CA2088354C - Pancreas-elastasis-1-specific antibody, a process for obtaining it and a test kit containing such antibodies - Google Patents
Pancreas-elastasis-1-specific antibody, a process for obtaining it and a test kit containing such antibodiesInfo
- Publication number
- CA2088354C CA2088354C CA002088354A CA2088354A CA2088354C CA 2088354 C CA2088354 C CA 2088354C CA 002088354 A CA002088354 A CA 002088354A CA 2088354 A CA2088354 A CA 2088354A CA 2088354 C CA2088354 C CA 2088354C
- Authority
- CA
- Canada
- Prior art keywords
- antibodies
- elastase
- antibody
- stools
- test kit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims abstract description 26
- 230000008569 process Effects 0.000 title claims abstract description 21
- 238000012360 testing method Methods 0.000 title claims abstract description 12
- 239000000427 antigen Substances 0.000 claims abstract description 13
- 102000036639 antigens Human genes 0.000 claims abstract description 13
- 108091007433 antigens Proteins 0.000 claims abstract description 13
- 108090000765 processed proteins & peptides Proteins 0.000 claims abstract description 10
- 210000001124 body fluid Anatomy 0.000 claims abstract description 8
- 206010033645 Pancreatitis Diseases 0.000 claims abstract description 7
- 206010033647 Pancreatitis acute Diseases 0.000 claims abstract description 6
- 201000003229 acute pancreatitis Diseases 0.000 claims abstract description 6
- 238000003745 diagnosis Methods 0.000 claims abstract description 5
- 230000003053 immunization Effects 0.000 claims abstract description 5
- 208000000668 Chronic Pancreatitis Diseases 0.000 claims abstract description 4
- 206010033649 Pancreatitis chronic Diseases 0.000 claims abstract description 4
- 125000003275 alpha amino acid group Chemical group 0.000 claims abstract description 4
- 238000012544 monitoring process Methods 0.000 claims abstract description 3
- 102000004196 processed proteins & peptides Human genes 0.000 claims abstract description 3
- 101000737684 Homo sapiens Chymotrypsin-like elastase family member 1 Proteins 0.000 claims description 8
- 210000004408 hybridoma Anatomy 0.000 claims description 8
- 102100022712 Alpha-1-antitrypsin Human genes 0.000 claims description 5
- 101000823116 Homo sapiens Alpha-1-antitrypsin Proteins 0.000 claims description 5
- 101001010513 Homo sapiens Leukocyte elastase inhibitor Proteins 0.000 claims description 5
- 230000001900 immune effect Effects 0.000 claims description 3
- 125000006850 spacer group Chemical group 0.000 claims description 3
- 108010088751 Albumins Proteins 0.000 claims description 2
- 102000009027 Albumins Human genes 0.000 claims description 2
- 201000003883 Cystic fibrosis Diseases 0.000 claims description 2
- 108060003552 hemocyanin Proteins 0.000 claims description 2
- 210000000496 pancreas Anatomy 0.000 abstract description 9
- 102100023336 Chymotrypsin-like elastase family member 3B Human genes 0.000 abstract description 7
- 101710138848 Chymotrypsin-like elastase family member 1 Proteins 0.000 abstract description 6
- 101710099240 Elastase-1 Proteins 0.000 abstract description 6
- 230000001684 chronic effect Effects 0.000 abstract description 2
- 102000005962 receptors Human genes 0.000 description 25
- 210000002966 serum Anatomy 0.000 description 14
- 102000004190 Enzymes Human genes 0.000 description 13
- 108090000790 Enzymes Proteins 0.000 description 13
- 229940088598 enzyme Drugs 0.000 description 13
- 239000007790 solid phase Substances 0.000 description 11
- 210000004027 cell Anatomy 0.000 description 9
- 210000002381 plasma Anatomy 0.000 description 8
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 6
- 239000004382 Amylase Substances 0.000 description 6
- 102000013142 Amylases Human genes 0.000 description 6
- 108010065511 Amylases Proteins 0.000 description 6
- 241000699670 Mus sp. Species 0.000 description 6
- 235000019418 amylase Nutrition 0.000 description 6
- 239000012528 membrane Substances 0.000 description 6
- 238000005406 washing Methods 0.000 description 6
- 102000003992 Peroxidases Human genes 0.000 description 5
- 239000012634 fragment Substances 0.000 description 5
- 108040007629 peroxidase activity proteins Proteins 0.000 description 5
- 239000012071 phase Substances 0.000 description 5
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 108090000317 Chymotrypsin Proteins 0.000 description 3
- 238000002965 ELISA Methods 0.000 description 3
- 229920001213 Polysorbate 20 Polymers 0.000 description 3
- 229960002685 biotin Drugs 0.000 description 3
- 235000020958 biotin Nutrition 0.000 description 3
- 239000011616 biotin Substances 0.000 description 3
- 210000004369 blood Anatomy 0.000 description 3
- 239000008280 blood Substances 0.000 description 3
- 230000001079 digestive effect Effects 0.000 description 3
- 201000010099 disease Diseases 0.000 description 3
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 3
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 210000000952 spleen Anatomy 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 108090001008 Avidin Proteins 0.000 description 2
- 108060003951 Immunoglobulin Proteins 0.000 description 2
- 102000004882 Lipase Human genes 0.000 description 2
- 108090001060 Lipase Proteins 0.000 description 2
- 239000004367 Lipase Substances 0.000 description 2
- 102000016979 Other receptors Human genes 0.000 description 2
- 208000016222 Pancreatic disease Diseases 0.000 description 2
- 206010035226 Plasma cell myeloma Diseases 0.000 description 2
- 241000700159 Rattus Species 0.000 description 2
- IQFYYKKMVGJFEH-XLPZGREQSA-N Thymidine Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 IQFYYKKMVGJFEH-XLPZGREQSA-N 0.000 description 2
- 230000001154 acute effect Effects 0.000 description 2
- 238000010171 animal model Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 229960002376 chymotrypsin Drugs 0.000 description 2
- 238000010367 cloning Methods 0.000 description 2
- DDRJAANPRJIHGJ-UHFFFAOYSA-N creatinine Chemical compound CN1CC(=O)NC1=N DDRJAANPRJIHGJ-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000012510 hollow fiber Substances 0.000 description 2
- FDGQSTZJBFJUBT-UHFFFAOYSA-N hypoxanthine Chemical compound O=C1NC=NC2=C1NC=N2 FDGQSTZJBFJUBT-UHFFFAOYSA-N 0.000 description 2
- 238000003018 immunoassay Methods 0.000 description 2
- 102000018358 immunoglobulin Human genes 0.000 description 2
- 238000011534 incubation Methods 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000002372 labelling Methods 0.000 description 2
- 235000019421 lipase Nutrition 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 201000000050 myeloid neoplasm Diseases 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000002285 radioactive effect Effects 0.000 description 2
- 239000012857 radioactive material Substances 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000003118 sandwich ELISA Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 239000012085 test solution Substances 0.000 description 2
- TVZGACDUOSZQKY-LBPRGKRZSA-N 4-aminofolic acid Chemical compound C1=NC2=NC(N)=NC(N)=C2N=C1CNC1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 TVZGACDUOSZQKY-LBPRGKRZSA-N 0.000 description 1
- 208000004998 Abdominal Pain Diseases 0.000 description 1
- 206010033646 Acute and chronic pancreatitis Diseases 0.000 description 1
- 102000006306 Antigen Receptors Human genes 0.000 description 1
- 108010083359 Antigen Receptors Proteins 0.000 description 1
- DWRXFEITVBNRMK-UHFFFAOYSA-N Beta-D-1-Arabinofuranosylthymine Natural products O=C1NC(=O)C(C)=CN1C1C(O)C(O)C(CO)O1 DWRXFEITVBNRMK-UHFFFAOYSA-N 0.000 description 1
- 101100298998 Caenorhabditis elegans pbs-3 gene Proteins 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- 102100035371 Chymotrypsin-like elastase family member 1 Human genes 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 241000283086 Equidae Species 0.000 description 1
- UGQMRVRMYYASKQ-UHFFFAOYSA-N Hypoxanthine nucleoside Natural products OC1C(O)C(CO)OC1N1C(NC=NC2=O)=C2N=C1 UGQMRVRMYYASKQ-UHFFFAOYSA-N 0.000 description 1
- 206010061218 Inflammation Diseases 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 208000005647 Mumps Diseases 0.000 description 1
- 241000699666 Mus <mouse, genus> Species 0.000 description 1
- 206010028813 Nausea Diseases 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- 208000002193 Pain Diseases 0.000 description 1
- 108010067372 Pancreatic elastase Proteins 0.000 description 1
- 102000016387 Pancreatic elastase Human genes 0.000 description 1
- 102000045595 Phosphoprotein Phosphatases Human genes 0.000 description 1
- 108700019535 Phosphoprotein Phosphatases Proteins 0.000 description 1
- 102000004160 Phosphoric Monoester Hydrolases Human genes 0.000 description 1
- 108090000608 Phosphoric Monoester Hydrolases Proteins 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 101100177665 Rattus norvegicus Hipk3 gene Proteins 0.000 description 1
- 208000001647 Renal Insufficiency Diseases 0.000 description 1
- 108010090804 Streptavidin Proteins 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- 229960003896 aminopterin Drugs 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 210000004102 animal cell Anatomy 0.000 description 1
- 238000003149 assay kit Methods 0.000 description 1
- OHDRQQURAXLVGJ-HLVWOLMTSA-N azane;(2e)-3-ethyl-2-[(e)-(3-ethyl-6-sulfo-1,3-benzothiazol-2-ylidene)hydrazinylidene]-1,3-benzothiazole-6-sulfonic acid Chemical compound [NH4+].[NH4+].S/1C2=CC(S([O-])(=O)=O)=CC=C2N(CC)C\1=N/N=C1/SC2=CC(S([O-])(=O)=O)=CC=C2N1CC OHDRQQURAXLVGJ-HLVWOLMTSA-N 0.000 description 1
- IQFYYKKMVGJFEH-UHFFFAOYSA-N beta-L-thymidine Natural products O=C1NC(=O)C(C)=CN1C1OC(CO)C(O)C1 IQFYYKKMVGJFEH-UHFFFAOYSA-N 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000012876 carrier material Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 102000049842 cholesterol binding protein Human genes 0.000 description 1
- 108010011793 cholesterol binding protein Proteins 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 229940109239 creatinine Drugs 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000002405 diagnostic procedure Methods 0.000 description 1
- VIYFPAMJCJLZKD-UHFFFAOYSA-L disodium;(4-nitrophenyl) phosphate Chemical compound [Na+].[Na+].[O-][N+](=O)C1=CC=C(OP([O-])([O-])=O)C=C1 VIYFPAMJCJLZKD-UHFFFAOYSA-L 0.000 description 1
- 208000035475 disorder Diseases 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 210000001198 duodenum Anatomy 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 235000011389 fruit/vegetable juice Nutrition 0.000 description 1
- 210000001035 gastrointestinal tract Anatomy 0.000 description 1
- 210000004907 gland Anatomy 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 230000028993 immune response Effects 0.000 description 1
- 238000002649 immunization Methods 0.000 description 1
- 230000002163 immunogen Effects 0.000 description 1
- 208000027866 inflammatory disease Diseases 0.000 description 1
- 230000004054 inflammatory process Effects 0.000 description 1
- 230000000968 intestinal effect Effects 0.000 description 1
- 206010022694 intestinal perforation Diseases 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 201000006370 kidney failure Diseases 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- MYWUZJCMWCOHBA-VIFPVBQESA-N methamphetamine Chemical compound CN[C@@H](C)CC1=CC=CC=C1 MYWUZJCMWCOHBA-VIFPVBQESA-N 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 208000010805 mumps infectious disease Diseases 0.000 description 1
- 230000008693 nausea Effects 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 108010043524 protease E Proteins 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 230000005180 public health Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000010532 solid phase synthesis reaction Methods 0.000 description 1
- 210000004989 spleen cell Anatomy 0.000 description 1
- 229940104230 thymidine Drugs 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 229960005486 vaccine Drugs 0.000 description 1
- 238000001262 western blot Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/48—Hydrolases (3) acting on peptide bonds (3.4)
- C12N9/50—Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
- C12N9/64—Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue
- C12N9/6421—Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue from mammals
- C12N9/6424—Serine endopeptidases (3.4.21)
- C12N9/6448—Elastases, e.g. pancreatic elastase (3.4.21.36); leukocyte elastase (3.4.31.37)
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/40—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against enzymes
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Genetics & Genomics (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- General Health & Medical Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Molecular Biology (AREA)
- Biomedical Technology (AREA)
- Wood Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- Biochemistry (AREA)
- Immunology (AREA)
- General Engineering & Computer Science (AREA)
- Microbiology (AREA)
- Biotechnology (AREA)
- Biophysics (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Peptides Or Proteins (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- External Artificial Organs (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
- Investigating Or Analysing Biological Materials (AREA)
Abstract
A process is described for obtaining highly specific pancreas elastase 1 antibodies which react both with bodily fluids and with stools. Such an antibody is obtainable by immunizing with an antigen having the amino acid sequence Thr-Met-vat-Ala-Gly-Gly-Asp- Ile-Arg or immunologically active partial peptides thereof. A test kit containing such antibodies is suitable for the diagnosis and course monitoring of chronic and acute pancreatitis as well as mucovisoidosis in bodily fluids and/or in stools.
Description
( CA 02088354 1999-06-16 PANCREAS ELASTASE 1-SPECIFIC ANTIBODY, A PROCESS FOR
OBTAINING IT, AND A TEST RIT CONTAINING SUCH ANTIBODY
This invention relates to a highly sensitive and selective antielastase 1 antibody, a process for its manufacture, and a highly sensitive diagnostic test kit containing said antibody.
Instances of inflammatory diseases of the pancreas are constantly increasing in industrial countries (W. Rosch, Deutsches Arzteblatt 84: C-397-398, 1987). These diseases usually have an intermittent course and can finally lead to complete loss of the gland. Acute episodes are recognizable by severe abdominal pain and nausea, but intermediate phases are usually experienced by the patient as free from pain.
They evolve only with uncharacteristic digestive complaints, so that they are hard to recognize. Consideration is therefore to be given to a chronic pancreatic disease in all digestive disorders.
Determination of the serum amylase level has hitherto usually been made in laboratory diagnoses of pancreatitis.
However, an elevation in serum amylase also occurs in other intra-abdominal inflammations, e.g., in intestinal perforation, mumps or renal failure. Moreover, an elevation in the serum amylase level may also be observed following the administration of morphines. Another laboratory diagnostic possibility consists of determining the ratio of amylase to creatinine clearance, which ratio increases in acute pancreatitis. Unfortunately, amylase values elevated in acute pancreatitis normalize very rapidly, so that normal values are already found 48 hours after the onset of the disease in one-third of the patients (J. A. Eckfeldt et al., Arch. Pathol. Lab. Med. 109:316-319, 1985).
OBTAINING IT, AND A TEST RIT CONTAINING SUCH ANTIBODY
This invention relates to a highly sensitive and selective antielastase 1 antibody, a process for its manufacture, and a highly sensitive diagnostic test kit containing said antibody.
Instances of inflammatory diseases of the pancreas are constantly increasing in industrial countries (W. Rosch, Deutsches Arzteblatt 84: C-397-398, 1987). These diseases usually have an intermittent course and can finally lead to complete loss of the gland. Acute episodes are recognizable by severe abdominal pain and nausea, but intermediate phases are usually experienced by the patient as free from pain.
They evolve only with uncharacteristic digestive complaints, so that they are hard to recognize. Consideration is therefore to be given to a chronic pancreatic disease in all digestive disorders.
Determination of the serum amylase level has hitherto usually been made in laboratory diagnoses of pancreatitis.
However, an elevation in serum amylase also occurs in other intra-abdominal inflammations, e.g., in intestinal perforation, mumps or renal failure. Moreover, an elevation in the serum amylase level may also be observed following the administration of morphines. Another laboratory diagnostic possibility consists of determining the ratio of amylase to creatinine clearance, which ratio increases in acute pancreatitis. Unfortunately, amylase values elevated in acute pancreatitis normalize very rapidly, so that normal values are already found 48 hours after the onset of the disease in one-third of the patients (J. A. Eckfeldt et al., Arch. Pathol. Lab. Med. 109:316-319, 1985).
Lipase determination represents another diagnostic possibility. However, determination of either lipase or amylase is not suitable for detecting chronic pancreatitis.
This disease has hitherto only been insufficiently demonstrated by determining the activity of the pancreatic enzyme chymotrypsin in stools. The disadvantage of this method of determination is based on the fact that only a small part of the chymotrypsin excreted by the pancreas is detectable in the stool, which part, moreover, is also subject to very considerable fluctuations (Goldberg et al., Gut 10:477-483, 1969). This makes the determination of normal values extremely difficult.
It is known from A. Sziegoleit, Biochem. J. 219:735-742, 1984, that pancreatic elastase 1 (E1), also called protease E, is exclusively formed in the pancreas and is separated out in the duodenum with digestive juice. Attempts have already been made to determine the level of elastase 1 in the stool to avoid the above-mentioned disadvantages, since the level of this enzyme in the stool represents the exocrine function of the pancreas substantially better than does the chymotrypsin activity (A. Sziegoleit et al., Clin.
Biochem. 22:85-89, 1989).
It was also found that acute pancreatitis can be detected by determining E1 in serum (A. Sziegoleit et al., Clin.
Biochem. 22:79-83, 1989).
It has hitherto been assumed that, unlike other enzymes, E1 is not degraded, or only unsubstantially degraded, during intestinal passage. Its level in the stool accordingly indicates the degree of pancreatic exocrine function.
Moreover, the enzyme also enters the blood stream in acute pancreatic disease phases.
This disease has hitherto only been insufficiently demonstrated by determining the activity of the pancreatic enzyme chymotrypsin in stools. The disadvantage of this method of determination is based on the fact that only a small part of the chymotrypsin excreted by the pancreas is detectable in the stool, which part, moreover, is also subject to very considerable fluctuations (Goldberg et al., Gut 10:477-483, 1969). This makes the determination of normal values extremely difficult.
It is known from A. Sziegoleit, Biochem. J. 219:735-742, 1984, that pancreatic elastase 1 (E1), also called protease E, is exclusively formed in the pancreas and is separated out in the duodenum with digestive juice. Attempts have already been made to determine the level of elastase 1 in the stool to avoid the above-mentioned disadvantages, since the level of this enzyme in the stool represents the exocrine function of the pancreas substantially better than does the chymotrypsin activity (A. Sziegoleit et al., Clin.
Biochem. 22:85-89, 1989).
It was also found that acute pancreatitis can be detected by determining E1 in serum (A. Sziegoleit et al., Clin.
Biochem. 22:79-83, 1989).
It has hitherto been assumed that, unlike other enzymes, E1 is not degraded, or only unsubstantially degraded, during intestinal passage. Its level in the stool accordingly indicates the degree of pancreatic exocrine function.
Moreover, the enzyme also enters the blood stream in acute pancreatic disease phases.
A radioimmunologic test is already available for measuring serum elastase 1 (A. Murata et al., Enzyme 30:29-37, 1983;
Elastase-1-RIA-Kit, Abbott Diagnostic).
However, such a radiologic (RIA) determination presents a disadvantage, in that the radioactive reagents have only limited stability and therefore must continuously be resynthesized. Moreover, the radioactive material must be disposed of carefully, and the measurement of radioactive materials requires specially trained personnel and special laboratory equipment. In addition, it is not possible, or is only insufficiently possible, to determine the E1 level in the stool using this test.
The object of the invention is consequently that of developing a test process with which human elastase 1 can be determined for the diagnosis of both acute and chronic pancreatitis, and which is sufficiently sensitive for determining elastase 1 in serum and stools.
According to this invention, this object is achieved by means of an antibody directed against the epitope having the amino acid sequence Thr-Met-Val-Ala-Gly-Gly-Asp-Ile-Arg.
Surprisingly, it was found that antibodies directed against this epitope of human elastase 1 selectively recognize the marker enzyme and thereby discriminate against other antigens. .
Accordingly, this invention also relates to a process for preparing anti-elastase antibodies in a known way, characterized by the fact that the previously defined epitope is used as an antigen. It is also possible, according to the invention, to use parts and fragments of this epitope for immunization or preparation of antibodies, provided the parts and fragments engender an immune response. Such fragments are obtainable either CA 02088354 1999-06-16 r synthetically or by chemical and/or biological degradation of elastase 1. In the process of the invention, it was found suitable to bind the peptide or peptide part to a carrier, by means of a spacer if necessary. Suitable carriers are known to those skilled in the art and are, for example, synthetic and natural membrane parts, polysaccharides, peptides or proteins. Albumins and hemocyanins are especially preferable. The spacers to be used are also known to those skilled in the art. With the epitope or its fragments, it is possible, according to the invention, to obtain both selective monoclonal and polyclonal antibodies. Antibodies preferred according to the invention are able to recognize paraffin-embedded thin sections.
Antisera containing antibodies according to the invention are obtained by immunizing experimental animals with highly purified human elastase 1 or fragments of this enzyme.
Experimental animals such as mice, rats, rabbits, goats or horses are thereby immunized in a known way, and antisera with polyclonal antibodies are thus obtained from which antibodies according to the invention are also obtainable in a known way. Antibodies preferred according to the invention are able to recognize paraffin-embedded thin sections.
In a preferred embodiment, monoclonal antibodies are suitably obtained by means of the epitope according to the invention using the method of G. Kohler and C. Milstein (Nature 256:495-497, 1975).
A further object of the invention is consequently a monoclonal antibody specifically capable of binding with E1.
Such an antibody is obtainable by immunizing mice or rats with highly purified E1 or the epitope to be used according ' CA 02088354 1999-06-16 to the invention, fusing a-lymphocytes from the spleens of immunized animals with myeloma cells, cloning the hybridoma cells formed, cloning and culturing hybridoma cells which secrete antibodies capable of binding E1, and then obtaining 5 the monoclonal antibodies formed by them.
It is especially preferable to use a cell line which does not itself produce any immunoglobulin.
The monoclonal antibodies obtainable according to the invention do not react with other substances, but are specific for E1. The monoclonal antibodies according to the invention are preferably able to recognize paraffin-embedded thin sections.
Antibodies preferred according to the invention are obtainable from hybridoma cell lines filed with the European Collection of Animal Cell Cultures (ECACC), Vaccine Research and Production Laboratory, Public Health and Laboratory Service, Center for Applied Microbiology and Research, Porton Down, GB Salisbury, Wiltshire SP4 OJG, on Dec. 21, 1990, which were given application numbers 90 121 90 6 and 90 121 90 7. Both antibodies obtainable from these cell lines are able to recognize paraffin-embedded thin sections.
Another object of the invention is the use of the El-specific antibodies according to the invention for the qualitative and/or quantitative determination of E1. It is accordingly possible to specifically detect elastase 1 in bodily fluids and stools with the use of the antibody. The invention therefore also relates to a test kit containing antibodies according to the invention, especially immunologic test kits for the diagnosis and course monitoring of chronic pancreatitis, acute pancreatitis and mucoviscidosis in bodily fluids and/or stools. Suitable bodily fluids are blood, plasma and serum.
Elastase-1-RIA-Kit, Abbott Diagnostic).
However, such a radiologic (RIA) determination presents a disadvantage, in that the radioactive reagents have only limited stability and therefore must continuously be resynthesized. Moreover, the radioactive material must be disposed of carefully, and the measurement of radioactive materials requires specially trained personnel and special laboratory equipment. In addition, it is not possible, or is only insufficiently possible, to determine the E1 level in the stool using this test.
The object of the invention is consequently that of developing a test process with which human elastase 1 can be determined for the diagnosis of both acute and chronic pancreatitis, and which is sufficiently sensitive for determining elastase 1 in serum and stools.
According to this invention, this object is achieved by means of an antibody directed against the epitope having the amino acid sequence Thr-Met-Val-Ala-Gly-Gly-Asp-Ile-Arg.
Surprisingly, it was found that antibodies directed against this epitope of human elastase 1 selectively recognize the marker enzyme and thereby discriminate against other antigens. .
Accordingly, this invention also relates to a process for preparing anti-elastase antibodies in a known way, characterized by the fact that the previously defined epitope is used as an antigen. It is also possible, according to the invention, to use parts and fragments of this epitope for immunization or preparation of antibodies, provided the parts and fragments engender an immune response. Such fragments are obtainable either CA 02088354 1999-06-16 r synthetically or by chemical and/or biological degradation of elastase 1. In the process of the invention, it was found suitable to bind the peptide or peptide part to a carrier, by means of a spacer if necessary. Suitable carriers are known to those skilled in the art and are, for example, synthetic and natural membrane parts, polysaccharides, peptides or proteins. Albumins and hemocyanins are especially preferable. The spacers to be used are also known to those skilled in the art. With the epitope or its fragments, it is possible, according to the invention, to obtain both selective monoclonal and polyclonal antibodies. Antibodies preferred according to the invention are able to recognize paraffin-embedded thin sections.
Antisera containing antibodies according to the invention are obtained by immunizing experimental animals with highly purified human elastase 1 or fragments of this enzyme.
Experimental animals such as mice, rats, rabbits, goats or horses are thereby immunized in a known way, and antisera with polyclonal antibodies are thus obtained from which antibodies according to the invention are also obtainable in a known way. Antibodies preferred according to the invention are able to recognize paraffin-embedded thin sections.
In a preferred embodiment, monoclonal antibodies are suitably obtained by means of the epitope according to the invention using the method of G. Kohler and C. Milstein (Nature 256:495-497, 1975).
A further object of the invention is consequently a monoclonal antibody specifically capable of binding with E1.
Such an antibody is obtainable by immunizing mice or rats with highly purified E1 or the epitope to be used according ' CA 02088354 1999-06-16 to the invention, fusing a-lymphocytes from the spleens of immunized animals with myeloma cells, cloning the hybridoma cells formed, cloning and culturing hybridoma cells which secrete antibodies capable of binding E1, and then obtaining 5 the monoclonal antibodies formed by them.
It is especially preferable to use a cell line which does not itself produce any immunoglobulin.
The monoclonal antibodies obtainable according to the invention do not react with other substances, but are specific for E1. The monoclonal antibodies according to the invention are preferably able to recognize paraffin-embedded thin sections.
Antibodies preferred according to the invention are obtainable from hybridoma cell lines filed with the European Collection of Animal Cell Cultures (ECACC), Vaccine Research and Production Laboratory, Public Health and Laboratory Service, Center for Applied Microbiology and Research, Porton Down, GB Salisbury, Wiltshire SP4 OJG, on Dec. 21, 1990, which were given application numbers 90 121 90 6 and 90 121 90 7. Both antibodies obtainable from these cell lines are able to recognize paraffin-embedded thin sections.
Another object of the invention is the use of the El-specific antibodies according to the invention for the qualitative and/or quantitative determination of E1. It is accordingly possible to specifically detect elastase 1 in bodily fluids and stools with the use of the antibody. The invention therefore also relates to a test kit containing antibodies according to the invention, especially immunologic test kits for the diagnosis and course monitoring of chronic pancreatitis, acute pancreatitis and mucoviscidosis in bodily fluids and/or stools. Suitable bodily fluids are blood, plasma and serum.
Indirect, competitive and sandwich ELISAs were introduced in experiments for detecting E1 in blood, plasma, serum or stools. However, it was found that a sandwich ELISA is most suitable for rapid diagnosis on a large specimen scale, since it is independent of other serum factors not capable of being calculated. At least two different monoclonal antibodies directed against different epitopes of the enzyme are necessary for this purpose.
Enzyme value changes in serum or stools, for example, can be demonstrated with such tests, especially the appearance of these displacements in the event of changes in pancreas status.
Determination processes based on the immunoassay principle have been widely developed. Advantages of these determination methods include precision and rapidity (great reliability and sample processing) as well as the possibility of being able to detect very small quantities of substance (in the nanogram range). Various process variants are possible for conducting the determination, with both homogeneous and heterogeneous phases. In the embodiment with the heterogeneous phase, one of the receptors is bound to a carrier. In the sandwich process, for example, a fist antibody is bound to the carrier as a receptor, or a so-called catcher, and the test solution is added, whereby the antigen to be determined in the test solution is fished out and bound. A second tagged antibody is then added, which reacts specifically with the antigen or antigen-receptor complex. With the aid of a calibrated solution (isolated, purified human elastase 1), it is then possible to determine the quantity of antigen by tagging the second antibody.
In another preferred embodiment of the invention, a first antibody is bound as a receptor to a carrier matrix of membrane, tissue, or flowing structure, so that it does not represent the usual floor of the depression of an ELISA
immunoplate, but is instead present as bound to the matrix.
Preferred matrices are microporous flat membranes or hollow fiber membranes provided in a special embodiment with ion exchange groups. Microporous flat membranes such as those marketed by Pall Corp., New Jersey, USA, for example, are preferably used for this purpose. Hollow fiber membranes to be used according to the invention are also available on the market, and sold, for example, by Sepracor Inc. Mass., USA.
It is possible to develop particularly rapid and uncomplicated detection processes by means of such carrier materials.
Many variation possibilities exist for this general principle. For example, it is possible to make a determination with three receptors, whereby one of the three receptors is present in the heterogeneous phase, and the other two receptors are soluble. One of the two soluble receptors is tagged, whereas the other is untagged. The soluble receptor is then directed against the untagged receptor.
The use of the E1-specific antibody according to the invention for the selective quantitative determination of E1 based on the immunoassay principle is done by incubation with at least two different receptors. Both receptors, e.g., monoclonal antibodies, must be specific for E1, which must be bound to different epitopes (binding sites) in all cases.
One of the two receptors is bound to a solid phase. The binding to the solid phase is done in the usual way, as known to those skilled in the art. In addition, at least one other receptor is used, present in soluble form.
g This other receptor bears a label. If several receptors are used, only one of them carries a label. Receptor tagging is done in a usual way, known to those skilled in the art.
S Tagging in a test kit according to the invention is done in a known way, especially by radioactive tagging, binding of biotin (biotin/avidin), by an enzyme releasing a measurable reaction, or by a chemiluminescent or fluorescent compound.
Tagging with an enzyme is especially preferred, particularly with peroxidase or phosphatase. In a special embodiment, tagging with an enzyme also permits the introduction of this antibody into a second enzyme amplification system (C. J.
Stanley; F. Paris; A. Plumb; A. Webb; A Johansson, American Biotechnology Laboratory: May-June 1985; C.H. Self, J.
Immunol. Meth. 1985).
In an especially preferred embodiment of this process, either a receptor capable of binding unspecifically to E1 or preferably a receptor capable of binding specifically to E1 is bound to a solid phase. This receptor bound to the solid phase is then incubated with the solution containing the E1 to be determined and an antibody which is specifically capable of binding with E1, present in soluble form, and bears a label.
If the receptor bound to the solid phase is capable of unspecifically binding with E1, not only E1 but other antigens also form a complex with the solid phase. The second antibody, which is capable of specifically binding to E1, nevertheless forms a complex only with E1, so that only E1 molecules specifically bear a tagged antibody; whereas other antigens are not labeled. After separation of the solid from the liquid phase, it is possible to determine the E1 content in this way by measuring the labeling.
' CA 02088354 1999-06-16 If a first receptor capable of specifically binding to E1 is fixed to the solid phase, only E1 is specifically bound to the solid phase. During incubation with the soluble E1-specific second receptor or antibody, the latter also reacts exclusively with E1. Accordingly, since almost no binding of other antigens to the solid phase takes place, this process is highly specific and therefore makes very precise determinations possible. E1 is thereby selectively bound to the solid phase; other antigens remain in solution. In addition, the soluble labeled antibody capable of binding with E1 forms a complex with E1. After separation of the solid from the liquid phase, the E1 content can again be determined very precisely by the labeling. In a particularly preferred embodiment, a third antibody is added to further increase the selectivity. The third antibody is directed against the second antibody, which bears the label.
Other process variants with three receptors known to those skilled in the art are also possible using antibodies capable of specifically binding with E1. They do not require any further comments here.
Preferably at least one of the antibodies used for carrying out the process of the invention is a monoclonal antibody.
In a preferred embodiment, only monoclonal antibodies are used as receptors.
The antibody specifically capable of binding to E1 can be present either bound to the solid phase or as a soluble tagged or untagged receptor. This receptor is preferably a monoclonal antibody. It is especially preferred for all receptors used to be monoclonal antibodies.
The process according to the invention, as well as the test kit, are especially suitable for automated analysis systems, ' CA 02088354 1999-06-16 especially for systems which are based on a biosensor and which make use of chip technology.
The invention is illustrated in greater detail by the 5 following examples.
Example 1 a) Preparation of monoclonal antibodies by means of highly purified El:
Highly purified human E1, the production of which from the human pancreas has been described (S. Sziegoleit, Purification and characterization of a cholesterol-binding protein from human pancreas. Biochem. J. 207:573-582, 1982), is dissolved in PBS and mixed in equal parts with Freund's adjuvant. In all cases, 100 ~.cg of this mixture are injected IP and SC into Balb/c mice 6 to 8 weeks old. These injections are repeated twice at an interval of 3 to 4 weeks. In this design, mice immunized with highly purified E1 receive an IV injection of 100 ,ug of highly-purified E1 dissolved in PBS 3 days before removal of the spleen.
About 100 million cells from the spleen of an immunized mouse are fused with 50 million myeloma cells (x 63-Sp8-653, a cell line which does not synthesize any immunoglobulin;
obtainable from The Salk Institute, Cell Distribution Center, San Diego CA 92112, USA) in the presence of polyethyleneglycol (MG 3400). Fused cells are disseminated on 8 plates, each containing 24 depressions. Each of these depressions contains 50 million spleen cells, from unimmunized isologous mice, in nutrient medium containing hypoxanthine, aminopterin and thymidine.
The antibody-containing supernatant liquids of these fused cells (hybridomas) are tested 10 to 14 days later for their specificity to highly purified human E1 by means of ELISA, Western blot, frozen sections and paraffin sections.
To obtain monoclonal antibodies directed only against E1, hybridoma cells whose supernatant liquid does not contain any antibodies directed against other antigens are cloned two times.
b) Preparation of monoclonal antibodies by means of an immunogenic peptide The peptide having the amino acid sequence Thr-Met-val-Ala-Gly-Gly-Asp-Ile-Arg is prepared by solid phase synthesis after Merrifield and, as described above, is injected into 6 to 8 week-old Balb/c mice. By the procedure described above, monoclonal antibodies which are highly specific against human elastase 1 from both stools and serum are obtained.
Determination of El in plasma with monoclonal E1-specific antibodies Example 2 E1 in plasma is determined by ELISA. For this purpose, monoclonal E1-specific antibodies obtained according to Example 1, which are dissolved in PBS at pH 7.2, are immobilized on polystyrene as a carrier. After a washing step, dilute E1-containing plasma or serum is added. The plasma or serum is diluted in a buffer of PBS, 5 mmol EDTA
and 0.2°s Tween 20*.
* Trademark After a washing step in PBS and 0.2% Tween 20, the E1 bound to the antibodies is incubated for one hour at room temperature with a polyclonal antibody which also binds E1 and is coupled to phosphatase, which is dissolved in PBS
containing 0.2% Tween 20 at pH 7.2. After another washing step, p-nitrophenylphosphate disodium hexahydrate is added, and the change in optical density is measured in the reaction vessels in which the monoclonal antibodies have reacted with E1.
Determination of E1 in plasma with two different El-specific antibodies Example 3 A monoclonal antibody directed against E1 is fixed to a carrier as described in Example 2. After a washing step, E1-containing serum or plasma is incubated with the monoclonal antibodies under the same conditions as in Example 2. After another washing step, the binding of E1 is detected by a second E1-specific monoclonal antibody according to the invention. This second E1-specific antibody bears covalently bound peroxidase. After a washing step and addition of ABTS as a substrate for peroxidase, the change in optical density is measured.
Example 4 The procedure is as described in Example 3, but biotin is coupled to the second E1-specific antibody instead of an enzyme. Peroxidase-conjugated avidin or peroxidase-conjugated streptavidin is added before the addition of substrate. The selected E1 determination thus made possible permits quite specific determination of only E1. Other antigens contained in the solution do not disturb the E1 determination according to the invention.
Enzyme value changes in serum or stools, for example, can be demonstrated with such tests, especially the appearance of these displacements in the event of changes in pancreas status.
Determination processes based on the immunoassay principle have been widely developed. Advantages of these determination methods include precision and rapidity (great reliability and sample processing) as well as the possibility of being able to detect very small quantities of substance (in the nanogram range). Various process variants are possible for conducting the determination, with both homogeneous and heterogeneous phases. In the embodiment with the heterogeneous phase, one of the receptors is bound to a carrier. In the sandwich process, for example, a fist antibody is bound to the carrier as a receptor, or a so-called catcher, and the test solution is added, whereby the antigen to be determined in the test solution is fished out and bound. A second tagged antibody is then added, which reacts specifically with the antigen or antigen-receptor complex. With the aid of a calibrated solution (isolated, purified human elastase 1), it is then possible to determine the quantity of antigen by tagging the second antibody.
In another preferred embodiment of the invention, a first antibody is bound as a receptor to a carrier matrix of membrane, tissue, or flowing structure, so that it does not represent the usual floor of the depression of an ELISA
immunoplate, but is instead present as bound to the matrix.
Preferred matrices are microporous flat membranes or hollow fiber membranes provided in a special embodiment with ion exchange groups. Microporous flat membranes such as those marketed by Pall Corp., New Jersey, USA, for example, are preferably used for this purpose. Hollow fiber membranes to be used according to the invention are also available on the market, and sold, for example, by Sepracor Inc. Mass., USA.
It is possible to develop particularly rapid and uncomplicated detection processes by means of such carrier materials.
Many variation possibilities exist for this general principle. For example, it is possible to make a determination with three receptors, whereby one of the three receptors is present in the heterogeneous phase, and the other two receptors are soluble. One of the two soluble receptors is tagged, whereas the other is untagged. The soluble receptor is then directed against the untagged receptor.
The use of the E1-specific antibody according to the invention for the selective quantitative determination of E1 based on the immunoassay principle is done by incubation with at least two different receptors. Both receptors, e.g., monoclonal antibodies, must be specific for E1, which must be bound to different epitopes (binding sites) in all cases.
One of the two receptors is bound to a solid phase. The binding to the solid phase is done in the usual way, as known to those skilled in the art. In addition, at least one other receptor is used, present in soluble form.
g This other receptor bears a label. If several receptors are used, only one of them carries a label. Receptor tagging is done in a usual way, known to those skilled in the art.
S Tagging in a test kit according to the invention is done in a known way, especially by radioactive tagging, binding of biotin (biotin/avidin), by an enzyme releasing a measurable reaction, or by a chemiluminescent or fluorescent compound.
Tagging with an enzyme is especially preferred, particularly with peroxidase or phosphatase. In a special embodiment, tagging with an enzyme also permits the introduction of this antibody into a second enzyme amplification system (C. J.
Stanley; F. Paris; A. Plumb; A. Webb; A Johansson, American Biotechnology Laboratory: May-June 1985; C.H. Self, J.
Immunol. Meth. 1985).
In an especially preferred embodiment of this process, either a receptor capable of binding unspecifically to E1 or preferably a receptor capable of binding specifically to E1 is bound to a solid phase. This receptor bound to the solid phase is then incubated with the solution containing the E1 to be determined and an antibody which is specifically capable of binding with E1, present in soluble form, and bears a label.
If the receptor bound to the solid phase is capable of unspecifically binding with E1, not only E1 but other antigens also form a complex with the solid phase. The second antibody, which is capable of specifically binding to E1, nevertheless forms a complex only with E1, so that only E1 molecules specifically bear a tagged antibody; whereas other antigens are not labeled. After separation of the solid from the liquid phase, it is possible to determine the E1 content in this way by measuring the labeling.
' CA 02088354 1999-06-16 If a first receptor capable of specifically binding to E1 is fixed to the solid phase, only E1 is specifically bound to the solid phase. During incubation with the soluble E1-specific second receptor or antibody, the latter also reacts exclusively with E1. Accordingly, since almost no binding of other antigens to the solid phase takes place, this process is highly specific and therefore makes very precise determinations possible. E1 is thereby selectively bound to the solid phase; other antigens remain in solution. In addition, the soluble labeled antibody capable of binding with E1 forms a complex with E1. After separation of the solid from the liquid phase, the E1 content can again be determined very precisely by the labeling. In a particularly preferred embodiment, a third antibody is added to further increase the selectivity. The third antibody is directed against the second antibody, which bears the label.
Other process variants with three receptors known to those skilled in the art are also possible using antibodies capable of specifically binding with E1. They do not require any further comments here.
Preferably at least one of the antibodies used for carrying out the process of the invention is a monoclonal antibody.
In a preferred embodiment, only monoclonal antibodies are used as receptors.
The antibody specifically capable of binding to E1 can be present either bound to the solid phase or as a soluble tagged or untagged receptor. This receptor is preferably a monoclonal antibody. It is especially preferred for all receptors used to be monoclonal antibodies.
The process according to the invention, as well as the test kit, are especially suitable for automated analysis systems, ' CA 02088354 1999-06-16 especially for systems which are based on a biosensor and which make use of chip technology.
The invention is illustrated in greater detail by the 5 following examples.
Example 1 a) Preparation of monoclonal antibodies by means of highly purified El:
Highly purified human E1, the production of which from the human pancreas has been described (S. Sziegoleit, Purification and characterization of a cholesterol-binding protein from human pancreas. Biochem. J. 207:573-582, 1982), is dissolved in PBS and mixed in equal parts with Freund's adjuvant. In all cases, 100 ~.cg of this mixture are injected IP and SC into Balb/c mice 6 to 8 weeks old. These injections are repeated twice at an interval of 3 to 4 weeks. In this design, mice immunized with highly purified E1 receive an IV injection of 100 ,ug of highly-purified E1 dissolved in PBS 3 days before removal of the spleen.
About 100 million cells from the spleen of an immunized mouse are fused with 50 million myeloma cells (x 63-Sp8-653, a cell line which does not synthesize any immunoglobulin;
obtainable from The Salk Institute, Cell Distribution Center, San Diego CA 92112, USA) in the presence of polyethyleneglycol (MG 3400). Fused cells are disseminated on 8 plates, each containing 24 depressions. Each of these depressions contains 50 million spleen cells, from unimmunized isologous mice, in nutrient medium containing hypoxanthine, aminopterin and thymidine.
The antibody-containing supernatant liquids of these fused cells (hybridomas) are tested 10 to 14 days later for their specificity to highly purified human E1 by means of ELISA, Western blot, frozen sections and paraffin sections.
To obtain monoclonal antibodies directed only against E1, hybridoma cells whose supernatant liquid does not contain any antibodies directed against other antigens are cloned two times.
b) Preparation of monoclonal antibodies by means of an immunogenic peptide The peptide having the amino acid sequence Thr-Met-val-Ala-Gly-Gly-Asp-Ile-Arg is prepared by solid phase synthesis after Merrifield and, as described above, is injected into 6 to 8 week-old Balb/c mice. By the procedure described above, monoclonal antibodies which are highly specific against human elastase 1 from both stools and serum are obtained.
Determination of El in plasma with monoclonal E1-specific antibodies Example 2 E1 in plasma is determined by ELISA. For this purpose, monoclonal E1-specific antibodies obtained according to Example 1, which are dissolved in PBS at pH 7.2, are immobilized on polystyrene as a carrier. After a washing step, dilute E1-containing plasma or serum is added. The plasma or serum is diluted in a buffer of PBS, 5 mmol EDTA
and 0.2°s Tween 20*.
* Trademark After a washing step in PBS and 0.2% Tween 20, the E1 bound to the antibodies is incubated for one hour at room temperature with a polyclonal antibody which also binds E1 and is coupled to phosphatase, which is dissolved in PBS
containing 0.2% Tween 20 at pH 7.2. After another washing step, p-nitrophenylphosphate disodium hexahydrate is added, and the change in optical density is measured in the reaction vessels in which the monoclonal antibodies have reacted with E1.
Determination of E1 in plasma with two different El-specific antibodies Example 3 A monoclonal antibody directed against E1 is fixed to a carrier as described in Example 2. After a washing step, E1-containing serum or plasma is incubated with the monoclonal antibodies under the same conditions as in Example 2. After another washing step, the binding of E1 is detected by a second E1-specific monoclonal antibody according to the invention. This second E1-specific antibody bears covalently bound peroxidase. After a washing step and addition of ABTS as a substrate for peroxidase, the change in optical density is measured.
Example 4 The procedure is as described in Example 3, but biotin is coupled to the second E1-specific antibody instead of an enzyme. Peroxidase-conjugated avidin or peroxidase-conjugated streptavidin is added before the addition of substrate. The selected E1 determination thus made possible permits quite specific determination of only E1. Other antigens contained in the solution do not disturb the E1 determination according to the invention.
Claims (11)
PROPERTY OR PRIVILEGE IS CLAIMED ARE DEFINED As FOLLOWS:
1, A process for obtaining mono- and/or polyclonal anti-elastase 1 antibodies, which react with human elastase 1 in bodily fluids and in stools, by immunizing in a known way, characterized in that an antigen is used having the amino acid sequence Thr-Met-Val-Ala-Gly-Gly-Asp-Ile-Arg or immunologically active partial peptides thereof and recovering resulting monoclonal or polyclonal antibodies capable of specifically binding to human elastase
1 present in human bodily fluids and in stools.
2. The process in accordance with claim 1, characterized in that a synthetic partial peptide is used.
3. The process in accordance with one of claims 1 or 2, characterized in that a partial peptide is used which is bound to a carrier by means of a spacer.
4. The process in accordance with claim 3, characterized in that a peptide is used as the carrier.
5. The process in accordance with one of claims 3 or 4, characterized in that an albumin or a hemocyanin is used as the carrier.
6. A hybridoma cell line having the file number ECACC 90 121 90 6.
7. A hybridoma cell line having the file number ECACC 90 121 90 7.
8. An anti-elastase 1 antibody obtainable according to a process of claims 1 to 5.
9. An anti-elastase 1 antibody obtainable from hybridoma cell lines having the file numbers ECACC 90 121 90 6 and ECACC 90 121 90 7.
10. An immunological test kit containing at least one antibody according to one of claims 8 or 9.
11. The immunological test kit according to claim 10 for the diagnosis and course monitoring of chronic pancreatitis, acute pancreatitis, and mucoviscidosis in bodily fluids and/or stools.
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE4023972 | 1990-07-28 | ||
DEP4023972.1 | 1990-07-28 | ||
DEP4107765.2 | 1991-03-11 | ||
DE4107765A DE4107765A1 (en) | 1990-07-28 | 1991-03-11 | PANCREAS ELASTASE-1 SPECIFIC ANTIBODY, A METHOD FOR ITS OBTAINMENT AND A TEST KIT CONTAINING SUCH ANTIBODIES |
PCT/DE1991/000606 WO1992002630A1 (en) | 1990-07-28 | 1991-07-28 | Pancreas-elastasis-1-specific antibody, a process for obtaining it and a test kit containing such antibodies |
Publications (2)
Publication Number | Publication Date |
---|---|
CA2088354A1 CA2088354A1 (en) | 1992-01-29 |
CA2088354C true CA2088354C (en) | 1999-09-28 |
Family
ID=25895430
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA002088354A Expired - Fee Related CA2088354C (en) | 1990-07-28 | 1991-07-28 | Pancreas-elastasis-1-specific antibody, a process for obtaining it and a test kit containing such antibodies |
Country Status (10)
Country | Link |
---|---|
EP (1) | EP0547059B1 (en) |
JP (2) | JPH05508770A (en) |
AT (1) | ATE128734T1 (en) |
AU (1) | AU646476B2 (en) |
CA (1) | CA2088354C (en) |
DE (2) | DE4107765A1 (en) |
DK (1) | DK0547059T3 (en) |
ES (1) | ES2080955T3 (en) |
GR (1) | GR3018483T3 (en) |
WO (1) | WO1992002630A1 (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2056102C (en) * | 1990-11-26 | 2003-03-25 | Petrus Gerardus Antonius Steenbakkers | Method for the production of antibodies |
EP0958833A1 (en) * | 1998-05-20 | 1999-11-24 | Erasmus Universiteit Rotterdam | Methods and means for preventing or treating inflammation |
DE19923892A1 (en) | 1998-09-08 | 2000-03-09 | Privates Inst Bioserv Gmbh | Diagnostic procedure for the detection of pancreatic dysfunction |
ATE332504T1 (en) * | 1998-09-08 | 2006-07-15 | Bioserv Analytik Und Medizinpr | DIAGNOSTIC METHOD FOR DETECTING A PANCREATIC FUNCTION DISORDER |
GB9908458D0 (en) * | 1999-04-13 | 1999-06-09 | Queen Mary & Westfield College | Enzyme |
DE10157336B4 (en) * | 2000-11-24 | 2007-07-19 | Bioserv Analytik Und Medizinprodukte Gmbh | Method for producing a test system and diagnostic method for detecting pancreatic function disorders |
DE10101792B4 (en) * | 2001-01-17 | 2004-03-18 | Vivotec Biomedical Technologies Gmbh | Procedure for the detection of pancreatic carcinoma or chronic pancreatitis and use of antibodies |
JP2006226795A (en) * | 2005-02-16 | 2006-08-31 | Tokyo Univ Of Science | Diagnostic marker for acute pancreatitis |
CN111044723A (en) * | 2018-10-12 | 2020-04-21 | 谢鲍生物科技股份公司 | Novel test kit containing trypsin-1-specific antibodies and sample preparation device |
US20250035630A1 (en) * | 2021-11-30 | 2025-01-30 | Phc Corporation | Method for measuring elastase 1 in feces |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5925183B2 (en) * | 1978-07-05 | 1984-06-15 | ダイナボット株式会社 | Method for measuring elastase-1 |
JP2617299B2 (en) * | 1986-09-17 | 1997-06-04 | ダイナボット 株式会社 | Immunoassay method for elastase 1 |
-
1991
- 1991-03-11 DE DE4107765A patent/DE4107765A1/en not_active Withdrawn
- 1991-07-28 CA CA002088354A patent/CA2088354C/en not_active Expired - Fee Related
- 1991-07-28 AU AU81002/91A patent/AU646476B2/en not_active Ceased
- 1991-07-28 EP EP91912932A patent/EP0547059B1/en not_active Expired - Lifetime
- 1991-07-28 ES ES91912932T patent/ES2080955T3/en not_active Expired - Lifetime
- 1991-07-28 WO PCT/DE1991/000606 patent/WO1992002630A1/en active IP Right Grant
- 1991-07-28 AT AT91912932T patent/ATE128734T1/en not_active IP Right Cessation
- 1991-07-28 DE DE59106634T patent/DE59106634D1/en not_active Expired - Lifetime
- 1991-07-28 DK DK91912932.0T patent/DK0547059T3/en active
- 1991-07-28 JP JP91512166A patent/JPH05508770A/en active Pending
-
1995
- 1995-12-20 GR GR950403623T patent/GR3018483T3/en unknown
-
1997
- 1997-07-17 JP JP9192727A patent/JPH1080272A/en not_active Withdrawn
Also Published As
Publication number | Publication date |
---|---|
CA2088354A1 (en) | 1992-01-29 |
GR3018483T3 (en) | 1996-03-31 |
ATE128734T1 (en) | 1995-10-15 |
DK0547059T3 (en) | 1996-02-19 |
ES2080955T3 (en) | 1996-02-16 |
AU8100291A (en) | 1992-03-02 |
AU646476B2 (en) | 1994-02-24 |
EP0547059B1 (en) | 1995-10-04 |
DE4107765A1 (en) | 1992-01-30 |
JPH05508770A (en) | 1993-12-09 |
JPH1080272A (en) | 1998-03-31 |
EP0547059A1 (en) | 1993-06-23 |
WO1992002630A1 (en) | 1992-02-20 |
DE59106634D1 (en) | 1995-11-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0122478A2 (en) | A method for the preparation of monoclonal antibody with specificity for crosslinked fibrin derivatives and an assay procedure using said antibody | |
JPH05184384A (en) | Monoclonal antibody to recognize c end of hbnp | |
CA2088354C (en) | Pancreas-elastasis-1-specific antibody, a process for obtaining it and a test kit containing such antibodies | |
KR100756117B1 (en) | Monoclonal Antibodies, Hybridomas, Immunoassay Methods and Diagnostic Kits | |
KR102189893B1 (en) | Antibody specifically binding a bPAG1 and use thereof | |
US7833726B2 (en) | Antibody for assaying ADAMTS13 activity and method for assaying the activity | |
AU715797B2 (en) | Methods for determining the presence of brain protein S-100 | |
US5622837A (en) | Pancreas elastase 1-specific antibody, a process for obtaining it, and a test kit containing such antibody | |
JP3018110B2 (en) | Monoclonal antibody | |
US8349569B2 (en) | Anti-fibronectin fragment monoclonal antibody | |
CA2281262C (en) | Anti-human medullasin monoclonal antibody, process for producing the same and immunoassay using the same | |
KR20060027404A (en) | Feed Enzyme Detection Reagents, Methods and Kits | |
JP3018111B2 (en) | Assay method for monoclonal antibody and asialoglycoprotein receptor | |
JP4533995B2 (en) | Anti-ADAMTS13 monoclonal antibody | |
JP2915530B2 (en) | Laminin fragment | |
KR100493932B1 (en) | Monoclonal antibody recognizing resistin, production method and use thereof | |
JPH1175839A (en) | Monoclonal antibody, cell strain and measurement of n1,n12-diacetylspermine | |
JP2878317B2 (en) | Laminin measurement reagent | |
JP4327436B2 (en) | Monoclonal antibody recognizing sperm motility inhibitory factor (SPMI) portion of semiminogelin and detection method using the same | |
JP2000069963A (en) | Apolipoprotein E4 specific monoclonal antibody | |
US10538580B2 (en) | Anti-equol antibody composition and use therefor | |
JP2001000181A (en) | Cell line producing anti-human C-reactive protein monoclonal antibody, method for producing the same, and monoclonal antibody | |
JP2000125867A (en) | Monoclonal antibody against carp vitellogenin | |
JP2001011098A (en) | Specific antibody to domoic acid and immunoassay for domoic acid | |
JPH1048217A (en) | Method and kit for measuring activity of enzyme for phosphating protein kinase |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EEER | Examination request | ||
MKLA | Lapsed |