, which are directly associated with the symptoms of chronic inflamination, and also reduces potential gastrointestinal side effects.
Such efficacy is demonstrated in Example 10 and Figures I 1 and 12. Briefly, cell assays that targeted inhibition of compounds in the breakdown of arachidonic acid in the LOX pathway, namely leukotriene B4 were performed using a UP676 sample as described in Example 10.
The inhibition of LTB4 by UP676 is illustrated in Figure 12. With reference to the results illustrated by this Figure, it is evident that the combination of Free-B-Ring flavonoids with flavans provides the additional benefit of significantly reducing leukotriene production. This reduction in leukotriene production is by far superior to traditional non-steroidal anti-inflammatory drugs such as ibuprofen.
[00901 Example 11 demonstrates that UP676 effectively suppresses the gene expression of a group of pro-inflammatory cytokines, including IL-1(3, TNFa and IL-6, in human cells.
The experiinents were conducted with the hunian peripheral blood mononuclear cells (PBMC) stiinulated with lipopolysaccharide (LPS), which is a well-established inflammation cell model. When the cells were incubated with UP676 at various concentrations (0, 10, 30 and 100 g/mL), the gene expression of the pro-inflammatory cytokines was suppressed in a dose dependent manner. (Table 12).
100911 The pro-inflammatory cytokines, especially IL-10, TNFa and IL-6, play key roles in chronic infections in the periodontium. They not only activate and recruit immune cells to the site of intection, but also induce loss of supporting bone and ligamentous attachment. It is well established that the mRNA levels of these cytokine genes are elevated in the diseased periodontium and the synthesis of the pro-inflammatory cytokines affects PDL
cell phenotype and function. Since UP676 simultaneously suppresses pro-inflammatory cytokines dramatically, including IL-l (3, TNFa and IL-6, at the mRNA level, it offers an effective way of treating periodontal diseases.
100921 In vivo efficacy was deinonstrated by the application of skin in-itating substances, such as AA, to the ears and ankle joint of mice (to mimic the biological response of periodontal tissue to microbial infections and tooth plaques) and measuring the reduction of swelling in mice treated with UP676 as described in Example 12. The results are set forth in Figure 13. With reference to this figure it can be seen that oral administration of UP676 at a dosage of 50 mg/kg to 200 mg/kg significantly reduces mouse ear swelling caused by local irritant.
100931 The efficacy of topical application of UP676 was further demonstrated using another aniinal model by preventing and treating UV induced skin erythema as illustrated in Example 13 and Figure 14. In the study described in Example 13, UP676 in a blend ratio of 80:20 Free-B-Ring flavonoids:flavans was dissolved in water and applied topically at two concentration to the skin of hairless mice both before and after UV exposure, respectively.
The erythema scores of the hairless mice froin four UP676 groups, in both concentrations and regardless the applications time as before or after UV exposure, all showed much less redness in smaller skin areas as compared to severe and extended erythema in both the control group and the group that was treated with Sooth-A Cain. This study demonstrates that UP676 can penetrate into the skin of hairless mice to reduce the inflammatory response.
While not liinited by theory it is believed that this result is achieved by the siinultaneous inhibition of both the eicosanoid and cytokine pathways.
100941 Example 14 (Table 13) describes a general inethod for the preparation of a UP676 cream using phannacologically, dennatologically and cosmetic acceptable excipients. For purposes of illustration this Example provides a detailed procedure for the preparation of a 0.5 wt % UP676 topical cream. The compositions of the present invention can also be fonnulated as phannaceutical compositions, which include other components such as a pharmaceutically and/or cosmetically acceptable excipient, an adjuvant, flavors, and/or a carrier. For example, coinpositions of the present invention can be fonnulated in an excipient that the host to be treated can tolerate. An excipient is an inert substance used as a diluent or vehicle for a drug. Examples of such excipients include, but are not limited to water, a1Coti'01s-(etnan6'1 (Yi-'etnyrene grycar; propylene glycol), buffers, saline, hydrated silica, dextrose solution, cellulose gum, sorbitol, mannitol, preservatives and other aqueous physiologically balanced salt solutions. The therapeutic composition can also contain minor amounts of additives, such as substances that enhance isotonicity and chemical stability. As illustrated in Example 17, such preservatives include but are not liinited to BHA, BHT, diammonium citrate (DAC), butylated hydroxytoluene, ethylenediamine tetraacetic acid (EDTA), H202, propyl gallate (PG), sodium gluconate (SG), and sodium bisulfate/metabisulfite (SBS), sodium lauryl sulfate, stannous chloride, stannous fluoride, sodium benzoate, benzoic acid. Nonaqueous vehicles, such as fixed oils, sesame oil, ethyl oleate, or triglycerides may also be used. Other useful formulations include suspensions containing viscosity enhancing agents, such as sodium carboxymethylcellulose, sorbitol, xanthan gum, methyl cellulose, or dextran. Examples of buffers include phosphate buffer, bicarbonate buffer, tris buffer, histidine, citrate, and glycine, or mixtures thereof, while examples of preservatives include, but are not limited to thimerosal, m- or o-cresol, fonnalin and benzyl alcohol. Standard formulations can either be liquid or gel or paste, or solids, which can be taken up in a suitable fonnat as a suspension or solution for administration.
[0095] In one embodiment, the composition is prepared as a controlled release formulation, which slowly releases the composition of the present invention into the host.
As used herein, a controlled release fonnulation comprises a composition of the present invention in a controlled release vehicle. Suitable controlled release vehicles will be known to those skilled in the art. Preferred controlled release fonnulations are biodegradable (i.e., bioerodible).
[0096] Example 15 illustrates the stability of catechin in solution varying both pH and preservatives. Catechin contains four phenolic hydroxyl groups which makes this compound more acidic and sensitive to oxidative stress. The extremely high Oxygen Radical Absorption Capacity (ORAC at 20,000) of catechin demonstrates its antioxidant properties.
Based upon the stress test of pure catechin under varying conditions, such as pH, existence of HI-O2 and metal ions, it was detennined as illustrated in Figure 15, that catechin is stable under neutral conditions at both 4 C and 40 C, but not under basic conditions or when exposed to metal ions, such as Fe3+. Even under weakly basic conditions (pH=7.5) catechin decomposes. However, it can be preserved by a number of preservatives, including but not limited to stannous chloride (SnCI2), sodium bisulfate/metabisulfite (SBS), and other preservatives as illustrated Figure 16.
[0097] Another advantage of combining these two classes of compounds is that in the preferred embodiment, the formulation of significant amounts of Free-B-Ring flavonoids (80%'liy-weigbf)' witlicofnparatiMly"lower concentrations of flavans (20% by weight), the more potent anti-oxidative flavans function as natural preservatives against oxidative degradation and act as neutralization and buffering agent in the formula to deliver the major active components - Free-B-Ring flavonoids at the optimum pH and ionization conditions.
[0098] Example 16 illustrates the bioavailability of the active components in UP676 after oral administration in humans. The results are set forth in Figure 17. With reference to Figure 17, the wide error bars seen in this analysis are due to individual variation between subjects. Gender and differences in weight did not correlate with the differences seen for C,,,ax and T,,,,,x or absorption and clearance. It is clearly demonstrated that Free-B-Ring flavonoids in UP676 can penetrate through epithelium cells. However, the existence of Free-B-Ring flavonoids in human body fluids, such as serum is not in the aglycone form such as baicalein, but rather conjugated structures such as baicalin or sulfurated baicalein. To quantify the total concentration of Free-B-Ring flavonoids in serum, all of the conjugated compounds were hydrolyzed using two enzymes to release the aglycone --baicalein which was then quantified by HPLC.

[0099[ Table 14 shows the maximal values found for baicalein concentration (C,,,,x, g/mL) and tiine (T,nax, hour) at which they were observed for each subject. The data shows that for most subjects, the maximum concentration was achieved between 4 and 8 hours after the initial dose. The average Cinax was 0.93 g/mL (%RSD=84.9) and the average T,,,,,x was approxiinately 5.8 hours (%RSD=43.4). Based on this data, the average time for absorption and clearance was calculated and plotted for the entire study group (Figurel7). Since the IC$o values of COX inhibition from UP676 are between 0.2-0.4 g/mL as shown in the Figure 6, it takes about two hours after oral administration for UP676 to reach efficacious concentrations.
However, serum concentration of the Free-B-Ring flavonoids will remain'above therapeutic levels for approximately 10 hours after oral administration. To coinpensate for the lack of quick bioavailability from Free-B-Ring flavonoids, the formulation of catechin type flavans offers a complimentary benefit. Studies of the bioavailability of catechins, quercetin, and epigallocatechin-3-gallate (Kao et al. (2000) Endocrinology 141(3):980-987;
Koga and Meydani (2001) Am. J. Clin. Nutr. 73:941-948; Lee et al. (2002) Cancer Epidemiol.
Biomarker Prevention 11: ] 025-1032) show that the C,,,ax and T,,,ax of catechin occur quickly (about 45 minutes) and the half life was reported to be 2 hours. Therefore, by combining Free-B-Ring-flavonoids with flavans, the quickly penetrating catechins reach efficacious serum concentrations in about 0.5 hour after oral administration. When the catechin concdritratfon"d'r'6ps,'tne s&bnd'"actwe component, the Free-B-Ring flavonoids reach bioactive concentrations that will last up to 12 hours after oral adininistration. In conclusion, the UP676 formulation was designed to have quick on-site periodontal pain reduction and anti-inflamrnatory effects resulting from the flavans, such as catechin and longer lasting effects resulting from the Free-B-Ring flavonoids, such as baicalin. Such synergistic and complimentary effects will also be realized via topical delivery of the formula.
1001001 Example 17 illustrates the safety of topically applying UP676 to human skin. The formulated UP676 as illustrated in Examples 9 and 14 was evaluated on human skin for potential irritation and induction of contact sensitization. A total of 97 and 101 subjects completed induction and challenge with the 0.5% and 1.5% UP676 creams, respectively.
Test results show that UP676 creams at 0.5% and 1.5% concentration produce minimal irritation and do not elicit evidence of induced contact sensitization.
[001011 In conclusion, the compositions of this invention can be administered by any method known to one of ordinary skill in the art. The inodes of administration include, but are not limited to, enteral (oral) administration, parenteral (intravenous, subcutaneous, and intramuscular) administration and topical application. The method of treatment according to this invention comprises administering internally or topically to a patient in need thereof a therapeutically effective amount of a mixture of Free-B-Ring flavonoids and flavans synthesized and/or isolated froma single plant or multiple plants. In a one embodiment the composition is administered topically. The therapeutic agents of the instant invention are adininistered topically by any suitable ineans, known to those of skill in the art for topically administering therapeutic compositions including, but not limited to as a paste, ointment, gel, lotion, or mouse rinse liquid, or cream base or as an emulsion, as a patch, dressing or mask, a nonsticking gauze, a bandage, a swab or a cloth wipe. Such topical application can be locally administered to any affected area, using any standard means known for topical administration, such as brushing with a toothbrush, coated on dental floss, or applying with a swab or rinsing with the liquid or gel. A therapeutic composition can be administered in a variety of unit dosage forms depending upon the method of administration. For particular modes of delivery, a therapeutic composition of the present invention can be formulated in an excipient of the present invention. A therapeutic reagent of the present invention can be administered to any host, preferably to mammals, and more preferably to humans. The particular mode of administration will depend on the condition to be treated.
[001021 In one embodiment, a suitable ointinent is comprised of the desired concentration of the mixture of Free-B-Ring flavonoids and flavans, that is an efficacious, nontoxic quantity ,,, ,,, ...,~.
genera ly selected' r"o'iri tlie range"'ti -" .001 % to 100% based on total weight of the topical formulation, from 0.05 to 5% (preferably 0.1 to 0.5%) of toothpaste, from 0.01 to 5% of mouse washing liquid (preferably 0.2 to 1%), and from 0.1 to 25% (preferably 0.5 to 5%) of emulsion gel or cream.
1001031 Regardless of the manner of administration, the specific dose is calculated according to the approximate body weight of the host. Further refinement of the calculations necessary to determine the appropriate dosage for treatment involving each of the above mentioned formulations is routinely inade by those of ordinary skill in the art and is within the scope of tasks routinely performed by them without undue experimentation, especially in light of the dosage information and assays disclosed herein. These dosages may be ascertained through use of the established assays for determining dosages utilized in conjunction with appropriate dose-response data.
[00104] It should be noted that the invention described herein may be used for veterinary as well as human applications and that the term "host" should not be construed in a limiting manner. In the case of veterinary applications, the dosage ranges can be determined as described above, taking into account the body weight of the animal.
[00105] The following examples are provided for illustrative purposes only and are not intended to limit the scope of the invention.

EXAMPLES
Example 1. Preparation of Organic and Aqueous Extracts from Acacia and Scutellaria Plants [00106] Plant material from Acacia catechu (L) Willd. barks, Sci.rtellaria orthocalyx roots, Scutellai-ia baicalensis roots or Scutellaria lateriflora whole plant and various Oroxylumz and Uncaria species was ground to a particle size of no larger than 2 mm. Dried ground plant inaterial (60 g) was then transferred to an Erlenmeyer flask and methanol:dichloroinethane (1:1) (600 mL) was added. The mixture was shaken for one hour, filtered and the biomass was extracted again with methanol: dichloromethane (1:1) (600 mL). The organic extracts were combined and evaporated under vacuum to provide the organic extract (see Table I
below). After organic extraction, the biomass was air dried and extracted once with ultra pure water (6001nL). The aqueous solution was filtered and freeze-dried to provide the aqueous extract (see Table I below).

Table 1. Yield of Organic and Aqueous Extracts from Plant Species Plant Source Plant Part Organic Extract Aqueous Extract Acacia catechu barks 27.2 g 10.8 g Scutellar=ia or-thocal x roots 4.04 g 8.95 g Scutellaria baicalensis roots 9.18 g 7.18 g Scutellaria lateriflora whole plant 6.54 g 4.08 g Orm~>lum indicLUn seeds 6.58 g 4.04 g Uncaria hirsuta arerial arts 2.41 g 0.90 g Uncaria sinensis arerial parts 3.94 g 1.81 g Uncaria tomentosa bark 6.47 g 2.31 g Example 2. Inhibition of COX-2 and COX-l Peroxidase Activity by Plant Extracts frorn A.
catechu, Various Sczttellar-ia Species and Other Plants 1001071 The bioassay directed screening process for the identification of specific COX-2 inhibitors was designed to assay the peroxidase activity of the enzyme as described below.
1001081 Peroxidase Assay. The assay to detect inhibitors of COX-2 was modified for a high throughput platform (Raz). Briefly, recombinant ovine COX-2 (Cayman) in peroxidase buffer (100 mM TBS, 5 mM EDTA, I M Heme, I mg epinephrine, 0.094% phenol) was incubated with extract (1:500 dilution) for 15 minutes. Quantablu (Pierce) substrate was added and allowed to develop for 45 minutes at 25 C. Luminescence was then read using a Wallac Victor 2 plate reader. The results are presented in Table 2.
1001091 Table 2 sets forth the inhibition of the COX-2 enzyme by the organic (20 gg/mL) and aqueous (20 g/mL) extracts obtained from three plant species, including the bark of A.
catechu, roots of two Scutellaria species, which are comprised of structurally similar Free-B-Ring flavonoids. Data is presented as the percent of peroxidase activity relative to the recombinant ovine COX-2 enzyme and substrate alone. The percent inhibition by the organic extract ranged from 30% to 90%.

Table 2. Inhibition of COX-2 Peroxidase Activity by Various Species Plant Source Inhibition of COX-2 Inhibition of COX-2 by or anic extract by aqueous extract Acacia catechu (bark) 75% 30%
Scutellai-ia orthocal x(root) 55% 77%
Scutellaria baicalensis (root) 75% 0%

1001101 Coinparison of the relative inhibition of the COX-1 and COX-2 isoforms requires the generation of IC50 values for each of these enzymes. The IC50 is defined as the concentration at which'5U"/o inhibition of enzyme activity in relation to the control is achieved by a particular inhibitor. In these experiments, IC50 values were found to range from 6 to 50 g/mL and 7 to 80 pg/rnL for the COX-2 and COX-1 enzymes, respectively, as set forth in Table 3. Cornparison of the IC50 values of COX-2 and COX-1 demonstrates the specificity of the organic cxtracts from various plants for each of these enzymes. The organic extract of S. lateriloi-a for example, shows preferential inhibition of COX-2 over COX-I
with IC50 values of 30 and 80 g/mL, respectively. While some extracts demonstrate preferential inhibition of COX-2, others do not. Examination of the HTP
fractions and purified compounds from these fractions is necessary to determine the true specificity of inhibition for these extracts and compounds.

Table 3. IC50 Values of Organic Extracts for Human and Ovine COX-2 and COX-1 Plant Source IC50 Human IC50 Ovine IC50 Ovine (pg/mL) /mL /mL
Acacia catechu (bark) 3 6.25 2.5 Scutellaria orthocalyx (root) Not tested 10 10 Scutellaria baicaleizsis (root) 30 20 20 Scutellaria lateriflora (whole plant) 20 30 80 Uncai-ia sinensis (whole plant) Not tested 2.2 72.0 Oi-oaylum inclicitm (seeds) Not tested 2.48 8.4 Example 3. Inhibition of COX-I and COX-2 Peroxidase Activity [001111 In order to screen for compounds that inhibited the COX-1 and COX-2 activities, a high throughput, in vitro assay was developed that utilized the inhibition of the peroxidase activity of both enzymes. (Needleman et al. (1986) Annu Rev Biochem. 55:69).
Briefly, the coinposition or compound being examined was titrated against a fixed amount of COX-1 and COX-2 enzymes. A cleavable, peroxide chromophore was included in the assay to visualize the peroxidase activity of each enzyme in presence of arachidonic acid as a cofactor.
Typically, assays were perfonned in a 96-well fonnat. Each inhibitor, taken from a 10 mg/mL stock solution in 100% DMSO, was tested in triplicate at room temperature using the following range of concentrations: 0, 0.1, 1, 5, 10, 20, 50, 100, and 500 g/mL. To each well, 150 L of 100 mM Tris-HCI, pH 7.5 was added along with 10 L of 22 M Hematin diluted in tris buffer, 10 L of inhibitor diluted in DMSO and 25 units of either the COX-] or COX-2 enzyme. The components were mixed for 10 seconds on a rotating platform, followed by the addition of 20 L of 2 mM N,N,N'N'-tetramethyl-p-phenylenediamine dihydrochloride (TMPD) and 20 L of 1.1 mM arachidonic acid to initiate the reaction. The plate was shaken for" 117'sec6nds and"'theri iricubafed'5"'minutes before reading the absorbance at 570 nm. The inhibitor concentration vs. % inhibition was plotted and the IC50 determined by taking the half-maximal point along the isotherm and intersecting the concentration on the X-axis. The IC50 was then normalized to the number of enzyme units in the assay. The COX-l/COX-2 inhibitory activity from 20 pg/mL of pure Free-B-Ring flavanoids are summarized in Table 4.
Table 4. Inhibition of COX Enzy me Activity by Purified Free-B-Rin Flavonoids Free-B-Rin Flavonoids Inhibition of COX-1 Inhibition of COX-2 Baicalin 95% 97%
Baicalein 107% 109%
5,6-Dihydroxy-7-methoxyflavone 75% 59%
7,8-Dihydroxyflavone 74% 63%
Wogonin 16% 12%
1001121 The dose responses and IC50 values for a standardized Free-B-Ring flavonoid extract, baicalin, and baicalein isolated from the roots of S. baicalerzsis are provided in Figures 1, 2 and 3, respectively. The dose responses and IC50 values for two standardized flavan extract (50% and >90% flavans, respectively) isolated from the heartwood of Acacia cateclzu are provided in Figures 4 and 5, respectively. The dose responses and IC50 values for three fonnulations of Free-B-Ring flavon6ids and flavans of varying composition are provided in Figure 6 (80:20 blending), Figure 7 (50:50 blending) and Figure 8 (20:80 blending), respectively.

Example 4. Inhibition of 5-Lipoxygenase by Catechin isolated from A. catechu 1001131 One of the most important pathways involved in the inflammatory response is produced by non-heme, iron-containing lipoxygenases (5-LO, 12-LO, and 15-LO), which catalyze the addition of molecular oxygen onto fatty acids such as AA (AA) to produce the hydroperoxides 5-, 12- and 15-HPETE, which are then converted to leukotrienes.
There were early indications that the flavan extract from A. catechzt may provide some degree of LOX
inhibition, thereby preventing the formation of 5-HPETE. A Lipoxygenase Inhibitor Screening Assay Kit (Cayman Chemical, Inc., Cat# 760700) was used to assess whether an extract isolated from A. cateclzu containing >90% flavans directly inhibited LOX in vitro.
The 15-LO froln soybeans normally used in the kit was replaced with potato LOX, after a buffer change from phosphate to a tris -based buffer using microfiltration was perfonned.
This assay detects the fonnation of hydroperoxides through an oxygen sensing chromagen.
Briefly, the assay was performed in triplicate by adding 90 L of 0.17 units/
L potato 5-LO, 20" L"of 1':1 iri1Gl AA; l 00' L ot oxygen-sensing chromagen and 10 L of purified flavan inhibitor to final concentrations ranging from 0 to 500 g/mL. The IC50 for 5-LO inhibition from this composition was determined to be 1.38 g/mLlunit of enzyme. The results are set forth in Figure 9.

Example 5. HPLC Quantification of Free-B-Ring Flavonoids in Active Extracts Isolated from Scutellaria orthocalyx (roots) and Scutellaria baicalensis (roots) 1001141 The presence and quantity of Free-B-Ring flavonoids in five active extracts isolated from three different plant species as described in Examples I and 2 were determined by HPLC and the results are set forth in the Table 5, below. The Free-B-Ring flavonoids were quantitatively analyzed by HPLC on a Luna C-18 column (250 x 4.5 mm, 5 m) using a 1%
phosphoric acid and acetonitrile gradient from 80% to 20% in 22 minutes. The Free-B-Ring flavonoids were detected using a UV detector at 254 nm and identified based on retention time by cornparison with baicalin, baicalein and other Free-B-Ring flavonoid standards.
Table 5. Free-B-Ring Flavonoid Content in Active Plant Extracts Weight of % Extractible Total amount % Free-B-Ring Active Extracts Extract froni BioMass of Free-B-Ring Flavonoids in Flavonoids Extract S. orthocalvx. 8.95 g 14.9% 0.2 mg 0.6%
(aqueous extract) S. orthocalyx 3.43 g 5.7% 1.95 mg 6.4%
(organic extract) S. baicalensis 7.18 g 12.0% 0.03 mg 0.07%
(aqueous extract) S. baicalensis 9.18 g 15.3% 20.3 ing 35.5%
(organic extract) Example 6. HPLC Quantification of Active Extracts from Acacia catechct 1001151 The flavans in the organic and aqueous extracts isolated from Acacia catechu as illustrated in Examples I and 2 were quantified by HPLC using a PhotoDiode Array detector (HPLC/PDA) and a Luna C18 column (250 mm x 4.6 mm). The flavans were eluted from the column using an acetonitrile gradient from 10% to 30% ACN over a period of minutes, followed by 60% ACN for five minutes. The results are set forth in Table 6. The flavans were quantified based on retention time and PDA data using catechin and epicatechin as standards. The retention times for the two niajor flavans were 12.73 minutes and 15.76 minutes, respectively.

Table 6. Catecli'iri Coritent in Active Plant Extracts Active Extracts from bark of Weight of % Extractible % Flavans A. cateclzu Extract from BioMass in Extract Aqueous Extract 10.8 g 18.0% 0.998%
Organic Extract 27.2 g 45.3% 30.37%
Example 7. Preparation of a Standardized Extract from A. catechu (001161 A. catechu (500 mg of ground root) was extracted twice with 25 mL (2 x 25 mL) of the following solvent systems. (1) 100% water, (2) 80:20 water:methanol, (3) 60:40 water:methanol, (4) 40:60 water:methanol, (5) 20:80 water:methanol, (6) 100%
methanol, (7) 80:20 methanol:THF, (8) 60:40 methanol:THF. The two extracts from each individual extraction were combined concentrated and dried under low vacuum. The identification of the chemical components in each extract was achieved by HPLC using a PhotoDiode Array detector (HPLC/PDA) and a 250 mm x 4.6 mm Cl 8 column. The chemical components were quantified based on retention time and PDA data using catechin and epicatechin as standards.
The results are set forth in Table 7. As shown in Table 7, the flavan extract generated from solvent extraction with 80% methanol/water provided the highest concentration of flavan components.

Table 7. Solvents for Generating Standardized Flavan Extracts from A. catechu Extraction Weight of % Extractible Total amount of % Catechins Solvent Extract from BioMass Catechins in Extract 100% water 292.8 mg 58.56% 13 mg 12.02%
water:methanol 282.9 mg 56.58% 13 mg 11.19%
(80:20) water:methanol 287.6 mg 57.52% 15 mg 13.54%
(60:40) water:methanol 264.8 mg 52.96% 19 mg 13.70%
(40:60) water:methanol 222.8 mg 44.56% 15 mg 14.83%
(20:80) 100% methanol 215.0 m 43.00% 15 mg 12.73%
methanol:THF 264.4 mg 52.88% 11 mg 8.81%
(80:20) methanol:THF 259.9 mg 51.98% 15 mg 9.05%
(60:40) 1001171 A standardized extract was obtained fronl whole plant of Uncaria ganabir by extracting the biomass with alcohol/water solvent. The flavan content in the standardized extract from Uncaria ganibir were quantified using the same method. The results are set forth in Table 8. The 'tlavans were quantitied based on retention time and PDA data using catechin as standards.
1001181 Higher purity material can be obtained by recrystallization of extracts having a catechin content of between 8%-15% using an alcohol/water and/or aqueous solvents as the reciystallization solvent. It may be necessary to decolorize prior to recrystallization by adding active charcoal or other decolorization agent to a heated saturated solution of the extract. The high purity catechins then crystallized upon cooling of the heated saturated solution. The crystals were then filtered to remove solvent, dried and ground into a fine powder. Recrystallization can be repeated as necessary to achieve the desired level of purity (60%-l00% of catechin flavans).

Example 8. Preparation of Standardized Free-B-Ring, Flavonoid Extracts from various Scutellaria species [00119] S. orthocalyx (500 mg of ground root) was extracted twice with 25 mL of the following solvent systems. (1) 100% water, (2) 80:20 water:methanol, (3) 60:40 water:methanol, (4) 40:60 water:methanol, (5) 20:80 water:methanol, (6) 100%
methanol, (7) 80:20 methanol:THF, (8) 60:40 methanol:THF. The extracts were combined, concentrated and dried under low vacuum. Identification of chemical components in each extract was perfonned by HPLC using a PhotoDiode Array detector (HPLC/PDA) and a 250 mm x 4.6 mm C 18 column. The chemical components were quantified based on retention time and PDA data using baicalein, baicalin, scutellarein, and wogonin as standards.
The results are set forth in Table 9.

Table 9. Quanhfication ..o... Free- - in Flavonoids Extracted from . Sortlmcal x Extraction Weight of % Extractible Total amount % Flavonoids Solvent Extract from BioMass of Flavonoids in Extract 100% water 96 m 7 19.2% 0.02 mg 0.20%
Water:methanol 138.3 mg 27.7% 0.38 mg 0.38%
(80:20) Water:methanol 169.5 mg 33.9% 0.78 mg 8.39%
(60:40) Water:methanol 142.2 mg 28.4% 1.14 mg 11.26%
(40:60) Water:methanol 104.5 nig 20.9% 0.94 mg 7.99%
(20:80) 100% methanol 57.5 m 11.5% 0.99 m 10.42%
methanol:THF 59.6 mg 11.9% 0.89 mg 8.76%
(80:20) methanol:THF 58.8 mg 11.8% 1.10 mg 10.71%
(60:40) [001201 S. baicalensis (1000 mg of ground root) was extracted twice using 50 mL of a mixture of methanol and water as follows: (1) 100% water, (2) 70:30 water:methanol, (3) 50:50 water:methanol, (4) 30:70 water:methanol, (5) 100% methanol. The extracts were coinbined, concentrated and dried under low vacuum. Identification of the chemical components was performed by HPLC using a PhotoDiode Array detector (HPLC/PDA), and a 250 min x 4.6 mm C18 column. The chemical components in each extract were quantified based on retention time and PDA data using baicalein, baicalin, scutellarein, and wogonin standards. The results are set forth in Table 10.

Table 10. Quantification of Free-B-Rin Flavonoids Extracted from S.
baicalensis Extraction Weight of % Extractible Total amount % Flavonoids Solvent Extract froni BioMass of Flavonoids in Extract 100% water 277.5 mg 27.8% 1 mg 0.09%
Water:methanol 338.6 mg 33.9% 1.19 mg 11.48%
(70:30) Water:methanol 304.3 ing 30.4% 1.99 mg 18.93%
(50:50) Water:methanol 293.9 mg 29.4% 2.29 mg 19.61%
(30:70) 100% methanol 204.2 mg 20.4% 2.73 mg 24.51 %
1001211 Higher purity Free-B-Ring flavonoids can be obtained by recrystallization of extracts having a Free-B-Ring flavonoid content of between 8-15% using alcohol/water as a recrystallization solvent. It may be necessary to decolorize prior to recrystallization by adding active charcoal or other decolorization agent to a heated saturated solution of the extract. The Free-B-Riiig"flavorioids crystallized upon cooling. The crystals were filtered, dried and ground into a fine powder. Recrystallization can be repeated as necessary to achieve the desired level of purity (60%-100% of Free-B-Ring flavonoids).

Example 9. Preparation of a Formulation with a Standardized Free-B-Ring Flavonoid Extract from the Roots of S. baicalensis and a Standardized Flavan Extract from the Bark of A.
catechu 1001221 A novel composition of matter, referred to herein as UP676 was formulated using two standardized extracts isolated from Acacia and Scutellaria, respectively, together with one or more excipients. A general exainple for preparing such a composition is set forth below. The Acacia extract used in this example contained >80% total flavans, as catechin and epicatechin, and the Scattellaria extract contained >80% Free-B-Ring flavonoids, which was primarily baicalin. The Scutellaria extract also contained other minor amounts of Free-B-Ring flavonoids as set forth in Table 11. One or more excipients/preservatives was also added to the coinposition of matter. The ratio of flavans and Free-B-Ring flavonoids can be adjusted based on the indications and the specific requirements with respect to inhibition of COX vs. LO, requirements of skin penetration, and potency requirements of the product, such as duration of potency required, etc. The quantity of the excipients can be adjusted based on the actual active content of each ingredient. A blending table for each individual batch of product must be generated based on the product specification and QC results for individual batch of ingredients. Additional amounts of active ingredients in the range of 2-5% are recommended to ineet the product specification.
[00123] S. baicalensis root extract (38.5 kg) (lot # RM052302-01) having a Free-B-Ring flavonoid content of 82.2% (baicalin); Acacia catechat bark extract (6.9 kg) (lot #
RM052902-01) with total flavan content of 80.4%; and excipient (5.0 kg of Candex) were combined to provide a UP676 formulation (50.4 kg) having a blending ratio of 85: l 5 by weight of the active Free-B-Ring flavonoids and flavans. Table l 1 provides the quantification of the active Free-B-Ring flavonoids and flavans of this specific batch of UP676 (Lot#G1702-COX-2), determined using the methods provided in Examples 6 and 8.
With reference to Table 11, this specific batch of UP676 contains 86% total active ingredients, including 75.7% Free-B-Ring flavonoids and 10.3% flavans. Figure illustrates the HPLC chromatogram of a representative UP676 sample, which had a blending ratio of 80:20 by weight of the active Free-B-Ring flavonoids and flavans.

Table l l. 'Frce=B--'Ring Fiavonoid and Flavan Content of a UP676 Formulation Active Components % Content 1. Flavonoids a. Baicalin 62.5%
b. Minor Flavonoids i. Wogonin-7-glucuronide 6.7%
ii. Oroxylin A 7-glucuronide 2.0%
iii. Baicalein 1.5 10 iv. Wogonin 1.1%
v. Chrysin-7-glucuronide 0.8%
vi. 5-Methyl-wogonin-7-glucuronide 0.5%
vii. Scutellarin 0.3%
viii. Norwogonin 0.3%
ix. Chrysin <0.2%
x. Oroxylin A <0.2%
c. Total Free-B-ring Flavonoids 75.7%
2. Flavans a. Catechin 9.9%
b. Epicatechin 0.4%
c. Subtotal Flavans 10.3%
3. Total Active Ingredients 86%

[001241 Using the same approach, the following batches of UP676 were prepared using a combination of a standardized Free-B-Ring flavonoid extract from S.
baicalensis roots and a standardized flavan extract from Acacia catechu bark having a blending ratio of 12:88 and 15:85, respectively.
1001251 S. baicalensis root extract (58.0g) (lot # RM021203-01) having a Free-B-Ring flavonoid content of 87.9% (as baicalin) and Acacia catechu bark extract (442.0g) (lot #
RM050603-01) with total flavan content of 84.9% were blended to provide a composition (500 g, lot#QJ205-19) having a blending ratio of 12:88 by weight.
Utilizing the methods provided in Examples 6 and 8, the Free-B-Ring flavonoid content of (baicalin) was 9.65% and flavan content (total catechin and epicatechin) was 73.2% in this specific batch of UP676 (lot#QJ205-19).
1001261 S. baicalensis root extract (300g) (lot # RM060403-01) having a Free-B-Ring flavonoid content of 82.9% (as baicalin) and Acacia catechtc bark extract (1700g) (lot #
RM050603-01) with total flavan content of 90.8% were blended to provide a composition (2000 g, lot#A1904) having a blending ratio of 15:85 by weight.
Utilizing the methods provided in Examples 6 and 8, the Free-B-Ring flavonoid content (baicalin) was 15.6% and flavan content (total catechin and epicatechin) was 75.0% in this specific batch of UP676 (lot#A 1904).

Exainple 10. Measurements of Dose Response and IC50 Values of 5-LO Enzyine Inhibition from a Formulation of UP676 1001271 A UP676 formulation (80:20) was prepared as described in Example 9 using a coinbination of a standardized Free-B-Ring flavonoid extract from S.
baicalensis roots and a standardized flavan extract from A. catechu bark with a blending ratio of 80:20. The sample was titrated in tissue culture media containing THP-1 or HT-29 cells; monocyte cell lines that express COX-l, COX-2 and 5-LOX. A competitive ELISA for Leukotriene B4 (LTB4;
Neogen, Inc., Cat#406110) was used to assess the effect of this UP676 formulation on newly synthesized levels of LTB4 present in each cell line as a measure UP676 's inhibitory effect on the 5-LOX pathway. The assay was performed in duplicate by adding 160,000 to 180,000 cells per well in 6-well plates. The UP676 formulation was added to the THP-1 cultures at 3, 10, 30 and 100 g/inL and incubated overnight (-12-15 hrs) at 37 C with 5% CO2 in a humidified environment. The results are set forth in Figure 11, which shows that the production of newly LPS-induced LTB4 was almost completely inhibited by the addition of UP676 to theTHP-1 cultures between 3 and 10 g/mL.
1001281 UP676 and ibuprofen, another known 5-LOX inhibitor, were added to the cells at 3 g/mL and incubated 48 hrs at 37 C with 5% CO2 in a humidified environment.
Each treated cell line was then harvested by centrifugation and disrupted by gentle dounce homogenization lysis in physiological buffers. As shown in Figure 12, UP676 inhibited generation of 80% of the newly synthesized LTB4 in HT-29 cells. Ibuprofen only showed a 20% reduction in the amount of LTB4 over the same time period.

Example 11. UP676 down re 7ul~ ated gene expression of pro-inflammatory cytokines and other proteins related to inflammation at the mRNA level 1001291 Peripheral blood mononuclear cell (PBMC) is an established cell model for inflammation related disease. PBMCs from 3 healthy human subjects were stimulated with ng/mL of lipopolysaccharide (LPS) both without and in the presence of various concentrations of UP676 (0, 10, 30 and 100 g/hnL). The cells were incubated at 37 C with 5% CO2 for 18 hrs before harvesting for RNA purification. RNA was prepared with the Qiagen RNeasy Kit and cDNA was synthesized with the ABI cDNA Archive kit. Real time quantitative-PCR assays were performed with an ABl Prism Sequence Detector.
Either the 18S rRNA gene or the cyclophilin A gene was used as internal controls for normalization. A

summary of the data derived trom the three experiments is set forth in Table 12. On average, suppression of the gene expression of il-10, tnfa and il-6 was 45-fold, 3-fold and 27-fold, respectively. Additionally, more than a 10-fold suppression of ppary and a 2-fold suppression of nfKb mRNA by UP676 was detected at 18 hours post-stimulation with LPS in PBMCs.

Table 12. UP676 Gene Suppression in PBMCs (the numbers represent fold change of mRNA levels behveen the samples treated with 100 jig/ and 0 pg/mL UP676) Gene Subject #1 Subject #2 Subject #3 Average coxl 3 -3 -5 -0.8 cox2 -71 -84 -35 -63 il-1 -108 -11 -16 -45 tnfa -6 -1.5 -2.5 -3.3 il-6 nd -40 -34 -27 ppary nd -7 -13 -10 nfxb -2.7 -2.2 -1.6 -2.2 Example 12. Evaluation of the Efficacy of UP676 with in vivo Mouse Ear Swelling Model [001301 A UP676 fonnulation was prepared using a combination of a standardized Free-B-Ring flavonoid extract from S. baicalensis roots and a standardized flavan extract from Acacia catechz.t bark with a blending ratio of 80:20 as described in Example 9. To test whether this composition could be used to treat inflammation in vivo, the composition was administered by oral gavage to 4-5 week old ICR mice (Harlan Labs) one day before treatment of their ears with arachidonic acid (AA). Test mice were fed dose equivalents of 50, 100 and 200 mg/kg of UP676 suspended in olive oil while control mice were fed only olive oil. The following day, 20 L of 330 mM AA in 95% alcohol was applied to one ear of each mouse, while alcohol was applied to the other ear as a control. Mice treated with UP676 showed a measurable dose response that tracked with increasing doses of UP676, as demonstrated in Figure 13. With reference to Figure 13, the 200 mg/kg dose reduces swelling by over 50% as compared to the "No treatment" control. The 50 mg/kg dose of UP676 was as effective as the 50 mg/kg dose of another strong anti-inflammatory, indomethacin.

Example 13. Evaluation of the Efficacy of UP676 in Preventing and Treating Damage Resulting from Exposure of Skin to UV radiation 1001311 Six groups of hairless female mice (five mice per group) (Strain SKH-1, Harlan Labs) were irradiated, while anesthetized, for three minutes on three consecutive days with _ . .
0.626 mW/cm' to test the"ef ectiveness of the UP676 fonnulation in preventing and treating damage resulting from exposure of skin to UV radiation. The UP676 fonnulation was prepared using a combination of a standardized Free-B-Ring flavonoid extract from Scutellaria baicalensis roots and a standardized flavan extract from Acacia catechu bark with a blending ratio of 80:20 as described in Example 9. The six treatment groups were as follows:
Group #
I Control group: no treatment before or after UV irradiation 2 Positive control: treated with a topical application of Sooth-A-Caine (Banana Boat) after UV irradiation 3 UP676 Treatment B-1: treated with topical application of I ing/hnL
UP676 in water bef'ore UV irradiation 4 UP676 Treatment A-l : treated with topical application of I mg/mL
UP676 in water after UV irradiation UP676 Treatment B-2: treated with topical application of 5 mg/mL
UP676 in water before UV irradiation 6 UP676 Treatment A-2: treated with topical application of 5 mg/mL
UP676 in water after UV irradiation 1001321 After three days of UV exposure and treatment, the mice were scored on level of erythema (redness) using the following scale: 0- no visible erythema; 1- very slight erythema; 2- well defined erythema; 3- severe erythema; and 4- tumor forination. Erythema was scored by eye for each group. The results are set forth in Figure 14. With reference to Figure 14 it can be seen that the control group (Group 1) had severe redness on day 3 (72 hours after the three day exposure to UV radiation). The Sooth-a-caine group also had maximum redness on day 3 (Group 2). The redness for the UP676 treated groups (Groups 3-6) never exceeded a score of 2. These scores, though subjective, show that UP676 is effective in both preventing and treating UV caused skin erythema.
100133] Photographs of representative mice on day four clearly demonstrate differences between the control group, the Sooth-a-cainTM treated groups and the UP676 treated groups (data not shown). The control group and Sooth-a-cainTM treated animals exhibited very extensive patterns and redness of erythema compared to the animals treated with the UP676 fonnulation both before and after UV exposure. The animals treated before UV
irradiation with 5 mghnL UP676 exhibited the least amount of erythema as compared to all of the other animals.

Example 14. Formulation of the UP676 Composition into a Cream 1001341 UP676 (0.5% by weight of UP676) (lot#A] 904 as described in Example 9) was fonnulated as a cream as illustrated in the following procedure and in Table 13.
1001351 UP676 (Lot#A1904) was dissolved in water at room temperature and hoinogenized with a blender until it was fully dispersed in solution (approximately 5 minutes). At room temperature and without stirring or agitating the solution, Ultrez-21 carbomer was added by sprinkling onto the surface of the solution and allowing it to fully wet (no white areas visible) and fall into the solution. With gentle stirring, the solution was then heated to 40 C and glycerin was added (Part A). The mixture was then stirred for an additional 5 minutes. The remaining components (Part B) were weighed and heated to 40 C while mixing. At 40 C, the remaining components (Part B) were added to Part A and the resulting composition was mixed well until homogenous (approximately 5 minutes). The emulsion was cooled to 30 C
and the pH was adjusted to approximately 5.5 (5.3 to 5.7) by titrating with neutralizer while stirring with a stir bar and/or spatula. The emulsion became highly viscous due to neutralization-induced conformational change of the carbomer. The emulsion eventually achieved a suitable viscosity for an emulsion cream. The emulsion cream was then mixed until uniform after which it was poured into a clean storage vessel and stored at 2 C to 8 C
for one month.

Table 13. Ing redient list for a 0.5% UP676 Cream Phase ln redient %(w/w) Weight () Water, Purified 85.00 1275.0 Aqueous UP676 (Lot#A1904) 0.50 7.5 Ultrez 21 Carbomer 0.50 7.5 Glycerin 8.00 120.0 Oil PEG-7 Glyceryl Cocoate 3.00 45.0 Caprylic/ Capric Triglyceride 2.67 40.0 PH Sodium Hydroxide (18% w/v), Neutralizer Molecular Biology Grade 0.00 0.0 SUM 7 Ingredients 99.7 1495.0 Example 15. Evaluation of the Stability of Catechin in Solution [00136] Pure catechin was dissolved in 70% MeOH in water to a final concentration of 0.05% (W/V) after mixing with the solutions detailed below. A total of 6 different conditions (not including control solution) were chosen for this stability investigation at 45 C. Aqueous KZHPO4 (0.5 M) or KH2PO4 (0.5 M) was utilized to make buffered solutions at pH
5 or 8, respectively. H202, SnCl2, FeC13 or EDTA was added to the catechin solution to a concentration of 0.6% H-102, or 0.U5% SnCI2-, or 0.05% FeC13 or 0.05% EDTA, respectively.
All seven solutions were stored in sealed bottles at 45 C. Each sample was tested for catechin content by HPLC as described in the Example 6 at day 0, 1, 3, 6, 8, 10, 13, 20, and 28. The results are set forth in Figure 15.
1001371 The following preservatives: BHA, BHT, diammonium citrate (DAC), H202, propyl gallate (PG), sodium gluconate (SG), and sodium bisulfate/tnetabisulfite (SBS), were added into a buffered (pH 7.5) 0.05% catechin MeOH/H20 solution to yield a concentration of 0.05%. All eight solutions were stored in sealed bottles at 45 C. Each sample was tested by HPLC as described in Example 6 for catechin content at day 0, 1, 3, 6, 8, 10, 13, 20, and 28. The results are set forth in Figure 16.

Example 16. Evaluation of the bioavailability of Baicalin in UP676 after oral administration 1001381 This clinical study was a single-center, open-label study in which ten healthy subjects (n=10, 6 female and 4 male) were recruited to participate. The subjects fasted overnight and reported to the clinical trial center at 8:00 a.m. the next tnorning. Each subject received a dose of 300 mg UP676 prepared as described in Example 9 immediately following a baseline venipuncture. Follow-up plasma samples were collected at V2, 1, 2, 4 and 8 hours.
Additional samples were collected at 24 hours on day two and on the seventh day. Each plasma specimen was processed by collecting the blood into heparin-containing tubes. The blood was then centrifuged at 2,500 rpm for 10 minutes. Supernatant from each tube was split, transferred into transfer tubes, and stored at -70 C for analysis following the final collections before determination of Free-B-ring flavonoid levels. This analysis was undertaken to detetmine: (i) area under the curve (AUC) for absorption and clearance of Free-B-Ring flavonoids; (ii) maximum plasma concentration (C,nax) of Free-B-Ring flavonoids; (iii) time to maximum plastna concentration (T,nax) for Free-B-Ring flavonoids;
(iv) plasma elimination half-life (Tii2) of Free-B-Ring flavonoids; and, (v) 24 hour urinary clearance AuZa"r 100139] Preliminary investigation of several test aliquots of the sera by HPLC
revealed that the Free-B-Ring flavonoids were below the detection limit (<4 g/mL) due to conjugation via glucuronidation and sulfation. Therefore, the sera was digested with (3-glucuronidase at 2,000 u/mL and sulfatase at 170 u/mL to allow conversion of all conjugated Free-B-Ring flavonoids into the aglycone molecule baicalein. The total baicalein metabolites were then by HPLC using pure baicalein as a standard. Ascorbic acid was added to prevent oxidation of the flavonoids during the 7 hour digestion at 37"C and subsequent HPLC
analysis.

1001401 After (3-glucuronidase and sulfatase digestion of the plasma, the flavonoid was extracted with ethyl acetate and then promptly evaporated to dryness with a nitrogen stream and gentle heating (35 C) before HPLC analysis. An 80:20 methanol: tetrahydro furan solution containing lmg/rnL ascorbic acid buffer was used to reconstitute the sample.
Quantification of baicalein was achieved by reverse-phase chromatography using an isocratic gradient of 0.1 % phosphoric acid (v/v) (buffer A) and acetonitrile (buffer B) at a flow rate of I mL/min with pure baicalein standard material for mass calibration and retention time identification. Detection of eluted material was monitored using an inline UV
detector ineasuring at 275 nm.
[00141] The results are set forth in Figure 17. With reference to Figure 17, the data shown in bold represents the points used to calculate the plasma clearance of baicalein. When logarithmically transformed and graphed for all subjects, these data represented a linear function with respect to time (data not shown). There was individual variation seen from subject to subject. Table 14 shows the maximal values found for baicalein concentration (C,,,,X, g/mL) and time (T,,,,x, hour) which were observed for each subject.
The data shows that for most subjects, the maximum concentration was achieved between 4 and 8 hours after the initial dose. The average Cinax was 0.93 g/mL (%RSD=84.9) and the average T,,,ax was approximately 5.8 hours (%RSD=43.4). Based on this data, the average for absorption and clearance was calculated and plotted for the entire study group (Figure 17).

Table 14. Maximal values of baicalcin concentration (C,,,ax, g/mL) and time (Tma"
hour) observed for each subject.
A B C D E F G H I J
Cmax 1.1 0.80 0.38 0.58 0.44 2.8 0.88 0.47 0.14 0.26 ( g/mL) Tmax 2.0 8.0 4.0 8.0 8.0 4.0 8.0 4.0 8.0 8.0 (hour) Exainple 17. Evaluation of a UP676 Creain for Irritation and Induction of Contact Sensitization by Repetitive Application to Huinan Skin.
100142] The UP676 was tested on human skin using an adaptation of the Draize Patch Test (Marzulli and Maibach (1977) Contact Allergy: Predictive Testing in Humans. In Advances in Modern Toxicology, Dennatotoxicology and Pharmacology. Eds. Marzulli, F.N
and Maibach, H.I.'4;'35'Y='372) The test sites were located on the upper arm or the paraspinal region of the back. Each test article had an induction site and a challenge site. The induction site was comprised of two sub-sites: an original-site and a move-site.
Patches, containing 0.2 mL of UP676 cream/patch prepared as described in Example 14, were applied repeatedly to the original-site unless a sufficiently strong irritation reaction developed, requiring the patch to be applied to the move-site. Patches were applied by a clinical research institute and were relnoved and discarded by the subjects approximately 24 or 48/72 hours later.
In the induction phase, repetitive application of the test article to the same site on the skin and a total of 9 induction patches were applied within a 4-week period. The rest period was 10 to 21 days between application of the last induction patch and application of the challenge patch. During this time no test article or any other material was applied to the test area. At the challenge phase, the test article was applied to a naive site on the opposite side of the body and discarded by the subjects approximately 24 or 48 hours later.
1001431 Skin responses to each patch application were examined and graded under light supplied by a 100-watt incandescent blue bulb according to the designated scoring scale. In instances where a strong irritation reaction warranted application of the test article to the move-site, residual scores were be recorded through the end of induction (or until resolved if reactions persist after induction is completed) for all previously exposed sites. All skin reactions were recorded. During the challenge phase, skin responses were evaluated approximately 48 and 72 or 96 hours after patch application. Conclusions, with regard to induced sensitivity, were derived primarily from the challenge evaluations.
1001441 The two UP676 creams prepared in the Example 14 at 0.5% and 1.5% UP676 concentrations were evaluated according to the above protocol. A total of 120 subjects were recruited for each group. Ninety-seven subjects completed the study for the 0.5% UP676 group and 101 subjects completed the study for 1.5% UP676 group. There was no evidence of sensitization reaction for either the 0.5% and 1.5% UP676 creams. For the 0.5% UP676, during induction, sixteen subjects exhibited occasional occurrences of slight to mild erythema (scores of + and/or 1). At challenge, four subjects exhibited slight to mild erythema at 48 hours that cleared by 96 hours. For 1.5% UP676, during induction, twenty-six subjects exhibited occasional occurrences of slight to mild erythema (scores of +
and/or 1). At challenge, one subjects exhibited slight to mild erythema at 48 hours that cleared by 96 hours.
1001451 This study demonstrates that UP676 is a safe ingredient that can be applied topically to human skin at an efficacious concentration without causing irritation or sensitization.

Claims (40)

1. A method for preventing and treating diseases and conditions of the mouth, gums and teeth, said method comprising administering to a host in need thereof an effective amount of a pharmaceutical composition comprising a mixture of at least one Free-B-Ring flavonoid and at least one flavan.
2. The method of claim 1 wherein the ratio of Free-B-Ring flavonoid to flavan in said composition is selected from the range of 99:1 Free-B-Ring flavonoid:flavan to 1:99 of Free-B-Ring flavonoid:flavan.
3. The method of claim 2 wherein the ratio of Free-B-Ring flavonoid:flavan in the composition of matter is about 80:20.
4. The method of claim 1 wherein said Free-B-Ring flavonoid is selected from the group of compounds having the following structure:

wherein R1, R2, R3, R4, and R5 are independently selected from the group consisting of -H, -OH, -SH, -OR, -SR, -NH2, -NHR, -NR2, -NR3+X-, a glycoside of a single or combination of multiple sugars, wherein said glycoside is linked to the 7-hydroxy chromone by a carbon, oxygen, nitrogen or sulfur, and wherein said single or combination of multiple sugars include, but are not limited to aldopentoses, methyl-aldopentose, aldohexoses, ketohexose and their chemical derivatives thereof;
wherein R is an alkyl group having between 1-10 carbon atoms; and X is selected from the group of pharmaceutically acceptable counter anions including, hydroxyl, chloride, iodide, sulfate, phosphate, acetate, fluoride and carbonate.
5. The method of claim 1 wherein said flavan is selected from the group of compounds having the following structure:

wherein R1, R2, R3, R4 and R5 are independently selected from the group consisting of H, -OH, -SH, -OCH3, -SCH3, -OR, -SR, -NH2, -NRH, -NR2, -NR3+X-, esters of the mentioned substitution groups, including, but not limited to, gallate, acetate, cinnamoyl and hydroxyl-cinnamoyl esters, trihydroxybenzoyl esters and caffeoyl esters, and their chemical derivatives thereof; a glycoside of a single or combination of multiple sugars, wherein said glycoside is linked to the 7-hydroxy chromone by a carbon, oxygen, nitrogen or sulfur, and wherein said single or combination of multiple sugars include, but are not limited to aldopentoses, methyl-aldopentose, aldohexoses, ketohexose and their chemical derivatives thereof and other polymerized flavans;
wherein R is an alkyl group having between 1-10 carbon atoms ; and X is selected from the group of pharmaceutically acceptable counter anions including, but not limited to hydroxyl, chloride, iodide, sulfate, phosphate, acetate, fluoride, carbonate.
6. The method of claim I wherein said Free-B-Ring flavonoid and said flavan are obtained by organic synthesis or are isolated from a plant.
7. The method of claim 6 wherein said Free-B-Ring flavonoid and said flavan are isolated from a plant part selected from the group consisting of stems, stem barks, trunks, trunk barks, twigs, tubers, roots, root barks, young shoots, seeds, rhizomes, flowers and other reproductive organs, leaves and other aerial parts.
8. The method of claim 6 wherein said Free-B-Ring flavonoid is isolated from a plant family selected from the group consisting of Annonaceae, Asteraceae, Bignoniaceae, Combretaceae, Compositae, Euphorbiaceae, Labiatae, Lauranceae, Leguminosae, Moraceae, Pinaceae, Pteridaceae, Sinopteridaceae, Ulmaceae and Zingiberacea.
9. The method of claim 6 wherein said Free-B-Ring flavonoid is isolated from a plant genus selected from the group consisting of Desmos, Achyrocline, Oroxylum, Buchenavia, Anaphalis, Cotula, Gnaphalium, Helichrysum, Centaurea, Eupatorium, Baccharis, Sapium, Scutellaria, Molsa, Colebrookea, Stachys, Origanum, Ziziphora, Lindera, Actinodaphne, Acacia, Derris, Glycyrrhiza, Millettia, Pongamia, Tephrosia, Artocarpus, Ficus, Pityrogramma, Notholaena, Pinus, Ulmus and Alpinia.
10. The method claim 6 wherein said flavan is are isolated from a plant genus selected from the group consisting of the Acacia and Uncaria.
11. The method of claim 6 wherein said Free-B-ring flavonoid is isolated from a plant or plants in the Scutellaria baicalensis and Oroxylum indicum and said flavan is isolated from a plant or plants in the Acacia catechu and Uncaria gambir.
12. The method of claim 1 wherein the composition is administered in a dosage selected from 0.001 to 200 mg/kg of body weight.
13. The method of claim 1 wherein the composition is administered in a formulation comprised of approximately 0.001 weight percent (wt %) to 40.0 wt % of the mixture of Free-B-Ring flavonoids and flavans in a pharmaceutically acceptable carrier.
14. The method of claim 1 wherein the routes of the administration are selected from the group consisting of topical, aerosol, suppository, intradermic, intramusclar, and intravenous administration.
15. The method of claim 14 wherein the route of the administration is topical.
16. The method of claim 15 wherein the composition is administered using a means selected from the group consisting of a toothpaste, gel, ointment, mouthwash, chewing gum, tincture and a drink.
17 The method of claim 1 wherein the pharmaceutical composition is further comprised of a conventional excipient and optionally an adjuvant, and/or a carrier, and/or a regular or controlled releasing vehicle.
18. The method of claim 1 wherein diseases and conditions of the mouth, gums and teeth are selected from the group consisting of periodontal diseases, selected from the group consisting of gingivitis, periodontitis, pulpitis, periodontal conditions caused by the physical implantation of oral dentures, trauma, injuries, bruxism, neoplastic and other degenerative processes; material alba, pellicles, dental plagues, calculus and stains.
19. A pharmaceutical composition of matter offering health benefits related to the mouth, teeth and gums comprised of a mixture of at least one Free-B-Ring flavonoid and at least one flavan.
20. The pharmaceutical composition of claim 19 wherein the ratio of Free-B-Ring flavonoid to flavan in said composition is selected from the range of 99:1 Free-B-Ring flavonoid:flavan to 1:99 of Free-B-Ring flavonoid:flavan.
21. The pharmaceutical composition of 20 wherein the ratio of Free-B-Ring flavonoid:flavan in the composition of matter is about 80:20.
22. The pharmaceutical composition of claim 19 wherein said Free-B-Ring flavonoid is selected from the group of compounds having the following structure:

wherein R1, R2, R3, R4, and R5 are independently selected from the group consisting of -H, -OH, -SH, OR, -SR, -NH2, -NHR, -NR,, -NR3+X-, a glycoside of a single or combination of multiple sugars, wherein said glycoside is linked to the 7-hydroxy chromone by a carbon, oxygen, nitrogen or sulfur, and wherein said single or combination of multiple sugars include, but are not limited to aldopentoses, methyl-aldopentose, aldohexoses, ketohexose and their chemical derivatives thereof;
wherein R is an alkyl group having between 1-10 carbon atoms; and X is selected from the group of pharmaceutically acceptable counter anions including, hydroxyl, chloride, iodide, sulfate, phosphate, acetate, fluoride and carbonate.
23. The pharmaceutical composition of claim 19 wherein said flavan is selected from the group of compounds having the following structure:

wherein R1, R2, R3, R4 and R5 are independently selected from the group consisting of H, -OH, -SH, -OCH3, -SCH3, -OR, -SR, -NH2, -NRH, -NR2, -NR3+X-, esters of the mentioned substitution groups, including, but not limited to, gallate, acetate, cinnamoyl and hydroxyl-cinnamoyl esters, trihydroxybenzoyl esters and caffeoyl esters, and their chemical derivatives thereof; a glycoside of a single or combination of multiple sugars, wherein said glycoside is linked to the 7-hydroxy chromone by a carbon, oxygen, nitrogen or sulfur, and wherein said single or combination of multiple sugars include, but are not limited to aldopentoses, methyl-aldopentose, aldohexoses, ketohexose and their chemical derivatives thereof and other polymerized flavans;
wherein R is an alkyl group having between 1-10 carbon atoms; and X is selected from the group of pharmaceutically acceptable counter anions including, but not limited to hydroxyl, chloride, iodide, sulfate, phosphate, acetate, fluoride, carbonate.
24. The pharmaceutical composition of claim 19 wherein said Free-B-Ring flavonoid and said flavan are obtained by organic synthesis or are isolated from a plant.
25. The pharmaceutical composition of claim 24 wherein said Free-B-Ring flavonoid and said flavan are isolated from a plant part selected from the group consisting of stems, stem barks, trunks, trunk barks, twigs, tubers, roots, root barks, young shoots, seeds, rhizomes, flowers and other reproductive organs, leaves and other aerial parts.
26. The pharmaceutical composition of claim 24 wherein said Free-B-Ring flavonoid is isolated from a plant family selected from the group consisting of Annonaceae, Asteraceae, Bignoniaceae, Combretaceae, Compositae, Euphorbiaceae, Labiatae, Lauranceae, Leguminosae, Moraceae, Pinaceae, Pteridaceae, Sinopteridaceae, Ulmaceae and Zingiberacea.
27. The pharmaceutical composition of claim 24 wherein said Free-B-Ring flavonoid is isolated from a plant genus selected from the group consisting of Desmos, Achyrocline, Oroxylum, Buchenavia, Anaphalis, Cotula, Gnaphalium, Helichrysum, Centaurea, Eupatarium, Baccharis, Sapium, Scutellaria, Molsa, Colebrookea, Stachys, Origanum, Ziziphora, Lindera, Actinodaphne, Acacia, Derris, Glycyrrhiza, Millettia, Pongamia, Tephrosia, Artocarpus, Ficus, Pityrogramma, Notholaena, Pinus, Ulmus and Alpinia.
28. The pharmaceutical composition of claim 24 wherein said flavan is isolated from a plant genus selected from the group consisting of the Acacia and Uncaria.
29. The pharmaceutical composition of claim 24 wherein said Free-B-ring flavonoid is isolated from a plant or plants in the Scutellaria baicalensis and Oroxylum indicum and said flavan is isolated from a plant or plants in the Acacia catechu and Uncaria gambir.
30. The pharmaceutical composition of claim 19 further comprising a pharmaceutically acceptable excipient and optionally an adjuvant or a carrier.
31. The pharmaceutical composition of claim 19, wherein said composition is formulated for topical application.
32. The pharmaceutical composition of claim 19 where said composition is formulated in a regular or controlled releasing vehicle.
33. The composition of claim 19 wherein said composition is formulated using a means selected from the group consisting of a toothpaste, gel, ointment, mouthwash, chewing gum, tincture and a drink.
34. The composition of claim 19 wherein the health benefits related to the mouth, teeth and gums are selected from the group consisting of maintaining optimum saliva production and pH, minimizing bacterial growth, reducing the formation of pellicles and plague, inhibiting tooth decalcification and tooth caries (decay), promoting remineralization, whitening teeth, maintaining healthy oral hygiene and reducing oral malodour (halitosis) said method comprising administering to a host in need thereof an effective amount of a composition comprising a mixture of at least one Free-B-Ring flavonoid and at least one flavan.
35. A method for providing health benefits to the mouth, teeth and gums, wherein said health benefits are selected from the group consisting of maintaining optimum saliva production and pH, minimizing bacterial growth, reducing the formation of pellicles and plague, inhibiting tooth decalcification and tooth caries (decay), promoting remineralization, whitening teeth, maintaining healthy oral hygiene and reducing oral malodour (halitosis) said method comprising administering to a host in need thereof an effective amount of a composition comprising a mixture of at least one Free-B-Ring flavonoid and at least one flavan.
36. The method of claim 35 wherein the composition is administered in a formulation comprised of approximately 0.001 weight percent (wt %) to 40.0 wt % of the mixture of Free-B-Ring flavonoids and flavans in an acceptable carrier.
37. The method of claim 35 wherein the routes of the administration are selected from the group consisting of topical, aerosol, suppository, intradermic, intramusclar, and intravenous administration.
38. The method of claim 37 wherein the route of the administration is topical.
39. The method of claim 35 wherein the composition is administered using a means selected from the group consisting of a toothpaste, gel, ointment, mouthwash, chewing gum, tincture and a drink.
40. The method of claim 35 wherein the composition is further comprised of a conventional excipient and optionally an adjuvant, and/or a carrier, and/or a regular or controlled releasing vehicle.
CA002584124A 2004-10-19 2005-10-19 Flavonoid composition for treating oral diseases Abandoned CA2584124A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US62016304P 2004-10-19 2004-10-19
US60/620,163 2004-10-19
PCT/US2005/037936 WO2006045056A2 (en) 2004-10-19 2005-10-19 Flavonoid composition for treating oral diseases

Publications (1)

Publication Number Publication Date
CA2584124A1 true CA2584124A1 (en) 2006-04-27

Family

ID=36203714

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002584124A Abandoned CA2584124A1 (en) 2004-10-19 2005-10-19 Flavonoid composition for treating oral diseases

Country Status (12)

Country Link
EP (1) EP1804787A4 (en)
JP (1) JP2008517069A (en)
KR (1) KR20070073921A (en)
CN (1) CN101083981B (en)
AU (1) AU2005295190A1 (en)
BR (1) BRPI0518218A (en)
CA (1) CA2584124A1 (en)
MX (1) MX2007004471A (en)
NZ (1) NZ554517A (en)
RU (1) RU2007118535A (en)
TW (1) TW200630102A (en)
WO (1) WO2006045056A2 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2004228021B2 (en) 2003-04-04 2010-09-02 Unigen, Inc. Formulation of dual cycloxygenase (COX) and lipoxygenase (LOX) inhibitors for mammal skin care
US20060140881A1 (en) * 2004-12-22 2006-06-29 Guofeng Xu Oral care compositions containing flavonoids and flavans
TWI404545B (en) * 2004-12-22 2013-08-11 Colgate Palmolive Co Oral care compositions containing flavonoids and flavans
GB0625430D0 (en) * 2006-12-20 2007-01-31 Mars Uk Ltd Composition
WO2008131119A2 (en) * 2007-04-17 2008-10-30 Acropolis Pharmaceuticals, Inc. Composition and method for cancer treatment and prevention
JP2008308460A (en) * 2007-06-15 2008-12-25 Kao Corp Method for purifying low gallate body of non-polymeric catechins
EP2192910A1 (en) * 2007-10-01 2010-06-09 Colgate-Palmolive Company Oral compositions containing botanical extracts
JP5265177B2 (en) * 2007-11-13 2013-08-14 株式会社mimozax Composition for improving bowel movements containing acacia bark
JP5563753B2 (en) * 2008-08-29 2014-07-30 サントリーホールディングス株式会社 Glucosyltransferase inhibitor containing epigallocatechin gallate polymer as active ingredient
JP2010136703A (en) * 2008-12-15 2010-06-24 Kao Corp Method for producing non-gallate compound of non-polymer catechins
WO2011052804A1 (en) * 2009-10-30 2011-05-05 Tokyo University Of Science Educational Foundation Administrative Organization Method of delivering agent into target cell
KR101293335B1 (en) * 2011-11-16 2013-08-06 한승국 The liquefied dentifrice making method besides
CN102657781B (en) * 2012-03-22 2013-09-25 韩继双 Spraying agent for treating periodontitis
CN103520054B (en) * 2013-10-18 2016-07-20 柳州两面针股份有限公司 Ramulus Uncariae Cum Uncis extract application in preparing oral care product
CN103520012A (en) * 2013-10-18 2014-01-22 柳州两面针股份有限公司 Application of baicalin in preparation of oral care product
KR102580941B1 (en) * 2016-04-21 2023-09-19 주식회사 엘지생활건강 Composition for prevention or treatment of oral disease comprising Qucercetin 3-glucoside
DE102016207337A1 (en) 2016-04-29 2017-11-02 Henkel Ag & Co. Kgaa Toothpaste for improving gingival adhesion
CN107648111A (en) * 2017-10-30 2018-02-02 刘俊君 A kind of Chinese herbal toothpaste
KR20200041659A (en) 2018-10-12 2020-04-22 주식회사 엘지생활건강 Composition for prevention or treatment of oral disease
JP7448122B2 (en) * 2020-09-10 2024-03-12 株式会社アカシアの樹 Oral flora improvement and maintenance agent, plaque/plaque removal and tartar formation prevention agent

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0662408B2 (en) * 1987-10-01 1994-08-17 太陽化学株式会社 Anti-caries and anti-periodontal composition
US6264926B1 (en) * 1999-02-12 2001-07-24 Council Of Scientific And Industrial Research Formulation useful as a natural herbal tooth powder
US6319523B1 (en) * 2000-06-29 2001-11-20 James H. Zhou Composition and method for inhibiting oral bacteria
NZ524121A (en) * 2000-07-28 2005-09-30 Immupharm Aps Compounds for treating symptoms of common cold, allergic rhinitis and infections relating to the respiratory tract
AU2002231030A1 (en) * 2000-12-13 2002-06-24 Universidade Estadual De Campinas Oral compositions and use thereof
JP2003212771A (en) * 2002-01-23 2003-07-30 Taiyo Kagaku Co Ltd Anti-neissria bacterium composition
DE60328676D1 (en) * 2002-04-30 2009-09-17 Unigen Pharmaceuticals Inc FORMULATION OF A MIXTURE OF FLAVONOIDS AND FLAVANES WITH FREE B RING AS A THERAPEUTIC AGENT

Also Published As

Publication number Publication date
TW200630102A (en) 2006-09-01
EP1804787A4 (en) 2009-01-14
RU2007118535A (en) 2008-11-27
NZ554517A (en) 2011-02-25
JP2008517069A (en) 2008-05-22
AU2005295190A1 (en) 2006-04-27
CN101083981A (en) 2007-12-05
CN101083981B (en) 2013-03-27
WO2006045056A3 (en) 2007-02-01
KR20070073921A (en) 2007-07-10
MX2007004471A (en) 2007-06-18
WO2006045056A2 (en) 2006-04-27
EP1804787A2 (en) 2007-07-11
BRPI0518218A (en) 2008-11-04

Similar Documents

Publication Publication Date Title
US8945518B2 (en) Formulation of dual eicosanoid system and cytokine system inhibitors for use in the prevention and treatment of oral diseases and conditions
CA2584124A1 (en) Flavonoid composition for treating oral diseases
US9622964B2 (en) Formulation of dual cycloxygenase (COX) and lipoxygenase (LOX) inhibitors for mammal skin care
CA2484192C (en) Formulation of a mixture of free-b-ring flavonoids and flavans as a therapeutic agent
US7192611B2 (en) Identification of Free-B-Ring flavonoids as potent COX-2 inhibitors
US7972632B2 (en) Identification of Free-B-Ring flavonoids as potent COX-2 inhibitors

Legal Events

Date Code Title Description
EEER Examination request
FZDE Discontinued

Effective date: 20131021