CA2250338A1 - Capteur de densite pour surveiller un taux de fuite d'une enveloppe d'appareillage electrique avec une fiabilite amelioree - Google Patents

Capteur de densite pour surveiller un taux de fuite d'une enveloppe d'appareillage electrique avec une fiabilite amelioree Download PDF

Info

Publication number
CA2250338A1
CA2250338A1 CA002250338A CA2250338A CA2250338A1 CA 2250338 A1 CA2250338 A1 CA 2250338A1 CA 002250338 A CA002250338 A CA 002250338A CA 2250338 A CA2250338 A CA 2250338A CA 2250338 A1 CA2250338 A1 CA 2250338A1
Authority
CA
Canada
Prior art keywords
density
density sensor
temperature
envelope
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002250338A
Other languages
English (en)
Inventor
Jean Marmonier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Grid Solutions SAS
Original Assignee
GEC Alsthom T&D SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GEC Alsthom T&D SA filed Critical GEC Alsthom T&D SA
Publication of CA2250338A1 publication Critical patent/CA2250338A1/fr
Abandoned legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/53Cases; Reservoirs, tanks, piping or valves, for arc-extinguishing fluid; Accessories therefor, e.g. safety arrangements, pressure relief devices
    • H01H33/56Gas reservoirs
    • H01H33/563Gas reservoirs comprising means for monitoring the density of the insulating gas

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Examining Or Testing Airtightness (AREA)
  • Fire-Detection Mechanisms (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)
  • Burglar Alarm Systems (AREA)
  • Gas-Insulated Switchgears (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

Un capteur de densité (5) pour surveiller un taux de fuite d'une enveloppe (3) d'appareillage électrique remplie d'un gaz diélectrique (7) sous pression comprend un pied de fixation (5B) monté par l'extérieur dans l'épaisseur de l'enveloppe et communiquant avec le gaz diélectrique. Un radiateur (11) est disposé autour du pied de fixation (5A) du capteur de densité, ce qui permet de transformer un artefact de mesure dû à une exposition de l'enveloppe et du capteur au rayonnement solaire de telle sorte que tout risque de franchissement intempestif d'un seuil bas de densité soit éliminé.

Description

CA 022~0338 1998-10-22 Capteur de densité pour surveiller un taux de fuite d'une enveloppe d'appareillaqe électrique avec une fiabilité améliorée L'invention concerne un capteur de densité pour surveiller un taux de fuite d'une enveloppe d'appareillage électrique remplie d'un gaz diélectrique sous pression, comprenant un pied de fixation monté
par l'extérieur dans l'épaisseur de l'enveloppe et communiquant avec le gaz dielectrique.
Un exemple d'application d'un tel capteur est constitué par un disjoncteur de générateur ou de réseau monté dans une enveloppe blindée, ou un poste sous enveloppe métallique, I'enveloppe contenant de l'hexafluorure de soufre SF6 sous une pression de quelques bars. Le capteur de densité est fixé sur l'enveloppe par l'extérieur et permet de surveiller le taux de fuite du gaz diélectrique hors de l'enveloppe . par comparaison de relevés de la densité
effectués tout au long de la durée d'exploitation du disjoncteur. Des fuites memes minimes étant inévitables, la densité tend, après plusieurs années d'exploitation, vers une valeur de seuil en deçà de laquelle le fonctionnement du disjoncteur ou de l'appareillage n'est plus sur. Il est alors nécessaire de procéder à une injection de gaz
2 0 dielectrique pour remonter la valeur de la densité à une valeur nominale, par exemple égale à 3,5 bars. Le franchissement du seuil déclenche en général une alarme en vue de provoquer une intervention sur le disjoncteur pour procéder à l'injection du gaz diélectrique.
Le capteur de densité comprend un détecteur de pression et un détecteur de temperature disposés à l'intérieur du pied de fixation pour communiquer avec le gaz diélectrique, et une tete de mesure pour calculer la densité du gaz pour tout couple de valeurs de préssion P et de température T acquises au meme instant.
Le tracé 21 de la figure 1 rapporte une expérience conduite à
l'aide d'un capteur du type de celui qui vient d'etre decrit. L'enveloppe blindée est installée sur un site d'exploitation en plein air, ce qui correspond a partie importante des sites d'exploitation de tels ... . ..

CA 022~0338 1998-10-22 appareillages électriques. L'enveloppe s'étend dans une direction longitudinale qui dans l'expérience est orientée selon une direction d'Est en Ouest du site d'exploitation. Le capteur de densité est fixé sur une extrémité de l'enveloppe de telle sorte qu'il n'est exposé au rayonnement solaire que les après-midi. Le tracé 21 de la densité
calculée pour chaque relevé de valeurs de pression et de température acquises à un même instant montre deux comportements distincts du capteur. Un premier comportement est caractérisé par une évolution plate 21A de la densité autour de la valeur nominale égale à 3,5 bars et correspond à des releves de couples de pression et de température effectués de jour et en l'absence d'un rayonnement solaire notable. Un deuxieme comportement, qui correspond à des relevés effectués de jour et en presence d'un rayonnement solaire notable, est caractérisé
par une variation 21B journalière de la densité au cours de laquelle la densité est d'abord supérieure à la valeur nominale puis inférieure, le point de transition entre les variations positives et négatives correspondant sensiblement au zénith du soleil.
La densité réelle du SF6 dans l'enveloppe reste constante et égale à sa valeur nominale, comme en témoigne l'évolution plate reproduite pour chaque jour de relevés effectués en l'absence de rayonnement solaire notable. La variation journalière de la densité en presence d'un ensoleillement notable représente en réalité un artefact de mesure. Un tel artefact n'empêche pas de surveiller le taux de fuite de l'enveloppe, dans la mesure où il est aisé de ne retenir que les relevés effectués en l'absence de rayonnement solaire notable pour le calcul de la densité. Cependant un problème se presente lorsque l'amplitude de la variation journaliere de la valeur calculée de la densité lors de jours d'ensoleillement notable est en dessous du seuil de densité, référencé 20 sur la figure 1. C'est notamment le cas lorsque la densité du gaz contenu dans l'enveloppe s'est rapprochée du seuil après plusieurs années d'exploitation, du fait des fuites minimes inévitables. Le franchissement du seuil enclenche alors une alarme engendrée par une variation négative de la densité c~lculée par le capteur de densité lors de jours d'ensoleillement notable, qui est considérée comme intempestive dans la mesure où le seuil de densité
ne sera pas réellement atteint avant plusieurs semaines, ou plusieurs mois.
Le but de l'invention est un capteur de densité pour surveiller un taux de fuite d'une enveloppe d'un appareillage électrique qui présente une fiabilité améliorée vis-à-vis du franchissement d'un seuil de 1 0 densité.
L'idée à la base de l'invention est chercher à transformer l'artefact de mesure du capteur de densité en des variations de densité à valeurs toujours égales ou supérieures à la valeur nominale, pour prévenir tout risque de franchissement intempestif du seuil de 1 5 densite.
A cet effet, I'invention a pour objet un capteur de densité pour surveiller un taux de fuite d'une enveloppe d'appareillage électrique remplie d'un gaz diélectrique sous pression, comprenant un pied de fixation monté par l'extérieur dans l'épaisseur de l'enveloppe et communiquant avec le gaz diélectrique, caractérisé en ce qu'un radiateur est disposé autour du pied de fixation du capteur de densité.
En assurant un échange thermique entre le pied de fixation du capteur de densité et le milieu ambiant de l'enveloppe, qui est en genéral l'air atmosphérique, le radiateur modifie l'équilibre thermique du détecteur de température et du gaz diélectrique de telle sorté qu'il transforme les variations négatives puis positives de la densité
calculée lors de journées d'ensoleillement notable, en variations uniquement positives. D'où il résulte que tout risque de franchissement intempestif d'un seuil de densité dû à un artefact de mesure engendré par des relevés effectués en présence d'un ensoleillement notable est éliminé.

CA 022~0338 1998-10-22 ll faut noter que les variations uniquement positives de la densité
calculée par le capteur selon l'invention lors de relevés effectués en présence d'un ensoleillement notable restent limitées en amplitude vis à vis d'une fuite qui sera détectée par le capteur de densité avec un retard négligeable. De même, I'amplitude des variations positives n'a pas de conséquence préjudiciable sur le franchissement d'un seuil haut de densité de l'enveloppe.
D'autres caractéristiques et avantages de l'invention apparaîtront à la lecture de la description illustrée par les dessins.
La figure 1 montre deux tracés de releves de densité effectués pour l'un à l'aide d'un capteur de densité sans radiateur, et pour l'autre, à l'aide d'un capteur selon l'invention.
La figure 2 est une vue schématique d'une enveloppe d'un appareillage électrique sur laquelle est fixée un capteur de densité
selon l'invention.
La figure 3 est une vue agrandie d'un capteur de densité selon l'invention.
L'invention concerne un capteur de densité pour surveiller un taux de fuite d'une enveloppe d'appareillage électrique remplie d'un gaz diélectrique sous pression, qui comprend un pied de fixation monté par l'extérieur dans l'épaisseur de l'enveloppe et communiquant avec le gaz diélectrique. Un capteur de densité 5 et une enveloppe 3 d'appareillage électrique sont représentes sur la figure 2.
L'appareillage électrique est par exemple un disjoncteur de réseau ou un disjoncteur de générateur, ou un poste sous enveloppe metallique, et est disposé dans l'enveloppe 3 dans laquelle le gaz diélectrique 7, par exemple le SF6, est injecté sous une pression d'environ 3,5 bars.
L'enveloppe 3 a un corps central 3C de forme cylindrique et est fermée par deux couvercles opposés 3A et 3B vissés au corps central 3C. Le capteur de densité 5, également visible sur la figure 3, est d'un type connu et comprend schématiquement un pied de fixation 5B

CA 022~0338 1998-10-22 cylindrique surmonté d'une tête de mesure 5A et terminé à l'autre extrémité par un tube fileté 5C pour être vissé dans un conduit 9 formé
dans l'épaisseur de l'enveloppe 3 et pour communiquer avec le gaz diélectrique. Le capteur de densité est monte par l'extérieur sur I'enveloppe et serré au moyen d'un boulon 5D. Un détecteur de pression et un détecteur de température sont loges dans le pied de fixation 5A et débouchent hors du tube fileté 5C par un tube de protection 5E et communiquent avec le gaz diélectrique 7 contenu dans le conduit 9 de l'enveloppe 3 Les deux détecteurs de pression et de température sont relies à la tête de mesure 5A du capteur de densité vers laquelle ils délivrent un signal représentatif respectivement de la pression détectée P et de la température détectée T. Un circuit électronique intégré dans la tête de mesure 5A
permet de déterminer une valeur de densité, pour chaque couple de valeurs de pression et de température détectés simultanément, à
l'aide d'une équation d'état du gaz diélectrique. Chaque valeur de la densité est transmise à une unité de surveillance, qui la compare à
une valeur de seuil bas et à une valeur de seuil haut, et qui déclenche une alarme dans le cas où l'une des seuils est franchi par une valeur de densité.
Selon l'invention, un radiateur est disposé autour du pied de fixation du capteur de densité. Sur les figures 2 et 3, on a représenté
un radiateur 11 qui est composé de deux parties 11A et 11B ayant chacune quatre ailettes identiques 11C pour augmenter la surface d'échange thermique entre le radiateur et l'air environnant. Les deux parties 11A et 11B présentent en creux un demi-cylindre 11D pour être montees plaquées autour du pied de fixation 5B cylindrique à
l'aide de deux vis d'assemblage 13 et 15 traversant les deux parties 11A et 11B par des trous 13A, 13B, et 15A, 15B. Sur la figure 2, on montre que le radiateur 11 est monté autour du pied de fixation 5B
tout en étant au contact de la vis de serrage 5D pour influencer des CA 022~0338 1998-10-22 échanges thermiques se produisant entre le détecteur de température et le gaz diélectrique contenu dans le conduit 9. La figure 1 montre un tracé 23 de valeurs de densité calculées par le capteur de densité
selon l'invention, à partir de chaque couple de valeurs de pression et de temperature détectées simultanément. On montre également le tracé 21 décrit précedemment. D'une part, on constate en 23A que le radiateur ne modifie pas le comportement du capteur de densité pour des relevés de valeurs effectué en l'absence d'un rayonnement solaire notable. Ce premier résultat permet donc au capteur de densité selon I'invention d'être utilisé pour surveiller un taux de fuite de l'enveloppe en ne retenant que !es relevés effectués de jour et en l'absence de rayonnement solaire notable. D'autre part, on constate que le deuxième comportement du capteur de densité est modifié pour des relevés effectués en présence d'un ensoleillement notable, dans le sens où les valeurs de densité fournies par le capteur selon l'invention sont toujours égales ou supérieures a la valeur réelle de la densité, avec une variation 23B croissante le matin et une variation décroissante l'après-midi.
Une explication parmi d'autres est proposée pour expliquer le comportement du capteur de densité selon l'invention. On sait que la mesure de la température simultanément à celle de la pression permet, par une compensation en température, de s'affranchir de diminutions de pression qui ne résultent non pas d'une perte de masse ou d'une fuite du gaz diélectrique hors de l'enveloppe, mais seulement d'une contraction du gaz dielectrique sous l'effet d'une diminution de sa température. Toutefois, la compensation en température de la pression n'est valable qu'à la condition que la diminution de température soit assez grande devant l'ecart de température qui existe inévitablement entre la température mesurée par le détecteur de température et la température reelle du gaz diélectrique dans lequel ce détecteur est plongé et au voisinage CA 022~0338 1998-10-22 duquel le détecteur de pression mesure la pression. Si la température mesurée par le détecteur de température est supérieure à la température réelle du gaz diélectrique, le capteur de densité calcule, en compensant la pression mesurée par la température mesurée, une valeur de densité plus petite que la densité réelle. De meme, si la température mesurée est plus faible que la température réelle du gaz diélectrique, le capteur de densité calcule par la compensation en température, une valeur de densité plus forte que la densité réelle.
Dans l'expérience rapportée par la figure 1, le détecteur de température échange de la chaleur avec le gaz diélectrique et avec le pied de fixation du capteur, qui lui meme est monté dans l'épaisseur de l'enveloppe. De cette façon, un équilibre thermique entre le détecteur et le gaz diélectrique est influencé par le pied de fixation et par l'enveloppe. En l'absence d'ensoleillement, I'enveloppe et le pied de fixation n'ont qu'une influence négligeable sur l'équilibre thermique du gaz diélectrique et du détecteur de température, si bien que la température mesurée est sufffisamment proche de la température réelle du gaz diélectrique pour que le capteur de densité calcule une valeur de densité sensiblement fidèle à la valeur réelle. On s'attend logiquement a ce que, dans ces conditions, le radiateur disposé autour du pied de fixation et à proximité de l'enveloppe n'apporte pas d'effet thermique à lui seul. C'est bien ce qui est observé sur les tracés 21A
et 23A pour des relevés effectués de jour et en l'absence d'ensoleillement notable. En présence d'un ensoleillement notable, le pied de fixation et l'enveloppe perturbent l'équilibre thermique entre le détecteur de température et le gaz diélectrique d'une manière différente selon la période de journée considérée. Les matins, le capteur de densité est plongé dans l'ombre, si bien que le pied de fixation, et par suite le détecteur de température avec lequel il est en contact, s'échauffent moins vite que le gaz diélectrique qui absorbe la chaleur que lui cède l'enveloppe elle meme exposée au rayonnement CA 022~0338 1998-10-22 solaire. La vitesse d'échauffement du détecteur et du pied de fixation est encore diminuée par la présence du radiateur, qui évacue vers l'air ambiant la chaleur cédée par le gaz diélectrique. D'où il résulte que la température mesurée par le détecteur de température est inférieure à
la température réelle du gaz diélectrique, conduisant le capteur de densité à fournir une valeur de densité plus grande que la valeur réelle, I'écart étant accentue par la présence du radiateur, comme en témoigne les variations positives des tracés 21 B et 23B de la figure 1.
Les après-midi, le capteur qui etait plongé dans l'ombre est progressivement exposé au rayonnement solaire Sa température, ainsi que celle du détecteur de température avec lequel il est en contact, s'élève bientôt plus rapidement que celle du gaz diélectrique du fait de la différence des inerties thermiques entre le gaz diélectrique, le pied de fixation, et le détecteur D'où il résulte que le capteur de densité fournit une valeur de densité qui est inférieure à la valeur de la densité réelle, comme observé sur le tracé 21B En présence du radiateur, I'élévation de température du pied de fixation et du détecteur est ralentie par l'évacuation dans l'air ambiant, de la chaleur fournie par l'enveloppe elle même exposée au rayonnement solaire Le réchauffement du pied de fixation et du détecteur est ralenti par le radiateur pour que la température de ce dernier ne devienne pas supérieure à la température réelle du gaz diélectrique au cours de l'apres-midi. La densité fournie dans ces conditions reste égale au supérieure à la densité réelle, comme observé sur le tracé 23B.
Selon un mode avantageux de réalisation de l'invention, le capteur de densité est pourvu d'un capot de protection au rayonnement solaire. Sur les figures 2 et 3, un capot 17 constitué par exemple d'un matériau métallique réfléchissant est fixé sur la partie 11A du radiateur 11, par l'intermédiaire des vis 13 et 15, pour réfléchir le rayonnement solaire qui frappe le capteur et une partie du rayonnement solaire qui frappe l'enveloppe à proximité du conduit 9 ~ . .

CA 022~0338 1998-10-22 dans lequel il est monté. Les vis 13 et 15 sont de préférence constituées d'un matériau peu conducteur de la chaleur, par exemple le Nylon, pour isoler au plan thermique le capot du radiateur. Dans ce mode de réalisation, il est observé que le capot renforce l'effet du radiateur, dans la mesure où les valeurs de densité calculées à partir de relevés effectués en présence d'un ensoleillement notable sont supérieures à celles que le capteur de densité fournit en l'absence du capot. De ce fait, il est prévu d'optimiser le nombre d'ailettes du radiateur pour obtenir un comportement du capteur de densité en présence du capot, sensiblement équivalent à un comportement en l'absence du capot.
Il faut enfin que l'orientation de l'enveloppe selon une direction d'Est en Ouest du site d'installation représente une exposition au rayonnement solaire qui est plus défavorable que toute autre orientation, si bien que les résultats de la figure 1 constituent une exemple d'application particulièrement intéressant mais non limitatif du capteur de densité selon l'invention.

Claims (3)

1. Un capteur de densité (5) pour surveiller un taux de fuite d'une enveloppe (3) d'appareillage électrique remplie d'un gaz diélectrique (7) sous pression, comprenant un pied de fixation (5B) monté par l'extérieur dans l'épaisseur de l'enveloppe et communiquant avec le gaz diélectrique, caractérisé en ce qu'un radiateur (11) est disposé autour du pied de fixation (5A) du capteur de densité.
2. Le capteur de densité selon la revendication 1, dans lequel un capot (17) est disposé au dessus du radiateur.
3. Le capteur de densité selon la revendication 2, dans lequel le capot est fixé au radiateur par des vis (13, 15) constituées d'un matériau peu conducteur de la chaleur.
CA002250338A 1997-10-23 1998-10-22 Capteur de densite pour surveiller un taux de fuite d'une enveloppe d'appareillage electrique avec une fiabilite amelioree Abandoned CA2250338A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9713300A FR2770295B1 (fr) 1997-10-23 1997-10-23 Capteur de densite pour surveiller un taux de fuite d'une enveloppe d'appareillage electrique avec une fiabilite amelioree
FR9713300 1997-10-23

Publications (1)

Publication Number Publication Date
CA2250338A1 true CA2250338A1 (fr) 1999-04-23

Family

ID=9512565

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002250338A Abandoned CA2250338A1 (fr) 1997-10-23 1998-10-22 Capteur de densite pour surveiller un taux de fuite d'une enveloppe d'appareillage electrique avec une fiabilite amelioree

Country Status (8)

Country Link
US (1) US6125692A (fr)
EP (1) EP0911845B1 (fr)
CN (1) CN1174230C (fr)
AT (1) ATE274233T1 (fr)
CA (1) CA2250338A1 (fr)
DE (1) DE69825699T2 (fr)
FR (1) FR2770295B1 (fr)
ID (1) ID21141A (fr)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2787571B1 (fr) * 1998-12-18 2001-01-12 Alstom Methode de mesure de la densite d'un gaz dielectrique dans une ligne blindee enterree
DE10119637A1 (de) * 2001-04-20 2002-11-21 Rittal Gmbh & Co Kg Schaltschrank-Überwachungssystem
US7669428B2 (en) * 2005-04-14 2010-03-02 Georgia Tech Research Corporation Vortex tube refrigeration systems and methods
FR2906653B1 (fr) 2006-09-28 2008-12-19 Areva T & D Sa Dispositif de controle du fonctionnement d'un densimetre pour appareil electrique moyenne et haute tension et procede de controle du fonctionnement d'un densimetre
WO2011134566A2 (fr) * 2010-04-30 2011-11-03 Maschinenfabrik Reinhausen Gmbh Procédé de surveillance de gaz isolants
CN101876619B (zh) * 2010-06-23 2012-07-04 中国科学院遥感应用研究所 粮食密度测量方法及装置
DE102010055249B4 (de) * 2010-12-10 2014-04-03 Trafag Ag Dichtewächter
RU2013144196A (ru) 2011-03-02 2015-04-10 Франклин Фьюэлинг Системз, Инк. Система отслеживания плотности газа
US9212966B2 (en) * 2011-08-05 2015-12-15 Solon Manufacturing Company Network manageable advanced gas sensor apparatus and method
IN2014DN07676A (fr) 2012-02-20 2015-05-15 Franklin Fueling Systems Inc
DE102013020388A1 (de) * 2012-12-13 2014-06-18 Tesat-Spacecom Gmbh & Co. Kg Verfahren zur Dichteprüfung eines Gehäuses
DE102013115007B4 (de) 2013-12-31 2016-07-14 Trafag Ag Dichtewächter mit Getriebeelement und Verfahren zur Überwachung einer Gasdichte
DE102013115009B4 (de) 2013-12-31 2020-02-06 Trafag Ag Dichtewächter mit getrennten Gehäuseteilen und Montage-Verfahren
CN104215409B (zh) * 2014-09-10 2017-03-08 国家电网公司 一种监测变压器套管密封状况的方法
DE102016123588A1 (de) 2016-07-20 2018-01-25 Trafag Ag Ventilvorrichtung für Schaltanlagen oder dergleichen sowie Verwendungen derselben
CA3140012A1 (fr) * 2020-11-20 2022-05-20 Technologies Mindcore Inc. Systeme de coupe-circuit a gaz et methode connexe
CN114587137B (zh) * 2020-12-07 2023-07-04 佛山市顺德区美的电热电器制造有限公司 除味设备、烹饪设备、烹饪设备的控制方法和存储介质

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3077527A (en) * 1961-06-21 1963-02-12 S & C Electric Co Circuit interrupter
US3934454A (en) * 1974-12-04 1976-01-27 Allis-Chalmers Corporation Gas conditioner and analyzer
DE2607158A1 (de) * 1976-02-21 1977-08-25 Licentia Gmbh Dichteueberwachungseinrichtung
DE2714384C3 (de) * 1977-03-29 1981-11-26 SIEMENS AG AAAAA, 1000 Berlin und 8000 München Überwachungseinrichtung für den Druck eines Gases
US4206630A (en) * 1979-03-12 1980-06-10 Econics Corporation Sample chamber for gas analyzer
US4872345A (en) * 1988-03-30 1989-10-10 Shell Oil Company Measuring wall erosion
JPH0667113B2 (ja) * 1990-01-26 1994-08-24 日新電機株式会社 ガス絶縁式電気設備のガス漏れ監視装置
DE4218926A1 (de) * 1992-06-10 1993-12-16 Asea Brown Boveri Vorrichtung zur Messung einer Gasdichte
US5388451A (en) * 1993-07-30 1995-02-14 Consolidated Electronics Inc. High voltage transmission switching apparatus with gas monitoring device
JPH07129870A (ja) * 1993-10-28 1995-05-19 Toshiba Corp ガス絶縁開閉装置のガス漏れ検出装置
US5502435A (en) * 1994-04-06 1996-03-26 Ralston; Douglas E. Method and system for monitoring circuit breaker gas pressure
AU692652B2 (en) * 1995-02-08 1998-06-11 Alstom T & D Sa A method and a system for determining the density of an insulating gas in an electrical apparatus
FR2762940B1 (fr) * 1997-04-30 1999-06-04 Gec Alsthom T & D Sa Methode pour surveiller un taux de fuite d'une enveloppe d'appareillage electrique a haute tension

Also Published As

Publication number Publication date
EP0911845A1 (fr) 1999-04-28
EP0911845B1 (fr) 2004-08-18
DE69825699D1 (de) 2004-09-23
FR2770295A1 (fr) 1999-04-30
CN1224155A (zh) 1999-07-28
DE69825699T2 (de) 2005-08-18
CN1174230C (zh) 2004-11-03
FR2770295B1 (fr) 1999-11-26
US6125692A (en) 2000-10-03
ATE274233T1 (de) 2004-09-15
ID21141A (id) 1999-04-29

Similar Documents

Publication Publication Date Title
EP0911845B1 (fr) Capteur de densité pour surveiller un taux de fuite d'une enveloppe d'appareillage électrique avec une fiabilité améliorée
FR2845471A1 (fr) Thermometre medical electronique a lecture rapide
EP0726630B1 (fr) Procédé et dispositif de détermination de la masse volumique d'un gaz d'isolement d'un appareil électrique
FR2488406A1 (fr) Procede et instrument de mesure de corrosion a compensation de temperature secondaire
FR2762940A1 (fr) Methode pour surveiller un taux de fuite d'une enveloppe d'appareillage electrique a haute tension
PT101015A (pt) Fonte de infravermelhos regulada
EP0718216A1 (fr) Procédés pour prévenir la corrosion de la cuve d'une citerne et citerne pour sa mise en oeuvre
FR2505030A1 (fr) Dispositif pour le controle des parametres de gaz de combustion provenant d'installations de chauffage ou analogue
EP0100694A1 (fr) Câble isolé pour le transport d'énergie électrique notamment à haute tension, et dispositif de détection de défauts dans un tel câble
EP0772855B1 (fr) Dispositif de detection d'incendie avec correction de parametres perturbateurs
FR2661753A1 (fr) Procede pour l'amelioration de la precision de detecteurs d'impedance dans des radiosondes.
EP1014522B1 (fr) Méthode de mesure de la densité d'un gaz diélectrique dans une ligne blindée enterrée
FR2794243A1 (fr) Dispositif de mesure de la concentration en hydrogene dans un melange gazeux
EP0653765B1 (fr) Transformateur électrique polyphasé immergé auto-protégé
EP0173606B1 (fr) Dispositifs de surveillance par sceau thermique d'un conteneur calogène renfermant notamment de la matière calogène
EP0077722A1 (fr) Sonde thermique et application de celle-ci à une installation de chauffage, notamment par infra-rouge
FR2753835A1 (fr) Dispositif de declenchement thermique pour appareil de protection
US4012955A (en) Apparatus for measuring the incident power of light in fiber optics
EP1510800B1 (fr) Procédé de compensation des effets des flux par rayonnement sur un capteur de temperature
FR2987506A1 (fr) Procede et dispositif de surveillance d'un compartiment d'isolation gazeuse
MXPA98008783A (en) Density sensor to monitor the leak rate in the casing of an electrical apparatus with an improved reliability
FR2660499A1 (fr) Pilote thermostate a resonateur piezoelectrique, peu sensible aux variations climatiques.
FR2511150A1 (fr) Dispositif pour mesurer une temperature sans contact
FR3064061A1 (fr) Capteur de rayonnement muni d'une protection anti-eblouissement
JPH0678842U (ja) 電気機器の過熱監視装置

Legal Events

Date Code Title Description
EEER Examination request
FZDE Discontinued