CA2491194C - Floor system with steel joists having openings with edge reinforcements and method - Google Patents

Floor system with steel joists having openings with edge reinforcements and method Download PDF

Info

Publication number
CA2491194C
CA2491194C CA2491194A CA2491194A CA2491194C CA 2491194 C CA2491194 C CA 2491194C CA 2491194 A CA2491194 A CA 2491194A CA 2491194 A CA2491194 A CA 2491194A CA 2491194 C CA2491194 C CA 2491194C
Authority
CA
Canada
Prior art keywords
web
openings
joist
joists
floor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CA2491194A
Other languages
French (fr)
Other versions
CA2491194A1 (en
Inventor
Ernest R. Bodnar
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GCG Holdings Ltd
Original Assignee
GCG Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GCG Holdings Ltd filed Critical GCG Holdings Ltd
Publication of CA2491194A1 publication Critical patent/CA2491194A1/en
Application granted granted Critical
Publication of CA2491194C publication Critical patent/CA2491194C/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B5/00Floors; Floor construction with regard to insulation; Connections specially adapted therefor
    • E04B5/02Load-carrying floor structures formed substantially of prefabricated units
    • E04B5/10Load-carrying floor structures formed substantially of prefabricated units with metal beams or girders, e.g. with steel lattice girders
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • E04C3/04Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal
    • E04C3/08Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal with apertured web, e.g. with a web consisting of bar-like components; Honeycomb girders
    • E04C3/09Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal with apertured web, e.g. with a web consisting of bar-like components; Honeycomb girders at least partly of bent or otherwise deformed strip- or sheet-like material
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • E04C3/04Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal
    • E04C2003/0404Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects
    • E04C2003/0408Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects characterised by assembly or the cross-section
    • E04C2003/0413Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects characterised by assembly or the cross-section being built up from several parts
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • E04C3/04Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal
    • E04C2003/0404Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects
    • E04C2003/0408Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects characterised by assembly or the cross-section
    • E04C2003/0421Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects characterised by assembly or the cross-section comprising one single unitary part
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • E04C3/04Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal
    • E04C2003/0404Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects
    • E04C2003/0426Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects characterised by material distribution in cross section
    • E04C2003/0434Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects characterised by material distribution in cross section the open cross-section free of enclosed cavities
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • E04C3/04Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal
    • E04C2003/0404Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects
    • E04C2003/0443Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects characterised by substantial shape of the cross-section
    • E04C2003/0452H- or I-shaped
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • E04C3/04Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal
    • E04C2003/0404Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects
    • E04C2003/0443Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects characterised by substantial shape of the cross-section
    • E04C2003/0473U- or C-shaped
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • E04C3/04Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal
    • E04C2003/0404Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects
    • E04C2003/0443Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects characterised by substantial shape of the cross-section
    • E04C2003/0482Z- or S-shaped

Abstract

A composite steel joist member made up of two steel joists each having a web defining side edges and an axis, a flange on at least one side edge, openings through said web at spaced intervals therealong, having rounded ends and parallel linear sides, portions of said web displaced from said opening remaining attached integrally to the web by bend lines formed on the linear sides of the opening along axes parallel to the web axis, and forming reinforcing channels alongside the opposite sides of the opening, with the joists being joined together back to back with their openings in registration.

Also disclosed is a rim member for supporting the composite joists to form a floor structure .

Description

FLOOR SYSTEM WITH STEEL JOISTS HAVING OPENINGS WITH EDGE
REINFORCEMENTS AND METHOD
FIELD OF THE INVENTION
s The invention relates to a floor system having steel joists and rim members supporting the joists, the joists and rim members being formed with openings, and having edge reinforcements formed around the openings. In particular the openings in the joists are formed with linear reinforcement channel formations along opposite sides of the openings, which are formed with bends at respective 1 o first and second angles with respect to the plane of the joist.
BACKGROUND OF THE INVENTION
Steel joists of a wide variety have been proposed for erecting floor structures.
Usually such joists are used to replace wooden joists. Metal joists having solid webs have been used but interfere with the space between the floor and the 1 s ceiling beneath. Such joists usually were formed as a C-section, ie there was a central web, and the opposite side edges of the web were formed into edge flanges. Several such bends were sometime incorporated in an effort to get greater strength, while using thinner gauge metal. Services such as plumbing wiring and HVAC were obstructed by such joists Accordingly metal joists have
2 o been proposed formed with openings, usually generally triangular or trapezoidal openings, in the web, while the two edges were formed with bends, as before.
These openings were positioned so as to define diagonal struts extending across the joists. In this way it was hoped to achieve strength while reducing weight and obstruction. However because the openings in the metal joists were of these specialized generally triangular or trapezoidal shapes, the services, in many cases conduits of substantial diameter, could not fit through the openings. It was not possible for the builder to cut away any of the diagonal struts to provide s larger openings for services, since this would drastically reduce the strength of the joists.
The shape of these openings tended to restrict the size of the conduits which could be passed through the joists.
Another problem arose in that the triangular openings were formed with edge to flanges around their perimeter. Where these edge flanges extended around an angular corner of the opening there was a tendency for the sheet metal to crack.
Consequently the corners had to be radiussed or rounded out. This meant that there was more metal at each of the corners, and the size of the openings was reduced. Another problem arose in cutting these joists to length. The openings 1 s were arranged in pairs with one triangle facing one way and the next triangle facing the opposite way. Cutting such joists to length requires that all of the openings of a particular orientation, in all of the adjacent joists in a floor, shall line up. This required to facilitate passing of services through the joists.
However due to the alternating orientation of the openings , this requirement 2 o resulted in cutting off end portions of joists equal in length to the space occupied by two of the openings, in many cases. Forming such joists with alternating triangular openings, requires that the openings be formed repeatedly along the joist. However at each end , the joist web must be solid and free of openings.

This required specialized machines which could "miss" one or more openings , leaving a length of web, solid, and available for cutting to length.
Another factor is that concrete is in wide use for pouring a floor slab.
Usually the slab was simply supported on top of the joists . It is now found that when portions of the metal joists are partially embedded in the concrete, they provide much greater strength to the slabs. Slabs can thus be thinner than in the past, saving material, time, and weight.
It has now been surprisingly found that the use of the specialized triangular or trapezoidal shapes of these joist openings, is unnecessary.
1 o Reduction in weight is possible , by the use of the invention, using regular symmetrical generally oval-shaped openings , with end portions of the opening being defined by a semi-circular radius. The remainder of the opening is defined by opposite parallel linear edges.
The resulting openings are thus of a somewhat extended oval shape, with linear sides. Solid portions of the web remain , between adjacent openings and form struts extending transversely from one edge to the other of the web. This avoids the diagonal struts of earlier joists. This also means that the size of the conduits passed through the openings can be increased. The openings substantially span the distance across the web, between the edge flanges of the joist. By the 2 o use of the invention it is now possible to form openings which can accept conduits having a diameter equal to the distance across the web opening between the edge flanges of the joist.
3 This is a great improvement over the earlier triangular opening and diagonal strut configuration.
Openings with semi-circular or radiussed ends avoid the problems caused by the corners of the triangular or trapezoidal openings and splitting of metal, and s results in a much stronger joist. The use of openings with semi-circular ends greatly facilitates high speed manufacture of such joists. The openings are of identical footprint along the web . This means that cutting to length becomes possible at shorter intervals, and there is less joist length lost in the process.
The joists with such openings define service pathways for cylindrical service to conduits. In each joist the conduit diameter can be equivalent to the distance across the joist between one side edge of the opening and the other, transversely across the joist. This means that the conduits can pass through any opening in the joist, regardless of the orientation of the opening in the joist.
This greatly reduces wastage of sheet metal during manufacture.
15 Much larger conduits can be accepted.
Another factor is earlier designs was the thought that it was essential to remove as much metal as possible. This was considered desirable to improve acoustical performance and avoid transmission of sound from one floor to the next.
It has now been found that this was incorrect. What is required is a joist with 2 0 openings which leave larger openings and more symmetrical openings without loss of strength . It has also now been found that the opposite parallel linear edges of each opening can be greatly strengthened by removing less sheet metal at each opening, rather than more. This surprising development results in
4 leaving an additional piece of sheet metal along side each of the linear edges.
These additional pieces are formed, in accordance with the invention, into two generally right angular bends, resulting in two additional channel structures along the opposite linear sides of each opening in the joist. Preferably both bends are formed essentially as right angular bends. This greatly increases the strength of the joist in the critical area of the extended linear edges of each opening. The fact that more metal remains in the joist does not cause problems, since the extra metal , which is not removed, is simply displaced in a location alongside the opening.
1 o The blanks of sheet metal removed in this process, are of a size and shape which leads to economies in the process since the blanks are smaller. Slug ejection problems in the manufacturing machinery are reduced and there is less wastage of metal.
The semi-circular ends of the openings reduce the problems for the builder who wishes to pass service conduits through the joists within the floor. Much larger diameter pipes can now be fed through the joists, than was possible before.
This leads to less sales resistance due to a greater acceptance of the product in the market place.
The shape of the openings is symmetrical and identical. This makes it possible 2 o to align the joists in pairs back to back to make stronger composite joists while still maintaining the full size of the openings through the joists, for passing services.
5 These features can be used in joists having special embedment edge formations for embedment in concrete.
The features can also be used in forming much heavier duty joists with the edge formations formed into a triangular tube shape.
s Two such joists can be secured back to back to greatly increase the load bearing capacity.
Such joists enable to formation of a floor system with rim members located on a wall structure, and with the joists extending across the space between opposite rime members.
1 o The rim members will also be formed with openings of the type described above.
Such rim members will also provide support flanges for supporting opposite ends of the joists. Where a concrete slab floor is to be poured such rim members will incorporate embedment formations for embedment in the slab.
Fastening tabs extend from the rim members, for fastening to the ends of the 1 s joists. Abutments may be formed on the rim members to engage opposite sides of the web of each joist to give greater strength.
It will be appreciated that a joist which improves on all these problems associated with prior joists, will have application in general use, for many various construction applications. In particular however it will have advantages in the 2 o construction of floors with joists acting as reinforcement for thin-shell concrete slabs.
Such joists can also be used to form floors having a panel surface such as plywood panels.
6 The joists and rim members may be associated together in accordance with the method described. Preferably the assembly of the rim members and joists , and also the pouring of concrete in some cases, will be done in a factory away from the building site. The floor can be prefabricated in sections. When transported s to the site the sections or panels will simply be lifted into place and fastened together to form the complete floor in the building.
BRIEF SUMMARY OF THE INVENTION
With a view to achieving the foregoing and other objectives the invention comprises steel joist members, for use in floor system, and having a web 1 o defining side edges and an axis, a edge flange on at least one side edge of the web, identical symmetrical openings formed through said web at spaced intervals therealong, of predetermined size and profile, with rounded ends and linear sides parallel to one another , side portions of said web displaced from said opening remaining attached integrally to said web along opposite linear 15 sides of the opening , a first bend formed in each said side portion, a second bend formed in each said side portion parallel to and spaced from said first bend, said first and second bends being formed along axes parallel to said web axis.
The invention further seeks to provide a steel joist member as described including depressions formed in said web at spaced intervals, and openings 2 o formed in said depressions to increase strength and to provide some reduction in heat transfer.

The invention further seeks to provide a steel joist member as described wherein said displaced side portions define respective channel shapes extending along axes parallel to said web axis.
The invention further seeks to provide a steel joist member as described wherein said openings are of a shape defining opposite parallel linear side edges, and arcuate end edges, said side portions of said web being integral with said linear side edges, and continuous edge flanges formed all around said openings.
The invention also provides a composite joist member formed of two steel joists as described being attached back to back to one another to form a composite to joist member. In this embodiment because the shape of the openings is symmetrical and identical, composite joists can be made simply by placing two joists back to back with their openings in registration with one another. Such composite joists have great strength, while still permitting the passing of services.
The invention also provides a rim member for attachment on a structure around a floor, and supports on said rim member for supporting opposite ends of each steel joist member.
The rim member may also incorporate fastening tabs for fastening to each steel joist member.
2 o The rim member may also incorporate embedment formations , and also joist end abutments.
The invention also provides a method of making a steel joist member having a web and side edges, and a flange along at least one said side edge, and openings through said web , said method comprising the steps of, forming openings having opposed linear parallel sides and arcuate ends in said web at spaced intervals therealong, leaving side portions of metal attached to said web along each of said opposed linear sides, forming said edge flange along said at s feast one side edge of said web, and, forming said side portions out of the plane of said web by bending each said side portion along a first bend line and then along a second bend line spaced from and parallel to said first bend line.
The invention also provides a method of forming a floor joist system, using rim members and steel joist members described above.
1 o The various features of novelty which characterize the invention are pointed out with more particularity in the claims annexed to and forming a part of this disclosure. For a better understanding of the invention, its operating advantages and specific objects attained by its use, reference should be made to the accompanying drawings and descriptive matter in which there are illustrated 15 and described preferred embodiments of the invention.
IN THE DRAWINGS
Figure 1 is a perspective illustration of a floor system illustrating one embodiment of the invention, having composite joists formed of two steel joist members in which the openings have opposite linear sides and semi-circular or arcuate 2 o ends, and channels formed on said opposite linear sides of the openings ;
Figure 2 is a section of one joist member along line 2-2 of Fig 1;
Figure 3 is a section of one joist member along line 3-3 of Fig 1;

Figure 4 is a side elevation of a portion of one joist member of Fig 1, with parts shown in section;
Figure 5 section of one joist member along line 5-5 of Fig 1;
Figure 6 is a perspective of a rim member from the embodiment of Fig 1 ;
s Figure 7 is a section of a rim member along line 7-7 of Fig 6;
Figure 8 is a section of a rim member along line 8-8 of Fig 6;
Figure 9 is a section of a rim member along line 9-9 of Fig 6;
Figure 10 is a perspective of a further embodiment of floor system using composite joist members illustrating another embodiment of the invention, in 1 o which the rim member is modified from Fig 1;
Figure 11 is a perspective of a further embodiment of floor system illustrating another embodiment of the invention, for supporting a panel floor typically of plywood, with the composite joist members modified to remove the embedment edges ;
15 Figure 12 is a perspective of a further embodiment of floor system illustrating another embodiment of the invention, for supporting a panel floor typically of plywood, with the rim member modified from Fig 11;
Figure 13 is a perspective of a further embodiment of floor system using composite joist members illustrating another embodiment of the invention, in 2 o which the rim members are supported on the edge of a wall frame formed of metal studs;
Figure 14 is a perspective of a further embodiment of floor system using single joist members illustrating another embodiment of the invention;

Figure 15 is a perspective of a further embodiment of floor system using composite joist members illustrating another embodiment of rim member in which the flange is of reduced width compared to Fig 1.
DESCRIPTION OF A SPECIFIC EMBODIMENT
As already described the invention provides a floor system using sheet metal joists , having improved acoustical performance to reduce transmission of sounds from one floor to the next. The joists are suitable for use in erecting 1 o floors, or roofs, and the like. The invention also provides sheet metal joists suitable for use in reinforcement of slab concrete panel floors or roofs.
The invention also provides composite H shaped or I shaped joist members formed by joining two joist lengths together back to back , and a method of making such a joist member, and a method of forming a floor.
1 s For the purposes of this description the word "floor" is used to describe a level structure used in construction, which may function either as a floor for supporting persons and objects within a structure, or to a roof for enclosing a structure.
When used as a roof , such a structure will usually have a slope, whereas when used as a floor it will be level. The invention is equally applicable to either 2 o function.
Referring to Fig 1 it will be seen that the invention is there illustrated in the form of a floor (10). Typically the floor (10 ) made up of composite sheet metal joist members (12 ), and rim members (14 ) . Typically the rim members (14 ) are supported on the upper edge of a wall, not shown, or a basement or other structure. The joist members (12 ) , span the space surrounded by the rim members (14 ) , and the joist members (12 ) are supported at their ends on the rim members (14 ) s As shown in Fig 1 the composite joist members (12) in this embodiment are composites made up of two identical joists (20 ), placed back to back .
In this way the composite joist member forms an H shape or I shape member.
Each joist (20 ) is formed of sheet metal, in this case steel. Each joist (20 ) has a web (22) which is essentially planar, and an edge flange (24) along the lower to side edge of the web (22) . Edge flange (24) is formed by bending the web at right angles. A lip (26) are formed on the edge flange (24 ) again at right angles.
In the web (22) openings (28) are formed by punching out a portion of the sheet metal, and by displacing but not removing other portions of sheet metal as will become apparent below .
15 In this embodiment the openings (28) are formed in a generally oval shape elongated along the length of the joist (20 ) . The openings are identical and symmetrical for reason to be described. Each opening (28 ) has opposite ends (30 ) located along the central axis of the web (22 ) with a semi-circular or arcuate profile .
2 o Between the ends (30 ) along opposite sides, the openings (28) are formed with elongated linear parallel sides as at (32) .
Elongated transverse ribs (34) may be formed if desired, at the ends of the joists, (Fig 2 and 3 ), to provide greater rigidity at the joist ends for reasons described below.
Extending all around opening (28) there is an edge flange (36) formed at right angles to the web (22). Along the two linear sides (32) of the opening there is s are bracing lips (38) formed , extending integrally from the edge flanges (36).
Lips (38) is formed by portions of the web (22) which have been partly punched out and displaced , but which remain joined as part of the edge flanges (36) , along such linear sides of the opening (28) . Bracing lips (38) are formed at a right angle bend (40) parallel to but spaced from the plane of the web (22) .
to In this way two bracing lips (38) forms short channel shape reinforcements , extending from the edge flanges (36), along the two linear sides (32) of the opening (28) . In this way lips (38) greatly reinforce the joist (20) along the length of the two linear sides (32) of opening (28) .
This feature permits the openings (28) to be formed with relatively large 1 s dimensions, so that a conduit, not shown , can extend through opening (28) and is limited only by the transverse dimension of the opening transversely across the web (22). This is a great improvement over joists having triangular openings.
A junction flange (42) is formed along the upper side of the web (22), for reasons described below.
2 o It will be noted that the shape and placement of the openings (28) defines struts (44) extending transversely across the web (22). Such struts reduce the transfer of sounds across the joist. Joists (20) are further formed with depressions (46) at opposite ends of each strut (44) where the strut flares out into the web (22) .

Centered in such depressions (46) there are punched out openings (48), which in this case are circular, although they could be other shapes. The openings (48) remove metal and this provides a better barrier to conduction of sound across the joist and improve its acoustical performance . This embodiment of s joist is particularly advantageous. It has great strength due to the retention of a considerable amount of the metal displaced by blanking the openings (28) . A
large part of such metal is not removed but is retained and is folded over outwardly to form the channel shaped bracing lips (38) forming both sides of the opening (28).
to Figs 1 to 6 illustrate another feature of joist (20) for embedment in a concrete slab.
Junction flanges (42) are formed with embedment edge flanges (50) which are bent out of the plane of the web by about 45 degrees. The angle can vary somewhat for various applications.
15 Flanges (50) are bent outwardly, and are formed with a series of openings or ports (52) for concrete flow.
A return lip (54) is formed along flange (50) for embedment in concrete .
Thus this embodiment provides a joist of great strength providing reinforcement for a concrete floor slab or panel. The flanges (50) being partially embedded in 2 o concrete will provide maximum security of adhesion between the joists and the concrete .
This joist may enable the use of a reduction in thickness of sheet metal. It is anticipated that a reduction of at least one gauge and probably two gauges can be achieved while still providing adequate support to a concrete floor slab or panel.
This will reduce the cost of the floor slabs or panels.
Fig 9 shows a further form of joist (100) having features which make it suitable for supporting floors made of other panel materials, such as plywood or the like.
Joist (100) has a web (102) and identical side flanges (104) and (106) along either side of the web. Lower and upper edge flanges (104) and (106) are identical and are bent at a right angle to the plane of the web. Integral edge lips (108) extend from flanges (104) and (106) parallel to the plane of the web.
to Ribs (110) are formed as before transversely of the joists (100) Openings (112) are formed through web (102) as before, being of generally elongated oval shape in the Fig 1 embodiment.
Edge rims or flanges (114) are formed therearound as before . Linear side edges (116) and (118) of opening (112) are reinforced by bracing lips (120) of sheet metal, extending integrally from web (102), thus retaining more of the metal displaced by forming the opening (112) and employing it to improve the joist , rather than discarding it as waste.
Lips (120) are folded into right angular channels extending along each linear side of opening (112), to provide greater strength. More metal is retained in the joist, 2 o which both increases its strength, or in the alternative permits a reduction in gauge. Depressions, (122) with openings (124) which may be circular or other shapes are formed in the web, as described above to aid in reducing heat losses.

In use two such joists (20) or (100) are juxtaposed as shown in Fig 1 and 9, in back to back relation. They may be secured together , if desired , by eg spot welds or the like (not shown) to form a composite joist member.
Manufacture of the joists (20) or (100) can proceed by first forming the openings (112) and rim flanges (114) in a suitable press. This can be a flying die press, but it is advantageous to use a rotary press of the type which has two rotary die support rolls, and dies on the support rolls, in which the two support rolls rotate bringing the dies together and apart as the sheet metal moves between them.
After blanking and forming of the openings and forming of the edge flanges 1 o around the openings, and the forming of the depressions and punching of the depression openings , the semi-formed sheet metal is then passed through a series of roller die stands, such as are known per se and require no description.
The roller dies on the die stands will progressively form the edge flanges (24) or (104,106) and the bracing lips (38) or (120) on either side of the openings.
is Cutting to length may be performed upstream of the rotary press where the strip sheet is still flat and unformed . In this way each piece of sheet metal passing through the various punching and forming and roll forming sequences is already precut to the exact length required for the finished joist.
It also possible to cut the joists to length downstream of the roller dies, 2 o depending on the design of the equipment .
It must be remembered that in cutting to length, provision must be left at each end of each joist to leave end portions of the joist free of openings, so that in can be supported in place in an eventual floor structure, with all of the openings in each joist aligned with one another across the structure. In the case of joists (20) and (100) this is greatly facilitated by the fact that the openings (28) and (112) are identical and symmetrical and are separated by transverse ribs Cutting to length is rendered easier by this form of joist. When the two joists are placed back to back, with the openings in registration with each other, it will be apparent that this will greatly facilitate the installation of services through the openings.
In order to assemble the composite joist members (12) into a floor, a rim member (14) is provided , as shown in more detail in Fig 11 and 12.
1o The rim member (14) has a web (130 ) and a top flange (132 ) extending at right angles.
Flange (132 ) is intended to lie on top of a wall or basement structure.
Flange (132 ) may have an upstanding edge wall (134 ) , or an downwardly bent edge wall (136 ) turned down to lock on to the outside of a wall.
Along the lower edge of web (130 ) a support flange (138 ) extends at right angles, to support the ends of the composite joist members (12) .
In order to secure the joist member in position, tabs (140 ) are struck out of web (130 ) and extend in parallel spaced relation over support flange (138 ) .
In the embodiment shown the tabs (140 ) are located in the same plane as the 2 o flange (132 ) . In this way the upper horizontal surfaces of junction flanges (42 ) of the joist members (12 ) will lie coplanar with the flange (132 ) . In the case of the embodiment of Fig 1 the embedment edges (50) of the joist members will extend above such a plane, and this is intended so that a concrete floor slab may be poured which extends over flanges (132 ) of rim member (14) When the joist members (12) are to be attached to the tabs (140 ) a short portion of the embedment flange will be removed at the ends of the joist members (12 ) This will enable the junction flanges (42 ) to fit beneath the tabs (140 ) and secured thereto by fasteners. Fasteners will also be used to secure the edge flange (24) to the support flange (138 ) of the rim member (14).
In the case of a poured concrete floor , the flange (132 ) of the rim member (14) is formed with embedment loops (142 ) struck out of the flange. The poured 1 o concrete will flow around such loops (142 ) and will thus secure the rim member (14) in position.
In the case of a panel floor, of plywood for example, the flange (132 ) of the rim member (14) is formed flat , without any such loops. This enables such a panel floor to be laid flat on the upper flanges (106) of joists (100), and then to lie flat on the flanges (132 ) of the rim member (14) .
Since in this case the upper flange (106 ) is planar , it will fit beneath the tabs (140 ) without requiring the removal of any portion.
It will be understood that in many cases there may be only two such rim members (14) , parallel and spaced apart on opposite walls for supporting joist 2 o members (12) spanning the area. For additional stiffness , if desired, abutments (144) may be formed in the web (130). These abutments are spaced apart so as to engage the opposite sides of the composite joist members, at each end.

The webs (130) are also formed with generally oval shaped openings (146) similar to the joists, and edge flanges (14*0 and lips (15) are formed therearound as before.
Vertical ribs (152 ) are formed in web (130 ) for adding stiffness.
In this case single joists (20) or (100) (Fig 1 and Fig 6) alongside the extreme edges of the floor may themselves lie on top of the wall.
In other cases there may be four such rim members (14), or even more , depending on the area to be enclosed by a floor.
1o Intermediate rim members (14) supported above a floor by any suitable means may be required to span a greater area, of the cover in a space of a special shape in plan.
The joists and rim members may be associated together in accordance with the method described. Preferably the assembly of the rim members and joists , and 1 s also the pouring of concrete in some cases, will be done in a factory away from the building site. The floor can be prefabricated in sections. When transported to the site the floor sections or panels will simply be lifted into place and fastened together to form the complete floor in the building.
Various embodiments are proposed , with variations for different applications.
2 o Thus Figure 10 is a perspective of a further embodiment of floor system using composite joist members illustrating another embodiment of the invention, in which the rim member is modified from Fig 1. In this case the edge flange (136) is shown turned down.

Figure 11 is a perspective of a further embodiment of floor system illustrating another embodiment of the invention, for supporting a panel floor typically of plywood, with the composite joist members modified to remove the embedment edges . In this case the composite joist members are the same as in Fig 1 but the embedment edges are removed and replaced by a flange similar to lower flange (24). This enables plywood or other panel to be laid flat on the composite joist members . The rim member is also modified to remove the embedment loops and present a flat upper surface.
Figure 12 is a perspective of a further embodiment of floor system illustrating i o another embodiment of the invention, for supporting a panel floor typically of plywood, with the rim member modified from Fig 11. In this case the edge flange (136) is shown turned down.;
Figure 13 is a perspective of a further embodiment of floor system using composite joist members illustrating another embodiment of the invention, in which the rim members are supported on the edge of a wall frame formed of metal studs. The panels are of plywood or the like and thus the composite joist members do not have embedment edges. This is shown supported on the upper plate of a wall frame . The wall frame is also formed of metal studs, which are distinct from the composite joist members .
2 o Figure 14 is a perspective of a further embodiment of floor system using single joist members. In this case the joist members have the same features as the joist members (20) of Fig 1, but are used singly, and not fastened back to back.

Figure 15 is a perspective of a further embodiment of floor system using composite joist members illustrating another embodiment of rim member in which the flange is of reduced width compared to Fig 1. In this case it is possible to reduce the width of the flange of the rim member. This is possible because s the rim member is already supported on the plate channel of the wall frame.
The rim member is otherwise similar to the rim member of Fig 1.
The foregoing is a description of a preferred embodiment of the invention which is given here by way of example only. The invention is not to be taken as limited to any of the specific features as described, but comprehends all such 1 o variations thereof as come within the scope of the appended claims.

Claims (14)

THE EMBODIMENTS OF THE INVENTION IN WHICH AN EXCLUSIVE PROPERTY
OR PRIVILEGE IS CLAIMED ARE DEFINED AS FOLLOWS;
1. A composite joist formed of two integral one piece sheet metal steel joists secured back to back to one another, and each said joist comprising;

a web defining first and second edges and an axis, and first and second web side surfaces ;

an edge flange on at least one of said first and second edges of the web, bent at a right angle and extending from said first web side surface;

identical symmetrical main openings formed through said web at spaced intervals therealong, of predetermined size and profile, with rounded ends and linear sides parallel to and coextensive with one another, portions of said web around said main openings remaining attached integrally to said web along opposite linear sides of the opening ;

transverse struts formed by said web between said main openings, extending normal to said web axis;

reinforcing channels formed from said portions of said web extending along each of the two opposite linear sides of said main openings in registration with one another, and each said channel defining a first right angle channel bend formed in each said channel portion, whereby said channel is displaced from said first web side surface , and a second right angle channel bend formed parallel to and spaced from said first channel bend, said first and second right angle channel bends being formed along axes parallel to one another and parallel to said web axis;

intermediate walls formed between said first right angle channel bend and said second right angle channel bend , whereby to forma generally U-shaped right angular channel extending out from said first side surface of said web, whereby said second side surface of said web remains smooth and free of obstructions;
depressions formed in said web at spaced intervals, extending from said first side surface of said web, said second side surface of said web remaining smooth and free of obstructions;

depression openings formed in said depressions to reduce sound transfer through each joist, and wherein said two joists are secured together back to back with their respective second side surfaces in contact with one another, and with their edge flanges and channels and depressions , extending away from one another, and with their main openings registering with one another to form a composite joist member.
2. A composite joist as claimed in claim 1 wherein there are two said edge flanges one on each edge of said web, being formed normal to said web, and lips formed along said edge flanges normal to said edge flanges.
3. A composite joist as claimed in claim 1 wherein said depressions and depression openings are formed in said web at opposite ends of each said strut.
4. A composite joist as claimed in claim 1 including an embedment member formed on a said edge on said one side of said web extending from said first side surface of said web whereby to permit embedment in a concrete panel.
5. A composite joist as claimed in claim 4 wherein said embedment member is formed with openings for flow of concrete therethrough, and a locking strip is formed along said embedment member.
6. A floor system for supporting a floor and comprising;

a plurality of composite steel joist members each made up of two integral one piece sheet metal steel joists secured back to back together, each said steel joist in turn comprising;

a web defining first and second edges and an axis, and first and second web side surfaces ;

an edge flange on at least one of said first and second edges of the web, bent at a right angle and extending from said first web side surface;

identical symmetrical main openings formed through said web at spaced intervals therealong, of predetermined size and profile, with rounded ends and linear sides parallel to and opposite to one another, portions of said web around said openings remaining attached integrally to said web along opposite linear sides of said main openings ;

transverse struts formed by said web between said main openings, extending normal to said web axis;

reinforcing channels formed from said portions of said web extending along each of the two opposite linear sides of said main openings coextensive with one another and in registration with one another and each said channel defining a first right angle channel bend formed in each said portion, whereby said channel is displaced from said first web side surface , and a second right angle channel bend formed parallel to and spaced from said first channel bend, said first and second right angle channel bends being formed along axes parallel to one another and parallel to said web axis;

intermediate walls extending between said first right angle channel bend and said second right angle channel bend , whereby to form generally U-shaped right angular channels extending out from said first side surface of said web, whereby said second side surface of said web remains smooth and free of obstructions;
depressions formed in said web at spaced intervals, extending from said first side surface of said web , whereby said second side surface of said web remains smooth and free of obstructions;

depression openings formed in said depressions to reduce sound transfer through the joist.

at least two rim members, each said rim member in turn comprising;
a rim web;

a support flange extending from said rim web at right angles;
a top flange on said rim web for engaging a wall structure;

a plurality of tabs displaced from said rim web , for attachment to respective said composite joist members.
7. A floor system for supporting a floor as claimed in Claim 6 wherein said composite joist members are formed with embedment flanges and locking strips along one of their sides, and wherein a portion of said embedment flanges and locking strips are removed adjacent said tabs, to facilitate interconnection with said tabs.
8. A floor system for supporting a floor as claimed in Claim 7 wherein said rim member is formed with abutments for engaging sides of said composite joist members.
9. A floor system for supporting a floor as claimed in Claim 8 wherein said rim members incorporate an upstanding edge flange.
10. A floor system for supporting a floor as claimed in Claim 9 wherein said rim members incorporate a downward edge flange.
11. A floor system for supporting a floor as claimed in Claim 10 wherein said top flanges of said rim members incorporate upstanding embedment loops.
12. A floor system for supporting a floor as claimed in Claim 7 wherein said joist members and said rim members are assembled into a prefabricated panel ready for delivery to a building site.
13. A floor system as claimed in claim 12 and including an embedment flange formed on a said edge flange on said one side of said web whereby to permit embedment in a concrete panel, and a concrete slab poured and set embedding said embedment flanges.
14. A method of making a composite steel joist member formed of two steel joists each having a web and side edges, and a flange along at least one said side edge, and main openings through said web, said method comprising the steps of;

forming individual joists of sheet steel, having a web, and edges, and first and second side surfaces ;

forming main openings in said web of identical shape and symmetrically spaced along said web at spaced intervals therealong, with channel portions of said web being displaced from said main openings leaving two said channel portions attached to said web , and, forming said channel portions by bending said channel portions at right angles, along first and second bend lines parallel to the web axis, to define reinforcing U-shaped rectangular channel shapes in section;
forming struts extending transversely across said web between said main openings ;

forming depressions and depression openings in said web adjacent each end of each strut ; and, securing said two joists back to back with their openings in registration with one another.
CA2491194A 2004-12-27 2004-12-29 Floor system with steel joists having openings with edge reinforcements and method Active CA2491194C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/020,242 2004-12-27
US11/020,242 US20060150548A1 (en) 2004-12-27 2004-12-27 Floor system with stell joists having openings with edge reinforcements and method

Publications (2)

Publication Number Publication Date
CA2491194A1 CA2491194A1 (en) 2006-06-27
CA2491194C true CA2491194C (en) 2011-04-05

Family

ID=36614429

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2491194A Active CA2491194C (en) 2004-12-27 2004-12-29 Floor system with steel joists having openings with edge reinforcements and method

Country Status (6)

Country Link
US (1) US20060150548A1 (en)
CN (1) CN100419184C (en)
CA (1) CA2491194C (en)
EA (1) EA011532B1 (en)
UA (1) UA88668C2 (en)
WO (1) WO2006069435A1 (en)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090205285A1 (en) * 2008-02-15 2009-08-20 Lightweight Structures, Llc (A Wisconsin Limited Liability Company) Composite floor systems and apparatus for supporting a concrete floor
GB2459358B (en) * 2009-04-09 2010-06-02 Beattie Passive Build System Ltd Building and method of constructing a building
CA2668945A1 (en) * 2009-05-13 2010-11-13 Ernest R. Bodnar Open web stud with low thermal conductivity and screw receiving grooves
CA2671647A1 (en) * 2009-07-10 2011-01-10 Ernest R. Bodnar Composite panel and stud and dual slab panel and method
US8381469B2 (en) * 2010-04-08 2013-02-26 Dizenio, Inc. Cold formed joist
WO2011139401A2 (en) * 2010-05-04 2011-11-10 Plattforms, Inc. Precast composite structural girder and floor system
US9834940B2 (en) * 2010-05-06 2017-12-05 9344-8462 Québec Inc. Modular building structures improvements
US20120047834A1 (en) * 2010-08-26 2012-03-01 Burnco Manufacturing Inc. Cold formed stud
US8863477B2 (en) * 2010-08-26 2014-10-21 Dizenio Inc. Cold formed stud and method of use
JP5908282B2 (en) * 2012-01-08 2016-04-26 大和ハウス工業株式会社 Steel beam through hole reinforcement design method and reinforcement design support device
US8943776B2 (en) * 2012-09-28 2015-02-03 Ispan Systems Lp Composite steel joist
FR2996868B1 (en) * 2012-10-16 2014-12-19 Bacacier Profilage METALLIC AMOUNT FOR A BUILDING PARTITION, AND A BUILDING PARTITION COMPRISING AT LEAST ONE SUCH AMOUNT
CN103276839B (en) * 2013-06-08 2015-10-28 北京工业大学 The how high-rise assembled steel framework-eccentrical braces of a kind of hollow irregular column
CN103437498B (en) * 2013-09-12 2016-04-20 南京工业大学 With hanging muscle reinforcement holes in soffit profiled sheet compound beam continuously and preparing mounting method
CN107075856B (en) 2014-07-07 2020-07-17 岩石屋国际有限公司 Frame system for building structures
CN104120828A (en) * 2014-07-13 2014-10-29 张跃 A joist
CN104264898B (en) * 2014-08-21 2016-04-27 四川金锋建设有限公司 A kind of porous threading girder steel
USD757521S1 (en) * 2014-09-30 2016-05-31 Oscar Rosner Joist support
DE202014105633U1 (en) * 2014-11-21 2015-02-12 Richter-System Gmbh & Co. Kg Profile for a ventilated roof construction
LT6370B (en) * 2015-06-10 2017-03-10 Uab Aldrea Beam component for use in technical construction, construction kit and method of connecting beam components
WO2018114821A1 (en) * 2016-12-21 2018-06-28 Kistler Holding Ag Receptacle arrangement for installation in a road surface and method for installing this receptacle arrangement in a road surface
US20190323282A1 (en) * 2018-04-18 2019-10-24 Assa Abloy Entrance Systems Ab Strut for windload door
CN108951982A (en) * 2018-07-24 2018-12-07 肇庆三乐集成房屋制造有限公司 Assembly concrete superposed floor plate and its construction method based on cement fibrolite plate composite reinforcing steel bar skeleton
ES2779062A1 (en) * 2019-02-13 2020-08-13 Univ Valladolid STRUCTURAL ELEMENT WITH ACCESS TO FACILITIES COMPONENTS BY ALMA AND MANUFACTURING METHOD (Machine-translation by Google Translate, not legally binding)
WO2020183056A1 (en) * 2019-03-13 2020-09-17 Peikko Group Oy Method for constructing a closed steel sheet structure and closed steel sheet structure
GB2596949A (en) * 2019-04-10 2022-01-12 Speedfloor Ltd Building panel
CN111677321B (en) * 2020-06-04 2021-10-08 江苏文博建筑设计有限公司 Assembled building reinforced structure

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1682202A (en) * 1928-08-28 vaughn
US741066A (en) * 1903-03-23 1903-10-13 Timothy O'shea Building construction.
US947514A (en) * 1908-10-19 1910-01-25 Frank W Stevens Concrete floor construction.
US1235636A (en) * 1914-10-22 1917-08-07 Arthur G Bagnall Floor construction.
US1994716A (en) * 1932-05-12 1935-03-19 Goodyear Zeppelin Corp Girder
US2106084A (en) * 1936-11-09 1938-01-18 Reynolds Corp Joist suspension
US2177277A (en) * 1937-06-02 1939-10-24 Pacific Portland Cement Compan Metal stud
US2145407A (en) * 1938-03-23 1939-01-31 Soule Steel Company Building construction
US2185475A (en) * 1938-04-20 1940-01-02 Rafter Machine Company Stud and rafter
US3147570A (en) * 1959-04-28 1964-09-08 Richard O Shanton Wall braces and method of using same
US3083794A (en) * 1960-04-12 1963-04-02 Penn Metal Company Inc Joined sheet metal structures
DE2046459A1 (en) * 1970-09-21 1972-04-13 Haushalter, Dietmar, 5804 Herdecke Beams for formwork, falsework and the like
US4793113A (en) * 1986-09-18 1988-12-27 Bodnar Ernest R Wall system and metal stud therefor
US4909007A (en) * 1987-03-19 1990-03-20 Ernest R. Bodnar Steel stud and precast panel
US4930278A (en) * 1988-06-02 1990-06-05 In-Ve-Nit International Inc. Composite cementitious building panels
US5669197A (en) * 1991-06-03 1997-09-23 Bodnar; Ernest Robert Sheet metal structural member
FI89961C (en) * 1992-04-13 1993-12-10 Rannila Steel Oy Connecting disc intended for a connecting plate
CA2077429C (en) * 1992-09-02 1999-03-30 Ernest R. Bodnar Roll formed metal member
US5964071A (en) * 1997-02-14 1999-10-12 Sato Katako Seisakusho Co., Ltd. Frame material for wall
US6301854B1 (en) * 1998-11-25 2001-10-16 Dietrich Industries, Inc. Floor joist and support system therefor
IT1303871B1 (en) * 1998-11-25 2001-03-01 Sistem Engineering S R L STRUCTURE OF WALL AUCTIONS FOR RETICULAR BEAMS
US6170217B1 (en) * 1999-02-05 2001-01-09 Darrell G. Meyer Bearing elements and methods relating to same
USD423325S (en) * 1999-04-27 2000-04-25 Steel Floors, Llc Joist ledger with tab
WO2003008732A1 (en) * 2001-07-18 2003-01-30 Ernest Bodnar Steel stud and composite construction panel
US20030014935A1 (en) * 2001-07-18 2003-01-23 Bodnar Ernest R. Sheet metal stud and composite construction panel and method
US6715256B1 (en) * 2002-03-29 2004-04-06 Magnatrax Corporation Sliding hold-down clip for standing seam metal roof
CA2404320C (en) * 2002-09-30 2005-02-08 Ernest R. Bodnar Steel stud with openings and edge formations and method
CA2455071C (en) * 2003-11-24 2011-11-15 Michael Strickland Segmented cold formed joist

Also Published As

Publication number Publication date
CA2491194A1 (en) 2006-06-27
CN1796698A (en) 2006-07-05
US20060150548A1 (en) 2006-07-13
EA011532B1 (en) 2009-04-28
EA200701334A1 (en) 2007-10-26
CN100419184C (en) 2008-09-17
UA88668C2 (en) 2009-11-10
WO2006069435A1 (en) 2006-07-06

Similar Documents

Publication Publication Date Title
CA2491194C (en) Floor system with steel joists having openings with edge reinforcements and method
US8341921B2 (en) Floor system with steel joists having openings with edge reinforcements and method
US8359813B2 (en) Steel stud with openings and edge formations and method
US6708459B2 (en) Sheet metal stud and composite construction panel and method
US6122888A (en) Construction panel and method of constructing a level portion of a building
US7231746B2 (en) Sheet metal stud and composite construction panel and method
JP2646293B2 (en) Sheet metal structural member, structural panel and construction method
AU627534B2 (en) Steel stud and precast panel
AU2001276042A1 (en) Structural member for use in the construction of buildings
WO2002001016A1 (en) Structural member for use in the construction of buildings
CA2404320C (en) Steel stud with openings and edge formations and method
WO2008094175A2 (en) System and method of use for composite floor
US7013613B1 (en) Composite slab and joist assembly and method of manufacture thereof
EP1543202B1 (en) Metal framing member and method of manufacture
WO2002038875A2 (en) Floor and roof structures for buildings
US5592848A (en) Method of simultaneously forming a pair of sheet metal structural members
WO2006058391A1 (en) Building construction
US5491946A (en) Wide decking structure
KR20140108815A (en) Open channel and H-shaped composite beam and steel structure using the same
CN112575946A (en) Prefabricated coincide floor of assembled
WO2011003198A1 (en) Composite panel and stud and dual slab panel and method
TW201200692A (en) Cold formed joist
JP2556386B2 (en) Steel studs and precast panels
JPS6242001Y2 (en)

Legal Events

Date Code Title Description
EEER Examination request