CA2261665C - Energy efficient centrifugal grinder - Google Patents

Energy efficient centrifugal grinder Download PDF

Info

Publication number
CA2261665C
CA2261665C CA002261665A CA2261665A CA2261665C CA 2261665 C CA2261665 C CA 2261665C CA 002261665 A CA002261665 A CA 002261665A CA 2261665 A CA2261665 A CA 2261665A CA 2261665 C CA2261665 C CA 2261665C
Authority
CA
Canada
Prior art keywords
rotatable
disc
energy efficient
chamber
solids
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA002261665A
Other languages
French (fr)
Other versions
CA2261665A1 (en
Inventor
Rajendra P. Gupta
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CA2261665A1 publication Critical patent/CA2261665A1/en
Application granted granted Critical
Publication of CA2261665C publication Critical patent/CA2261665C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C13/00Disintegrating by mills having rotary beater elements ; Hammer mills
    • B02C13/14Disintegrating by mills having rotary beater elements ; Hammer mills with vertical rotor shaft, e.g. combined with sifting devices
    • B02C13/18Disintegrating by mills having rotary beater elements ; Hammer mills with vertical rotor shaft, e.g. combined with sifting devices with beaters rigidly connected to the rotor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C18/00Disintegrating by knives or other cutting or tearing members which chop material into fragments
    • B02C18/0084Disintegrating by knives or other cutting or tearing members which chop material into fragments specially adapted for disintegrating garbage, waste or sewage
    • B02C18/0092Disintegrating by knives or other cutting or tearing members which chop material into fragments specially adapted for disintegrating garbage, waste or sewage for waste water or for garbage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C18/00Disintegrating by knives or other cutting or tearing members which chop material into fragments
    • B02C18/06Disintegrating by knives or other cutting or tearing members which chop material into fragments with rotating knives
    • B02C18/062Disintegrating by knives or other cutting or tearing members which chop material into fragments with rotating knives with rotor elements extending axially in close radial proximity of a concentrically arranged slotted or perforated ring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C18/00Disintegrating by knives or other cutting or tearing members which chop material into fragments
    • B02C18/06Disintegrating by knives or other cutting or tearing members which chop material into fragments with rotating knives
    • B02C18/08Disintegrating by knives or other cutting or tearing members which chop material into fragments with rotating knives within vertical containers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C13/00Disintegrating by mills having rotary beater elements ; Hammer mills
    • B02C13/14Disintegrating by mills having rotary beater elements ; Hammer mills with vertical rotor shaft, e.g. combined with sifting devices
    • B02C2013/145Disintegrating by mills having rotary beater elements ; Hammer mills with vertical rotor shaft, e.g. combined with sifting devices with fast rotating vanes generating vortexes effecting material on material impact

Abstract

A grinder of solids or solids in liquids has a multiple milling stage. A rotating disc plate (22) carries cutting elements (28) on one side and hamme r elements (30) on another, both located at the circumference of the disc plat e. The disc plate (22) is rotated in a screened chamber (16) to which the solid s or the liquids containing solids to be ground are introduced. Ground product or slurry containing disintegrated solids is passed through the screen (20) before discharged. The use of disc plate and milling elements reduces requir ed torque, leading to improved energy efficiency and results in better performance of the grinder.

Description

CA 02261665 1999-O1-27 - -_ _.

Energy Efficient Centrifugal Grinder Field of the Invention The present invention relates generally to a grinder for grinding solids s or solids in liquid. In particular it is directed to a grinder which includes cutting elements and hammering elements provided on either side of a rotatable disc for energy efficient operation.
Back~;round of the Invention to It is often required to disintegrate solids in liquids without incorporating air in certain processes for air could induce undesirable oxidation of the resulting solid-liquid slurry and/or induce foaming. An example is the disintegration of soybeans in water in order to make soymilk.
In U.S. Patent No. 4,915,972 Apr. 10, 1990 Gupta, such disintegration process is is described in connection with production of soymilk.
The disintegration of solids in liquids is often achieved by high speed rotating hammermills. However, prior art hammermills create extreme vortex in liquids which induces suction of air in the comminuting region. A
hammermill also requires very high starting torque if the solids are already in 2 o the mill when it is started. The drive motor has to be sized to provide the required high starting torque, which is expensive and inefficient for running operation. In addition, it yields solid particles of large variation in size which often requires two or more mills in tandem to get reasonable grind of the solids. Alternately, the slurry has to be recirculated many times through the 2 s same hammermill. Either approach results in increased capital cost and reduced energy efficiency. U.S. Patent Nos. 2,738,930 and 2,738,931 May 20,1956 Schneider teach dispersion apparatus in which a preliminary comminuting system is followed by a plurality of dispersion systems. U.S.
Patent No. 2,519,198 Aug. 15,1950 Richeson describes a coffee grinding or 3 o comminuting machines having a plurality of rotating cutting elements. U.S.
Patent No. 3,993,791 Nov. 23, 1976 Breed et al is directed to a continuous lautering apparatus in which a series of continuously decanting centrifuges and an equal number of reslurry stations are provided.
French patents No. FR-A-2171671 published on Sep. 21, 1973 describes 3 s a grinder in which hammers are provided on rotatable discs at their perimeters. French patent No. FR-A-2112030 published on June 16, 1972 also AMENDED SHEET

CA 02261665 1999-O1-27 __ __ la describes a grinder in which cutters are provided on one side of a rotatable disc and hammers are on the other side of the disc. The grinders of said patents have screened wall or walls to define first and second chambers. Both grinders, however, create vortex in liquids and requires high starting torque.
s The present invention eliminates these deficiencies of a hammermill and provides a highly cost-effective method of grinding for general purpose such as dry grinding of grains, spices, minerals, and other food and non-food AMENDED SHEET

WO 98/06497 PCTICA96pOS44 products. It is also is suitable for grinding solid in liquids such as ordinary, choked, flooded, and airless grinding. This is achieved by locating the hammering elements only in the vicinity of the impacting surface rather than using the whole rotating element as hammer. The starting and running s torque requirement of the drive motor is greatly reduced and energy use efficiency is improved. The motor torque requirement and energy efficiency is further improved by dividing the milling regions into two or more sections.
This division also results in good control on the particle size distribution of the grind and eliminates the need for multiple mills or multiple passes to ~o achieve a good grind.
Objects of the Invention It is therefore an object of the invention to provide a centrifugal grinder which is energy efficient and produces uniform particle size distribution.
It is another object of the invention to provide a grinder which produces higher yield and quality of the end product.
It is yet a further object of the invention to provide an airless grinder which is energy efficient.
2o It is still an object of the invention to provide an airless grinder which has a rotating disc with hammer and cutter elements at perimeter.
Summary of the Invention Briefly stated, the invention is directed to an energy efficient 2s centrifugal grinder for grinding solids in liquids into resulting solid-liquid slurry which minimizes the formation of vortex and concomitant suction of air into the resulting solid-liquid slurry. The grinder comprises a housing having a screen wall defining the housing into a first and second chambers.
A first rotatable disc in the first chamber substantially conforms to the size of 3o the first chamber and is rotatable about a central perpendicular axis. The grinder further has cutters attached on a first side of the first rotatable disc near but inside its perimeter and hammers attached on a second side of the first rotatable disc near but inside its perimeter. An inlet connects to the first chamber for introducing the solids in liquids to the first side of the disc and 3s an outlet connects to the second chamber for discharging the solid-liquid slurry therefrom. A motor mechanically connecting the first rotatable disc to drive the first rotatable disc.
Brief Description of the Drawings s Figure 1 is a sectional view of the grinder according to one embodiment of the invention.
Figures 2-4 are sectional views of multi-stage grinders according to several embodiments of the invention.
Detailed Description of the Preferred Embodiments of the Invention Figure 1 shows schematically a grinder according to one embodiment of the invention. The grinder includes a housing 10 which is provided with an inlet 12 and an outlet 14. The housing is cylindrical in shape in cross section and is divided into two chambers 16 and 18 by a screened wall 20. A
is disc plate 22 is in the first chamber 16 and is attached on an axle 24 which is in turn adapted to be rotated at high speed by a motor 26. The disc plate 22 has two or more cutter elements 28 attached to its upper side and two or more hammer elements 30 attached to its lower side. The cutter and hammer elements are attached to the disc plate 22 near its circumference. In a further 2~ embodiment, the disc plate is provided with few tapered holes 32 which are too small for the unground solids to go through. These holes improve circulation of ground product below the plate. They are particularly beneficial when solids are to be ground in the presence of a liquid.
Solids or solids in liquids are introduced into the grinder through the 2s inlet 12. When the disc plate 22 is rotated, the solids are centrifugally thrown out towards the screen wall in the path of the spinning cutters 28 which chop down the solids to small pieces. The small solid pieces then enter the lower region where spinning hammers 30 grind them to a particle size which is a function of the holes size in the screen. The ground solids suspended in the 30 liquid are removed through the outlet 14.
In this embodiment, the torque requirement and vortex formation are improved over the prior art grinders and consequently improves energy efficiency. These improvements are results of the following features. Instead of one or more vertical bars as hammers, the invention uses the cutter and 35 hammer elements attached on a horizontal circular plate. The milling chamber is divided in two regions:
The improvement can be illustrated as follows. If the thickness of a cutter element is t1 and the height is h1, the thickness of a hammer element is t2 and the height is h2, and the diameter of the disc plate is D, then the total volume Vl swept by the cutter and hammer elements is:
s Vl = n D(tl*hl+t2*h2) [n=3.14159]
Prior art hammer mills have solid metal bars as hammers. Assuming hl+h2 as their height and D as their length, the volume V2 swept by them is:
V2 = n D*D(h1+h2)/4 Assuming for simplicity the thickness of the cutter and hammer elements to io be the same, t1 = t2 = t (say), and dividing V1 by V2:
V1/V2 = 4, t/D.
Typically, t =1/8" when D = 4", giving V1/V2 =1/8. This ratio then roughly defines the ratio of the strength of the vortex for the two mills without the disc plate. However, the presence of the disc plate greatly reduces the swept ~s volume available for vortex formation for the present invention - the inlet can only see the swept volume Vl' above the disc plate. Since hl is typically 1/3 of h2, Vl' = n D*~''hl; or V1'/V2 = t/D, Which has a value 1/32 for the typical dimensions considered here. The 2o grinder of the invention therefore has a very small vortex and as a result extremely small suction for air to get into it. If this small vortex is still problematic, it could be further reduced by inserting a vortex-cross in the inlet of the grinder.
Assuming s to be the specific gravity of the solid-liquid swept by the zs grinder and r to be the distance of an element thickness dr from the axis, the ratio of the torques (Tl for the present invention and T2 for the prior art hammermill) can be easily determined as follows:
T1 = K*mass*distance2 = {2 n R(hl+h2)t*s} R2 [R=D/2]
T2 = K*integral(0 to R)[{2 n r(hl+h2)dr*s) r2J
so =2 ~ (h1+h2) s*R4/4 T1/T2 = 8 t/D =1/4 (for t =1/8" and D = 4" as above). Here K is a proportionality constant.
This is a marked decrease in the torque requirement. The preceding analysis can qualitatively be envisioned from Figure 1. When rotated axially, 35 the area swept by hammer and cutter elements is obviously a fraction of the area swept by the rectangle formed by connecting the elements as shown by the dotted lines 34. It would take a lot more torque to rotate the latter arrangement than the former when the space inside the screen is filled with solids. It is not difficult to see that even the running torque is lower, leading to improved energy efficiency.
Referring to Figures 2-4, three additional embodiments of the invention are also schematically shown.
In Figure 2, the grinder has a single impeller mounted on a drive shaft 50 of a motor and is surrounded by a fixed cylindrical screen 52. The impeller has multiple grinding stages separated by discs 54 and 56 1o concentric with the shaft. The grinding elements, like cutters and hammers, are symmetrically mounted on the discs. As the solid such as beans gets crushed or chopped to a certain size by one stage of the grinding, they progress to the next finer stage of grinding or chopping through the opening between the discs and the screen. The section of the screen surrounding the final stage of the grinder has perforations that allow the finely ground solids to exit the grinder. Although the grinder screen may be perforated everywhere, it is undesirable to do so for two reasons: a) the slurry flow between stages is enhanced if the water cannot flow out of the screen in the earlier stages of grinding, and b) it costs 2o money to make perforations in any material, i.e., fewer the perforations, cheaper the screen. For some applications, it may be desirable to have openings in the top section of the screen as well to permit local circulation of the liquid and slurry in the grinder. In other embodiments, the discs are provided with holes which are too small for solids larger than a certain size 2s to go through.
In Figures 3 and 4, multistage grinders are shown in which progressively larger discs are used for better grinding performance.
In Figure 3, the first chamber is in a stepped construction having three stages with different diameters. The screen wall defines the first and 3o second chambers. The first rotatable circular disc is located in one stage and the second disc in another stage, both conforming to their respective stages. The cutters and hammers are also located respective rotatable circular discs near their perimeters. In Figure 4, the first chamber is in a conical shape and the screen wall defines the first and second chambers.
35 The first and second rotatable circular discs are located in the first chamber and conform to the diameter of the first chamber. The cutters and hammers on the rotatable circular discs also roughly conform to the conical shape of the first chamber.
The grinder of the present invention produces a more uniform s particle size distribution in the grind than the prior art and reduces energy and power requirement in grinding a material to desired fineness. The grinding elements last longer and are economical to manufacture. The grinder of the invention also produces higher yield and quality of the end produci~ It is adaptable to dry grinding of grains, spices, minerals, and other food and non-food products; and is suitable for ordinary, choked, flooded, and airless grinding.

Claims (10)

What we claim as our invention is:
1. An energy efficient centrifugal grinder for grinding solids in liquids into a resulting solid-liquid slurry, which minimizes the formation of vortex and concomitant suction of air into said resulting solid-liquid slurry, comprising:
a housing (10) having a circular screen wall (20) dividing the housing into first and second chambers (16,18);
a first rotatable circular disc (22) in the first chamber (16) substantially conforming to the size of the first chamber and being rotatable about a central axis (24);
the first rotatable circular disc (22) having holes (32) therein of which the size is smaller than that of unground solids;
cutters (28) attached to a first side of the first rotatable disc (22) near but inside its perimeter;
hammers (30) attached to a second side of the first rotatable disc (22) near but inside its perimeter;
an inlet (12) connecting to the first chamber (16) for introducing the solids in liquids to the first side of the first rotatable disc (22);
an outlet (14) connecting to the second chamber (18) for discharging the solid-liquid slurry therefrom, and a motor (26) mechanically connected to the first rotatable disc (22) to drive the same.
2. The energy efficient centrifugal grinder for grinding solids in liquids according to claim 1, further comprising:
a second rotatable circular disc (56) parallel with and adjacent to the second side of the first rotatable disc (56) and rotatable about said axis (50);

the second rotatable circular disc (56) substantially conforming to the size of the first chamber and having the hammers connected to a first side of the second rotatable circular disc (56) near but inside its perimeter, fine grinding hammers attached on a second side of the second rotatable circular disc (56) near but inside its perimeter.
3. The energy efficient centrifugal grinder according to claim 2, wherein the second rotatable circular disc has holes therein of which the size is smaller than that of unground solids.
4. The energy efficient centrifugal grinder according to claim 3, wherein the screen wall is cylindrical in shape defining the first chamber therein and has screen holes.
5. The energy efficient centrifugal grinder according to claim 4, wherein the screen holes are only near the fine grinding hammers.
6. The energy efficient centrifugal grinder according to claim 4, wherein the first chamber comprises two stages, the first and second rotatable circular discs are respectively located in each of the two stages and the second rotatable circular disc is larger in diameter than the first rotatable circular disc.
7. The energy efficient centrifugal grinder according to claim 3, wherein the screen wall is conical in shape defining the first chamber therein and has screen holes.
8. The energy efficient centrifugal grinder according to claim 7, wherein the second rotatable circular disc is larger in diameter than the first rotatable circular disc.
9. The energy efficient centrifugal grinder according to claim 7, wherein the cutters on the first rotatable disc, the hammers on the first and second rotatable discs and the fine grinding hammers on the second rotatable disc are attached to their respective rotatable circular discs at angles to roughly conform to the conical shape of the first chamber.
10. The energy efficient centrifugal grinder according to claim 9, wherein the screen holes are only near the fine grinding hammers.
CA002261665A 1996-08-12 1996-08-12 Energy efficient centrifugal grinder Expired - Fee Related CA2261665C (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CA1996/000544 WO1998006497A1 (en) 1996-08-12 1996-08-12 Energy efficient centrifugal grinder

Publications (2)

Publication Number Publication Date
CA2261665A1 CA2261665A1 (en) 1998-02-19
CA2261665C true CA2261665C (en) 2001-11-06

Family

ID=4173165

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002261665A Expired - Fee Related CA2261665C (en) 1996-08-12 1996-08-12 Energy efficient centrifugal grinder

Country Status (8)

Country Link
EP (1) EP0925114B1 (en)
JP (1) JP2000516134A (en)
BR (1) BR9612694A (en)
CA (1) CA2261665C (en)
DE (1) DE69613596T2 (en)
DK (1) DK0925114T3 (en)
ES (1) ES2158331T3 (en)
WO (1) WO1998006497A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE516575C2 (en) * 2000-06-30 2002-01-29 Gunnar Oehrn Device for atomizing waste
CN103127991B (en) * 2013-02-02 2014-10-22 中国农业科学院烟草研究所 Grinding miller and grinding method thereof
CN105903526B (en) * 2013-03-21 2018-07-03 青岛智信生物科技有限公司 A kind of grinding method of grinder
CN104174477B (en) * 2014-08-15 2017-04-19 湖南三德科技股份有限公司 Settling collection type sample making crusher
RU185130U1 (en) * 2016-11-21 2018-11-22 Государственное бюджетное образовательное учреждение высшего образования Нижегородский государственный инженерно-экономический университет (НГИЭУ) Chopper
CN109482292B (en) * 2018-11-06 2020-11-20 江苏科鼐生物制品有限公司 Chemical material processing device and working method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1977771A (en) * 1932-10-15 1934-10-23 Mcmahan Stanley Pulverizer
FR2112030A1 (en) * 1970-07-10 1972-06-16 Zanetti Jeanne
FR2171671A5 (en) * 1972-02-04 1973-09-21 Michel Albert
DE7827589U1 (en) * 1978-09-15 1979-01-04 Ismar, Theodor, 5000 Koeln MACHINE FOR CRUSHING REMAINING BREAD
DE9309448U1 (en) * 1993-06-25 1994-11-03 Bauermeister & Co Verfahrenste Impact mill for oily seeds, in particular cocoa seeds

Also Published As

Publication number Publication date
BR9612694A (en) 2001-01-02
CA2261665A1 (en) 1998-02-19
DK0925114T3 (en) 2001-09-03
ES2158331T3 (en) 2001-09-01
DE69613596D1 (en) 2001-08-02
DE69613596T2 (en) 2002-04-18
WO1998006497A1 (en) 1998-02-19
EP0925114A1 (en) 1999-06-30
JP2000516134A (en) 2000-12-05
EP0925114B1 (en) 2001-06-27

Similar Documents

Publication Publication Date Title
US5544821A (en) Energy efficient centrifugal grinder
JP2929078B2 (en) Stirring mill with separator for crushed beads
US5887808A (en) High efficiency grinding apparatus
EP2155397B1 (en) Particle reduction device
CN101123904A (en) Grating disk for food processor
EP0568941B1 (en) Pulverizing apparatus
CA2261665C (en) Energy efficient centrifugal grinder
US5330110A (en) Apparatus for grinding material to a fineness grade
CN201380093Y (en) Vertical shaft ultra-fine pulverizer
CN1226191A (en) Efficient centrifugal grinder
JP2967803B2 (en) Stirrer type ball mill
JPH10118511A (en) Pulverizer
CN109772559A (en) A kind of cutting smashing and grinding equipment for tubers Chinese herbal medicine
KR100525305B1 (en) Agitator mill
RU2163166C2 (en) Grinder
JP2810951B2 (en) Stirring mill
US3556420A (en) Apparatus for comminuting compost
JPH067694A (en) Method and device for pulverizing solid particle of brittle material
RU2397019C1 (en) Grinder
KR100425545B1 (en) Rotary impactive grinder
CN205659739U (en) Novel super little rubbing crusher of fodder
MXPA99001498A (en) Portable and programmable interactive visual analogue scale data-logger device
JP2598136B2 (en) Vertical crusher
CN218250681U (en) High-speed stirring mill and grinding machine without grinding media
RU2726441C1 (en) Food shredder

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed