CA2049334C - Device, method and use of the method for determining a production flow - Google Patents

Device, method and use of the method for determining a production flow

Info

Publication number
CA2049334C
CA2049334C CA002049334A CA2049334A CA2049334C CA 2049334 C CA2049334 C CA 2049334C CA 002049334 A CA002049334 A CA 002049334A CA 2049334 A CA2049334 A CA 2049334A CA 2049334 C CA2049334 C CA 2049334C
Authority
CA
Canada
Prior art keywords
discharge
weighing container
weighing
differential
discharge device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA002049334A
Other languages
French (fr)
Other versions
CA2049334A1 (en
Inventor
Bruno Gmur
Peter Naf
Roman Weibel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Buehler AG
Original Assignee
Buehler AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=4184995&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CA2049334(C) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Buehler AG filed Critical Buehler AG
Publication of CA2049334A1 publication Critical patent/CA2049334A1/en
Application granted granted Critical
Publication of CA2049334C publication Critical patent/CA2049334C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G19/00Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups
    • G01G19/22Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups for apportioning materials by weighing prior to mixing them
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/71Feed mechanisms
    • B01F35/714Feed mechanisms for feeding predetermined amounts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/60Mixing solids with solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/80Falling particle mixers, e.g. with repeated agitation along a vertical axis
    • B01F25/90Falling particle mixers, e.g. with repeated agitation along a vertical axis with moving or vibrating means, e.g. stirrers, for enhancing the mixing
    • B01F25/901Falling particle mixers, e.g. with repeated agitation along a vertical axis with moving or vibrating means, e.g. stirrers, for enhancing the mixing using one central conveyor or several separate conveyors, e.g. belt, screw conveyors or vibrating tables, for discharging flows from receptacles, e.g. in layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/71Feed mechanisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/71Feed mechanisms
    • B01F35/717Feed mechanisms characterised by the means for feeding the components to the mixer
    • B01F35/7173Feed mechanisms characterised by the means for feeding the components to the mixer using gravity, e.g. from a hopper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/75Discharge mechanisms
    • B01F35/754Discharge mechanisms characterised by the means for discharging the components from the mixer
    • B01F35/75455Discharge mechanisms characterised by the means for discharging the components from the mixer using a rotary discharge means, e.g. a screw beneath the receptacle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/80Forming a predetermined ratio of the substances to be mixed
    • B01F35/88Forming a predetermined ratio of the substances to be mixed by feeding the materials batchwise
    • B01F35/881Forming a predetermined ratio of the substances to be mixed by feeding the materials batchwise by weighing, e.g. with automatic discharge
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G11/00Apparatus for weighing a continuous stream of material during flow; Conveyor belt weighers
    • G01G11/08Apparatus for weighing a continuous stream of material during flow; Conveyor belt weighers having means for controlling the rate of feed or discharge
    • G01G11/086Apparatus for weighing a continuous stream of material during flow; Conveyor belt weighers having means for controlling the rate of feed or discharge of the loss-in-weight feeding type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/05Stirrers
    • B01F27/11Stirrers characterised by the configuration of the stirrers
    • B01F27/112Stirrers characterised by the configuration of the stirrers with arms, paddles, vanes or blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/60Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a horizontal or inclined axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/58Component parts, details or accessories; Auxiliary operations
    • B29B7/60Component parts, details or accessories; Auxiliary operations for feeding, e.g. end guides for the incoming material
    • B29B7/603Component parts, details or accessories; Auxiliary operations for feeding, e.g. end guides for the incoming material in measured doses, e.g. proportioning of several materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/58Component parts, details or accessories; Auxiliary operations
    • B29B7/72Measuring, controlling or regulating
    • B29B7/728Measuring data of the driving system, e.g. torque, speed, power, vibration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/74Mixing; Kneading using other mixers or combinations of mixers, e.g. of dissimilar mixers ; Plant
    • B29B7/78Mixing; Kneading using other mixers or combinations of mixers, e.g. of dissimilar mixers ; Plant by gravity, e.g. falling particle mixers

Landscapes

  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Accessories For Mixers (AREA)
  • Weight Measurement For Supplying Or Discharging Of Specified Amounts Of Material (AREA)
  • Apparatuses For Bulk Treatment Of Fruits And Vegetables And Apparatuses For Preparing Feeds (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Fertilizers (AREA)
  • General Factory Administration (AREA)
  • Disintegrating Or Milling (AREA)
  • Threshing Machine Elements (AREA)
  • Processing Of Solid Wastes (AREA)
  • Basic Packing Technique (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)
  • Sorption Type Refrigeration Machines (AREA)
  • Control Of Vending Devices And Auxiliary Devices For Vending Devices (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Saccharide Compounds (AREA)
  • Crushing And Pulverization Processes (AREA)
  • Preparation Of Clay, And Manufacture Of Mixtures Containing Clay Or Cement (AREA)
  • Flow Control (AREA)
  • Noodles (AREA)
  • Adjustment And Processing Of Grains (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)
  • Indicating Or Recording The Presence, Absence, Or Direction Of Movement (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

The invention suggests a new device and method for measuring large production flows of e.g. one to fifty tons per hour with products such as mill products having unfavorable flow behavior. The production flow is directed intermittently into an upright weighing container 10 for a brief time and is compulsorily discharged from the latter substantially horizontally so as to be controlled with respect to speed. The production flow is periodically monitored volumetrically and gravimetrically by means of differential weighing.
The invention is further directed to the use of the method and suggests that the production flow in a mill be measured by means of differential weighing for the purpose of controlling, e.g. monitoring the work process prior to wetting, e.g. as mill input capacity, e.g. for monitoring in the milling process, e.g. for the flour weigher.

Description

DEVICE, NETHOD AND U~ OF THE ~ETHOD
FOR DE~RMINING A PROD~CTION FLO~
Technical Field 2 0 ~ 9 ~ 3 ~

The invention is directed to a device as well as a method for determining a production flow with products having unfavorable flow behavior, e.g. in a mill.

Background Art In production plants which already have a high degree of automation, e.g. mills as well as feedstuff mills, a conflict of goals has recently developed in that an inexpensive increase in quantity is impossible with existing technical measuring means or is possible only at the cost of qualitative parameters. Increasingly higher installed throughput capacities with persistently strict demands on quality, particularly on the consistency of the quality, require a more precise controlling and monitoring of the production flows. Both the processing quantity and the instantaneous throughput must be constantly determined with weighing precision.
However, accurate weighing involves repeated filling of the weigher, measurement and emptying of the weigher, insofar as accurate weighing is understood to mean weighing by means of weighers which are calibrated by government technicians, and results in an intermittent transporting of the product. In order to overcome this disadvantage, intermediate compensating bins must be used in addition, but this necessitates additional costs. At present, belt weighers are used almost exclusively for continuously determining a production flow with respect to quantity with materials having unfavorable flowing properties, e.g. flour, flour mixtures, break, bran, etc., and for a continuous transporting of the product. Belt weighers have the great advantage that the problems of flow behavior of the product to be weighed have virtually no influence. The product is t' 2 2049~
continuously guided on the weighing belt, weighed and discharged, likewise in a continuous manner. But this solution is disadvantageous in two respects. A belt weigher is less accurate than a classic hopper scale. While the latter works easily within a tolerance of +/- 1 to 2 ~, this value ranges from +/- 2 ~ to 1 ~ in belt weighers. The other disadvantageous aspect consists in the cost for belt weighers and particularly in the operating expense for maintenance, cleaning, servicing, etc. Belt weighers are expensive and can only be successful in the processing of very highly priced products such as chemical substances. Not many belt weighers are found in foodstuff and feedstuff plants for the aforementioned reasons, but also because belt weighers require relatively large horizontal dimensions. In past years, great efforts have also been made to monitor the product flow with entirely different measuring systems, but without greater success.
Another special problem consists in the throughput capacity, which regularly amounts to well over one ton per hour in present-day milling operations; the usual amounts are 10...20...50 or more tons per hour for the respective production flows to be measured.

Disclosure of the Invention The object of the invention is to develop a new measuring system for the measurement of a large product flow, also, which measures the throughput with weighing precision, allows a completely continuous product transfer as in belt weighers and operates without disturbance and in an accurately weighing manner particularly for product with heavy flow properties.
A solution, according to an embodiment of the invention, is characterized in that it comprises an upright weighing container, a variable-speed discharge screw with a substantially horizontally directed discharge at the weighing container, as well as a transition piece from the weighing container to the discharge screw and differential weighing .
3 204933~
elements.
The basic idea of this embodiment consists in the use of an upright weighing container, from which the product is positively discharged by a controllable discharge screw. The weight can be determined continuously in a manner known per se by an upright weighing container by means of differential weighing. The substantially horizontal discharge does not influence the vertical weight signals. Accordingly, a production flow can be measured with weighing precision with the concept of differential weighing and can be constantly monitored with a variable-speed discharge screw and a completely continuous transfer of the product is guaranteed in this way. A natural, constant product flow results from the consistent filling of a weighing container, particularly a tubular weighing container (tube weigher) and a transition piece from the upright weighing container to the horizontal discharge screw, all three of which together form a type of knee piece, wherein the weighing container works like a build-up space which empties continuously by means of the force of gravity and only the horizontal discharge is effected in a compulsory manner by mechanical means. In a preferred manner, the upright weighing container, the transition piece, the discharge screw which discharges on one side, and the controllable drive motor which discharges on the opposite side form a weighing unit and this weighing unit can be suspended, for example, at three bending rods.
The transition piece from the weighing container to the discharge screw preferably remains constant in cross section, at least approximately, wherein in the case of a circular cross section of the weighing container, the shape of the transition piece passes from circular to rectangular. A
positive, uniform product flow having a very great degree of consistency as a result of a corresponding programming of a weigher control unit accompanied by controllable feed accordingly results within the entire weighing unit. When the feed cannot be influenced, the product discharge even has a greater uniformity than the feed if fluctuations of the feed '' ~3~ '' .~ .
,.p~ ..
4 204933~

are only brief. An exact measurement is effected in this way;
the production flow remains constant or can even be calmed.
Further, it is possible to let the weighing system idle prior to every interruption or for a change of product. In addition, the entire weighing unit can be suspended and/or supported on a platform construction. When particularly strict demands are made with respect to purity, a travel-out rail can be arranged in the lower area of the weighing unit and the discharge screw with the drive motor can move out on this travel-out rail for cleaning purposes.
In all cases of application in which the feed cannot be switched off, it is suggested that a build-up bin with a controllable base flap be arranged above the tube weigher.
The preliminary bin will preferably comprehend 30~ to 90~ of the tube weigher, wherein a cycle time can be in the range of several seconds to thirty seconds.
The invention is further directed to a method and consists of a method for determining the instantaneous discharge amount per unit time and/or a summed throughput of a product flow of products having unfavorable flow properties in a production installation, the method using an apparatus including a differential weigher and a discharge device, the method comprising the steps of: directing the product flow during intermittent filling intervals of a few seconds duration into the differential weigher, wherein a cycle time between successive fillings is less than 30 seconds;
discharging the product continuously and substantially horizontally from the differential weigher using the discharge device; and measuring the discharged product flow during weighing intervals occurring between the filling intervals, the measuring of product flow being correlated with rotational speed of the discharge screw.
Surprisingly, the very valuable concept of differential weighing has accordingly been successfully transferred from metering technology to production monitoring contrary to prejudices of technical circles. Although it was previously assumed that the differential measuring system loses much of .
y .
. . .

20~933~
its appeal with large outputs. Various reasons have been cited for this: large outputs call for extensive hoppers and containers in order to reduce the refilling time in that the metering means is compelled to work in a volumetric manner in each instance. Problems relating to space can then also occur with the refilling device. In fact, the space requirement is much more critical for differential metering means with great output than is the case in belt metering devices. It can be assumed as a general rule that a differential metering means should not work in a volumetric manner for more than 1% of the operating time, i.e. the refilling device would have to have enormous dimensions at high outputs.
Finally, in addition, the accuracy of a differential metering means has been placed in doubt when the throughput exceeds one to two tons per hour.
With the new invention, the product can be delivered in a continuous manner to the next processing stage after exact weighing with minimum time delays of seconds. The results are even more accurate because a very short cycle time is used in a very deliberate manner and the evaluation is calculated by means of statistical methods.
In a further development of the inventive idea, differential weight values are measured in the weighing container when the feed has stopped and the corresponding speeds of the discharge screw are determined for the calculation of the instantaneous discharge quantity per time unit and/or a summed throughput of the production flow over an allowed time period.
But the particular advantage consists in that the product always remains in movement in the weighing container from which material is constantly removed, and most products with heavy flow properties, such as occur in a milling operation for foodstuff or feedstuff, can accordingly be determined with respect to throughput with the new solution.

20~933~
In the normal operating state, no product stoppage occurs in the weigher, so that the problem of monitoring the calming friction into the movement friction within the weighing container can be avoided. Depending on the application, the feed can be stopped by means of controlling the feed or by means of forming a small preliminary bin. In the preliminary bin, which can be locked e.g. via controllable base flaps, a temporary build-up of the product for several seconds is taken into account. However, since the preliminary bin is not a weighing part, simple mechanical movement means can easily be used in this instance, if necessary, for supporting the discharge without disturbing the measuring accuracy, but nevertheless preventing a stoppage at the location.
The throughput of the production flow can be measured based on the continuous volumetric discharge from the weighing container with a cyclical correction of the volumetric value by means of the differential weighing weight value. In a particularly preferred manner, the ratio of throughput to speed of a metering discharge screw or lock determined by the differential weighing is determined, stored and predetermined for subsequent presetting of a volumetric metering output of a like or similar product.
If the production flow has greater fluctuations which cannot be influenced directly, per se, or if the production flow is known only within larger limiting values, one or more filling cycles of constant duration are advantageously predetermined over a selectable first time interval, wherein the differential weighing begins with a delay of constant duration and the product is discharged with predetermined volumetric reference values during the first time interval.
It is advantageous if the filling cycle time for a following time interval is changed due to the weight differences at the beginning of the respective differential weighing. It is particularly preferred that the production 204~33~

flows be measured by means of differential weighing before and after milling in a mill, which values are used for determining the yield and determining other parameters for controlling the mill.
However, the new invention also makes it possible for the first time, in the case of a continuously slightly fluctuating production flow resulting from the processing process, to accurately measure the weight of this production flow in a continuous manner and to mix other components into the continuous production flow, e.g. different specific flour into a main flour in order to change the quality of the main flour. This is effected in that a master weigher is provided for mixing two or more product flows and each additional differential weigher begins cyclically with the master weigher with predetermined speed reference values, and the regulating of the metering output of each additional differential weigher is effected corresponding to the actual value of the measured weight values of the master weigher.
It is very advantageous if the new invention is used in such a way that the production flow in a mill is determined via a cyclical, volumetric-gravimetric measurement for the control and/or monitoring of the working process prior to wetting and/or as mill input capacity and/or for monitoring in the milling process and/or for the flour weigher.
The invention is explained in more detail in the following with reference to several embodiment examples:

Fig. 1 shows a flow measuring device, according to the lnvention;

Fig. 2 shows the measuring device of Figure 1 during the differential weighing phase;

Fig. 3 shows an analogous measuring device during the volumetric discharge phase;

20~933~
Fig. 4 shows a classic diagram of differential metering weighing;

Fig. S shows the curve of the weight indication in the weighing container over time;

Fig. 6 shows uses of the new invention in a milling diagram.

Reference is made to Figure 1 in the following. The production flow P1 enters vertically into a flow measuring device 1 at the top and leaves the latter again at the bottom as P2. The flow measuring device comprises a feed head 2 which is securely connected with a platform 3 via brackets 4 and is supported on the base 5. A feed tube 6 and a diverting tube 7 are stationary. The weighing part 8 is connected to the feed head 2 and the diverting tube 7 via a flexible rubber sleeve 9 in each instance so as to be tight against dust relative to them. The weighing part 8 comprises an upright weighing container 10 whose lower part comprises a slight conically tapered portion 10'. The weighing container 10 and the conically tapered portion are constructed as a circular tube shape. A transition piece 12 is arranged between the weighing container 10 and a discharge screw 11 and ensures the transition from the upright tubular shape of the weighing container 10 into a horizontal tubular shape of the discharge screw 11 in an optimal manner with respect to production flow technology.
In Figure 1, the transition piece 12 has an approximately constant cross section from top to bottom and has a shape passing from circular to rectangular in the embodiment example. The weighing part 8 is suspended in the circumferential direction at e.g. three weight measurement value receivers 13 at the platform 3. Especially interesting is the suspension of the entire weighing part 8, including a drive motor 14, so that the drive motor 14 and 204933~
the discharge screw 11 project out over the weighing part 8 in opposite directions and balance one another within a certain circumference with respect to a center axis 15. A
preliminary bin 16 is situated directly at the feed tube 6, which preliminary bin 16 is controllable by a pneumatic cylinder 17 and a base flap 18 via an electronic control unit 19 or a pneumatic signal transformer 20, respectively, according to a selectable program, wherein reference values for the product discharge are obtained by an external computer 21 and the actual value weight signals are obtained by the weight measurement value receivers 13.
The preliminary bin comprises less than 50~ of the maximum volumetric capacity of the weighing container 10, preferably approximately 30% to 90%. However, a course is accordingly taken in this instance in a very deliberate manner which diverges from the conventional use of a differential weigher, since only a portion can be pre-stored for the filling of the weighing container, so that the feed can likewise be determined with weighing technology, which is important for determining a production flow if additional regulating devices are not taken into account for the feed.
The height of the weighing container is approximately twice its diameter, wherein the diameter can amount to 0.3 to 0.6 m. For this purpose, the tube screw conveyor has a diameter of 0.100 to 0.250 m, so that the average ratio of the weighing container cross section to the tube screw conveyor is approximately 1 : 10.
A further particularly interesting construction idea is shown in Figure 1 in that the drive motor 14, with or without flanged on discharge screw shaft 22, can be pulled out in the direction of the axis 24 of the discharge screw 11 in the manner of a drawer via pull-out means 23. This makes it possible to service the device quickly at any time while imposing particularly strict demands on the device 20~9~3-1 with respect to the cleanliness of the product path of the production flow.
As the product falls in the upright weighing container 10 constantly in the vertical direction, it is guided directly into the front feed of the discharge screw shaft 22, discharged horizontally from the weighing container 10, and delivered in turn in a continuous manner vertically via the diverting tube 7 so as to be monitored once again with the use of technical measuring means.
Figure 2 shows the same device as in Figure 1 during the gravimetric weighing phase with closed base flap 18.
Differential weighing takes place in this instance during the production discharge, or the constantly discharged product is measured by means of the corresponding reduction of weight in the weighing container 10.
Figure 3 shows an arrangement similar to that in Figure 2, but without a preliminary container. The phase of volumetric discharge metering takes place here. Figure 4 shows the classic curve, known per se, of a differential metering weigher. The latter is characterized by an extremely short filling time and a very long gravimetric weighing, which is ultimately the purpose of differential metering.
Figure 5, which shows two weighing cycles, according to the new invention, is referred to in the following. A is the beginning of the filling of a differential weigher with a more or less regular product feed. At B, the product feed is stopped and the product discharge from the weigher begins simultaneously with differential weighing, which consists particularly in that the weight which is reduced per unit of time is determined at the weigher which is no longer disturbed by the feed. Point A' is the end of the differential weighing. The product which has built up in the feed area from 8 to A' is left in the differential weigher until point C. A regular product feed is effected 20~933~
briefly until the product guidance is interrupted again at point D. The second differential weighing is performed from D to A'.
In the following two cases:

- change in the discharge quantity from the differential weigher when the feed quantity cannot be influenced or - change in the feed quantity at desired discharge reference value, it is important with respect to regulation that a constant time (cycle time~ be selected for at least two weighing cycles. As a result, there is a difference between the feed weigher and the metering output which must be influenced.

tl = gravimetric weighing time t2 = refilling time t3 = time for regulating t = cycle time The regulating can be effected according to the following equation:
y - (a) y - > (b) Qreference (Xg/sec) = Qactual + + 0.5 t t An entire mill is shown schematically in Figure 6.
This concerns a mill cleaning 30, tempering and milling preparation 31 as upper left-hand block. At the top right-hand corner is a flour silo 32, the mill 33 with plansifters and semolina cleaning machines is at the bottom left-hand corner, and a flour mixing 34 is indicated at the lower right-hand corner. The use of the new invention is marked by a circle in the diagram. A control passage, e.g. the 20~!~33~
ratio of sieve tailings to sieve throughs after Bl is designated by B and a corresponding key passage at the reduction passages for a continuous monitoring of the production flow is designated by C.

Claims (13)

Claims:
1. A device for determining a product flow of products having unfavorable flow properties comprising:
an upright weighing container;
a closeable preliminary bin for the weighing container;
a discharge metering screw with controllable rotational speed being fixedly connected with a lower portion of the weighing container, said discharge metering screw having an essentially horizontally arranged discharge;
a transition piece from the weighing container and discharge metering screw; and differential weighing elements arranged relative to said weighing container, wherein the container has a tubular exit and said transition piece has a round cross section at its inlet side for coupling to said tubular exit and a rectangular cross section at its outlet side for coupling to the horizontal metering discharge screw, the rectangular cross section and round cross section having areas of similar size.
2. A device for determining a product flow of products having unfavorable flow properties comprising:
an upright weighing container;
a closeable preliminary bin for the weighing container;
a discharge metering screw with controllable rotational speed being fixedly connected with a lower portion of the weighing container, said discharge metering screw having an essentially horizontally arranged discharge;
a transition piece from the weighing container and discharge metering screw; and differential weighing elements arranged relative to said weighing container wherein the discharge screw has an axis and is arranged to be removable in the direction of the axis in the manner of a drawer.
3. An apparatus for determining a product flow of products having unfavorable flow properties comprising:
a weighing container, the weighing container having a tubular exit;
a discharge device including a housing and a metering screw with controllable rotational speed, the discharge device housing being disposed beneath the weighing container exit, said discharge device housing being essentially horizontally arranged;
a transition piece extending between the weighing container and discharge device housing, the transition piece having a round cross section at its inlet side for coupling to said tubular exit and a rectangular cross section at its outlet side for coupling to the discharge device housing, the rectangular cross section and round cross section having areas of similar size.
4. An apparatus for determining a product flow of products having unfavorable flow properties comprising:
a weighing container;
a discharge device including a housing fixedly connected with a lower portion of the weighing container and having a horizontal axis and a metering screw with controllable rotational speed being disposed in the housing along the horizontal axis, the discharge metering screw being removable in the direction of the horizontal axis in the manner of a drawer.
5. The apparatus of claim 4 wherein the discharge device includes a drive motor assembly operatively connected to drive and support the metering screw, and wherein the apparatus further includes a telescoping assembly interconnecting the drive motor and the discharge device housing.
6. An apparatus for determining a product flow of products having unfavorable flow properties comprising:

a differential weighing container having a tubular exit;
a transition piece fixedly attached to the container at the tubular exit, the transition piece having around cross-sectional inlet and a rectangular cross-sectional exit; and a discharge device fixedly attached to the rectangular exit of the transition piece, said discharge device having an essentially horizontally arranged metering screw, wherein the metering screw is removable in the manner of a drawer.
7. The apparatus of claim 6 further including a bin for holding a predetermined amount of product and positioned to discharge the held product into the differential weighing container, wherein the predetermined amount is 30 to 90% of the capacity of the differential weighing container.
8. The apparatus of claim 6 wherein the ratio of the height to the diameter of the differential weighing container is approximately 2 to 1.
9. The apparatus of claim 6 wherein the ratio of the cross section of the differential weighing container to the cross section of the discharge device is approximately 10 to 1.
10. An apparatus for determining a product flow of products having unfavorable flow properties comprising:
a differential weighing container; and an essentially horizontally oriented discharge device fixedly interconnected to the differential weigher, said discharge device having a metering screw with a drive motor assembly and a housing with an opening therein at a distal screw end, wherein at least portions of the drive motor assembly and housing extend beyond opposite sides of the container to maintain an equilibrium about a horizontal axis through the center of the container.
11. The apparatus of claim 10 wherein the differential weigher and discharge device are interconnected by a transition piece, and the transition piece has a round cross-sectional inlet and a rectangular cross-sectional exit.
12. The apparatus of claim 11 wherein the area of the inlet and exit are approximately equal.
13. A method for determining the instantaneous discharge amount per unit time and/or a summed throughput of a product flow of products having unfavorable flow properties in a production installation, the method using an apparatus including a differential weigher and a discharge device, the method comprising the steps of:
directing the product flow during intermittent filling intervals of a few seconds duration into the differential weigher, wherein a cycle time between successive fillings is less than 30 seconds;
discharging the product continuously and substantially horizontally from the differential weigher using the discharge device; and measuring the discharged product flow during weighing intervals occurring between the filling intervals, the measuring of product flow being correlated with rotational speed of the discharge screw.
CA002049334A 1990-02-02 1991-01-30 Device, method and use of the method for determining a production flow Expired - Fee Related CA2049334C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH00349/90-5 1990-02-02
CH34990 1990-02-02

Publications (2)

Publication Number Publication Date
CA2049334A1 CA2049334A1 (en) 1991-08-03
CA2049334C true CA2049334C (en) 1996-07-02

Family

ID=4184995

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002049334A Expired - Fee Related CA2049334C (en) 1990-02-02 1991-01-30 Device, method and use of the method for determining a production flow

Country Status (18)

Country Link
EP (2) EP0466858B1 (en)
JP (2) JP2823093B2 (en)
KR (2) KR950011541B1 (en)
CN (1) CN1020859C (en)
AT (2) ATE114369T1 (en)
AU (2) AU638542B2 (en)
BR (2) BR9104263A (en)
CA (1) CA2049334C (en)
CZ (1) CZ284033B6 (en)
DE (2) DE59103568D1 (en)
ES (2) ES2066420T3 (en)
HU (2) HU209987B (en)
RU (1) RU2086931C1 (en)
SK (1) SK280769B6 (en)
TR (1) TR26846A (en)
UA (2) UA25897A1 (en)
WO (2) WO1991011690A1 (en)
ZA (1) ZA91734B (en)

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE59204653D1 (en) * 1991-01-29 1996-01-25 Buehler Ag METHOD FOR SACKING PRESENTED BULK FILLING QUANTITIES AND A BULK SACKING DEVICE
US5148943A (en) * 1991-06-17 1992-09-22 Hydreclaim Corporation Method and apparatus for metering and blending different material ingredients
DE9214622U1 (en) * 1992-10-28 1993-04-15 Vollmar, Hartmut, 5330 Königswinter Dosing device, in particular for feeding feed materials to a plastic screw press
DE4436767A1 (en) * 1994-10-14 1996-04-18 Thomas Dipl Ing Wald Continuous dispensation of flowing products e.g. powder or fibrous or granular products in industrial production line
CA2240049A1 (en) 1995-12-11 1997-06-19 Maguire Products, Inc. Gravimetric blender
DE19645505C1 (en) * 1996-11-05 1998-06-10 Greif Velox Maschf Gmbh Gravimetric dosing method for bulk material
NZ336701A (en) * 1996-12-13 2001-01-26 Maguire Products Inc Reduced size gravimetric blender having removable hoppers with integral dispensing valves
US6467943B1 (en) 1997-05-02 2002-10-22 Stephen B. Maguire Reduced size gravimetric blender
ES2183663B1 (en) * 1999-08-09 2003-12-16 Rodio Cimentaciones Especiales CONTINUOUS MIXER FOR PULVERULENT MATERIALS VIA HUMEDA.
TR200201390T2 (en) * 1999-11-24 2002-09-23 The Procter & Gamble Company A method of controlling the amount of the substance fed during the transfer of a substance
DE10338430A1 (en) * 2003-08-18 2005-03-17 Bühler AG Infrared process to monitor the quality of the mixed dry ingredients in the preparation of noodles, couscous, extruded or agglomerated starch-based food products
DE102004002626A1 (en) * 2004-01-16 2005-08-04 Bühler AG Libra
DE102004056925A1 (en) * 2004-11-25 2006-06-01 Hahn Verfahrenstechnik Gmbh Screw/scraper conveyor for continuous thermal/chemical treatment of sludge, filter cake and bulk materials, comprises conveyor element for transporting material, worm shaft with coils/string with tappet, outer hutch and balancing device
US10201915B2 (en) 2006-06-17 2019-02-12 Stephen B. Maguire Gravimetric blender with power hopper cover
US8092070B2 (en) 2006-06-17 2012-01-10 Maguire Stephen B Gravimetric blender with power hopper cover
DE102008020429B4 (en) * 2008-04-24 2012-02-02 Südzucker AG Mannheim/Ochsenfurt Process for the electroporation of beet pulp and apparatus for carrying out this process
CN102180357B (en) * 2011-05-04 2012-03-14 福建龙净环保股份有限公司 Pneumatic conveying system and method for powder material with low air retention ability
DE102011119451A1 (en) 2011-11-28 2013-05-29 Haver & Boecker Ohg Packing machine and method for filling sacks
CN103304289B (en) * 2013-06-20 2015-01-28 通海县福慧科技有限公司 Quantitative batching machine for waste vegetable leaf organic fertilizer
US10138075B2 (en) 2016-10-06 2018-11-27 Stephen B. Maguire Tower configuration gravimetric blender
KR101489455B1 (en) * 2014-10-23 2015-02-06 경성 디.에스 주식회사 Metering device of synthetic rubber
CN104474963B (en) * 2014-11-13 2016-06-22 浙江三信智能机械科技有限公司 A kind of proportioning process being easy to polyester bottle slice mix
IL235828A (en) * 2014-11-20 2017-12-31 Margalit Eli Multi-channel gravimetric batch blender
CN104605294A (en) * 2015-02-16 2015-05-13 宁夏法福来清真食品股份有限公司 Potato flour processing production line
JP6754132B2 (en) * 2016-09-20 2020-09-09 株式会社菊水製作所 Powder mixer
DE102016218135A1 (en) 2016-09-21 2018-03-22 Robert Bosch Gmbh Production module for the production of solid dosage forms
CN107280049A (en) * 2017-07-14 2017-10-24 湖南伟业动物营养集团股份有限公司 A kind of near infrared online feed production system
CN107638819B (en) * 2017-10-11 2020-10-27 西安交通大学 Micro-continuous feeding device for mixed fuel
CN107836551A (en) * 2017-12-12 2018-03-27 大竹县文星镇中心小学 A kind of powder mixing device prepared for fruits and vegetables pressed candy
CN108372942B (en) * 2018-03-21 2019-11-19 汤康宁 A kind of filling and package device and method thereof
CN108465432B (en) * 2018-05-31 2023-06-27 攀枝花学院 Flocculant preparation device
CN109569402B (en) * 2018-11-29 2021-04-13 河南路大公路交通科技有限公司 Sealant production equipment for highways
CN113145410B (en) * 2018-12-31 2022-07-05 重庆利尔达科技开发有限公司 Two ingredient glue circulation upset intermittent type formula mix glue applying device
KR102242717B1 (en) * 2019-02-27 2021-04-21 주식회사 오리온 Cutting Apparatus and Mixing Apparatus Having the Same
CN110160616B (en) * 2019-06-25 2024-01-19 中国计量大学 Automatic weighing and uniformly mixing device and method for powdery substances
CN110732480A (en) * 2019-09-16 2020-01-31 凤台县晶谷粮油贸易有限公司 flour making and feeding device with multiple pipelines working simultaneously
CN112619530B (en) * 2019-09-24 2024-06-11 福建泉州金灿五金制造有限公司 Weighing, vibrating and discharging all-in-one machine
CN110624470A (en) * 2019-10-21 2019-12-31 攀钢集团钒钛资源股份有限公司 Roasting mixing and batching system based on PLC
CN110801755A (en) * 2019-11-28 2020-02-18 陈国才 Quantitative feeding stirrer for preparing anticorrosive paint
CN110978201B (en) * 2019-12-21 2022-05-31 铜陵万华禾香板业有限公司 Accurate ratio feeding device of straw board surface material
CN111136259B (en) * 2020-01-09 2022-01-11 北京毅能创投科技有限公司 Aluminum powder mixing method
CN111389297A (en) * 2020-04-20 2020-07-10 宿州市正辰环保科技有限公司 UV (ultraviolet) silk-screen matt film gloss oil and preparation method thereof
CN113262715A (en) * 2021-05-28 2021-08-17 天津中冶团泊湖置业有限公司 Light aggregate multidirectional countercurrent forced mixer and electric control system thereof
CN114602374B (en) * 2022-03-03 2023-04-07 湖南新源发制品股份有限公司 Wig fiber coloring agent production facility
CN115463607B (en) * 2022-09-20 2024-03-19 山东裕城生物技术有限公司 Quantitative mixing production line for powder veterinary drugs and production method thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2247518C3 (en) * 1972-09-28 1975-04-30 Werner & Pfleiderer, 7000 Stuttgart mixer
FR2384246A1 (en) * 1977-03-18 1978-10-13 Rhone Poulenc Ind Powdered material dosage meter - has hopper and Archimedean screw regulated to give constant flow of prod.
JPS5681424A (en) * 1979-12-07 1981-07-03 Satake Eng Co Ltd Weighing and mixing device for grains
DE3146667C2 (en) * 1981-11-25 1984-12-06 Werner & Pfleiderer, 7000 Stuttgart Method and device for mixing and metering several mix components
DE3219910A1 (en) * 1982-05-27 1983-12-01 Sigurd 4200 Oberhausen Harms Loosening device for bulk products as a discharge aid for containers
JPS6142324A (en) * 1984-07-31 1986-02-28 ナシヨナル フオルジユ ユ−ロプ Apparatus for mixing powdery component
CH668641A5 (en) * 1985-04-04 1989-01-13 Buehler Ag Geb METHOD AND DEVICE FOR AUTOMATICALLY DETECTING THE THROUGHPUT OF A FLOW OF MATERIALS, e.g. GRAIN.
JPS63139218A (en) * 1986-12-02 1988-06-11 Asano Seiki Kk Dosing apparatus
DE3708282A1 (en) * 1987-03-13 1988-09-22 Siemens Ag Process for the metering of masses composed of individual components

Also Published As

Publication number Publication date
CZ284033B6 (en) 1998-07-15
CA2049334A1 (en) 1991-08-03
HU912766D0 (en) 1992-01-28
ATE124135T1 (en) 1995-07-15
JPH04503867A (en) 1992-07-09
BR9104263A (en) 1992-08-04
HU209987B (en) 1995-01-30
AU7064191A (en) 1991-08-21
WO1991011689A1 (en) 1991-08-08
ES2075425T5 (en) 1999-02-01
ZA91734B (en) 1991-11-27
HUT63925A (en) 1993-10-28
JPH04503714A (en) 1992-07-02
CN1020859C (en) 1993-05-26
CS9100218A2 (en) 1991-09-15
DE59103568D1 (en) 1995-01-05
KR920701795A (en) 1992-08-12
KR0143227B1 (en) 1998-07-15
EP0466857A1 (en) 1992-01-22
CN1053755A (en) 1991-08-14
DE59105768D1 (en) 1995-07-27
HU912765D0 (en) 1992-01-28
AU638542B2 (en) 1993-07-01
HU216197B (en) 1999-05-28
UA27029A1 (en) 2000-02-28
EP0466858B1 (en) 1994-11-23
SK280769B6 (en) 2000-07-11
EP0466857B1 (en) 1995-06-21
JP2823093B2 (en) 1998-11-11
TR26846A (en) 1994-08-19
UA25897A1 (en) 1999-02-26
KR920701797A (en) 1992-08-12
RU2086931C1 (en) 1997-08-10
BR9104262A (en) 1992-03-03
ES2075425T3 (en) 1995-10-01
HUT67612A (en) 1995-04-28
WO1991011690A1 (en) 1991-08-08
KR950011541B1 (en) 1995-10-06
ATE114369T1 (en) 1994-12-15
AU7064691A (en) 1991-08-21
ES2066420T3 (en) 1995-03-01
EP0466857B2 (en) 1998-09-16
AU641214B2 (en) 1993-09-16
EP0466858A1 (en) 1992-01-22

Similar Documents

Publication Publication Date Title
CA2049334C (en) Device, method and use of the method for determining a production flow
US4944428A (en) Apparatus for the automatic determination of a continuous bulk material throughput by means of a continuous balance
US4544279A (en) Apparatus for mixing and proportioning several mixing components
US5148943A (en) Method and apparatus for metering and blending different material ingredients
US5466894A (en) Method for supplying pre-defined filling quantities of bulk material by exact weight as well as filling apparatus
US4111272A (en) Weigh feeding apparatus
EP0372024B1 (en) Wild-flow loss-in-weight weighing system
US4320855A (en) Weigh feeding apparatus
US5121638A (en) Method and device for recording the flow rate of a stream of bulk material
EP0290999B1 (en) "fuzzy inference" powder weighing methods and measuring mixer
DE19728624C2 (en) Dosing device for powdery products, in particular batch weighing system for additives
CN102389742A (en) High-precision dispensing equipment and control method thereof
US4812047A (en) Apparatus for the gravimetric dosing of flowable products
US5435189A (en) Device, method and use of the method for determining a production flow
JPH03163611A (en) Adjustment of level of mixture of fluid material consisting of at least two components in container having exit
CN104508436A (en) Feeder unit, a feeder module comprising a plurality of feeder units, and method for discharging a constant mass flow of one or more powders into a receiving container
US4983090A (en) System for feeding bulk material
JPH02655Y2 (en)
US4499961A (en) Combinatorial weighing apparatus with check weigher
US4029365A (en) Method for feeding powdered material
US5988052A (en) Apparatus for measuring rate of cheese production
US5497907A (en) Micro-metering device
AU2003261107A1 (en) Loss-in-weight feeder with discharge pressure compensator
JPH04184223A (en) Multi stage balance measurement type fixed amount feeder and multi stage balance type weighing apparatus
AU4030589A (en) Wild-flow loss-in-weight weighing system

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed