CA2027293A1 - Method for obtaining a powdered refractory material and a reactor for carrying out the method - Google Patents
Method for obtaining a powdered refractory material and a reactor for carrying out the methodInfo
- Publication number
- CA2027293A1 CA2027293A1 CA002027293A CA2027293A CA2027293A1 CA 2027293 A1 CA2027293 A1 CA 2027293A1 CA 002027293 A CA002027293 A CA 002027293A CA 2027293 A CA2027293 A CA 2027293A CA 2027293 A1 CA2027293 A1 CA 2027293A1
- Authority
- CA
- Canada
- Prior art keywords
- casing
- combustion
- heat
- cavity
- mixture
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B21/00—Nitrogen; Compounds thereof
- C01B21/06—Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B13/00—Oxygen; Ozone; Oxides or hydroxides in general
- C01B13/14—Methods for preparing oxides or hydroxides in general
- C01B13/32—Methods for preparing oxides or hydroxides in general by oxidation or hydrolysis of elements or compounds in the liquid or solid state or in non-aqueous solution, e.g. sol-gel process
- C01B13/322—Methods for preparing oxides or hydroxides in general by oxidation or hydrolysis of elements or compounds in the liquid or solid state or in non-aqueous solution, e.g. sol-gel process of elements or compounds in the solid state
- C01B13/324—Methods for preparing oxides or hydroxides in general by oxidation or hydrolysis of elements or compounds in the liquid or solid state or in non-aqueous solution, e.g. sol-gel process of elements or compounds in the solid state by solid combustion synthesis
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/90—Carbides
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/90—Carbides
- C01B32/914—Carbides of single elements
- C01B32/921—Titanium carbide
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/90—Carbides
- C01B32/914—Carbides of single elements
- C01B32/949—Tungsten or molybdenum carbides
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/06—Metal silicides
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B35/00—Boron; Compounds thereof
- C01B35/02—Boron; Borides
- C01B35/04—Metal borides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/64—Burning or sintering processes
- C04B35/65—Reaction sintering of free metal- or free silicon-containing compositions
- C04B35/651—Thermite type sintering, e.g. combustion sintering
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Combustion & Propulsion (AREA)
- Structural Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Carbon And Carbon Compounds (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Lubricants (AREA)
- Developing Agents For Electrophotography (AREA)
- Silicon Compounds (AREA)
- Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)
- Pressure Welding/Diffusion-Bonding (AREA)
Abstract
METHOD FOR OBTAINING A POWDERED REFRACTORY
MATERIAL AND A REACTOR FOR CARRYING OUT THE
METHOD
Abstract The method includes thermal treatment through combus-tion of a heat liberating mixture, and application to so-lid products of combustion resulting from the treatment of external forces in a direction tangent and/or normal to their surface at a temperature near to or below the tem-perature of combustion to 0.5 their melting point accompa-nied by evacuation of the powdered refractory material thus produced. The reactor comprises a casing having a re-action cavity, the casing accommodating means for feeding the heat liberating mixture under pressure thereto, and a rotor having an insert, this means and rotor communication with the cavity. The outer surface of the insert defines with the inner surface of the casing an annular clearance facilitating evacuation of the powdered refractory material.
MATERIAL AND A REACTOR FOR CARRYING OUT THE
METHOD
Abstract The method includes thermal treatment through combus-tion of a heat liberating mixture, and application to so-lid products of combustion resulting from the treatment of external forces in a direction tangent and/or normal to their surface at a temperature near to or below the tem-perature of combustion to 0.5 their melting point accompa-nied by evacuation of the powdered refractory material thus produced. The reactor comprises a casing having a re-action cavity, the casing accommodating means for feeding the heat liberating mixture under pressure thereto, and a rotor having an insert, this means and rotor communication with the cavity. The outer surface of the insert defines with the inner surface of the casing an annular clearance facilitating evacuation of the powdered refractory material.
Description
1~9~ ~2 T~r~cl~c--pr~rn-~r.l .p,~ ~7 t~3s ;~ 7 137 P.~3 XOD ~(:)R 013TAI~IING A POWI)ER~D R~ilFRAC~ORY
DaA~3RIAI. AND A P~AC'~OR ~?0R CARRYI~IG OUq! q~E
0~
q~hi~ iave~tion relabes to a m~thod ~or obtaining a powd~red xefractory material' bssea on re~ractory ~n- :
organic metal compou~d~ o~ IV`-VI, YIII ~roups o~ the ~e-riodic Syster~, and a reaoto~c for carr~ s oub the m0bhod.
Pow~ered r~ractor~ materials obtained b~ u~ing th0 propo~ed method can fi~d ap~lication in mecb~icAl en- ~ -~3;ineeri~g, chemical industry, a~d metallurg~.
. At pre~ent, powdered materials are obt~in~d by ~in- -tsrin~ powder ~i~ture~ cont~inin~ oxides oî metal~ o~ IV~
-VI group~ o~ the Periodic Sy~tem ~nd l~on-me~ls bake~
~rom the ~roup: boro~ co~, ca~bon at R t~mp~rature 1200-2000~C in ~rn~ce~ ~ith protective atmo~pheres, or -by thermally t~eat1n~ heat ~ber~in~ mi~tures o~ met~ls .
o~ IV-~ group~ o~ th~ Periodic Sy~em and said non-metal throu~h comb~tio~. The thu~ obtained refr~ctory matsr~- . . ~ .
. al~ i~ the ~orm o~ porous ~h~2e1ess cakee a~e ~oo1sd, .
crushed, and the materi~l o~ the powder i8 oeparated into ~ract~o~ owever, thes~ method3 invol~e ~ny treatment ': I'` I ~ ' '' ' ~t~es, and ar~ charactsr1zed by low ~tciency and high - '~
power ~nd 1~bour oo~su~ptio~. Duri~ cru~hin~ ~nd comminut~
the powder~ o~ re~r~ctorg m~beria1s th~ l~bt~r ara ~ - , -u~ceptible to being fou1ed with ~Ariou~ im~uritieo ar- :
f~ati~g their qu~lity. -~::
lqq~ 8 1~ T~r~lovcl-proml~r~l.pal~ 37 ~ 27 IS7 F.g~
h ,, ,. ~ v q?here 1~ kno~n a method ior obt~in:Ln~, powd~r mate- -xi,~ U, A, 644, 7~8 ) by thermal treat~el~t throu~;h combus- ~
tion OL ~ he~t liberatin~ mixture c~ont~ining titanlum and : -carbon at ~ ratio en~urinK combustion o~ this ~ixt~re in a reaction zone accomya~ied by liberatio~ of h~t and gase-ous ~roducts of combustion.
'rhe reacto~ X`or carr~in~; OUt ~hi~ metb.od compri~es a C~18irl~ lined with a he~t insul~ting materl~l, havlng a pipe ~or avacuati~ ;a~eou~ ~roduct~ o~ co~bustio~ ~nd a r~ac~ion chamber enclosed by a cooling sys~em. The c~sing has a re~ovabLe cover pl~te. ~he reactor include3 a m~an3 or initiatin~ combustion o~ the heaJG libe~s~in~ mix~
:
coml~unicatir~j with ttle reaction chamber and havin~ the orm o4 a t~n~st~en coil connected to a current source. The ~-~
reactor opera~es in th~ ~ollowin~; ~Ga~lner. A he~t libe~at- -in~ mixture ol' titaniu~n and ca:~bon i~ char~ed to the re-action ahamb~r, comp~cted, and ~.he CaSitl~; i6 ¢losed by the cover pl~te. Then the ~ixtu~e i~ infl.amed by th~ tu~g~
qten oo~l to whlch a current 40-6~Vsnd 60-80A i~ apE~lied.
Aa~ th~e~ flame fro~t mov~ in the heat ~berating mixtu~e, he:pres3ure in the c~amb~r ~;rows to 40~ due to lib~ratiotl of ~aseou~ product~ o~ oombustion. Th~ B Pre8-sur~e is ;~du¢ed throu~U ~vacuati~; t~L~ gas~ou6 ~roducts o~' combu~iocl via ~he pipe~ ~ ths samc time, heat is r~-moved ~rom the ohamber ~y the coolln~ 3ystem. :
~ itanium c~.rb~ de produced a~ a resul~ o~ the pro-ce~ irl the ~or~ o~ ~ compacted m~,ss or caka is ooolsd a~d .~ .
T.l~ J~ Jl ~JIII~ Jc~ bc~ e:/~T e~ ; 2ae: 21' ~ r . ~r ~ 3 --com~inutcd to po~vder ~!ihereby it can be ~ouled ~with u~de31r-able impu~itie~ Jhsrea~ mang ~ta~es of the proces~ re~ult in low production e~ficiency. I~ po~ le ~o ~or~ a po~der of tni~q material im~edi~tely in the reaction chamb~r by introducin~ titaniu~l carbi~e to the heat libe2~atin~ mix-ture prior to ci~argin~ the mi~ture into the reaction zone which reduce~ the t~ rature o~ ~ynthe3i3 and there~ore pre~eats sinteriR~, of ~he titanium carbid~ g~ner~t~d it~3ide t}-e cha~ber. It ha~ to be nobed, tlowever, that with this conqtruction o~ tlle reactor it i~ im~o~sibi~ to promptly evacu~te the powder from the hish temp~rature zones. In :
corlsequence, titan~um carbide will hav~ the Yorm or~ a caXe : .
- . , ~nd only a small paxt thereo~ vrill be po~.vdered, wher~by ~ormation i~ bhe r~action zone o~ a powder with a narrow . .
distribution o~ ~r~ctional com~o~ition i~ pr~vented. ~ ~~
It i~ ~n obaect o~ the pr2seat invention to provide a m~thod ~or obtaining a powdered re~ractory m~terial with a narrowly distrib~lted ~ractional composit~ on t~ough sim- -:
pli~yi~g the product~o~ proce~, and to provide a hi~ly ~ficient ro~o~or for carryin~ out the ~ethod.
~ ho abject ol' the invsntion is at~ained by a method ~or obtaini~; a powdered re~ractory material com~ri~
, ~
ther~al treqtm~t throu~h ~ombu3ti~n o~ a heat Liberatin~G : -~ ture co~t~,inirlg, a ~on-me~al takan froL~ th-~ Oroup car-bon, boron, ~llicon, and at ~ea~t ona met~l at a r~tio en-9Uri~lg comb~tion o~ the mi2ture in a rea¢tion zone a¢-~ompanied by removal of heat ~nd g~seous produ¢~s oP ¢o~-17 ~ 3 L ~ Tl_lr y~J~ Jr ~J~ lI iJCIId1,~. e~ ) Z~ ~ io S h ~
bu~tion there~rom, in which method, aocordinæ to t~e ia- -vention, applied i~ the re~ction zone to solid products of co~bu~tio~l ~re e~cter~al ~orces about llnas ta~;e~t ~nd/or- .
nor~n~aL ~o ~he ~ ace of thc~c produot6 ot a tempuratur~ :
near ~o or below th~ combustio~ tempe~QtUra to 0. 5 their ~e~tin~ poiat follouled by evacuat~on of the re3ultln~ powd-ered I~0fractor;y ~atexial ~rom t~e reaction zone.
~ e propo~d !~thod makes i~ po slble bo obtain ~
big~lg pura powder of rs~r~ctory materlal Witb a ~p~eset narrowl;~ distri~uted ~ractioa~l compos~ tion throug~ var;yi~g the ln t~nsity o~ the extern~l force~ ia conti~uous or $n -' termiGtent op~ratin~ co~ditiou~.
Co~ditioas ~or t~e proce~s have been pr~seleoted ~: exp~r~m~a~211y proceedi~s irom t~e ~ollowing. 801id pro-duc~c o~ co~u~tion in bhe reaction ~one have ~he îorm oi a ~i~ely di~lded powder of re~racto~ material produced at a te~perature cl~e to the combu~tion tempe~a~ure, or a c~e o~ particle~ o~ re~raotor~ materlal oî low mechanical tre~;th at temperatures to O. S ~he meltl~; poi~b . In the . ~ Iirsb caee the ~e~ter~al ~orGcs act to mo~ the paxtlcle~
~;~ relative to o~e a~other whereby oakin~ iq pre~e~ted~ In .~ h,e ~econd ca~e ap~lication o~ rela~ively low ext~rnal oroe~ eauseq vig,orous breaking o~ t~e cake not aff ectin~
the propertie~ of th~ reXractory materlal. The di~perslon . proc~s~ proee~ds under energy-advantRgeous oonditlon3 ;t~nk~ to the u~e of th~ heat OI ~ynthe3i~ aad iorces of low ~agnitude. As the powd~r ~Hrabed in th~ ~ea¢tion 1~J~ Ur ~ /lJ~~r ~ lY~ VJ~J~ ~J~ IJ Cl 0~ I-"VJ~
,_ - 5~ : :
zons i~ contiauously evacuated tnerefrom, r~o r~peat~d cak~
take~ plac~. Removint., heat ~rom the reaction zone make3 ~ :~
~intalnin~ the te~peratur e~ within the pre~erred ra~e -~
a relatively ea3y oper~tio~. The ~)ref~rred direction o~
forc~s ap~lied ~o t~1e re~r~ci.,ory material in the ~orm o~
a caXe is obvioll~, as i~ ha~ the ~orm o~ a ~olid body.
~he powder o~ reYractory ~aterial al~o ha~ a ~ ace, sinoe i~ ~ill3 th~ redctio~ ~one having a de~inlte volume, Appli- :
cat~ on of e~.ter~al l~orce~ alo~ a line nor~al ~0 th~ sur- - ~ s ~ace o~ ~olid product~ can. be done by a~;plyin~; a pre9suxe thereto at ~e~peratures pre~er~ably olose to 0~5 the melt~
ing point at which the products are nlost br~ttle. Appliea~
i3a OL extsr~lal ~orces alo~K a ts~;ent line i5 ~asured : -t~rough i~parting thex~?to a rotatio~l mo~lon. Preferably~
application of extern~l ~orce3 to sol~ d products o~ com~
u~tion iJi done by exertl~ a p~e3su~e of u? ~o 10 illP~
and impartin~, b~e~eto A rotatiot~al motio~ Of 6 to 314 rad/8. ~ `
~; At pragLure~ h~ r that~ 10 MPa th~ ~olid products o~ com~
u~tion ~are compacted w~reby ~he digper~ion process pro- ~ . .
ceeds ~under 1~I8 favo~lra~l~ condition~, ~he low~r limi~
~ ~, o:e rota~lo~al ~peed ls determinsd by reduced d:lsper8ion f . il¢iency~ An increAse in the xotatio~al speed to over 314 rad/s le~ds tio ~a~ter disper~ion, wh~ ch entall9 a rowth in the con~uml)tion 0~ power. However, for obt~ining powde~ed re~r~ctory materials with a special 3et o~ pro- ~:
pertiès the magnitude3 of pre~sure and rotation~l speed ma;sr extend beyo~d th~ pre60ribed limlts. ~`; ~ ``
1~0~ --0S 17:57 Tl-l~ g~J~I--prc,myshl.pai~t~. 007 0~5 Z30 ~7 87 F.10 ~ V ~ J ~ 3 ~3 ,; ,....
C) In order to en~ur e the maximum e~iciency o:t tha proccco ~ ; contir~uouc ope~.3tion, it is ~:re:~eraol2 that the heat liberatia~ ture ~e conveyed to the reaction zo~e under a pressUr~ Cau~in~; ~ovement oD thi3 mixtUr~
in this zo~ and th~t the powdexed r~Iractory ma,erial be evaauated th~e~ro~ ~,o~;et~er ~i/itG ~ eo~ls pr~duots of com-bu6tion. ~his provides uni~or~ comp~ction o~ ~he heat liberating Ini~ture e~s n~i~L ~or maintainin~ the paramet-ers o~ ¢ombu~tion (r~te ol oombu~tion a~d tempera~ure ~ co~bustion) ~vithin tho prsset ran~e to result in ~lgh quali~y o~ the end product. Continuou~ move~ent o~ th~
heat liber~t~nK ~i~tur~ ~n the reaction zone an~ opera~
tive ~va¢uatio~ o~ the product~ o~' combu~tio~ ther~, rom ~-~ .
prevent ~jeneration oX ni,~h pre~sure~ t~lerein. I~ con~;e-;~ qUenCQ, ~he method en~ures tr~e highest fi~e and explosion e~fety. It i~ co~eque~tl~ pre~erable ~hat the ~ass velo- .
oi~y of f e~di~s the beat liberating mix~ e to the re- :
~ ~ :
~ ~ : actio~ zone be equal to the ma~ rate of comou~tion th. re~
~ `
o~. ~If ~t~e~e oond~lons are u~et, the re~ction zone will .
oontai~ a rclat~ vcly smal~ antll;y OL tr,e mi~ture, ~Jhere :: as whe~ eediny; of ~re~h qu~ntities of the mix~ure is ~top- - ~
ed c~ombustion i~ . shortly '.. erminated. The ~ass ra-,e o:~ -;~ - :oomou~tion o~ t~e mi~l;ure iq as~aaia~ed ~.~vlth the ~peed Or L~l~me propa~;~tion by the îollowlnR~ rela~lonship: . -~ ., .:
m = V ~ Sp ~ , where fii~ V ~ iai the ~pe~d o:~ ~lame propa~ation, normally withi~ ;
botween 10 ~ ~nd 10 ~ m/s;
- ~ ~
, ~ ~, l T ., ,~, Tu r ~ jJ r J 1 1 ~ ; ~ .J~ 2:7 ~T r . ~ 1 V f~ 3 7 ~-~i is ~he ero~s ~ectional are~ o~ the reaction zone, m; and the ~ensitg oY the ~eat li'~eratin~5 mixtu~e ~ k~;fm~.
~ t egu~l ma~ v. locity o~ leedi~ and rate Of com'cua-tion the fl~me ~ro~t i~ fixed at a de~nite ~ection o~ th~
r~action zone~ By inor~as~ng or reduci;~g the rate o~ ~eed-i~g of the he~,~ liberating migture il; iS pos~ible to di~-pli~c9 ~he :elame ~ron~ clo~er bo or ~rth~r ~rom the poin~
o~ application of the ~xter~al :~orces to the 901~ d pro- :
duct~ of combu~ion, to the~e~y v~ry ..h~ time ~ro~ combu~
tio~ to di~per~ion and conse~uenbl~ temper~uro ~t :
~ .. . .
which the product is dispersed. ~or expandi~g the ra~e; of E~wd~ d ~i?r~ r mo.t.c~ 1 q :7~n~1 1 mr~rnvi ne t:hf~1 r ~lnAl~i.t~
ens~ e c~ a~ ;e c;e impuriti~3, ib i~ adv$~
able ~hat the~al tro~t~e~t o~ t~e ~eat liberatlng mixture be carried out in an ~tmosphere o~ inert ~a~ or a ~as re~
~ctin~ therewith.
In order to co~trol the com~ustion proces~,And ob~
tai~ powdered refractory material~ oP various designation~
it is pre~rable ~o use ~ hea~ ~b~rating mi~tur~ containing a meta1 f~o~ oups IV-VI, VIII o~ the P~riodic Sy8tem, a~
welll ~r; car~ide, borid~, ~ilicide of ~t l~a9~ one of said ~ : :
, , ~ ,.. . .
~ metals takeQ separately or to~eth~r, or ni~rlde, oxide ;.-~
;~ o~ at least o~e element oP groupQ III-V of ~hs Per~od~o . `~`
Systom~ ;~
he ob~ect is ~urther Rttained by a reactox ~o~ car- ` . .--rying out t~e method co~p~ .a oa~in~ ed with a he~t :~ ,', . ` ' ' ' ~: ' 1i3 1~ 3 T~ ylJ~J ~--f~ IJIIIIJ~ . iJ~ Z~ (~i7' ~ lZ
: -, i~ulati~g material Pnd provi~.ed with a cooling sy~tem, the casin~, haYing a hole for evao~ati~ produGts o~ com- :-bustion~ a ~eac~io~ cavity~ and a mean~ ~or i~itiati~g com- -bu~tion oY i;he h~at li~)erating r~ixtu~e, in which r~actor, ; ~:
accordin~; to the i~vention, the ~nterior o~ the casin~;
~cco~mod~tes axially Qt end6 thereo~ a mean~ ~or ie~ditl~ the heat llbera~ g mixture under a pre93111'9 e~Rur~n~; lts move-ment in ~his cavity, and a rotor having a~ in~crt o~ ~ w.e~r re~i~t8nt reIraotorg ma'Gerial~ the out~r ~uriace o~ the ~ n- -sert definin~; with the itlner Lined curface o~ the casing an ~nul~r clear~n~e communicating wi~h the hole.
Ia vie~ o~ the a~oIaa~scribed, the pra~posed reactor ~akes it ~o~$ble to obt~in ~ hl~h pu~lt~ powdered re~rac-tory ~aterial o~ desired degre~ of dispersion e.nd pre~et ~ -properties, '~he reactor i~ ~h~racterized b~r high e~iclen- , oy Rnd ~ire~e7~p}0sio~ ~f et~. It c~n operate continuou~ly . or intermittenbl~.
: Preferably, the meanq ~or ~eedin3; l;he hea~ liberat- ~ ~
: ~ ~ inK mixture ha~ the fo~m o~ a ~orew arrat~ed in the cas- : :
ing to be capable of rot~tit~5 in a dlreotion oppo~i te to he ~ire~iocl o~ ro~ on o~ th~ rotor 5uoh ~n ~rrS~n~m~nt:
ensure~ ~he ~i~;he~t explosi~n ~a~e~y ~ as w~en the ~lamu fronb react~e~ t~e ~crew, it die~ down ln the screw grooves a~ a result o~ vi~orous ~eat remo~al.
Desir~bly, t~e inner lined ~uriace of the ca~in~
and e~ds o~ t~e in~ert at d ~cre-~r facln~, eAch obher de~ine reaction c~vit~. ~rhl~ arra~6ement oncur~s uni~or~ dia- -~ .
l9ff~ lS 17:5~ Toryo~ prorr~ .p~ .t2~ 0~17 0g, 2,0 ~7 67 P,13 . " s f J Z Ç J ~ ?j _ 9 ~
persion thr~u~h the volume o~ the cavity, In o~der to optimize conditions ~or obtai~i~6 powd- - -er~ of uniform di~perslty, it is reccmmendsd that the i~ert have the form of a body o~ revolution the ~lde ~urface Or wh~c~ de:i~ining tlle cloarance i9 cylindr$eal, whereas i~s end face i~ preferably t~pered with the vertex faci~ the reaction cavity. Whe~ o~rrying out the ther~al - ~-process i~ a t~a~eOUS medium, t~o casin~ i9 pref~rablg pro- .
vided witn pipeR ~or ~eedi~ a ~a~eous ~edium communicat~
ing Wittl t~e reaction ca~lty~
The i~ver~tion will now be described i~ ~reater de~
t~il with refcrence to th~ propos~d xea~tor ior ob~ainin~ :
a powdered ~e~racbory ~aterial ill~trated in t~e aocom~
panying Fi~ure o~ the drawin~s ~howing ~ a~o~ometrlc ~iew :
of the proposed roactor in longitudinal ~ecbion.
A re~ctor with re~erence to the ~i~ure o~ the ac- ~
co~panying drawings comprises a ¢yli~drical ca~in~ 1 h~v- ;.
irl~ a hole Z for evaou~ti~ a powder refractory ma~eri~l :
~nd ~a~eou~ prod~ct~ o~ combustion, Provided at the o~t-.,.~ , . . , . - ~
~:: side o~ the ca~in,~, 1 i a coolin~ ~yst~m ~ i~ bh~ ~orm OI
a coolin~ jac~ 4 witn nip~ s 5 a~d 6 ~or ~e~din~ and diaohar~ing ~ aoolin~ liqL~d (wat3r). The iQn~r ~ aee oi t.he ca~ing 1 h~s a ~ inK 7 ~abricated îrom a wear rasi6tRnt re~ractory ~al;eri~L to protect the casi~
~ .
agai~t hi~h temperature~ caused b~ combu~tion a~d abra-sive we~r due to disperslon o~ the ~olid product~ o~ 9y~
:~ thesla. T~ int~rlor o~ the casin~ 1 accommodstc~ a reac- -.~
. .
17~VJ--lVJ--VJO lC..VJ~J II_lr'~ JU--~Jr Ulll~:.rll .~ VJVJ~ VJ~ J~ ~I r..L~
- 10 ~ J ~
tiorl ca,vity 8 eommunicatic~; wlth a rotoI~ 9 s~cured in on~
end o:~ th~ ca~ing 1 at the side o~ ~e hole 2, exte~ding ~xi~lly of the housin~ nd havin~; an l~se~ 10 of a re-fractoxy wear-re~istant material pre~ed ther~in, atld with a m~a~s 11 for feedin~ a heat~ erati~g ~xture under pre~sul~e thereto to en~ure movement thereo~ in~id~ the oa-Yit;y 8. The outer su~face o~ the i~sert 10 defines ~ibh the inner lined SlLrî`~C9 0~ t~e c~sing 1 a~ a~nular ole~raaae 12 to ~acilitate eva¢uation o~ t~ powder r~raa~ory mate-rial and ga~eou~ products o~ combu3tio~ from the caYit~ 8.
The clearanco 1~ commu~icate~ wlth the hole 2. Depend~ ng on the operati~?~, co~ditions o~ the r~actor, the means 11 can have the ~orm o~ a pl~ton (not ~hown), And a m~ xture : -.
in the form oX compacted cylinders will there~ore be fed at the end o~ the caBing 1. As besb ~ee~ in the Fi~;ure, : :
the mea~s 11 is ~ashior~ed a~ cr~w 13~ the ca8ing 1 havin~ a port 14 ior ~edin~ tha heat-libe~ati~ mixture.
Tha~ks to inte~sive heat removal, th~ ~crew 13 prevsnt~
ruovement o~ the f la~e ~ront from the reaction zone to the char~sln~: ~one thereby makin~ oper~tlon OI the ~eact:or 1~
fixe and ~ explo~lon ha~ardous~ ~n the herei~ proposed em-~ ~ .
bodiment the cavity 8 is de~in~d by th~ lnQer lined sur-îace o~ the ca~i~g 1 2~d oppo~ite e~d ~aces o~ the i~sert 10 ~nd ~crew 13. ~ optimiz~s oonditlon~ ior uQiiorm dl~er~ion oi th~ ~olid produot~ o~ combu~tion. With the eame aim in vlew, the in~ert ha3 the ~orm OI a bod;lt oi re-vo:lution t~ ~ide iace o~ whioh de~inin~s tho .: ole~xanoe 12 ~::
"-~ lO~il Tl_lr ~lJ~.~u-~Jr l_~ t~ J~ z~ Z7 117 r,l-~
iJ ~ r/.~ 7~ ;J
iA cylindrioal, wl;~sr~as th~ er~d ~ac9 o~ thc ins~rt 10 i~ -tap~red with t~ vertex thqreof ~aci~; t~ reactlo~ c~amb-e~ ~. T~is irl~ert 10 e~ure~ th8t ~he E~der obtal~ed ls divided lnto ~arrow ~raction~, or has monodispers~t~ e rotor 9 e.~d ~¢rew 1.3 are jouxnalled i~ the casi~ç 1 i~
rolling beari~gs 15 ~nd 16 ? rebp~c~ively ~ a~d are aon~ect-ed ~o electricaLly op~r~t0d driv3~ (not shown) to lmpart .i, the~to ro~atio~ at rela~ively l~i~sh angular velocities .:~
~ec~s~ary ~or di3per~ nd ~eeding to t~e cav~ ty 8 a ~ -~eat liberati~; mix~ure at ~redete~ ed ~as~ v eloc~ a~d - ~-preggur~. The ~otor 9 and ~cre~r 13 rotate 1n ths OppO~ite -:
directions, and t~eir rotatio~a~ speed ls c~ntrolled ds~
pending o~ the positio~ of t~et ~l~me fro~t b~ ~ automa- -tic co~roL sy~tem (~ot ~hown), ~uch a system i~ de3cribed i~ detail in a book of AAN. Malov and Ju.S~ Ivq~ov entitled -.
~IO~noVy a~tO~ati~ i aYtom~tizat~il proizvod~tcnnykh pro- -~
tse~ov", i~ ~us~ian, Mo~cow, 1974.
~n~ reac~or iuolud~t a me~ns 17 ~or deto~atl~ t~e : .
~eat libe~g~ng m~xture ¢ommunic~ting with the cav~ty 8t ~ ~;
a~d comprisin~ a tungste~ co~ 1 18 ~ecl~red i~ a ~ippl~ l9 Ab bhe o~si~ L. 0~ end o~ the coll projcots into the cavit~ 8, ~rhe~ca3 t~ other ~wo ends o~ the coil are :~
co~nected to a c~rrent ~ource ZO. ~'he eo~ secured in~
~ide the nippl~ 19 by mea~s o~ ~ ceramic tube 21 insul~ted '!~' and -ctealed by ~p~cer~ 22 and 23, The tube 21 ~ B locked in -t~ J~do thc, ~ pplo 19 t~ o. th~ 4 which ac~ n~ces~ary, to compre3e the spacsr 23 th~reb~ seal-
DaA~3RIAI. AND A P~AC'~OR ~?0R CARRYI~IG OUq! q~E
0~
q~hi~ iave~tion relabes to a m~thod ~or obtaining a powd~red xefractory material' bssea on re~ractory ~n- :
organic metal compou~d~ o~ IV`-VI, YIII ~roups o~ the ~e-riodic Syster~, and a reaoto~c for carr~ s oub the m0bhod.
Pow~ered r~ractor~ materials obtained b~ u~ing th0 propo~ed method can fi~d ap~lication in mecb~icAl en- ~ -~3;ineeri~g, chemical industry, a~d metallurg~.
. At pre~ent, powdered materials are obt~in~d by ~in- -tsrin~ powder ~i~ture~ cont~inin~ oxides oî metal~ o~ IV~
-VI group~ o~ the Periodic Sy~tem ~nd l~on-me~ls bake~
~rom the ~roup: boro~ co~, ca~bon at R t~mp~rature 1200-2000~C in ~rn~ce~ ~ith protective atmo~pheres, or -by thermally t~eat1n~ heat ~ber~in~ mi~tures o~ met~ls .
o~ IV-~ group~ o~ th~ Periodic Sy~em and said non-metal throu~h comb~tio~. The thu~ obtained refr~ctory matsr~- . . ~ .
. al~ i~ the ~orm o~ porous ~h~2e1ess cakee a~e ~oo1sd, .
crushed, and the materi~l o~ the powder i8 oeparated into ~ract~o~ owever, thes~ method3 invol~e ~ny treatment ': I'` I ~ ' '' ' ~t~es, and ar~ charactsr1zed by low ~tciency and high - '~
power ~nd 1~bour oo~su~ptio~. Duri~ cru~hin~ ~nd comminut~
the powder~ o~ re~r~ctorg m~beria1s th~ l~bt~r ara ~ - , -u~ceptible to being fou1ed with ~Ariou~ im~uritieo ar- :
f~ati~g their qu~lity. -~::
lqq~ 8 1~ T~r~lovcl-proml~r~l.pal~ 37 ~ 27 IS7 F.g~
h ,, ,. ~ v q?here 1~ kno~n a method ior obt~in:Ln~, powd~r mate- -xi,~ U, A, 644, 7~8 ) by thermal treat~el~t throu~;h combus- ~
tion OL ~ he~t liberatin~ mixture c~ont~ining titanlum and : -carbon at ~ ratio en~urinK combustion o~ this ~ixt~re in a reaction zone accomya~ied by liberatio~ of h~t and gase-ous ~roducts of combustion.
'rhe reacto~ X`or carr~in~; OUt ~hi~ metb.od compri~es a C~18irl~ lined with a he~t insul~ting materl~l, havlng a pipe ~or avacuati~ ;a~eou~ ~roduct~ o~ co~bustio~ ~nd a r~ac~ion chamber enclosed by a cooling sys~em. The c~sing has a re~ovabLe cover pl~te. ~he reactor include3 a m~an3 or initiatin~ combustion o~ the heaJG libe~s~in~ mix~
:
coml~unicatir~j with ttle reaction chamber and havin~ the orm o4 a t~n~st~en coil connected to a current source. The ~-~
reactor opera~es in th~ ~ollowin~; ~Ga~lner. A he~t libe~at- -in~ mixture ol' titaniu~n and ca:~bon i~ char~ed to the re-action ahamb~r, comp~cted, and ~.he CaSitl~; i6 ¢losed by the cover pl~te. Then the ~ixtu~e i~ infl.amed by th~ tu~g~
qten oo~l to whlch a current 40-6~Vsnd 60-80A i~ apE~lied.
Aa~ th~e~ flame fro~t mov~ in the heat ~berating mixtu~e, he:pres3ure in the c~amb~r ~;rows to 40~ due to lib~ratiotl of ~aseou~ product~ o~ oombustion. Th~ B Pre8-sur~e is ;~du¢ed throu~U ~vacuati~; t~L~ gas~ou6 ~roducts o~' combu~iocl via ~he pipe~ ~ ths samc time, heat is r~-moved ~rom the ohamber ~y the coolln~ 3ystem. :
~ itanium c~.rb~ de produced a~ a resul~ o~ the pro-ce~ irl the ~or~ o~ ~ compacted m~,ss or caka is ooolsd a~d .~ .
T.l~ J~ Jl ~JIII~ Jc~ bc~ e:/~T e~ ; 2ae: 21' ~ r . ~r ~ 3 --com~inutcd to po~vder ~!ihereby it can be ~ouled ~with u~de31r-able impu~itie~ Jhsrea~ mang ~ta~es of the proces~ re~ult in low production e~ficiency. I~ po~ le ~o ~or~ a po~der of tni~q material im~edi~tely in the reaction chamb~r by introducin~ titaniu~l carbi~e to the heat libe2~atin~ mix-ture prior to ci~argin~ the mi~ture into the reaction zone which reduce~ the t~ rature o~ ~ynthe3i3 and there~ore pre~eats sinteriR~, of ~he titanium carbid~ g~ner~t~d it~3ide t}-e cha~ber. It ha~ to be nobed, tlowever, that with this conqtruction o~ tlle reactor it i~ im~o~sibi~ to promptly evacu~te the powder from the hish temp~rature zones. In :
corlsequence, titan~um carbide will hav~ the Yorm or~ a caXe : .
- . , ~nd only a small paxt thereo~ vrill be po~.vdered, wher~by ~ormation i~ bhe r~action zone o~ a powder with a narrow . .
distribution o~ ~r~ctional com~o~ition i~ pr~vented. ~ ~~
It i~ ~n obaect o~ the pr2seat invention to provide a m~thod ~or obtaining a powdered re~ractory m~terial with a narrowly distrib~lted ~ractional composit~ on t~ough sim- -:
pli~yi~g the product~o~ proce~, and to provide a hi~ly ~ficient ro~o~or for carryin~ out the ~ethod.
~ ho abject ol' the invsntion is at~ained by a method ~or obtaini~; a powdered re~ractory material com~ri~
, ~
ther~al treqtm~t throu~h ~ombu3ti~n o~ a heat Liberatin~G : -~ ture co~t~,inirlg, a ~on-me~al takan froL~ th-~ Oroup car-bon, boron, ~llicon, and at ~ea~t ona met~l at a r~tio en-9Uri~lg comb~tion o~ the mi2ture in a rea¢tion zone a¢-~ompanied by removal of heat ~nd g~seous produ¢~s oP ¢o~-17 ~ 3 L ~ Tl_lr y~J~ Jr ~J~ lI iJCIId1,~. e~ ) Z~ ~ io S h ~
bu~tion there~rom, in which method, aocordinæ to t~e ia- -vention, applied i~ the re~ction zone to solid products of co~bu~tio~l ~re e~cter~al ~orces about llnas ta~;e~t ~nd/or- .
nor~n~aL ~o ~he ~ ace of thc~c produot6 ot a tempuratur~ :
near ~o or below th~ combustio~ tempe~QtUra to 0. 5 their ~e~tin~ poiat follouled by evacuat~on of the re3ultln~ powd-ered I~0fractor;y ~atexial ~rom t~e reaction zone.
~ e propo~d !~thod makes i~ po slble bo obtain ~
big~lg pura powder of rs~r~ctory materlal Witb a ~p~eset narrowl;~ distri~uted ~ractioa~l compos~ tion throug~ var;yi~g the ln t~nsity o~ the extern~l force~ ia conti~uous or $n -' termiGtent op~ratin~ co~ditiou~.
Co~ditioas ~or t~e proce~s have been pr~seleoted ~: exp~r~m~a~211y proceedi~s irom t~e ~ollowing. 801id pro-duc~c o~ co~u~tion in bhe reaction ~one have ~he îorm oi a ~i~ely di~lded powder of re~racto~ material produced at a te~perature cl~e to the combu~tion tempe~a~ure, or a c~e o~ particle~ o~ re~raotor~ materlal oî low mechanical tre~;th at temperatures to O. S ~he meltl~; poi~b . In the . ~ Iirsb caee the ~e~ter~al ~orGcs act to mo~ the paxtlcle~
~;~ relative to o~e a~other whereby oakin~ iq pre~e~ted~ In .~ h,e ~econd ca~e ap~lication o~ rela~ively low ext~rnal oroe~ eauseq vig,orous breaking o~ t~e cake not aff ectin~
the propertie~ of th~ reXractory materlal. The di~perslon . proc~s~ proee~ds under energy-advantRgeous oonditlon3 ;t~nk~ to the u~e of th~ heat OI ~ynthe3i~ aad iorces of low ~agnitude. As the powd~r ~Hrabed in th~ ~ea¢tion 1~J~ Ur ~ /lJ~~r ~ lY~ VJ~J~ ~J~ IJ Cl 0~ I-"VJ~
,_ - 5~ : :
zons i~ contiauously evacuated tnerefrom, r~o r~peat~d cak~
take~ plac~. Removint., heat ~rom the reaction zone make3 ~ :~
~intalnin~ the te~peratur e~ within the pre~erred ra~e -~
a relatively ea3y oper~tio~. The ~)ref~rred direction o~
forc~s ap~lied ~o t~1e re~r~ci.,ory material in the ~orm o~
a caXe is obvioll~, as i~ ha~ the ~orm o~ a ~olid body.
~he powder o~ reYractory ~aterial al~o ha~ a ~ ace, sinoe i~ ~ill3 th~ redctio~ ~one having a de~inlte volume, Appli- :
cat~ on of e~.ter~al l~orce~ alo~ a line nor~al ~0 th~ sur- - ~ s ~ace o~ ~olid product~ can. be done by a~;plyin~; a pre9suxe thereto at ~e~peratures pre~er~ably olose to 0~5 the melt~
ing point at which the products are nlost br~ttle. Appliea~
i3a OL extsr~lal ~orces alo~K a ts~;ent line i5 ~asured : -t~rough i~parting thex~?to a rotatio~l mo~lon. Preferably~
application of extern~l ~orce3 to sol~ d products o~ com~
u~tion iJi done by exertl~ a p~e3su~e of u? ~o 10 illP~
and impartin~, b~e~eto A rotatiot~al motio~ Of 6 to 314 rad/8. ~ `
~; At pragLure~ h~ r that~ 10 MPa th~ ~olid products o~ com~
u~tion ~are compacted w~reby ~he digper~ion process pro- ~ . .
ceeds ~under 1~I8 favo~lra~l~ condition~, ~he low~r limi~
~ ~, o:e rota~lo~al ~peed ls determinsd by reduced d:lsper8ion f . il¢iency~ An increAse in the xotatio~al speed to over 314 rad/s le~ds tio ~a~ter disper~ion, wh~ ch entall9 a rowth in the con~uml)tion 0~ power. However, for obt~ining powde~ed re~r~ctory materials with a special 3et o~ pro- ~:
pertiès the magnitude3 of pre~sure and rotation~l speed ma;sr extend beyo~d th~ pre60ribed limlts. ~`; ~ ``
1~0~ --0S 17:57 Tl-l~ g~J~I--prc,myshl.pai~t~. 007 0~5 Z30 ~7 87 F.10 ~ V ~ J ~ 3 ~3 ,; ,....
C) In order to en~ur e the maximum e~iciency o:t tha proccco ~ ; contir~uouc ope~.3tion, it is ~:re:~eraol2 that the heat liberatia~ ture ~e conveyed to the reaction zo~e under a pressUr~ Cau~in~; ~ovement oD thi3 mixtUr~
in this zo~ and th~t the powdexed r~Iractory ma,erial be evaauated th~e~ro~ ~,o~;et~er ~i/itG ~ eo~ls pr~duots of com-bu6tion. ~his provides uni~or~ comp~ction o~ ~he heat liberating Ini~ture e~s n~i~L ~or maintainin~ the paramet-ers o~ ¢ombu~tion (r~te ol oombu~tion a~d tempera~ure ~ co~bustion) ~vithin tho prsset ran~e to result in ~lgh quali~y o~ the end product. Continuou~ move~ent o~ th~
heat liber~t~nK ~i~tur~ ~n the reaction zone an~ opera~
tive ~va¢uatio~ o~ the product~ o~' combu~tio~ ther~, rom ~-~ .
prevent ~jeneration oX ni,~h pre~sure~ t~lerein. I~ con~;e-;~ qUenCQ, ~he method en~ures tr~e highest fi~e and explosion e~fety. It i~ co~eque~tl~ pre~erable ~hat the ~ass velo- .
oi~y of f e~di~s the beat liberating mix~ e to the re- :
~ ~ :
~ ~ : actio~ zone be equal to the ma~ rate of comou~tion th. re~
~ `
o~. ~If ~t~e~e oond~lons are u~et, the re~ction zone will .
oontai~ a rclat~ vcly smal~ antll;y OL tr,e mi~ture, ~Jhere :: as whe~ eediny; of ~re~h qu~ntities of the mix~ure is ~top- - ~
ed c~ombustion i~ . shortly '.. erminated. The ~ass ra-,e o:~ -;~ - :oomou~tion o~ t~e mi~l;ure iq as~aaia~ed ~.~vlth the ~peed Or L~l~me propa~;~tion by the îollowlnR~ rela~lonship: . -~ ., .:
m = V ~ Sp ~ , where fii~ V ~ iai the ~pe~d o:~ ~lame propa~ation, normally withi~ ;
botween 10 ~ ~nd 10 ~ m/s;
- ~ ~
, ~ ~, l T ., ,~, Tu r ~ jJ r J 1 1 ~ ; ~ .J~ 2:7 ~T r . ~ 1 V f~ 3 7 ~-~i is ~he ero~s ~ectional are~ o~ the reaction zone, m; and the ~ensitg oY the ~eat li'~eratin~5 mixtu~e ~ k~;fm~.
~ t egu~l ma~ v. locity o~ leedi~ and rate Of com'cua-tion the fl~me ~ro~t i~ fixed at a de~nite ~ection o~ th~
r~action zone~ By inor~as~ng or reduci;~g the rate o~ ~eed-i~g of the he~,~ liberating migture il; iS pos~ible to di~-pli~c9 ~he :elame ~ron~ clo~er bo or ~rth~r ~rom the poin~
o~ application of the ~xter~al :~orces to the 901~ d pro- :
duct~ of combu~ion, to the~e~y v~ry ..h~ time ~ro~ combu~
tio~ to di~per~ion and conse~uenbl~ temper~uro ~t :
~ .. . .
which the product is dispersed. ~or expandi~g the ra~e; of E~wd~ d ~i?r~ r mo.t.c~ 1 q :7~n~1 1 mr~rnvi ne t:hf~1 r ~lnAl~i.t~
ens~ e c~ a~ ;e c;e impuriti~3, ib i~ adv$~
able ~hat the~al tro~t~e~t o~ t~e ~eat liberatlng mixture be carried out in an ~tmosphere o~ inert ~a~ or a ~as re~
~ctin~ therewith.
In order to co~trol the com~ustion proces~,And ob~
tai~ powdered refractory material~ oP various designation~
it is pre~rable ~o use ~ hea~ ~b~rating mi~tur~ containing a meta1 f~o~ oups IV-VI, VIII o~ the P~riodic Sy8tem, a~
welll ~r; car~ide, borid~, ~ilicide of ~t l~a9~ one of said ~ : :
, , ~ ,.. . .
~ metals takeQ separately or to~eth~r, or ni~rlde, oxide ;.-~
;~ o~ at least o~e element oP groupQ III-V of ~hs Per~od~o . `~`
Systom~ ;~
he ob~ect is ~urther Rttained by a reactox ~o~ car- ` . .--rying out t~e method co~p~ .a oa~in~ ed with a he~t :~ ,', . ` ' ' ' ~: ' 1i3 1~ 3 T~ ylJ~J ~--f~ IJIIIIJ~ . iJ~ Z~ (~i7' ~ lZ
: -, i~ulati~g material Pnd provi~.ed with a cooling sy~tem, the casin~, haYing a hole for evao~ati~ produGts o~ com- :-bustion~ a ~eac~io~ cavity~ and a mean~ ~or i~itiati~g com- -bu~tion oY i;he h~at li~)erating r~ixtu~e, in which r~actor, ; ~:
accordin~; to the i~vention, the ~nterior o~ the casin~;
~cco~mod~tes axially Qt end6 thereo~ a mean~ ~or ie~ditl~ the heat llbera~ g mixture under a pre93111'9 e~Rur~n~; lts move-ment in ~his cavity, and a rotor having a~ in~crt o~ ~ w.e~r re~i~t8nt reIraotorg ma'Gerial~ the out~r ~uriace o~ the ~ n- -sert definin~; with the itlner Lined curface o~ the casing an ~nul~r clear~n~e communicating wi~h the hole.
Ia vie~ o~ the a~oIaa~scribed, the pra~posed reactor ~akes it ~o~$ble to obt~in ~ hl~h pu~lt~ powdered re~rac-tory ~aterial o~ desired degre~ of dispersion e.nd pre~et ~ -properties, '~he reactor i~ ~h~racterized b~r high e~iclen- , oy Rnd ~ire~e7~p}0sio~ ~f et~. It c~n operate continuou~ly . or intermittenbl~.
: Preferably, the meanq ~or ~eedin3; l;he hea~ liberat- ~ ~
: ~ ~ inK mixture ha~ the fo~m o~ a ~orew arrat~ed in the cas- : :
ing to be capable of rot~tit~5 in a dlreotion oppo~i te to he ~ire~iocl o~ ro~ on o~ th~ rotor 5uoh ~n ~rrS~n~m~nt:
ensure~ ~he ~i~;he~t explosi~n ~a~e~y ~ as w~en the ~lamu fronb react~e~ t~e ~crew, it die~ down ln the screw grooves a~ a result o~ vi~orous ~eat remo~al.
Desir~bly, t~e inner lined ~uriace of the ca~in~
and e~ds o~ t~e in~ert at d ~cre-~r facln~, eAch obher de~ine reaction c~vit~. ~rhl~ arra~6ement oncur~s uni~or~ dia- -~ .
l9ff~ lS 17:5~ Toryo~ prorr~ .p~ .t2~ 0~17 0g, 2,0 ~7 67 P,13 . " s f J Z Ç J ~ ?j _ 9 ~
persion thr~u~h the volume o~ the cavity, In o~der to optimize conditions ~or obtai~i~6 powd- - -er~ of uniform di~perslty, it is reccmmendsd that the i~ert have the form of a body o~ revolution the ~lde ~urface Or wh~c~ de:i~ining tlle cloarance i9 cylindr$eal, whereas i~s end face i~ preferably t~pered with the vertex faci~ the reaction cavity. Whe~ o~rrying out the ther~al - ~-process i~ a t~a~eOUS medium, t~o casin~ i9 pref~rablg pro- .
vided witn pipeR ~or ~eedi~ a ~a~eous ~edium communicat~
ing Wittl t~e reaction ca~lty~
The i~ver~tion will now be described i~ ~reater de~
t~il with refcrence to th~ propos~d xea~tor ior ob~ainin~ :
a powdered ~e~racbory ~aterial ill~trated in t~e aocom~
panying Fi~ure o~ the drawin~s ~howing ~ a~o~ometrlc ~iew :
of the proposed roactor in longitudinal ~ecbion.
A re~ctor with re~erence to the ~i~ure o~ the ac- ~
co~panying drawings comprises a ¢yli~drical ca~in~ 1 h~v- ;.
irl~ a hole Z for evaou~ti~ a powder refractory ma~eri~l :
~nd ~a~eou~ prod~ct~ o~ combustion, Provided at the o~t-.,.~ , . . , . - ~
~:: side o~ the ca~in,~, 1 i a coolin~ ~yst~m ~ i~ bh~ ~orm OI
a coolin~ jac~ 4 witn nip~ s 5 a~d 6 ~or ~e~din~ and diaohar~ing ~ aoolin~ liqL~d (wat3r). The iQn~r ~ aee oi t.he ca~ing 1 h~s a ~ inK 7 ~abricated îrom a wear rasi6tRnt re~ractory ~al;eri~L to protect the casi~
~ .
agai~t hi~h temperature~ caused b~ combu~tion a~d abra-sive we~r due to disperslon o~ the ~olid product~ o~ 9y~
:~ thesla. T~ int~rlor o~ the casin~ 1 accommodstc~ a reac- -.~
. .
17~VJ--lVJ--VJO lC..VJ~J II_lr'~ JU--~Jr Ulll~:.rll .~ VJVJ~ VJ~ J~ ~I r..L~
- 10 ~ J ~
tiorl ca,vity 8 eommunicatic~; wlth a rotoI~ 9 s~cured in on~
end o:~ th~ ca~ing 1 at the side o~ ~e hole 2, exte~ding ~xi~lly of the housin~ nd havin~; an l~se~ 10 of a re-fractoxy wear-re~istant material pre~ed ther~in, atld with a m~a~s 11 for feedin~ a heat~ erati~g ~xture under pre~sul~e thereto to en~ure movement thereo~ in~id~ the oa-Yit;y 8. The outer su~face o~ the i~sert 10 defines ~ibh the inner lined SlLrî`~C9 0~ t~e c~sing 1 a~ a~nular ole~raaae 12 to ~acilitate eva¢uation o~ t~ powder r~raa~ory mate-rial and ga~eou~ products o~ combu3tio~ from the caYit~ 8.
The clearanco 1~ commu~icate~ wlth the hole 2. Depend~ ng on the operati~?~, co~ditions o~ the r~actor, the means 11 can have the ~orm o~ a pl~ton (not ~hown), And a m~ xture : -.
in the form oX compacted cylinders will there~ore be fed at the end o~ the caBing 1. As besb ~ee~ in the Fi~;ure, : :
the mea~s 11 is ~ashior~ed a~ cr~w 13~ the ca8ing 1 havin~ a port 14 ior ~edin~ tha heat-libe~ati~ mixture.
Tha~ks to inte~sive heat removal, th~ ~crew 13 prevsnt~
ruovement o~ the f la~e ~ront from the reaction zone to the char~sln~: ~one thereby makin~ oper~tlon OI the ~eact:or 1~
fixe and ~ explo~lon ha~ardous~ ~n the herei~ proposed em-~ ~ .
bodiment the cavity 8 is de~in~d by th~ lnQer lined sur-îace o~ the ca~i~g 1 2~d oppo~ite e~d ~aces o~ the i~sert 10 ~nd ~crew 13. ~ optimiz~s oonditlon~ ior uQiiorm dl~er~ion oi th~ ~olid produot~ o~ combu~tion. With the eame aim in vlew, the in~ert ha3 the ~orm OI a bod;lt oi re-vo:lution t~ ~ide iace o~ whioh de~inin~s tho .: ole~xanoe 12 ~::
"-~ lO~il Tl_lr ~lJ~.~u-~Jr l_~ t~ J~ z~ Z7 117 r,l-~
iJ ~ r/.~ 7~ ;J
iA cylindrioal, wl;~sr~as th~ er~d ~ac9 o~ thc ins~rt 10 i~ -tap~red with t~ vertex thqreof ~aci~; t~ reactlo~ c~amb-e~ ~. T~is irl~ert 10 e~ure~ th8t ~he E~der obtal~ed ls divided lnto ~arrow ~raction~, or has monodispers~t~ e rotor 9 e.~d ~¢rew 1.3 are jouxnalled i~ the casi~ç 1 i~
rolling beari~gs 15 ~nd 16 ? rebp~c~ively ~ a~d are aon~ect-ed ~o electricaLly op~r~t0d driv3~ (not shown) to lmpart .i, the~to ro~atio~ at rela~ively l~i~sh angular velocities .:~
~ec~s~ary ~or di3per~ nd ~eeding to t~e cav~ ty 8 a ~ -~eat liberati~; mix~ure at ~redete~ ed ~as~ v eloc~ a~d - ~-preggur~. The ~otor 9 and ~cre~r 13 rotate 1n ths OppO~ite -:
directions, and t~eir rotatio~a~ speed ls c~ntrolled ds~
pending o~ the positio~ of t~et ~l~me fro~t b~ ~ automa- -tic co~roL sy~tem (~ot ~hown), ~uch a system i~ de3cribed i~ detail in a book of AAN. Malov and Ju.S~ Ivq~ov entitled -.
~IO~noVy a~tO~ati~ i aYtom~tizat~il proizvod~tcnnykh pro- -~
tse~ov", i~ ~us~ian, Mo~cow, 1974.
~n~ reac~or iuolud~t a me~ns 17 ~or deto~atl~ t~e : .
~eat libe~g~ng m~xture ¢ommunic~ting with the cav~ty 8t ~ ~;
a~d comprisin~ a tungste~ co~ 1 18 ~ecl~red i~ a ~ippl~ l9 Ab bhe o~si~ L. 0~ end o~ the coll projcots into the cavit~ 8, ~rhe~ca3 t~ other ~wo ends o~ the coil are :~
co~nected to a c~rrent ~ource ZO. ~'he eo~ secured in~
~ide the nippl~ 19 by mea~s o~ ~ ceramic tube 21 insul~ted '!~' and -ctealed by ~p~cer~ 22 and 23, The tube 21 ~ B locked in -t~ J~do thc, ~ pplo 19 t~ o. th~ 4 which ac~ n~ces~ary, to compre3e the spacsr 23 th~reb~ seal-
2 T~ r ~ J~-p rO m!! S ~ .p~ t3. 007 0~ 30 ~7 67 P, 16 rJ /~
.
.
i~g the cavit~ 8 Yro~ ~he out~lds.
Pro~ided in each of t~o ot~er ~ip~les 25 made at the caain~ 1 suD~ta~tially 3i~ilarly to w~t ha~ bee~ de~cribed with reXer~nce to th~ coil 1~ thermo~cup~ 26 on~ end o~ which project~ into the cavity 8, ~d two other and~ are conneated to the corre~ponding ~nput~ of the ~ore~e~tioned aubomatic control systcm~ ~ac~ thsrmoo~le 26 is po~lbioned ~ .
a plane perp~nd~c~lar to th~ lon~ltudin~l axi~ 0~ the casing 1. :
~he r~actor operates in the ~ollowing manner~
Prior to i~itiati~g the reactor~ the 9peed of rota~
tio~ o~ the rotor 9 with i~3ex~ 10, dep~ndi~ o~ th~ de~ir-ed degree o~ disper~ity o~ thq powder to be obtai~ed, ~nd .
the ~peed o~ rot~tion o~ the scra~ 13, dependlng on the a~s velocity o~ the mi~ture, ar2 pre~et. Then the coolin~
jacket 4 i~ en~s6~d ~or. a cold watsr ~nteri~g the nipple 5 di~oharged from t~e nipple 6 to circulate in~i~e the ~r~ 4, .
A oo~ma~ he~ i~sued to ~ner~ize the dri~s of the .:~
.~ ~ ,. . ..
rotor~9 wi~th ih~ert 10 ~nd o~ .t~e~ ~crsw 13, w~erea~ ti~
cu~rent ~ouroq 20 ;~tart~ to apply c~rrent to the ends o~
the coil~l8. A ~è~b l~b~rat~ne m~xture co~tainiP~ at lsaYt one met~l p~es~l~cted ~rom ~rOUp8 IV to VI ~nd VIII o~ the :-Pexiodic Sy~t~m ~nd a ~o~-~etal pres~lected from the group:
boro~ carbon, silicon ~ conveyed through the port 1~ to:~
tbe hellcal ~roov~ o~ the scr~ 13 rot~ta~la by the elsct-r1caIly oper~ted drive ~cting ~o delivar it ~t a preset rato ~n:d pre~ure to the re~ctlon cavity 8. ~he pressure producod by the ecrew 13 en~urcs movemsnt o~ bhc heat 11--
.
.
i~g the cavit~ 8 Yro~ ~he out~lds.
Pro~ided in each of t~o ot~er ~ip~les 25 made at the caain~ 1 suD~ta~tially 3i~ilarly to w~t ha~ bee~ de~cribed with reXer~nce to th~ coil 1~ thermo~cup~ 26 on~ end o~ which project~ into the cavity 8, ~d two other and~ are conneated to the corre~ponding ~nput~ of the ~ore~e~tioned aubomatic control systcm~ ~ac~ thsrmoo~le 26 is po~lbioned ~ .
a plane perp~nd~c~lar to th~ lon~ltudin~l axi~ 0~ the casing 1. :
~he r~actor operates in the ~ollowing manner~
Prior to i~itiati~g the reactor~ the 9peed of rota~
tio~ o~ the rotor 9 with i~3ex~ 10, dep~ndi~ o~ th~ de~ir-ed degree o~ disper~ity o~ thq powder to be obtai~ed, ~nd .
the ~peed o~ rot~tion o~ the scra~ 13, dependlng on the a~s velocity o~ the mi~ture, ar2 pre~et. Then the coolin~
jacket 4 i~ en~s6~d ~or. a cold watsr ~nteri~g the nipple 5 di~oharged from t~e nipple 6 to circulate in~i~e the ~r~ 4, .
A oo~ma~ he~ i~sued to ~ner~ize the dri~s of the .:~
.~ ~ ,. . ..
rotor~9 wi~th ih~ert 10 ~nd o~ .t~e~ ~crsw 13, w~erea~ ti~
cu~rent ~ouroq 20 ;~tart~ to apply c~rrent to the ends o~
the coil~l8. A ~è~b l~b~rat~ne m~xture co~tainiP~ at lsaYt one met~l p~es~l~cted ~rom ~rOUp8 IV to VI ~nd VIII o~ the :-Pexiodic Sy~t~m ~nd a ~o~-~etal pres~lected from the group:
boro~ carbon, silicon ~ conveyed through the port 1~ to:~
tbe hellcal ~roov~ o~ the scr~ 13 rot~ta~la by the elsct-r1caIly oper~ted drive ~cting ~o delivar it ~t a preset rato ~n:d pre~ure to the re~ctlon cavity 8. ~he pressure producod by the ecrew 13 en~urcs movemsnt o~ bhc heat 11--
3 Tur y~ u-~r ullly~ J~
~ ~J f,, ~ ~J
berati~ mi~t~ o the reactio~ c~ y 8. A3 the mixtu:re r~ache~ t~e tu~ste~ Goil 1~ mad~ ~ot b~ ~e elect~ic cur-re~t applied th~reto, combustion is locally initlated thare-in. ~ter a ~hoxt tran~ition proces~ a flame ~ro~ is rormed -~
in ths b.eat libe~.atlrl~ mixture ~ rl a pla~e perpendicular to t~o lo~,itudinal axi~ o~ t~ ' ca~i~g 1~ I~ order ~o ensu~e . ..
co~inuity and optimize t~ d~pex3ion ~rocesc wi.thi~ a ~ange of temperatllre~ close to or belo~ the co~bu~tion tem-pera~uI e and to 0~ 5 th~ meltin~ point, ~ t i~ neces~a:ry that t~ flame ~o~t be at a certain dista~co ~rom t~e i~ert 10 oi the rot,or 9~ It i~ there~ore preîerable t~at the mass velocity o~ feed~g t~ h~at li~eratln~; m~ur~ be ~lb-stant~all~ equal to the mass rate o~ oombustion d~erm~ned by the ¢o~po~itloa o~ t~e mi~t~lre, At sub~tantial rates of . -oombu~tion o~ ~he h~at llbs:~at$:~ mixturc i~rt product3, -9~ aq c~rbide~, boride~, silicides of m~tals o~ IV to VI a~d VIII æ~oups o~ ~he Periodic S;srstem, or ox~des ~nd nitride~ of t~e elemen~g of III to V groups o~ t~e Pe~iodic Sy~tem are add~d to t~e mlxture . ~he po6ition o~ th~ f l ame :
~ro~t 1~ mon~tored by the ther~ocouple~ 25 w~ich transmit si~al~ to t~e a~ore~ald automatic control system (~ot , shown~ generatlng slgna1s delivered to the rotor 9 a~d ecrew 13 to ~sult i~ variativns in ~heir ro~tlonal ~peeds.
~8 th~ ilame ~xont ~v~ tow~d ths rotor 9~ it is nsce~
sa:r;y to reduce t~e ~as~ velocity o~ thc hoat llb~atl~
mixt~re, i~ e. to r~duce b~e rotational ~eed o~ tha ~cro~
13. U~hen th~ fl~e ~ront moveB toward the scr~w 13, i~ - -~ T~r~V~--p~ my~ .p.~ 5 2S~ 7 1~7 r.lz ~ ., w ~' h -- 14 ~
i8 nece~ary to accordin~;ly incxeaBe t~e speed o~ ro~ation ~ :
of the ~cre~v 13. ~olid product~ o~ combu5tion i~ the form of a brittle cake or ~inel~ dlvided powd~r are acted upon by the pre,s.~r~? produced o~ the serew 1~ a~d imparted th;rough 'ç he heat liberati~g ~ixture . U~der thls ~re~sure the solid product~ of combu3t~0n ar~ pre~sed to ths ~n-3erb 10 o~ lih~ rotor 9 ro~abable by the sl~obrl~allg ope-rated drive i~ R direo~lo~ opposite to the direcbion o~
rotation o~ e ~c~ew 13. ~he ~olid products o~ combustion axe r~tated whereby th~ ~re su~ t to sxt9rnal iorce~
ta~ger~t to their ~ ace. A~ ~ resulb o~ the ~olnt aotion ~;
oI exter~al forces t~n~;en~ a~d ~ormal to t~e surface~of th~ ~olid produot~ o~ combu~bion ~he latb~r ~re dl3p~rsed.
B~ var~lng the rotabional ~pe~d Or t~e rotor 9 and ~crew ~ ~
it is ~0:33ib le to control the~3 Ioorc~s a~d thereb;y : - .
.~
o~in a powder of ~ defini~e ~ractional compositlon. -~
'rhe prel erred r~ge 01 te~per~tur~s in the oavity 8 is mal~tain~d b~ r~moval o~ heat b~ the cooli~g ~aoket 4.
he: powder is; ~oroed through tho cl~ar~noe 12 a~d dis~
c~arged t;~rough~the hole 2 ~rom the reacto~. ~ase~ llbe-rated ic~ t~e co~ o~ co~ustio~ ~xc evacuated toget~er : . . . .
wit~ o powdor o~ re r~oto:~ m~t~ri~ hr~ h thei clear-- :
,~ , ance 12 and hole ~ ~o ~acilitat~ ~isc~arg~ o~ the powdsr nd ensur~ con~lnui~y o~ the proa~s.
~, ~ ~, . . . -:~ ample 1 ; C~axe;ed to l;h~ reaction chamb~r ~ 0.05 m ~ dia~
eter of a c~ drioi~l r~acbor by mean~ o~ a ~our-start ~ -;S ~ 1 Y~ C_I~ IJI~IY~ . fJa l ~ a ~ ; ZJ~ 7' C' . l~
15 - ~ ~
,,~' ' thread screw 13 0.05 m ~n diameter1 0.058 m i~ pitch, groove ~ :
dapt~ of 0.013 and groove width o~ 0,00~ m i~ a he~t li~e- .-rating mi~ture contairling 1 k~; of powdered ' itan$um having ~ :
particl~ 3iz~ 10 m Rnd 0.254 k~ o~ carbon powder h~v~
ing particle size ~ 1^~0 ~ m. Irhe mlxtu:re moves in t~e ca~
~ity 8 ~,o be localLy itlflamed. by the hot tun~sten coll 18 to which a curr~nt 60-80Ai in ~trsn~;th s,nd 40~30V in vol'G-a~;e is applied. Po~ition o~ the Ilam~ ~ro~ i3 mo~itored by two thermoaoupl~ 25, In respo~3e to ~he po8itio~ o~ ~he ~lame ~ro~ e Qutomatlc co~rol SySt8~ ~moothly cha~s the rotational speed o~ the ~orew 1~ ~rom zero ~o 62.8 rad/s, - :
~i and o~ the roto~c9 ~rom zero ~o ~14 rad~ he avera~e rotatio~al 3~eeds o~ the sorew 13 and rotor 9 t~r~iore amount to 40 r~d/~ and 150 rad/~, respocti~el~. ~ho t~us ~oxmed tita~ o~rbide ~ ~ tne form of a brittle ¢ake i~ ~
~orcsd b~ the pres~urs of the scrs~ 13 tr~n~ltted bg t~e . .
heat liberating mixt~e to the insert 10 oi t~e rot~lng rotor to re~ult i~ dl~pe~sio~ o~ the oaks by Yirtue o~
~riotion ~orces actlng about a l~ng tane;e~t to t~e 3U3~ ~:
~aoe o~ the ca~ce.
Di~per~lo~ i9 c~r~i~d oll~ w~'chi~ a ran~se o~ tempsra- -tu~e~ b~tween 1500 ~nd 2000C. Gaseous product3 o~ combu~- -1~ j !
tiP~ a~d ~inely di~per~ed powdered t~t~,nium c~rb~ds with a ~peciIic 3uriace area o~ 0"33 ~ 10 ~ ~/k~ a~d Part~ cle size not les~ thar~ 2-10 5 m (97. 7%) i8 ~oxced th:rough the clear~nce 12 OI 10 ~ m. 1.25 ~g o~ titanium carbide wa~ obtained a~ter ~20 seconda oper~ion. ~I!he output ca- : -3 lZ; 135 Tl:lrc~ J ~ m~ .t~ ~137 ~ J0 Z7 ~7 P, ~
, _ ~
. ~, p~city o~ t~e ~e~ctor i~ 0.04 kg/~.
~xa~ple 2 Irhe process i~ carried out i~ a reaator ~llb~ta~t~al- -ly a~ de~cribed with r~f erenca to ~a~ple 1 usi~g a ~e~
l$berating mi~tur~ haYing a den~ity ~ z 1.8-103 k~/m3 contalning 8 k~ titanium powd~r havi~g partl¢le ~lzs <1 10 4 ~ a~d ~ ~cg oa~bon ,~owder having particlc 9iZ9 Cl 1 o~6 m. The ~ixture i~ co~veyad t.o th~ c~vity ~ .
2. 5 10 2 m i~ diameter at a ~a~ veloclty oi 1.1 10 3k~/s equal to the ma~s rate of combu~ion o~ th~ ~ mi~ture ~t : -V ~ 1.25 ~ 10 ~ o~ powdered titanium ca~bid~ is ob~
.
., tained f or glO se~ond~ havi~g a 9poci:i~ic g~8.C9 0.33 103 m~cg; 98% of this powdor h~ g p~rticle sizo le~s tP~an 2~10 5 m. ~he output capacity o~ t~e re~ctor :~ is 0.01 k~/s.
To ~ix the ~la~e ~ron~ i~ a pre~et po~ition the cont~
ro1 sy~tem ~aintains th~ xotatio~l 3p~eds o~ the sorew 13 ;~ and rotor 9 at 50 r~dj~ and 157 r~d/s, re3pecti~eb. Dis- ; -persion i~ oarried out ~t ~ ran~e o~ temperAture~ b~ttq~en ~ ~:
0 and 2000~C.
~ ampl~
I~troduc~d ~o the re~c~ioa cavity 8 of ~he reactor . :
a ta~let 0~025 m in dism~ter aompaoted irom 0.095 ~
o~ powd~red tita~$um having partlcle 3iZel ~ 1 t~ 1-10-4m nd 0.~5 Ic~; carbon powder havin~; particle ~lze ~ 9 than 1 10~6m. The ~blet i~ locally in~l~med by ~he tun~te~
coll 18, and the cako ~ormed 19 acted upon at a t~mpera~
ture 1600C by ~, pro~u*e o~ a ~ ton at J.0 ~a. 1195 ~;
~ . . . .
lqq~ ~ Tu~ yu~Ju--~l~ ulllyi~ J~ ,a ~ 3~ Z~3}1 Z7' ~ I''.Zl o~ tit~lum carbide i~ obt~ined, 98~ OI whlch ha~ ~ par~-ticle size leo3 than 2- 10 5 m.
E:~amplo 4 ~ en cylinder~ 2. 5 10 3 m in di~meter and 5-10 2 ia le~;th axe compactgd at ~ pr~sure o~ 100 DJlPa ~om a hest liberati~s mixturo ¢ontaini~; 0.479 ~g o~ ~itaniRm powder havi~; partiol~e ~iæe le~ ~ha~ 1~10 4 m and 0.1201kg o~ o~rbon powde~ havi~ par~icle size le~ thaa 1 ~ 10 6m.
~hen two ~uo~ oyl~ndcr~ ara ao~vey~d to the reaot~ on c~amb- -er 8 oi t~e re~otor ha~ a diameter 2.5~10 ~ ~ b;y a pis- :;
ton t~rou~;h a hole made at the e~d ~aoe oY the ca~lng 1.
~e reac~ion zone $~ ~illed with argon and a pressu;re Or -1.5 ~Pa ~9 mAintaine~. 'rhe cglinder which ~ neares'c to the ert of the ro~or i8 thec~ lamed by the tung~ten co$1 18 as a eurrent - 60 - 80 A in stren~5th ~pd a voLt~g~ OI 40 - :
~0 V i~ appl~ed th~r~to. At the ~ame ~ime, t~e cylinder~
are ~orou~l by b~e pit3bon ~;o tbe in~;~rt ~0 o~ ~he rotor 9 rotatable at 31,~ rad/~. The pre~ure o~ t~e piston on the .
~11nder~ is: 0.5 I~:Pa~ A cake of tit~,n~um carbide ~or~ed und~x the aot~on o~ external ~orce~ ~ormal (pr~sure) and tange~t (force of ~rictio~ ~om th~ ro~tin~ rotor) is .
disper~ed into a powder haviny; a speci~ic su~ace ~ ~:
0.33~103m~c~; 9~0 o~ whieh h~ R psrt~cle eize le~s than 2 ^ 10 5 ~ Dispersioel i~ done ~t a ~emperature interval bebween 1500 and 2000C. A~ the ~ir~t cy~ der burns ou~, is dispersed and t~c powder i8 r~moYed tt::rough the clear~
ance 1~ oi 1~10-~ ~ in ~ize, the ~eoond ayli~der ls dls-pl~d by the pisbon bo the lnserb 9 o~ the rotor 10, th~ 9 .
1 ~I'J--lW--WO 10 ' I~J ~ I U~ 'yu~/u--~Jr 'Ullly~ d I d l,d I~JVJ ~ J ,~_~VJ ~ r O ~ r . ~c:
~cond cylinder b~ing in~lamed ~rom t~e ~irst cy~inder.
rrhen a third eyli~d~r ii d~liv~red to t~ reactio~ cavity 8 1 a~d the p~oce~ i9 repeat3d. At t~ 3a~e tim~, ga3eou3 product6 of combustion ar~ e~acuat~d ~rc~m b~e cavi~ 8 through the cl esrance 12 to~e~her ~Jith th~ powder. It tak-es 180 ~ecvnds bo obtai~ 0~ 599 kg OI titanlum carbide powd-er~ The c~2acity o~ ths reactor i~ ~.3~10 3 kg/a.
Repre~ented in t~e ~able hsrsi~b~low are obher ex-a~ple~ ~ox carr~ out t~e proposed ~et~od in~A reactor de3cribad wlth re~erencs to ~$~mpl9 4 with indicabions o~ '~
A . th~ initi~1 co~po~ition OI the heat liberati~ ture condltion~ o~ t~e proces3, and ~ra~tlo~l compositionro~
~: t~e powder o$ xe~ractory mate~1~,1 obtQined.
~abLe Par~i- GA3e- Pre~ure - Robatio~al -~ ~
He~t-l1b~ra~~ ole OU8 oi the 6a- ~peed o~ t~e .-- ~;
No,~iZ~ f - m~dium ~ou~ me- rotor, rad~
coa- ~ iigr~ dium~loes ~;red~X~e, ~;; . eat~el~t~a~
3 4 5 6 7 : ~
~; 5 ~ 479 loo Ar o.1531.4 - ~ -C ' 120. 1 1 ~ ~ .
6 ~1 47~ 100 Ar 0.15 314 -C L20 ,1 L
~- 7 Ti 479 100 Ar 0.15 314 C 120 ~ L
8 ~i 479 100 ~r 0.156. 28 :: ..
1~ 1~ ~0 10~IJ ~JI l~llI.J~lll .~J.al=.l,o, i~5T IEI~; za~ z~ GS' r,z~
~ h V ~
, T~bl~ ~con~i~ued) _ 2 3 4 5 6 7 ~ -C 120. 1 TiC 10~ 20 9 Tdf~ 1784 100 air O .1 ~7 . 6 - ~ 10 ~ 17~L~ 100 Ar 0. 15 314 B ~16 10 Hi ~ 250 6~
11 Nb 930 100 N2 2 .2 314 - ~ : C 2 . 4 ~ 1 12 Ta 1810 100 ~2 3 314 C 8 . 4 1 13 ~ Co 589 100 Ar 0 .1 3L, Si 28~ 50 14 W 1838 100 Ar 0,1 31.4 C 12 . 01 15 ~ ;~ Ti 479~ . 100 Ar o,l 31.4 G ~ 120. L~ 1 Z~N 105 20 16 ~i 47~ 100 A~ 0 . 1 31 . 4 a 120.1 17 Ti 479 100 Ar 0.1 31.4 C 120.1 iO ~ 20 ;L8 ~ 509 100 ~ Ar Q . 1 31.4 . ~
Tur ~u~Ju--~J~ ullly~ ~ Z31ZI Z7' e~ ~.z-~ .
,_ , 'J / L~ i J
Tabl~ (co~ti~ued) , . .
C 120. 1 VO ~!7 20, . - ~ -19 T1 l7g 100 ~2 0~ 4 C 120 . 1 Al~ 43 20 Ti 479 100 ~2 0 .1 31. 4 C 120. 1 ~
21 ~i 479 100 ~z 0 . ~ ~1 .`4 ~ ;-C 120 . 1 1 . ~.
22 ~i 479 100 Ar 0.1 ~1,4 180g 100 ;~
a 2402 ~ . ;-...
able (continue~
S~Ze o~
Pre~urç o:~Ran~;e oi Phase oi ticles o~ the : the Pis~on ~tempera- th~ reirac- -~
es ~ . tor~ m~terl- powder o~; the the di~pcr~ al r3iractory ~ :~
sio~ pro- ~at~rls.l, cess ~ C xlODm (989~ :
of the to tQ~ -, ~ mas~
60 . 5 1~00-2200 ~iC 20 70,5 1600-18~0 ~lC 20 . ~-e~ Tc:r~c~-p~ rr~ .p~ 7 el~33 2~ 27 137 F~,23 , j ,'.i hv,,, ~ ~JJ~
': . -', ~abls (~o~tinued) - -8 9 10 ll _, .
8 0. 5 1600-2000 ~iC 20 9 o . 5 1500 2q00 x~ B2 - 0. 3 1500-180~ ~B2 60 11 0.8 1400-2500 Nbco~lNo~59 40 ~ b2C
l~ l 1900-3800 T~Co. 5No. 39 5 13 ~.S l~00-1900 CoSi 50 ~, 14 1 2400-2800 WC 40 ~
~iC :
o ~ ~ 1600-1800 ZrN 20 ~ic 0. 3 1600-1~00 ~1203 20 . - -~: ~ 17 ~ . 3 1600-1800 ~iC 20 ~iO
1~ 0 . 5 1400-2000 VC 20 ~: ~ 19 0. 5 15~0-1800 ~C 2û ~ .
:
AlN
i 20 ~- 3 1~00-1800 ~ 20 ~ ;
- ~ 1~0~1800 ~iC 20 22 0.5 1~00-2000 TiC 40 T~C
~ ' ' -~ - ~ , .......... .
~ ~J f,, ~ ~J
berati~ mi~t~ o the reactio~ c~ y 8. A3 the mixtu:re r~ache~ t~e tu~ste~ Goil 1~ mad~ ~ot b~ ~e elect~ic cur-re~t applied th~reto, combustion is locally initlated thare-in. ~ter a ~hoxt tran~ition proces~ a flame ~ro~ is rormed -~
in ths b.eat libe~.atlrl~ mixture ~ rl a pla~e perpendicular to t~o lo~,itudinal axi~ o~ t~ ' ca~i~g 1~ I~ order ~o ensu~e . ..
co~inuity and optimize t~ d~pex3ion ~rocesc wi.thi~ a ~ange of temperatllre~ close to or belo~ the co~bu~tion tem-pera~uI e and to 0~ 5 th~ meltin~ point, ~ t i~ neces~a:ry that t~ flame ~o~t be at a certain dista~co ~rom t~e i~ert 10 oi the rot,or 9~ It i~ there~ore preîerable t~at the mass velocity o~ feed~g t~ h~at li~eratln~; m~ur~ be ~lb-stant~all~ equal to the mass rate o~ oombustion d~erm~ned by the ¢o~po~itloa o~ t~e mi~t~lre, At sub~tantial rates of . -oombu~tion o~ ~he h~at llbs:~at$:~ mixturc i~rt product3, -9~ aq c~rbide~, boride~, silicides of m~tals o~ IV to VI a~d VIII æ~oups o~ ~he Periodic S;srstem, or ox~des ~nd nitride~ of t~e elemen~g of III to V groups o~ t~e Pe~iodic Sy~tem are add~d to t~e mlxture . ~he po6ition o~ th~ f l ame :
~ro~t 1~ mon~tored by the ther~ocouple~ 25 w~ich transmit si~al~ to t~e a~ore~ald automatic control system (~ot , shown~ generatlng slgna1s delivered to the rotor 9 a~d ecrew 13 to ~sult i~ variativns in ~heir ro~tlonal ~peeds.
~8 th~ ilame ~xont ~v~ tow~d ths rotor 9~ it is nsce~
sa:r;y to reduce t~e ~as~ velocity o~ thc hoat llb~atl~
mixt~re, i~ e. to r~duce b~e rotational ~eed o~ tha ~cro~
13. U~hen th~ fl~e ~ront moveB toward the scr~w 13, i~ - -~ T~r~V~--p~ my~ .p.~ 5 2S~ 7 1~7 r.lz ~ ., w ~' h -- 14 ~
i8 nece~ary to accordin~;ly incxeaBe t~e speed o~ ro~ation ~ :
of the ~cre~v 13. ~olid product~ o~ combu5tion i~ the form of a brittle cake or ~inel~ dlvided powd~r are acted upon by the pre,s.~r~? produced o~ the serew 1~ a~d imparted th;rough 'ç he heat liberati~g ~ixture . U~der thls ~re~sure the solid product~ of combu3t~0n ar~ pre~sed to ths ~n-3erb 10 o~ lih~ rotor 9 ro~abable by the sl~obrl~allg ope-rated drive i~ R direo~lo~ opposite to the direcbion o~
rotation o~ e ~c~ew 13. ~he ~olid products o~ combustion axe r~tated whereby th~ ~re su~ t to sxt9rnal iorce~
ta~ger~t to their ~ ace. A~ ~ resulb o~ the ~olnt aotion ~;
oI exter~al forces t~n~;en~ a~d ~ormal to t~e surface~of th~ ~olid produot~ o~ combu~bion ~he latb~r ~re dl3p~rsed.
B~ var~lng the rotabional ~pe~d Or t~e rotor 9 and ~crew ~ ~
it is ~0:33ib le to control the~3 Ioorc~s a~d thereb;y : - .
.~
o~in a powder of ~ defini~e ~ractional compositlon. -~
'rhe prel erred r~ge 01 te~per~tur~s in the oavity 8 is mal~tain~d b~ r~moval o~ heat b~ the cooli~g ~aoket 4.
he: powder is; ~oroed through tho cl~ar~noe 12 a~d dis~
c~arged t;~rough~the hole 2 ~rom the reacto~. ~ase~ llbe-rated ic~ t~e co~ o~ co~ustio~ ~xc evacuated toget~er : . . . .
wit~ o powdor o~ re r~oto:~ m~t~ri~ hr~ h thei clear-- :
,~ , ance 12 and hole ~ ~o ~acilitat~ ~isc~arg~ o~ the powdsr nd ensur~ con~lnui~y o~ the proa~s.
~, ~ ~, . . . -:~ ample 1 ; C~axe;ed to l;h~ reaction chamb~r ~ 0.05 m ~ dia~
eter of a c~ drioi~l r~acbor by mean~ o~ a ~our-start ~ -;S ~ 1 Y~ C_I~ IJI~IY~ . fJa l ~ a ~ ; ZJ~ 7' C' . l~
15 - ~ ~
,,~' ' thread screw 13 0.05 m ~n diameter1 0.058 m i~ pitch, groove ~ :
dapt~ of 0.013 and groove width o~ 0,00~ m i~ a he~t li~e- .-rating mi~ture contairling 1 k~; of powdered ' itan$um having ~ :
particl~ 3iz~ 10 m Rnd 0.254 k~ o~ carbon powder h~v~
ing particle size ~ 1^~0 ~ m. Irhe mlxtu:re moves in t~e ca~
~ity 8 ~,o be localLy itlflamed. by the hot tun~sten coll 18 to which a curr~nt 60-80Ai in ~trsn~;th s,nd 40~30V in vol'G-a~;e is applied. Po~ition o~ the Ilam~ ~ro~ i3 mo~itored by two thermoaoupl~ 25, In respo~3e to ~he po8itio~ o~ ~he ~lame ~ro~ e Qutomatlc co~rol SySt8~ ~moothly cha~s the rotational speed o~ the ~orew 1~ ~rom zero ~o 62.8 rad/s, - :
~i and o~ the roto~c9 ~rom zero ~o ~14 rad~ he avera~e rotatio~al 3~eeds o~ the sorew 13 and rotor 9 t~r~iore amount to 40 r~d/~ and 150 rad/~, respocti~el~. ~ho t~us ~oxmed tita~ o~rbide ~ ~ tne form of a brittle ¢ake i~ ~
~orcsd b~ the pres~urs of the scrs~ 13 tr~n~ltted bg t~e . .
heat liberating mixt~e to the insert 10 oi t~e rot~lng rotor to re~ult i~ dl~pe~sio~ o~ the oaks by Yirtue o~
~riotion ~orces actlng about a l~ng tane;e~t to t~e 3U3~ ~:
~aoe o~ the ca~ce.
Di~per~lo~ i9 c~r~i~d oll~ w~'chi~ a ran~se o~ tempsra- -tu~e~ b~tween 1500 ~nd 2000C. Gaseous product3 o~ combu~- -1~ j !
tiP~ a~d ~inely di~per~ed powdered t~t~,nium c~rb~ds with a ~peciIic 3uriace area o~ 0"33 ~ 10 ~ ~/k~ a~d Part~ cle size not les~ thar~ 2-10 5 m (97. 7%) i8 ~oxced th:rough the clear~nce 12 OI 10 ~ m. 1.25 ~g o~ titanium carbide wa~ obtained a~ter ~20 seconda oper~ion. ~I!he output ca- : -3 lZ; 135 Tl:lrc~ J ~ m~ .t~ ~137 ~ J0 Z7 ~7 P, ~
, _ ~
. ~, p~city o~ t~e ~e~ctor i~ 0.04 kg/~.
~xa~ple 2 Irhe process i~ carried out i~ a reaator ~llb~ta~t~al- -ly a~ de~cribed with r~f erenca to ~a~ple 1 usi~g a ~e~
l$berating mi~tur~ haYing a den~ity ~ z 1.8-103 k~/m3 contalning 8 k~ titanium powd~r havi~g partl¢le ~lzs <1 10 4 ~ a~d ~ ~cg oa~bon ,~owder having particlc 9iZ9 Cl 1 o~6 m. The ~ixture i~ co~veyad t.o th~ c~vity ~ .
2. 5 10 2 m i~ diameter at a ~a~ veloclty oi 1.1 10 3k~/s equal to the ma~s rate of combu~ion o~ th~ ~ mi~ture ~t : -V ~ 1.25 ~ 10 ~ o~ powdered titanium ca~bid~ is ob~
.
., tained f or glO se~ond~ havi~g a 9poci:i~ic g~8.C9 0.33 103 m~cg; 98% of this powdor h~ g p~rticle sizo le~s tP~an 2~10 5 m. ~he output capacity o~ t~e re~ctor :~ is 0.01 k~/s.
To ~ix the ~la~e ~ron~ i~ a pre~et po~ition the cont~
ro1 sy~tem ~aintains th~ xotatio~l 3p~eds o~ the sorew 13 ;~ and rotor 9 at 50 r~dj~ and 157 r~d/s, re3pecti~eb. Dis- ; -persion i~ oarried out ~t ~ ran~e o~ temperAture~ b~ttq~en ~ ~:
0 and 2000~C.
~ ampl~
I~troduc~d ~o the re~c~ioa cavity 8 of ~he reactor . :
a ta~let 0~025 m in dism~ter aompaoted irom 0.095 ~
o~ powd~red tita~$um having partlcle 3iZel ~ 1 t~ 1-10-4m nd 0.~5 Ic~; carbon powder havin~; particle ~lze ~ 9 than 1 10~6m. The ~blet i~ locally in~l~med by ~he tun~te~
coll 18, and the cako ~ormed 19 acted upon at a t~mpera~
ture 1600C by ~, pro~u*e o~ a ~ ton at J.0 ~a. 1195 ~;
~ . . . .
lqq~ ~ Tu~ yu~Ju--~l~ ulllyi~ J~ ,a ~ 3~ Z~3}1 Z7' ~ I''.Zl o~ tit~lum carbide i~ obt~ined, 98~ OI whlch ha~ ~ par~-ticle size leo3 than 2- 10 5 m.
E:~amplo 4 ~ en cylinder~ 2. 5 10 3 m in di~meter and 5-10 2 ia le~;th axe compactgd at ~ pr~sure o~ 100 DJlPa ~om a hest liberati~s mixturo ¢ontaini~; 0.479 ~g o~ ~itaniRm powder havi~; partiol~e ~iæe le~ ~ha~ 1~10 4 m and 0.1201kg o~ o~rbon powde~ havi~ par~icle size le~ thaa 1 ~ 10 6m.
~hen two ~uo~ oyl~ndcr~ ara ao~vey~d to the reaot~ on c~amb- -er 8 oi t~e re~otor ha~ a diameter 2.5~10 ~ ~ b;y a pis- :;
ton t~rou~;h a hole made at the e~d ~aoe oY the ca~lng 1.
~e reac~ion zone $~ ~illed with argon and a pressu;re Or -1.5 ~Pa ~9 mAintaine~. 'rhe cglinder which ~ neares'c to the ert of the ro~or i8 thec~ lamed by the tung~ten co$1 18 as a eurrent - 60 - 80 A in stren~5th ~pd a voLt~g~ OI 40 - :
~0 V i~ appl~ed th~r~to. At the ~ame ~ime, t~e cylinder~
are ~orou~l by b~e pit3bon ~;o tbe in~;~rt ~0 o~ ~he rotor 9 rotatable at 31,~ rad/~. The pre~ure o~ t~e piston on the .
~11nder~ is: 0.5 I~:Pa~ A cake of tit~,n~um carbide ~or~ed und~x the aot~on o~ external ~orce~ ~ormal (pr~sure) and tange~t (force of ~rictio~ ~om th~ ro~tin~ rotor) is .
disper~ed into a powder haviny; a speci~ic su~ace ~ ~:
0.33~103m~c~; 9~0 o~ whieh h~ R psrt~cle eize le~s than 2 ^ 10 5 ~ Dispersioel i~ done ~t a ~emperature interval bebween 1500 and 2000C. A~ the ~ir~t cy~ der burns ou~, is dispersed and t~c powder i8 r~moYed tt::rough the clear~
ance 1~ oi 1~10-~ ~ in ~ize, the ~eoond ayli~der ls dls-pl~d by the pisbon bo the lnserb 9 o~ the rotor 10, th~ 9 .
1 ~I'J--lW--WO 10 ' I~J ~ I U~ 'yu~/u--~Jr 'Ullly~ d I d l,d I~JVJ ~ J ,~_~VJ ~ r O ~ r . ~c:
~cond cylinder b~ing in~lamed ~rom t~e ~irst cy~inder.
rrhen a third eyli~d~r ii d~liv~red to t~ reactio~ cavity 8 1 a~d the p~oce~ i9 repeat3d. At t~ 3a~e tim~, ga3eou3 product6 of combustion ar~ e~acuat~d ~rc~m b~e cavi~ 8 through the cl esrance 12 to~e~her ~Jith th~ powder. It tak-es 180 ~ecvnds bo obtai~ 0~ 599 kg OI titanlum carbide powd-er~ The c~2acity o~ ths reactor i~ ~.3~10 3 kg/a.
Repre~ented in t~e ~able hsrsi~b~low are obher ex-a~ple~ ~ox carr~ out t~e proposed ~et~od in~A reactor de3cribad wlth re~erencs to ~$~mpl9 4 with indicabions o~ '~
A . th~ initi~1 co~po~ition OI the heat liberati~ ture condltion~ o~ t~e proces3, and ~ra~tlo~l compositionro~
~: t~e powder o$ xe~ractory mate~1~,1 obtQined.
~abLe Par~i- GA3e- Pre~ure - Robatio~al -~ ~
He~t-l1b~ra~~ ole OU8 oi the 6a- ~peed o~ t~e .-- ~;
No,~iZ~ f - m~dium ~ou~ me- rotor, rad~
coa- ~ iigr~ dium~loes ~;red~X~e, ~;; . eat~el~t~a~
3 4 5 6 7 : ~
~; 5 ~ 479 loo Ar o.1531.4 - ~ -C ' 120. 1 1 ~ ~ .
6 ~1 47~ 100 Ar 0.15 314 -C L20 ,1 L
~- 7 Ti 479 100 Ar 0.15 314 C 120 ~ L
8 ~i 479 100 ~r 0.156. 28 :: ..
1~ 1~ ~0 10~IJ ~JI l~llI.J~lll .~J.al=.l,o, i~5T IEI~; za~ z~ GS' r,z~
~ h V ~
, T~bl~ ~con~i~ued) _ 2 3 4 5 6 7 ~ -C 120. 1 TiC 10~ 20 9 Tdf~ 1784 100 air O .1 ~7 . 6 - ~ 10 ~ 17~L~ 100 Ar 0. 15 314 B ~16 10 Hi ~ 250 6~
11 Nb 930 100 N2 2 .2 314 - ~ : C 2 . 4 ~ 1 12 Ta 1810 100 ~2 3 314 C 8 . 4 1 13 ~ Co 589 100 Ar 0 .1 3L, Si 28~ 50 14 W 1838 100 Ar 0,1 31.4 C 12 . 01 15 ~ ;~ Ti 479~ . 100 Ar o,l 31.4 G ~ 120. L~ 1 Z~N 105 20 16 ~i 47~ 100 A~ 0 . 1 31 . 4 a 120.1 17 Ti 479 100 Ar 0.1 31.4 C 120.1 iO ~ 20 ;L8 ~ 509 100 ~ Ar Q . 1 31.4 . ~
Tur ~u~Ju--~J~ ullly~ ~ Z31ZI Z7' e~ ~.z-~ .
,_ , 'J / L~ i J
Tabl~ (co~ti~ued) , . .
C 120. 1 VO ~!7 20, . - ~ -19 T1 l7g 100 ~2 0~ 4 C 120 . 1 Al~ 43 20 Ti 479 100 ~2 0 .1 31. 4 C 120. 1 ~
21 ~i 479 100 ~z 0 . ~ ~1 .`4 ~ ;-C 120 . 1 1 . ~.
22 ~i 479 100 Ar 0.1 ~1,4 180g 100 ;~
a 2402 ~ . ;-...
able (continue~
S~Ze o~
Pre~urç o:~Ran~;e oi Phase oi ticles o~ the : the Pis~on ~tempera- th~ reirac- -~
es ~ . tor~ m~terl- powder o~; the the di~pcr~ al r3iractory ~ :~
sio~ pro- ~at~rls.l, cess ~ C xlODm (989~ :
of the to tQ~ -, ~ mas~
60 . 5 1~00-2200 ~iC 20 70,5 1600-18~0 ~lC 20 . ~-e~ Tc:r~c~-p~ rr~ .p~ 7 el~33 2~ 27 137 F~,23 , j ,'.i hv,,, ~ ~JJ~
': . -', ~abls (~o~tinued) - -8 9 10 ll _, .
8 0. 5 1600-2000 ~iC 20 9 o . 5 1500 2q00 x~ B2 - 0. 3 1500-180~ ~B2 60 11 0.8 1400-2500 Nbco~lNo~59 40 ~ b2C
l~ l 1900-3800 T~Co. 5No. 39 5 13 ~.S l~00-1900 CoSi 50 ~, 14 1 2400-2800 WC 40 ~
~iC :
o ~ ~ 1600-1800 ZrN 20 ~ic 0. 3 1600-1~00 ~1203 20 . - -~: ~ 17 ~ . 3 1600-1800 ~iC 20 ~iO
1~ 0 . 5 1400-2000 VC 20 ~: ~ 19 0. 5 15~0-1800 ~C 2û ~ .
:
AlN
i 20 ~- 3 1~00-1800 ~ 20 ~ ;
- ~ 1~0~1800 ~iC 20 22 0.5 1~00-2000 TiC 40 T~C
~ ' ' -~ - ~ , .......... .
Claims (12)
- The embodiments of the invention in which an exclusive property or privilege is claimed are defined as follows:
A method for obtaining a powdered refractory material comprising:
- thermal treatment through combustion of a heat liberating mixture containing a non-metal of the group;
boron, carbon, silicon, and at least one metal at a ratio ensuring combustion of the mixture in a reaction zone ac-companied by the formation of solid and gaseous products of combustion while withdrawing the liberated heat;
- application inside the reaction zone to said so-lid products of external forces in a direction tangent and/or normal to their surface at a temperature within a range near to and below the combustion temperature to 0.5 of their melting point to the formation of a powdered re-fractory material;
- evacuation from said reaction zone of the powd-ered refractory material and said gaseous products of com-bustion. - 2. A method as claimed in claim 1, in which external forces are applied to the solid products of combustion by exerting a pressure of up to 10 MPa and imparting there-to a rotational movement at a rate from 6 to 314 rad/s.
- 3. A method as claimed in claim 1, in which the heat liberating mixture is fed to the reaction zone under a pressure sufficient for moving it in this zone, the pow-dered refractory material formed in this zone and gaseous products of combustion being jointly evacuated therefrom.
- 4. A method as claimed in claim 3, in which mass ve-locity of feeding the heat liberating mixture to the re-action zone is equal to the mass rate of combustion of this mixture.
- 5. A method as claimed in claim 1, in which thermal treatment through combustion of the heat liberating mix-ture is carried out in a medium of an inert gas or a gas reacting therewith.
- 6. A method as claimed in claim 1, in which use is made of a heat liberating mixture containing a metal of IV to VI and VIII groups of the Periodic System.
- 7. A method as claimed in claim 6, in which use is made of a heat liberating mixture which additionally in-cludes carbide, boride, and silicide of at least one me-tal of IV to VI and VIII groups of the Periodic System tak-en separately or together.
- 8. A method as claimed in claim 6, in which use is made of a heat liberating mixture containing oxide or ni-tride of at least one element from III to V groups of the Periodic System taken separately or together.
- 9. A reactor for carrying out the method claimed in claim 3 comprising:
- a casing lined with a heat insulating material;
- a cooling system mounted on said casing;
- a reaction cavity inside said casing;
- means for initiating combustion of the heat libe-rating mixture mounted in the casing and communicating with said cavity;
- means provided inside the casing at its end, extend-ing in line with the axis of the casing, communicating with said cavity, and intended for feeding to this cavity a heat liberating mixture under a pressure ensuring its movement therein;
- a rotor with an insert of a wear resistant refrac-tory material secured inside the casing in the other end thereof to extend in line with the axis of the casing and communicate with said cavity;
- an annular clearance defined by the outer surface of the insert and inner lined surface of the casing in-tended fro evacuating the powdered refractory material and gaseous products of combustion from said cavity;
- a hole made in said casing communicating with said clearance and intended for evacuating the powdered refrac-tory material and gaseous products of combustion. - 10. A reactor as claimed in claim 9, in which said means for feeding the heat liberating mixture has the form of a screw arranged in the casing to be capable of rotating in a direction opposite to the direction of rota-tion of said rotor.
- 11. A reactor as claimed in claim 10, in which the inner lined surface of said casing and ends of said insert and screw facing each other define a reaction cavity.
- 12. A reactor as claimed in claim 9, in which said insert of the rotor has the form of a body of revolution the side surface of which defining said clearance is cy-lindrical, whereas its end face is tapered with the ver-tex facing said reaction cavity.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/SU1989/000085 WO1990011857A1 (en) | 1989-04-03 | 1989-04-03 | Method and reactor for obtaining powdered refractory material |
EP19890907377 EP0425668A4 (en) | 1989-04-03 | 1989-04-03 | Method and reactor for obtaining powdered refractory material |
JP1506783A JPH04500031A (en) | 1989-04-03 | 1989-04-03 | Method for obtaining powder refractory material and reactor for carrying out this method |
CA002027293A CA2027293A1 (en) | 1989-04-03 | 1990-10-10 | Method for obtaining a powdered refractory material and a reactor for carrying out the method |
CN90108698A CN1061046A (en) | 1989-04-03 | 1990-10-27 | The reactor for preparation method and this method of enforcement of refractory material of powder |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/SU1989/000085 WO1990011857A1 (en) | 1989-04-03 | 1989-04-03 | Method and reactor for obtaining powdered refractory material |
EP19890907377 EP0425668A4 (en) | 1989-04-03 | 1989-04-03 | Method and reactor for obtaining powdered refractory material |
JP1506783A JPH04500031A (en) | 1989-04-03 | 1989-04-03 | Method for obtaining powder refractory material and reactor for carrying out this method |
CA002027293A CA2027293A1 (en) | 1989-04-03 | 1990-10-10 | Method for obtaining a powdered refractory material and a reactor for carrying out the method |
CN90108698A CN1061046A (en) | 1989-04-03 | 1990-10-27 | The reactor for preparation method and this method of enforcement of refractory material of powder |
Publications (1)
Publication Number | Publication Date |
---|---|
CA2027293A1 true CA2027293A1 (en) | 1992-04-11 |
Family
ID=36764020
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA002027293A Abandoned CA2027293A1 (en) | 1989-04-03 | 1990-10-10 | Method for obtaining a powdered refractory material and a reactor for carrying out the method |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP0425668A4 (en) |
JP (1) | JPH04500031A (en) |
CN (1) | CN1061046A (en) |
CA (1) | CA2027293A1 (en) |
WO (1) | WO1990011857A1 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5686028A (en) * | 1991-07-03 | 1997-11-11 | Glaverbel | Process for forming a coherent refractory mass on a surface |
LU87969A1 (en) * | 1991-07-03 | 1993-02-15 | Glaverbel | PROCESS AND MIXTURE FOR FORMING A CONSISTENT REFRACTORY MASS ON A SURFACE |
JP2792329B2 (en) * | 1992-04-08 | 1998-09-03 | 日亜化学工業株式会社 | Method for producing carbonitride and carbonitride thereof |
US5700309A (en) * | 1993-12-01 | 1997-12-23 | Glaverbel | Method and powder mixture for repairing oxide based refractory bodies |
GB9324655D0 (en) * | 1993-12-01 | 1994-01-19 | Glaverbel | A method and powder mixture for repairing oxide based refractory bodies |
RU2137708C1 (en) * | 1998-03-13 | 1999-09-20 | Институт структурной макрокинетики и проблем материаловедения РАН | Method of preparing silicon nitride with elevated content of alpha-phase |
RU2149824C1 (en) * | 1999-01-29 | 2000-05-27 | Институт структурной макрокинетики и проблем материаловедения РАН | Silicon nitride with increased alpha-phase content |
US6436356B1 (en) | 2000-03-28 | 2002-08-20 | Comsyntech Ltd. | Apparatus for self-propagating high temperature synthesis |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU55959A1 (en) * | 1938-12-28 | 1939-11-30 | А.В. Тихонов | Method for producing boron, silicon and titanium carbides |
FR887377A (en) * | 1941-11-26 | 1943-11-11 | Deutsche Edelstahlwerke Ag | Method and device for obtaining reactions between metal oxides or oxidic ores and coal |
US3383196A (en) * | 1965-02-19 | 1968-05-14 | Union Carbide Corp | Vanadium carbide process |
CH498046A (en) * | 1965-11-10 | 1970-10-31 | Starck Hermann C Fa | Process for the production of finely divided, non-pyrophoric nitrides of the elements zirconium, hafnium, niobium and tantalum |
US3507616A (en) * | 1967-08-14 | 1970-04-21 | Westinghouse Electric Corp | Preparation of large crystal refractory metal monocarbides |
US3607046A (en) * | 1968-09-03 | 1971-09-21 | Gen Motors Corp | Preparation of aluminum nitride |
US3726643A (en) * | 1970-04-09 | 1973-04-10 | I Khim Fiz Akademii Nauk | Method of producing refractory carbides,borides,silicides,sulfides,and nitrides of metals of groups iv,v,and vi of the periodic system |
SU383362A1 (en) * | 1971-06-24 | 1973-10-12 | METHOD OF OBTAINING PLAIN AND COMPLEX CARBIDES OF FUME METALS | |
SU431253A1 (en) * | 1972-10-04 | 1974-06-05 | METHOD FOR SYNTHESIS OF REFRACTORY INORGANIC COMPOUNDS | |
SU617485A1 (en) * | 1975-06-26 | 1978-07-30 | Отделение Ордена Ленина Институт Химической Физик Ан Ссср | Method of obtaining refractory inorganic materials |
DE2620313C3 (en) * | 1976-05-07 | 1981-04-09 | Andrjušin, Aleksandr Iosifovič | Process for the production of carbides and plant for carrying out the process |
SU608303A1 (en) * | 1976-07-19 | 1981-12-23 | Институт Химической Физики Ан Армянской Сср | Method of producing refractory compounds |
SU1024153A1 (en) * | 1981-11-16 | 1983-06-23 | Институт Химической Физики Ан Армсср | Method of producing powders of carbon containing refractory compounds |
-
1989
- 1989-04-03 WO PCT/SU1989/000085 patent/WO1990011857A1/en not_active Application Discontinuation
- 1989-04-03 EP EP19890907377 patent/EP0425668A4/en not_active Withdrawn
- 1989-04-03 JP JP1506783A patent/JPH04500031A/en active Pending
-
1990
- 1990-10-10 CA CA002027293A patent/CA2027293A1/en not_active Abandoned
- 1990-10-27 CN CN90108698A patent/CN1061046A/en active Pending
Also Published As
Publication number | Publication date |
---|---|
EP0425668A1 (en) | 1991-05-08 |
JPH04500031A (en) | 1992-01-09 |
EP0425668A4 (en) | 1992-10-14 |
CN1061046A (en) | 1992-05-13 |
WO1990011857A1 (en) | 1990-10-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
NO174694B (en) | Apparatus and method for producing uniform, fine, boron-containing ceramic powders | |
US5126121A (en) | Process for preparing aluminum nitride powder via controlled combustion nitridation | |
Goller et al. | The production of boron carbide by carbothermic reduction | |
CA2027293A1 (en) | Method for obtaining a powdered refractory material and a reactor for carrying out the method | |
CA1175238A (en) | Method and apparatus for the thermal production of metal carbides and metals | |
CN102060538B (en) | Method for synthesizing silicon nitride powder by using high-temperature rotary furnace | |
US4981668A (en) | Silicon carbide as a raw material for silicon production | |
US5219804A (en) | Process for preparing ultrafine aluminum nitride powder | |
US4904452A (en) | Inner core heating in fluidized bed | |
CA1104621A (en) | Continuously producing high temperature reactor unit and a process for its operations | |
EP0243880B1 (en) | Silicon carbide as a raw material for silicon production | |
Zhang et al. | The effect of carbon sources and activative additive on the formation of SiC powder in combustion reaction | |
US3232706A (en) | Method of making submicron size nitrides and carbides | |
US5579334A (en) | Method and apparatus for reacting solid particulate reagents in an electric furnace | |
Kim et al. | TiB2 powder production for engineered ceramics | |
AU2005249777C1 (en) | Reduced moisture chemical reactions | |
CA1156424A (en) | Methods and apparatus for the continuous production of carbides | |
AU621989B2 (en) | Method and apparatus for producing boron carbide crystals | |
RU2054376C1 (en) | Method for production of high-melting inorganic compounds under conditions of burning | |
Zhang et al. | Synthesis of tungsten monocarbide by self-propagating high-temperature synthesis in the presence of an activative additive | |
WO1992014576A1 (en) | Plama production of ultra-fine ceramic carbides | |
JPH0118005B2 (en) | ||
RU2054377C1 (en) | Method for production of high-melting inorganic compounds under conditions of burning | |
AU616950B2 (en) | Apparatus and method for producing uniform, fine boron-containing ceramic powders | |
CA1185789A (en) | Apparatus for extracting metals from metal carbides |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FZDE | Dead |