CA2088354C - Pancreas-elastasis-1-specific antibody, a process for obtaining it and a test kit containing such antibodies - Google Patents

Pancreas-elastasis-1-specific antibody, a process for obtaining it and a test kit containing such antibodies

Info

Publication number
CA2088354C
CA2088354C CA002088354A CA2088354A CA2088354C CA 2088354 C CA2088354 C CA 2088354C CA 002088354 A CA002088354 A CA 002088354A CA 2088354 A CA2088354 A CA 2088354A CA 2088354 C CA2088354 C CA 2088354C
Authority
CA
Canada
Prior art keywords
antibodies
elastase
antibody
stools
test kit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA002088354A
Other languages
French (fr)
Other versions
CA2088354A1 (en
Inventor
Hans Scheefers
Ursula Scheefers-Borchel
Andreas Sziegoleit
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SCHEBO-TECH GmbH
Original Assignee
SCHEBO-TECH GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SCHEBO-TECH GmbH filed Critical SCHEBO-TECH GmbH
Publication of CA2088354A1 publication Critical patent/CA2088354A1/en
Application granted granted Critical
Publication of CA2088354C publication Critical patent/CA2088354C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • C12N9/50Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
    • C12N9/64Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue
    • C12N9/6421Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue from mammals
    • C12N9/6424Serine endopeptidases (3.4.21)
    • C12N9/6448Elastases, e.g. pancreatic elastase (3.4.21.36); leukocyte elastase (3.4.31.37)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/40Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against enzymes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Wood Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Peptides Or Proteins (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • External Artificial Organs (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

A process is described for obtaining highly specific pancreas elastase 1 antibodies which react both with bodily fluids and with stools. Such an antibody is obtainable by immunizing with an antigen having the amino acid sequence Thr-Met-vat-Ala-Gly-Gly-Asp- Ile-Arg or immunologically active partial peptides thereof. A test kit containing such antibodies is suitable for the diagnosis and course monitoring of chronic and acute pancreatitis as well as mucovisoidosis in bodily fluids and/or in stools.

Description

( CA 02088354 1999-06-16 PANCREAS ELASTASE 1-SPECIFIC ANTIBODY, A PROCESS FOR
OBTAINING IT, AND A TEST RIT CONTAINING SUCH ANTIBODY
This invention relates to a highly sensitive and selective antielastase 1 antibody, a process for its manufacture, and a highly sensitive diagnostic test kit containing said antibody.
Instances of inflammatory diseases of the pancreas are constantly increasing in industrial countries (W. Rosch, Deutsches Arzteblatt 84: C-397-398, 1987). These diseases usually have an intermittent course and can finally lead to complete loss of the gland. Acute episodes are recognizable by severe abdominal pain and nausea, but intermediate phases are usually experienced by the patient as free from pain.
They evolve only with uncharacteristic digestive complaints, so that they are hard to recognize. Consideration is therefore to be given to a chronic pancreatic disease in all digestive disorders.
Determination of the serum amylase level has hitherto usually been made in laboratory diagnoses of pancreatitis.
However, an elevation in serum amylase also occurs in other intra-abdominal inflammations, e.g., in intestinal perforation, mumps or renal failure. Moreover, an elevation in the serum amylase level may also be observed following the administration of morphines. Another laboratory diagnostic possibility consists of determining the ratio of amylase to creatinine clearance, which ratio increases in acute pancreatitis. Unfortunately, amylase values elevated in acute pancreatitis normalize very rapidly, so that normal values are already found 48 hours after the onset of the disease in one-third of the patients (J. A. Eckfeldt et al., Arch. Pathol. Lab. Med. 109:316-319, 1985).
Lipase determination represents another diagnostic possibility. However, determination of either lipase or amylase is not suitable for detecting chronic pancreatitis.
This disease has hitherto only been insufficiently demonstrated by determining the activity of the pancreatic enzyme chymotrypsin in stools. The disadvantage of this method of determination is based on the fact that only a small part of the chymotrypsin excreted by the pancreas is detectable in the stool, which part, moreover, is also subject to very considerable fluctuations (Goldberg et al., Gut 10:477-483, 1969). This makes the determination of normal values extremely difficult.
It is known from A. Sziegoleit, Biochem. J. 219:735-742, 1984, that pancreatic elastase 1 (E1), also called protease E, is exclusively formed in the pancreas and is separated out in the duodenum with digestive juice. Attempts have already been made to determine the level of elastase 1 in the stool to avoid the above-mentioned disadvantages, since the level of this enzyme in the stool represents the exocrine function of the pancreas substantially better than does the chymotrypsin activity (A. Sziegoleit et al., Clin.
Biochem. 22:85-89, 1989).
It was also found that acute pancreatitis can be detected by determining E1 in serum (A. Sziegoleit et al., Clin.
Biochem. 22:79-83, 1989).
It has hitherto been assumed that, unlike other enzymes, E1 is not degraded, or only unsubstantially degraded, during intestinal passage. Its level in the stool accordingly indicates the degree of pancreatic exocrine function.
Moreover, the enzyme also enters the blood stream in acute pancreatic disease phases.
A radioimmunologic test is already available for measuring serum elastase 1 (A. Murata et al., Enzyme 30:29-37, 1983;
Elastase-1-RIA-Kit, Abbott Diagnostic).
However, such a radiologic (RIA) determination presents a disadvantage, in that the radioactive reagents have only limited stability and therefore must continuously be resynthesized. Moreover, the radioactive material must be disposed of carefully, and the measurement of radioactive materials requires specially trained personnel and special laboratory equipment. In addition, it is not possible, or is only insufficiently possible, to determine the E1 level in the stool using this test.
The object of the invention is consequently that of developing a test process with which human elastase 1 can be determined for the diagnosis of both acute and chronic pancreatitis, and which is sufficiently sensitive for determining elastase 1 in serum and stools.
According to this invention, this object is achieved by means of an antibody directed against the epitope having the amino acid sequence Thr-Met-Val-Ala-Gly-Gly-Asp-Ile-Arg.
Surprisingly, it was found that antibodies directed against this epitope of human elastase 1 selectively recognize the marker enzyme and thereby discriminate against other antigens. .
Accordingly, this invention also relates to a process for preparing anti-elastase antibodies in a known way, characterized by the fact that the previously defined epitope is used as an antigen. It is also possible, according to the invention, to use parts and fragments of this epitope for immunization or preparation of antibodies, provided the parts and fragments engender an immune response. Such fragments are obtainable either CA 02088354 1999-06-16 r synthetically or by chemical and/or biological degradation of elastase 1. In the process of the invention, it was found suitable to bind the peptide or peptide part to a carrier, by means of a spacer if necessary. Suitable carriers are known to those skilled in the art and are, for example, synthetic and natural membrane parts, polysaccharides, peptides or proteins. Albumins and hemocyanins are especially preferable. The spacers to be used are also known to those skilled in the art. With the epitope or its fragments, it is possible, according to the invention, to obtain both selective monoclonal and polyclonal antibodies. Antibodies preferred according to the invention are able to recognize paraffin-embedded thin sections.
Antisera containing antibodies according to the invention are obtained by immunizing experimental animals with highly purified human elastase 1 or fragments of this enzyme.
Experimental animals such as mice, rats, rabbits, goats or horses are thereby immunized in a known way, and antisera with polyclonal antibodies are thus obtained from which antibodies according to the invention are also obtainable in a known way. Antibodies preferred according to the invention are able to recognize paraffin-embedded thin sections.
In a preferred embodiment, monoclonal antibodies are suitably obtained by means of the epitope according to the invention using the method of G. Kohler and C. Milstein (Nature 256:495-497, 1975).
A further object of the invention is consequently a monoclonal antibody specifically capable of binding with E1.
Such an antibody is obtainable by immunizing mice or rats with highly purified E1 or the epitope to be used according ' CA 02088354 1999-06-16 to the invention, fusing a-lymphocytes from the spleens of immunized animals with myeloma cells, cloning the hybridoma cells formed, cloning and culturing hybridoma cells which secrete antibodies capable of binding E1, and then obtaining 5 the monoclonal antibodies formed by them.
It is especially preferable to use a cell line which does not itself produce any immunoglobulin.
The monoclonal antibodies obtainable according to the invention do not react with other substances, but are specific for E1. The monoclonal antibodies according to the invention are preferably able to recognize paraffin-embedded thin sections.
Antibodies preferred according to the invention are obtainable from hybridoma cell lines filed with the European Collection of Animal Cell Cultures (ECACC), Vaccine Research and Production Laboratory, Public Health and Laboratory Service, Center for Applied Microbiology and Research, Porton Down, GB Salisbury, Wiltshire SP4 OJG, on Dec. 21, 1990, which were given application numbers 90 121 90 6 and 90 121 90 7. Both antibodies obtainable from these cell lines are able to recognize paraffin-embedded thin sections.
Another object of the invention is the use of the El-specific antibodies according to the invention for the qualitative and/or quantitative determination of E1. It is accordingly possible to specifically detect elastase 1 in bodily fluids and stools with the use of the antibody. The invention therefore also relates to a test kit containing antibodies according to the invention, especially immunologic test kits for the diagnosis and course monitoring of chronic pancreatitis, acute pancreatitis and mucoviscidosis in bodily fluids and/or stools. Suitable bodily fluids are blood, plasma and serum.
Indirect, competitive and sandwich ELISAs were introduced in experiments for detecting E1 in blood, plasma, serum or stools. However, it was found that a sandwich ELISA is most suitable for rapid diagnosis on a large specimen scale, since it is independent of other serum factors not capable of being calculated. At least two different monoclonal antibodies directed against different epitopes of the enzyme are necessary for this purpose.
Enzyme value changes in serum or stools, for example, can be demonstrated with such tests, especially the appearance of these displacements in the event of changes in pancreas status.
Determination processes based on the immunoassay principle have been widely developed. Advantages of these determination methods include precision and rapidity (great reliability and sample processing) as well as the possibility of being able to detect very small quantities of substance (in the nanogram range). Various process variants are possible for conducting the determination, with both homogeneous and heterogeneous phases. In the embodiment with the heterogeneous phase, one of the receptors is bound to a carrier. In the sandwich process, for example, a fist antibody is bound to the carrier as a receptor, or a so-called catcher, and the test solution is added, whereby the antigen to be determined in the test solution is fished out and bound. A second tagged antibody is then added, which reacts specifically with the antigen or antigen-receptor complex. With the aid of a calibrated solution (isolated, purified human elastase 1), it is then possible to determine the quantity of antigen by tagging the second antibody.
In another preferred embodiment of the invention, a first antibody is bound as a receptor to a carrier matrix of membrane, tissue, or flowing structure, so that it does not represent the usual floor of the depression of an ELISA
immunoplate, but is instead present as bound to the matrix.
Preferred matrices are microporous flat membranes or hollow fiber membranes provided in a special embodiment with ion exchange groups. Microporous flat membranes such as those marketed by Pall Corp., New Jersey, USA, for example, are preferably used for this purpose. Hollow fiber membranes to be used according to the invention are also available on the market, and sold, for example, by Sepracor Inc. Mass., USA.
It is possible to develop particularly rapid and uncomplicated detection processes by means of such carrier materials.
Many variation possibilities exist for this general principle. For example, it is possible to make a determination with three receptors, whereby one of the three receptors is present in the heterogeneous phase, and the other two receptors are soluble. One of the two soluble receptors is tagged, whereas the other is untagged. The soluble receptor is then directed against the untagged receptor.
The use of the E1-specific antibody according to the invention for the selective quantitative determination of E1 based on the immunoassay principle is done by incubation with at least two different receptors. Both receptors, e.g., monoclonal antibodies, must be specific for E1, which must be bound to different epitopes (binding sites) in all cases.
One of the two receptors is bound to a solid phase. The binding to the solid phase is done in the usual way, as known to those skilled in the art. In addition, at least one other receptor is used, present in soluble form.

g This other receptor bears a label. If several receptors are used, only one of them carries a label. Receptor tagging is done in a usual way, known to those skilled in the art.
S Tagging in a test kit according to the invention is done in a known way, especially by radioactive tagging, binding of biotin (biotin/avidin), by an enzyme releasing a measurable reaction, or by a chemiluminescent or fluorescent compound.
Tagging with an enzyme is especially preferred, particularly with peroxidase or phosphatase. In a special embodiment, tagging with an enzyme also permits the introduction of this antibody into a second enzyme amplification system (C. J.
Stanley; F. Paris; A. Plumb; A. Webb; A Johansson, American Biotechnology Laboratory: May-June 1985; C.H. Self, J.
Immunol. Meth. 1985).
In an especially preferred embodiment of this process, either a receptor capable of binding unspecifically to E1 or preferably a receptor capable of binding specifically to E1 is bound to a solid phase. This receptor bound to the solid phase is then incubated with the solution containing the E1 to be determined and an antibody which is specifically capable of binding with E1, present in soluble form, and bears a label.
If the receptor bound to the solid phase is capable of unspecifically binding with E1, not only E1 but other antigens also form a complex with the solid phase. The second antibody, which is capable of specifically binding to E1, nevertheless forms a complex only with E1, so that only E1 molecules specifically bear a tagged antibody; whereas other antigens are not labeled. After separation of the solid from the liquid phase, it is possible to determine the E1 content in this way by measuring the labeling.

' CA 02088354 1999-06-16 If a first receptor capable of specifically binding to E1 is fixed to the solid phase, only E1 is specifically bound to the solid phase. During incubation with the soluble E1-specific second receptor or antibody, the latter also reacts exclusively with E1. Accordingly, since almost no binding of other antigens to the solid phase takes place, this process is highly specific and therefore makes very precise determinations possible. E1 is thereby selectively bound to the solid phase; other antigens remain in solution. In addition, the soluble labeled antibody capable of binding with E1 forms a complex with E1. After separation of the solid from the liquid phase, the E1 content can again be determined very precisely by the labeling. In a particularly preferred embodiment, a third antibody is added to further increase the selectivity. The third antibody is directed against the second antibody, which bears the label.
Other process variants with three receptors known to those skilled in the art are also possible using antibodies capable of specifically binding with E1. They do not require any further comments here.
Preferably at least one of the antibodies used for carrying out the process of the invention is a monoclonal antibody.
In a preferred embodiment, only monoclonal antibodies are used as receptors.
The antibody specifically capable of binding to E1 can be present either bound to the solid phase or as a soluble tagged or untagged receptor. This receptor is preferably a monoclonal antibody. It is especially preferred for all receptors used to be monoclonal antibodies.
The process according to the invention, as well as the test kit, are especially suitable for automated analysis systems, ' CA 02088354 1999-06-16 especially for systems which are based on a biosensor and which make use of chip technology.
The invention is illustrated in greater detail by the 5 following examples.
Example 1 a) Preparation of monoclonal antibodies by means of highly purified El:
Highly purified human E1, the production of which from the human pancreas has been described (S. Sziegoleit, Purification and characterization of a cholesterol-binding protein from human pancreas. Biochem. J. 207:573-582, 1982), is dissolved in PBS and mixed in equal parts with Freund's adjuvant. In all cases, 100 ~.cg of this mixture are injected IP and SC into Balb/c mice 6 to 8 weeks old. These injections are repeated twice at an interval of 3 to 4 weeks. In this design, mice immunized with highly purified E1 receive an IV injection of 100 ,ug of highly-purified E1 dissolved in PBS 3 days before removal of the spleen.
About 100 million cells from the spleen of an immunized mouse are fused with 50 million myeloma cells (x 63-Sp8-653, a cell line which does not synthesize any immunoglobulin;
obtainable from The Salk Institute, Cell Distribution Center, San Diego CA 92112, USA) in the presence of polyethyleneglycol (MG 3400). Fused cells are disseminated on 8 plates, each containing 24 depressions. Each of these depressions contains 50 million spleen cells, from unimmunized isologous mice, in nutrient medium containing hypoxanthine, aminopterin and thymidine.

The antibody-containing supernatant liquids of these fused cells (hybridomas) are tested 10 to 14 days later for their specificity to highly purified human E1 by means of ELISA, Western blot, frozen sections and paraffin sections.
To obtain monoclonal antibodies directed only against E1, hybridoma cells whose supernatant liquid does not contain any antibodies directed against other antigens are cloned two times.
b) Preparation of monoclonal antibodies by means of an immunogenic peptide The peptide having the amino acid sequence Thr-Met-val-Ala-Gly-Gly-Asp-Ile-Arg is prepared by solid phase synthesis after Merrifield and, as described above, is injected into 6 to 8 week-old Balb/c mice. By the procedure described above, monoclonal antibodies which are highly specific against human elastase 1 from both stools and serum are obtained.
Determination of El in plasma with monoclonal E1-specific antibodies Example 2 E1 in plasma is determined by ELISA. For this purpose, monoclonal E1-specific antibodies obtained according to Example 1, which are dissolved in PBS at pH 7.2, are immobilized on polystyrene as a carrier. After a washing step, dilute E1-containing plasma or serum is added. The plasma or serum is diluted in a buffer of PBS, 5 mmol EDTA
and 0.2°s Tween 20*.
* Trademark After a washing step in PBS and 0.2% Tween 20, the E1 bound to the antibodies is incubated for one hour at room temperature with a polyclonal antibody which also binds E1 and is coupled to phosphatase, which is dissolved in PBS
containing 0.2% Tween 20 at pH 7.2. After another washing step, p-nitrophenylphosphate disodium hexahydrate is added, and the change in optical density is measured in the reaction vessels in which the monoclonal antibodies have reacted with E1.
Determination of E1 in plasma with two different El-specific antibodies Example 3 A monoclonal antibody directed against E1 is fixed to a carrier as described in Example 2. After a washing step, E1-containing serum or plasma is incubated with the monoclonal antibodies under the same conditions as in Example 2. After another washing step, the binding of E1 is detected by a second E1-specific monoclonal antibody according to the invention. This second E1-specific antibody bears covalently bound peroxidase. After a washing step and addition of ABTS as a substrate for peroxidase, the change in optical density is measured.
Example 4 The procedure is as described in Example 3, but biotin is coupled to the second E1-specific antibody instead of an enzyme. Peroxidase-conjugated avidin or peroxidase-conjugated streptavidin is added before the addition of substrate. The selected E1 determination thus made possible permits quite specific determination of only E1. Other antigens contained in the solution do not disturb the E1 determination according to the invention.

Claims (11)

THE EMBODIMENTS OF THE INVENTION IN WHICH AN EXCLUSIVE
PROPERTY OR PRIVILEGE IS CLAIMED ARE DEFINED As FOLLOWS:
1, A process for obtaining mono- and/or polyclonal anti-elastase 1 antibodies, which react with human elastase 1 in bodily fluids and in stools, by immunizing in a known way, characterized in that an antigen is used having the amino acid sequence Thr-Met-Val-Ala-Gly-Gly-Asp-Ile-Arg or immunologically active partial peptides thereof and recovering resulting monoclonal or polyclonal antibodies capable of specifically binding to human elastase
1 present in human bodily fluids and in stools.
2. The process in accordance with claim 1, characterized in that a synthetic partial peptide is used.
3. The process in accordance with one of claims 1 or 2, characterized in that a partial peptide is used which is bound to a carrier by means of a spacer.
4. The process in accordance with claim 3, characterized in that a peptide is used as the carrier.
5. The process in accordance with one of claims 3 or 4, characterized in that an albumin or a hemocyanin is used as the carrier.
6. A hybridoma cell line having the file number ECACC 90 121 90 6.
7. A hybridoma cell line having the file number ECACC 90 121 90 7.
8. An anti-elastase 1 antibody obtainable according to a process of claims 1 to 5.
9. An anti-elastase 1 antibody obtainable from hybridoma cell lines having the file numbers ECACC 90 121 90 6 and ECACC 90 121 90 7.
10. An immunological test kit containing at least one antibody according to one of claims 8 or 9.
11. The immunological test kit according to claim 10 for the diagnosis and course monitoring of chronic pancreatitis, acute pancreatitis, and mucoviscidosis in bodily fluids and/or stools.
CA002088354A 1990-07-28 1991-07-28 Pancreas-elastasis-1-specific antibody, a process for obtaining it and a test kit containing such antibodies Expired - Fee Related CA2088354C (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE4023972 1990-07-28
DEP4023972.1 1990-07-28
DEP4107765.2 1991-03-11
DE4107765A DE4107765A1 (en) 1990-07-28 1991-03-11 PANCREAS ELASTASE-1 SPECIFIC ANTIBODY, A METHOD FOR ITS OBTAINMENT AND A TEST KIT CONTAINING SUCH ANTIBODIES
PCT/DE1991/000606 WO1992002630A1 (en) 1990-07-28 1991-07-28 Pancreas-elastasis-1-specific antibody, a process for obtaining it and a test kit containing such antibodies

Publications (2)

Publication Number Publication Date
CA2088354A1 CA2088354A1 (en) 1992-01-29
CA2088354C true CA2088354C (en) 1999-09-28

Family

ID=25895430

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002088354A Expired - Fee Related CA2088354C (en) 1990-07-28 1991-07-28 Pancreas-elastasis-1-specific antibody, a process for obtaining it and a test kit containing such antibodies

Country Status (10)

Country Link
EP (1) EP0547059B1 (en)
JP (2) JPH05508770A (en)
AT (1) ATE128734T1 (en)
AU (1) AU646476B2 (en)
CA (1) CA2088354C (en)
DE (2) DE4107765A1 (en)
DK (1) DK0547059T3 (en)
ES (1) ES2080955T3 (en)
GR (1) GR3018483T3 (en)
WO (1) WO1992002630A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK0488470T3 (en) * 1990-11-26 1997-12-22 Akzo Nobel Nv Method for producing antibodies
EP0958833A1 (en) * 1998-05-20 1999-11-24 Erasmus Universiteit Rotterdam Methods and means for preventing or treating inflammation
DE19923892A1 (en) 1998-09-08 2000-03-09 Privates Inst Bioserv Gmbh Diagnostic procedure for the detection of pancreatic dysfunction
CN1317088A (en) * 1998-09-08 2001-10-10 生化研究所有限公司 Diagnostic method for detecting disturbances of pancreas
GB9908458D0 (en) * 1999-04-13 1999-06-09 Queen Mary & Westfield College Enzyme
DE10157336B4 (en) * 2000-11-24 2007-07-19 Bioserv Analytik Und Medizinprodukte Gmbh Method for producing a test system and diagnostic method for detecting pancreatic function disorders
DE10101792B4 (en) * 2001-01-17 2004-03-18 Vivotec Biomedical Technologies Gmbh Procedure for the detection of pancreatic carcinoma or chronic pancreatitis and use of antibodies
JP2006226795A (en) * 2005-02-16 2006-08-31 Tokyo Univ Of Science Diagnostic marker of acute pancreatitis
CN111044723A (en) * 2018-10-12 2020-04-21 谢鲍生物科技股份公司 Novel test kit containing trypsin-1-specific antibodies and sample preparation device
WO2023100910A1 (en) * 2021-11-30 2023-06-08 株式会社Lsiメディエンス Method for measuring elastase 1 in feces

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5925183B2 (en) * 1978-07-05 1984-06-15 ダイナボット株式会社 Method for measuring elastase-1
JP2617299B2 (en) * 1986-09-17 1997-06-04 ダイナボット 株式会社 Immunoassay method for elastase 1

Also Published As

Publication number Publication date
EP0547059B1 (en) 1995-10-04
DK0547059T3 (en) 1996-02-19
DE59106634D1 (en) 1995-11-09
ATE128734T1 (en) 1995-10-15
CA2088354A1 (en) 1992-01-29
AU646476B2 (en) 1994-02-24
ES2080955T3 (en) 1996-02-16
JPH1080272A (en) 1998-03-31
EP0547059A1 (en) 1993-06-23
DE4107765A1 (en) 1992-01-30
JPH05508770A (en) 1993-12-09
AU8100291A (en) 1992-03-02
GR3018483T3 (en) 1996-03-31
WO1992002630A1 (en) 1992-02-20

Similar Documents

Publication Publication Date Title
EP0122478A2 (en) A method for the preparation of monoclonal antibody with specificity for crosslinked fibrin derivatives and an assay procedure using said antibody
JPH05184384A (en) Monoclonal antibody to recognize c end of hbnp
Grassi et al. Screening of monoclonal antibodies using antigens labeled with acetylcholinesterase: application to the peripheral proteins of photosystem 1
CA2088354C (en) Pancreas-elastasis-1-specific antibody, a process for obtaining it and a test kit containing such antibodies
KR100756117B1 (en) Monoclonal antibody, hybridoma, i?unoassay method and diagnosis kit
KR102189893B1 (en) Antibody specifically binding a bPAG1 and use thereof
JP2665503B2 (en) Monoclonal antibody pair to insulin-like growth factor enables immunoassay for insulin-like growth factor
AU715797B2 (en) Methods for determining the presence of brain protein S-100
US5622837A (en) Pancreas elastase 1-specific antibody, a process for obtaining it, and a test kit containing such antibody
US7833726B2 (en) Antibody for assaying ADAMTS13 activity and method for assaying the activity
JP3018110B2 (en) Monoclonal antibody
CA2281262C (en) Anti-human medullasin monoclonal antibody, process for producing the same and immunoassay using the same
JP3018111B2 (en) Assay method for monoclonal antibody and asialoglycoprotein receptor
KR20060027404A (en) Reagents, methods and kits for detecting feed enzymes
JP4533995B2 (en) Anti-ADAMTS13 monoclonal antibody
US8349569B2 (en) Anti-fibronectin fragment monoclonal antibody
JP2915530B2 (en) Laminin fragment
KR100493932B1 (en) Monoclonal antibody recognizing resistin, production method and use thereof
JPH1175839A (en) Monoclonal antibody, cell strain and measurement of n1,n12-diacetylspermine
JP2878317B2 (en) Laminin measurement reagent
JP4327436B2 (en) Monoclonal antibody recognizing sperm motility inhibitory factor (SPMI) portion of semiminogelin and detection method using the same
US10538580B2 (en) Anti-equol antibody composition and use therefor
JP2001000181A (en) Cell line producing human anti-c-reactive protein monoclonal antibody, its preparation and monoclonal antibody
JP2000069963A (en) Monoclonal antibody specific to apolipoprotein e4
JP2000125867A (en) Monoclonal antibody against carp vitellogenin

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed