CA1341537C - Production of pluripotent granulocyte colony-stimulating factor - Google Patents

Production of pluripotent granulocyte colony-stimulating factor Download PDF

Info

Publication number
CA1341537C
CA1341537C CA 516737 CA516737A CA1341537C CA 1341537 C CA1341537 C CA 1341537C CA 516737 CA516737 CA 516737 CA 516737 A CA516737 A CA 516737A CA 1341537 C CA1341537 C CA 1341537C
Authority
CA
Canada
Prior art keywords
leu
ala
gln
ser
pro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CA 516737
Other languages
French (fr)
Inventor
Lawrence M. Souza
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Amgen Inc
Original Assignee
Kirin Amgen Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
Priority to US76895985A priority Critical
Priority to US768,959 priority
Priority to US06/835,548 priority patent/US4810643A/en
Priority to US835,548 priority
Application filed by Kirin Amgen Inc filed Critical Kirin Amgen Inc
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=27118107&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CA1341537(C) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Publication of CA1341537C publication Critical patent/CA1341537C/en
Application granted granted Critical
Application status is Active legal-status Critical
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/24Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against cytokines, lymphokines or interferons
    • C07K16/243Colony Stimulating Factors
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/52Cytokines; Lymphokines; Interferons
    • C07K14/53Colony-stimulating factor [CSF]
    • C07K14/535Granulocyte CSF; Granulocyte-macrophage CSF
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
    • A61K38/00Medicinal preparations containing peptides

Abstract

Disclosed are novel polypeptides possessing part or all of the primary structural conformation and one or more of the biological properties of a mammalian (e.g., human) pluripotent granulocyte colony-stimulating factor ("hpG-CSF") which are characterized in preferred forms by being the product of procaryotic or eucaryotic host expression of an exogenous DNA sequence. Sequences coding for part or all of the sequence of amino acid residues of hpG-CSF or for analogs thereof may be incorporated into autonomously replicating plasmid or viral vectors employed to transform or transfect suitable procaryotic or eucaryotic host cells such as bacteria, yeast or vertebrate cells in culture. Products of expression of the DNA sequences display, e.g., the physical and immunological properties and in vitro biological activities of isolates of hpG-CSF derived from natural sources. Disclosed also are chemically synthesized polypeptides sharing the biochemical and immunological properties of hpG-CSF.

Description

~.~ -.
~3 4 1 5 3 7 The present invention pertains in general to hematopoietic growth factors and to polynucleotides encoding such factors. The present application pertains in particular to mammalian pluripotent colony stimulat-ing factors, specifically human pluripotent granulocyte colony-stimulating factor (hpG-CSF), to fragments and polypeptide analogs thereof and to polynucleotides encoding the same.
The human blood-forming (hematopoietic) system replaces a variety of white blood cells (including neutrophils, macrophages, and basophils/mast cells), red blood cells (erythrocytes) and clot-forming cells (mega-karyocytes/platelets). The hematopoietic system of the average human male has been estimated to produce on the order of 4.5 X 1011 granulocytes and erythrocytes every year, which is equivalent to an annual replacement of total body weight. Dexter et al., BioEssays, 2, 154-158 (1985).
It is believed that small amounts of certain hematopoietic growth factors account for the differen-tiation of a small nu mber of progenitor "stem cells"
into the variety of biood cell lines, for the tremen-dous proliferation of those lines, and for the ultimate differentiation of mature blood cells from those lines. Because the hematopoietic growth factors are present in extremely small amounts, the detection and

-2- 1341537.

identification of these factors has relied upon an array of assays which as yet only distinguish among the dif-ferent factors on the basis of stimulative effects on cultured cells under artificial conditions. As a result, a large number of names have been coined to denote a much smaller number of factors. As an example of the resultant confusion the terms, IL-3, BPA, multi-CSF, HCGF, MCGF and PSF are all acronyms which are now believed to apply to a single murine hematopoietic growth factor. Metcalf, Science, 229, 16-22 (1985).
See also, Burgess, et al. J.Biol.Chem., 252, 1988 (1977), Das, et al. Blood, 58, 600 (1980), Ihle, et al., J.Immunol., 129, 2431 (1982), Nicola, et al., J.Biol.Chem., 258, 9017 (1983), Metcalf, et al., Int.J.Cancer, 30, 773 (1982), and Burgess, et al.
Int.J.Cancer, 26, 647 (1980), relating to various murine growth regulatory glycoproteins.
The application of recombinant genetic tech-niques has brought some order out of this chaos. For example, the amino acid and DNA sequences for human erythropoietin, which stimulates the production of erythrocytes, have been obtained. (See, Lin, PCT
Published Application No. 85/02610, published June 20, 1985.) Recombinant methods have also been applied to the isolation of cDNA for a human granulocyte-macrophage colony-stimulating factor. See, Lee, et al., Proc.
Nati. Acad. Sci. (USA), 82, 4360-4364 (1985) and Wong, et al., Science, 228, 810-814 (1985). See also Yokota, et al. Proc. Natl. Acad. Sci. (USA), 81, 1070 (1984), Fung, et al., Nature, 307, 233 (1984), and Gough, et al., Nature, 309, 763 (1984) relating to cloning of murine genes, as well as Kawasaki, et al., Science, 230, 291 (1985) relating to human M-CSF.
A human hematopoietic growth factor, called human pluripotent colony-stimulating factor (hpCSF) or pluripoietin, has been shown to be present in the cul-

-3- 934~537 ture medium of a human bladder carcinoma cell line denominated 5637 and deposited under restrictive condi-tions with the American Type Culture Collection, Rockville, Maryland as A.T.C.C. Deposit No. HTB-9. The hpCSF purified from this cell line has been reported to stimulate proliferation and differentiation of pluri-potent progenitor cells leading to the production of all major blood cell types in assays using human bone marrow progenitor cells. Welte et al., Proc. Natl. Acad. Sci.
(USA), 82, 1526-1530 (1985). Purification of hpCSF
employed: (NH4)2SO4 precipitation; anion exchange chromatography (DEAE cellulose, DE52); gel filtration (AcA54 column); and C18 reverse phase high performance liquid chromatography. A protein identified as hpCSF, which is eluted in the second of two peaks of activity in C18 reverse phase HPLC fractions, was reported to have a molecular weight (MW) of 18,000 as determined by sodium dodecyl sulphate (SDS)-polyacrylamide gel elec-trophoresis (PAGE) employing silver staining. HpCSF was earlier reported to have an isoelectric point of 5.5 [Welte, et al., J. Cell. Biochem., Supp 9A, 116 (1985)]
and a high differentiation activity for the mouse myelo-monocytic leukemic cell line WEHI-3B D+ [Welte, et al., UCLA Symposia on Molecular and Cellular Biology, Gale, et al., eds., New Series, 28 (1985)]. Preliminary studies indicate that the factor identified as hpCSF has predominately granulocyte colony-stimulating activity during the first seven days in a human CFU-GM assay.
Another factor, designated human CSF-8, has also been isolated from human bladder carcinoma cell line 5637 and has been described as a competitor of murine 1251-labelled granulocyte colony-stimulating factor (G-CSF) for binding to WEHI-3B D+ cells in a dose-response relationship identical to that of unlabelled murine G-CSF (Nicola, et al., Nature, 314, 625-628 (1985)]. This dose-response relationship had

4 previously been reported to be unique to unlabelled murine G-CSF and not possessed by such factors as M-CSF, GM-CSF, or multi-CSF (Nicola, et al., Proc. Natl. Acad.
Sci. (USA), 81, 3765-3769 (1984)]. CSF-s and G-CSF are also unique among CSF's in that they share a high degree of ability to induce differentiation of WEHI-3B D+
cells. Nicola, et al., Immunology Today, 5, 76-80 (1984). At high concentrations, G-CSF stimulates mixed granulocyte/macrophage colony-forming cells [Nicola, et al., (1984) supra], which is consistent with preliminary results indicating the appearance of granulocytic, mono-cytic, mixed granulocytic/monocytic and eosinophilic colonies (CFU-GEMM) after 14 days incubation of human bone marrow cultures with hpCSF. CSF-s has also been described as stimulating formation of neutrophilic granulocytic colonies in assays which employed mouse bone marrow cells, a property which has been a criterion for identification of a factor as a G-CSF. On the basis of these similarities, human CSF-s has been identified with G-CSF (granulocytic colony stimulating factor).
Nicola et al., Nature, 314, 625-628 (1985).
Based upon their common properties, it appears that human CSF-s of Nicola, et al., supra, and the hpCSF
of Welte, et al., supra, are the same factor which could properly be referred to as a human pluripotent granulo-cyte colony-stimulating factor (hpG-CSF). Characteriza-tion and recombinant production of hpG-CSF would be particularly desirable in view of the reported ability of murine G-CSF to completely suppress an in vitro WEHI-3B D+ leukemic cell population at "quite normal concen-trations", and the reported ability of crude, injected preparations of murine G-CSF to suppress established transplanted myeloid leukemias in mice. Metcalf, Science, 229, 16-22 (1985). See also, Sachs, Scientific American, 284(1), 40-47 (1986).

5- ~341 537 To the extent that hpG-CSF may prove to be therapeutically significant and hence need to be avail-able in commercial scale quantities, isolation from cell cultures is unlikely to provide an adequate source of material. It is noteworthy, for example, that restric-tions appear to exist against commercial use of Human Tumor Bank cells such as the human bladder carcinoma cell line 5637 (A.T.C.C. HTB9) which have been reported as sources of natural hpCSF isolates in Welte, et al.
(1985, supra).

Summary of the Invention According to the present invention, DNA
sequences coding for all or part of hpG-CSF are pro-vided. Such sequences may include: the incorporation of codons "preferred" for expression by selected non-mammalian hosts; the provision of sites for cleavage by restriction endonuclease enzymes; and the provision of additional initial, terminal or intermediate DNA
sequences which facilitate construction of readily expressed vectors. The present invention also provides DNA sequences coding for microbial expression of poly-peptide analogs or derivatives of hpG-CSF which differ from naturally-occurring forms in terms of the identity or location of one or more amino acid residues (i.e., deletion analogs containing less than all of the resi-dues specified for hpG-CSF; substitution analogs, such as [Ser17]hpG-CSF, wherein one or more residues specified are replaced by other residues; and addition analogs wherein one or more amino acid residues is added to a terminal or medial portion of the polypeptide) and which share some or all the properties of naturally-occurring forms.
Novel DNA sequences of the invention include sequences useful in securing expression in procaryotic .~.

- 6 -or eucaryotic host cells of polypeptide products having at least a part of the primary structural conformation and one or more of the biological properties of naturally occurring pluripotent granulocyte colony-stimulating factor. DNA sequences of the invention are specifically seen to comprise: (a) the DNA sequence set forth in Table VII and Table VIII or their complimentary strands; (b) a DNA sequence which hybridizes (under hybridization conditions such as illustrated herein or more stringent conditions) to the DNA sequences in Table VII or to fragments thereof; and (c) a DNA sequence which, but for the degeneracy of the genetic code, would hybridize to the DNA sequence in Table VII. Specifi-cally comprehended in part (b) are genomic DNA sequences encoding allelic variant forms of hpG-CSF and/or encod-ing other mammalian species of pluripotent granulocyte colony-stimulating factor. Specifically comprehended by part (c) are manufactured DNA sequences encoding hpG-CSF, fragments of hpG-CSF and analogs of hpG-CSF which DNA seqil nces may incorporate codons facilitating trans-lation ~ messenger RNA in microbial hosts. Such manu-factured sequences may readily be constructed according to the methods of Alton, et al., PCT published applica-tion WO 83/04053.
Also comprehended by the present invention is that class of polypeptides coded for by portions of the DNA complement to the top strand human cDNA or genomic DNA sequences of Tables VII or VIII herein, i.e., "complementary inverted proteins" as described by Tramontano, et al., Nucleic Acids Res., 12, 5049-5059 (1984).
The present invention provides purified and isolated polypeptide products having part or all of the primary structural conformation (i.e., continuous sequence of am'.no acid residues) and one or more of the biological properties (e.g, immunological properties and ~s 4 ~ ~-37

-7-in vitro biological activity) and physical properties (e.g., molecular weight) of naturally-occurring hpG-CSF
including allelic variants thereof. These polypeptides are also characterized by being the product of chemical synthetic procedures or o-I procaryotic or eucaryotic host expression (e.g., by bacterial, yeast, higher plant, insect and mammalian cells in culture) of exog-enous DNA sequences obtained by genomic or cDNA cloning or by gene synthesis. The products of typical yeast (e.g., Saccaromyces cerevisiae) or procaryote [e.g., Escherichia coli (E. coli)] host cells are free of asso-ciation with any mammalian proteins. The products of microbial expression in vertebrate (e.g., non-human mammalian and avian) cells are free of association with any human proteins. Depending upon the host employed, polypeptides of the invention may be glycosylated with mammalian or other eucaryotic carbohydrates or may be non-glycosylated. Polypeptides of the invention may also include an initial methionine amino acid residue (at position -1).
Also comprehended by the invention are phar-maceutical compositions comprising effective amounts of polypeptide products of the invention together with suitable diluents, adjuvants and/or carriers useful in hpG-CSF therapy.
Polypeptide products of the invention may be "labelled" by association with a detectable marker sub-stance (e.g., radiolabelled with 1251) to provide reagents useful in detection and quantification of human hpG-CSF in solid tissue and fluid samples such as blood or urine. DNA products of the invention may also be labelled with detectable markers (such as radiolabels and non-isotopic labels such as biotin) and employed in DNA hybridization processes to locate the human hpG-CSF
gene position and/or the position of any related gene family in a chromosomal map. They may also be used for

- 8 - ~3 4 1 5 37 identifying human hpG-CSF gene disorders at the DNA
level and used as gene markers for identifying neighbor-ing genes and their disorders.
Polypeptide products of the present invention may be useful, alone or in combination with other hematopoietic factors or drugs in the treatment of hematopoietic disorders, such as aplastic anemia. They may also be useful in the treatment of hematopoietic deficits arising from chemotherapy or from radiation therapy. The success of bone marrow transplantation, for example, may be enhanced by application of hpG-CSF. Wound healing burn treatment and the treatment of bacterial inflammation may also benefit from the appli-cation of hpG-CSF. In addition, hpG-CSF may also be useful in the treatment of leukemia based upon a reported ability to differentiate leukemic cells.
Welte, et al., Proc. Natl. Acad. Sci. (USA), 82, 1526-1530 (1985) and Sachs, supra.
Numerous aspects and advantages of the inven-tion will be apparent to those skilled in the art upon consideration of the following detailed description which provides illustrations of the practice of the invention in its presently preferred embodiments.

Brief Description of the Drawings Figure 1 is a partial restriction endonuclease map of the hpG-CSF gene accompanied by arrows depicting the sequencing strategy used to obtain the genomic sequence; and Figure 2 is the sequence of a recombinant hpG-CSF dDNA clone, Ppo2 according to the present invention, accompanied by its amino acid translation and a complementary strand in the polypeptide coding region.
The same sequences are given within the specification as Table VII in relation to Example 4.

Detailed Description According to the present invention, DNA
sequences encoding part or all of the polypeptide sequence of hpG-CSF have been isolated and character-ized.
~

The following examples are presented by way of illustration of the invention and are specifically directed to procedures carried out prior to identifica-tion of hpG-CSF cDNA and genomic clones, to procedures resulting in such identification, and to the sequencing, development of expression systems based on cDNA, genomic and manufactured genes and verification of expression hpG-CSF and analog products in such systems.
More particularly, Example 1 is directed to amino acid sequencing of hpG-CSF. Example 2 is directed to the preparation of a cDNA library for colony hybridi-zation screening. Example 3 relates to construction of hybridization probes. Example 4 relates to hybridiza-tion screening, identification of positive clones, DNA
sequencing of a positive cDNA clone and the generation of polypeptide primary structural conformation (amino acid sequence) information. Example 5 is directed to the identification and sequencing of a gehomic clone encoding hpG-CSF. Example 6 is directed to the con-struction of a manufactured gene encoding hpG-CSF
wherein E.coli preference codons are employed.
Example 7 is directed to procedures for con-struction of an E. coli transformation vector incor-porating hpG-CSF-encoding DNA, the use of the vector in procaryotic expression of hpG-CSF, and to analysis of properties of recombinant products of the invention.
Example 8 is directed to procedures for generating analogs of hpG-CSF wherein cysteine residues are replaced by another suitable amino acid residue by means of mutagenesis performed on DNA encoding hpG-CSF.
Example 9 is directed to procedures for the construction of a vector incorporating hpG-CSF analog-encoding DNA
derived from a positive cDNA clone, the use of the vector for transfection of COS-1 cells, and the cultured growth of the transfected cells. Example 10 relates to physical and biological properties or recombinant poly-peptide products of the invention.

Example 1 (A) Sequencing of Material Provided By Literature Methods A sample (3-4pg, 85-90% pure of SDS, silver stain-PAGE) of hpG-CSF was obtained from Sloan Kettering Institute, New York, New York, as isolated and purified according to Welte, et al., Proc. Natl. Acad.
Sci. (USA), 82, 1526-1530 (1985).
The N-terminal amino acid sequence of this sample of hpG-CSF was determined in a Run #1 by micro-sequence analysis using an AB407A gas phase sequencer (Applied Biosystems, Foster City, California) to provide the sequence information set out in Table I below. In Tables I-IV single letter codes are employed, "X" desig-nates a residue which was not unambiguously determined and residues in parentheses were only alternatively or tentatively assigned.
TABLE I

K-P-L-G-P-A-S-K-L-K-Q-(G,V,S)-G-L-X-X-X
A high background was present in every cycle of the run for which results are reported in Table I, indicating that the sample had many contaminating com-ponents, probably in the form of chemical residues from purification. The sequence was retained only for refer-ence use.
In Run #2, a second sample (5-6 ug, -95% pure) was obtained from Sloan Kettering as for Run #1 and a sequencing procedure was performed as for Run #1. This sample was from the same lot of material employed to generate Fig. 4 of Welte, et al., Proc. Natl. Acad. Sci.

USA , 82, 1526-1530 (1985). The results are given in Table II.

TABLE II

T-P-L-G-P-A-S-(S)-L-P-Q-(X)-M-JM;-X-K-(R)-X-X-(R)-(L)-X-Although more residues were identified, Run #2 did not provide a sufficiently long, unambiguous sequence from which a reasonable number of probes could be constructed to search for hpG-CSF DNA. It was cal-culated that at least 1536 probes would have been required to attempt isolation of cDNA based on the sequence of Table II. Again, contamination of the sample was believed to be the problem.
Accordingly, a third sample (3-5 ug, -40%
pure) was obtained from Sloan Kettering as above. This preparation was electroblotted after separation by SDS-PAGE in an attempt at further purification. Sequence analysis of this sample yielded no data.

(B) Sequencing of Materials Provided by Revised Methods In order to obtain a sufficient amount of pure material to perform suitably definitive amino acid sequence analysis, cells of a bladder carcinoma cell line 5637 (subclone 1A6) as produced at Sloan-Kettering were obtained from Dr. E. Platzer. Cells were initially cultured Iscove's medium (GIBCO, Grand Island, New York) in flasks to confluence. When confluent, the cultures were trypsinized and seeded into roller bottles (1-1/2 flasks/bottle) each containing 25 ml of preconditioned _12_ 1341537 Iscove's medium under 5% CO2. The cells were grown overnight at 37 C. at 0.3 rpm.
*
Cytodex-1 beads (Pharmacia, Uppsala, Sweden) were washed and sterilized using the following proce-dures. Eight grams of beads were introduced into a bottle and 400 ml of PBS was added. Beads were sus-pended by swirling gently for 3 hours. After allowing the beads to settle, the PBS was drawn off, the beads were rinsed in PBS and fresh PBS was added. The beads were autoclaved for 15 minutes. Prior to use, the beads were washed in Iscove's medium plus 10% fetal calf serum (FCS) before adding fresh medium plus 10% FCS to obtain treated beads.
After removing all but 30 ml of the medium from each roller bottle, 30 ml of fresh medium plus 10%
FCS and 40 ml of treated beads were added to the bottles. The bottles were gassed with 5% CO2 and all bubbles were removed by suction. The bottles were placed in roller racks at 3 rpm for 1/2 hour before reducing the speed to 0.3 rpm. After 3 hours, an addi-tional flask was trypsinized and added to each roller bottle containing beads.
At 40% to 50% of confluence the roller bottle cultures were washed with 50 ml PBS and rolled for 10 min. before removing the PBS. The cells were cultured for 48 hours in medium A [Iscove's medium containing 0.2% FCS, 10-8M hydrocortisone, 2mM glutamine, 100 units/ml penicillin, and 100 ug/ml streptomycin]. Next, the culture supernatant was harvested by centrifugation at 3000 rpm for 15 min., and stored at -70 C. The cul-tures were refed with medium A containing 10% FCS and were cultured for 48 hours. After discarding the medium, the cells were washed with PBS as above and cultured for 48 hours in medium A. The supernatant was again harvested and treated as previously described.
* Trade Mark c ~i -13- 1341537 ' Approximately 30 liters of medium conditioned by lA6 cells were concentrated to about 2 liters on a Millipore*Pellicon unit equipped with 2 cassettes having 10,000 M.W. cutoffs at a filtrate rate of about 200 ml/min. and at a retentate rate of about 1000 ml/min.
The concentrate was diafiltered with about 10 liters of 50mM Tris (pH 7.8) using the same apparatus and same flow rates. The diafiltered concentrate was loaded at, 40 ml/min. onto a 1 liter DE cellulose column equili-brated in 50mM Tris (pH 7.8). After loading, the column was washed at the same rate with 1 liter of 50mM Tris (pH 7.8) and then with 2 liters of 50mM Tris (pH 7.8) with 50mM NaCl. The column was then sequentially eluted with six 1 liter solutions of 50mM Tris (pH 7.5) con-taining the following concentrations of NaC1: 75mM;
100mM; 125mM; 150mM; 200mM; and 300mM. Fractions (50 ml) were collected, and active fractions were pooled and concentrated to 65 ml on an Amicon ultrafiltration stirred cell unit equipped with a YM5 membrane. This concentrate was loaded onto a 2 liter AcAS4 gel filtra-tion column equilibrated in PBS. The column was run at 80 ml/hr. and 10 ml fractions were collected. Active fractions were pooled and loaded directly onto a C4 high performance liquid chromatography (HPLC) column.
Samples, ranging in volume from 125 ml to 850 ml and containing 1-8 mg of protein, about 10% of which was hpG-CSF, were loaded onto the column at a flow rate ranging from 1 ml to 4 ml per minute. After loading and an initial washing with 0.1M ammonium acetate (pH 6.0-7.0) in 80% 2-propanol at a flow rate of 1/ml/min. One milliliter fractions were collected and monitored for proteins at 220nm, 260nm and 280nm.
As a result of purification, fractions con-taining hpG-CSF were clearly separated (as fractions 72 and 73 of 80) from other protein-containing fractions.
HpG-CSF was isolated (150-300 ug) at a purity of about * trade-r.iark t.:...r.

_14- 13 41537 85t5% and at a yield of about 50%. From this purified material 9},g was used in Run #4, an amino acid sequence analysis wherein the protein sample was applied to a TFA-activated glass fiber disc without polybrene.
Sequence analysis was carried out with an AB 470A
sequencer according to the methods of Hewick, et al., J.
Biol. Chem., 256, 7990-7997 (1981) and Lai, Anal. Chim.
Acta, 163, 243-248 (1984). The results of Run #4 appear in Table III.
TABLE III

Thr - Pro - Leu - Gly - Pro - Ala - Ser - Ser - Leu - Pro-Gln - Ser - Phe - Leu - Leu - Lys -(Lys)- Leu -(Glu)- Glu-20 Val - Arg - Lys - Ile -(Gln)- Gly - Val - Gly - Ala - Ala-Leu - X - X -In Run #4, beyond 31 cycles (corresponding to 25 residue 31 in Table III) no further significant sequence information wa-3 obtained. In order to obtain a longer unambiguous sequence, in a Run #5, 14 ug of hpG-CSF
purified from conditioned medium were reduced with 10 ul of s-mercaptoethanol for one hour at 45 C, then thor-oughly dried under a vacuum. The protein residue was then redissolved in 5% formic acid before being applied to a polybrenized glass fiber disc. Sequence analysis was carried out as for Run #4 above. The results of Run #5 are given in Table IV.

TABLE IV

Thr - Pro - Leu - Gly - Pro - Ala - Ser - Ser Leu - Pro -Gln - Ser - Phe - Leu - Leu - Lys - Cys - Leu - Glu - Gln-10 Val - Arg - Lys - Ile - Gln - Gly - Asp - Gly - Ala - Ala -Leu - Gln - Phe - Lys - Leu - Gly - Ala - Thr - Tyr - Lys -Val - Phe - Ser - Thr - (Arg) - (Phe) - (Met) -X-The amino acid sequence give in Table IV was sufficiently long (44 residues) and unambiguous to con-struct probes for obtaining hpG-CSF cDNA as described infra.
Example 2 Among standard procedures for isolating cDNA
sequences of interest is the preparation of plasmid-borne cDNA "libraries" derived from reverse transcrip-tion of mRNA abundant in donor cells selected on the basis of their expression of a target gene. Where sub-stantial portions of the amino acid sequence of a poly-peptide are known, labelled, single-stranded DNA probe sequences duplicating a sequence putatively present in the "target" cDNA may be employed in DNA/DNA hybridiza-tion procedures carried out on cloned copies of the cDNA
which have been denatured to single stranded form.
Weissman, et al., U.S. Patent No. 4,394,443; Wallace, et al., Nucleic Acids Res., 6, 3543-3557 (1979), and Reyes, et al., Proc. Natl. Acad. Sci. (USA), 79, 3270-3274 13 4153~

(1982), and Jaye, et al., Nucleic Acids Res., 11, 2325-2335 (1983). See also, U.S. Patent No. 4,358,535 to Falkow, et al., relating to DNA/DNA hybridization pro-cedures in effecting diagnosis; and Davis, et al., "A
Manual for Genetic Engineering, Advanced Bacterial Genetics", C"old Spring Harbor Laboratory, Cold Spring Harbor, N.Y. (1980) at pp. 55-58 and 174-176, relating to colony and plaque hybridization techniques.
Total RNA was extracted from approximately 1 gram of cells from a bladder carcinoma cell line 5637 (lA6) using a guanidinium thiocynate procedure for quan-titative isolation of intact RNA. [Chirgwin, et al., Biochemistry, 18, 5294-5299 (1979)].
The sterile aqueous RNA solution contained total RNA from the IA6 cells. To obtain only the messenger RNA from the total RNA solution, the solution was passed through a column containing oligodeoxy-thymidylate [oligo(dT)] (Collaborative Research, Inc., Waltham, Massachusetts. Poly-Adenylated (poly-A+) tails characteristic of messenger RNA adhere to the column while ribosomal RNA is eluted. As a result of this procedure, approximately 90 ug of poly-adenylated messenger RNA (poly-A+ mRNA) were isolated. The iso-lated poly-A+ messenger RNA was pre-treated with methyl-mercury hydroxide (Alpha Ventron, Danvers, Massachusetts) at a final concentration of 4 mM for 5 minutes at room temperature prior to use in a cDNA reac-tion. The methylmercury hydroxide treatment denatured interactions of messenger RNA, both with itself and with contaminating molecules that inhibit translation.
Payvar, et al., J.Biol.Chem., 258, 7636-7642 (1979).
According to the Okayama procedure [Okayama, et al., Molecular & Cellular Biology, 2, 161-170 (1982)], a cDNA bank was prepared using mRNA obtained from IA6 cells. The cDNAs were then transformed by incubation into a host microorganism E.coli K-12 strain HB101 for amplification.
~,.

13 43~37 Example 3 Hybridization probes designed on the basis of the hpG-CSF amino terminal sequence of Table IV con-sisted of a set of 24 oligonucleotides each being 23 bases in length and containing three inosine residues.
The probe oligonucleotides were manufactured according to the procedure of Caruthers, et al., Genetic Engineering, 4, 1-18 (1982) and labeled with y-32P ATP
by kinasing with polynucleotide kinase. The probe oli-gonucleotides, corresponding to the messenger RNA for residues 23-30 of the sequence of Table IV, are illus-trated in Table V.
TABLE V
hpG-CSF Probes 5' GC IGC ICC GTC ICC CTG AAT CTT3' T
The assignment of neutrality to I's was based on the published work of Takahashi, et al., Proc. Natl.
Acad. Sci. (USA), 82, 1931-1935 (1985) and Ohtsuka, et al., J. Biol. Chem., 260, 2605-2608 (1985). However, inosine may have a destabilizing effect if base paired with a G or T. In Takahashi, et al., inosines may appear to have a neutral effect because they average out as a group to near neutrality (e.g., three having paired favorably with C and two not favorable to pairing with T).
To test the effect of having I's base pair with G's, control experiments were designed using an N-myc gene sequence and clone. The sequences picked from the N-myc gene had the same overall G and C content at $~.

1 i the first two positions of each codon as was prescribed by the hpG-CSF probes. Thus, the N-myc test probes were of the same length, contained I's in the same relative positions and had potentially the same average Tm (62-66 C., not accounting for the 3 or 4 inosine residues included) as the hpG-CSF probes.
Two sets of N-myc test probes were constructed according to the procedure of Caruthers, et al., supra. Set I, as illustrated in Table VI included: 1, a 23 mer with perfect match; 2, in which three third position C's were replaced with I's generating the worst possible case for adding I's; and 3, in which four third position C's were replaced with I's. The second set of test probes was designed to represent a more random distribution of inosine base pairs, that might give an overall neutral base pairing effect. Set II, as illus-trated in Table VI, included: 4, containing two I's that will base pair with C's and one with a G; and 5, identical to 4 with the addition of one more I:G base pair.

TABLE VI
N-myc Test Probes 1. 5'CAC AAC TAT GCC GCC CCC TCC CC3' 2. 5@CAC AAC TAT GCI GCC CCI TCI CC3@
3. 51CAI AAC TAT GCI GCC CCI TCI CC31 4. 51AAC GAG CTG TGI GGC AGI CCI GC31 5. 5'AAI GAG CTG TGI GGC AGI CCI GC31 Five replica filters containing N-myc DNA
sequences and chicken growth hormone DNA sequences (as a negative control) were baked in a vacuum oven for 2 hours at 80 C. prior to hybridization. All filters were hybridized as described in Example 4 for the hpG-CSF
probes except the period of hybridization was only 6 hours. Filters were washed three times at room tempera-ture then once at 45 C., 10 minutes each. The filters were monitored with a Geiger counter.
The filter representing N-myc probe 3 gave a very weak signal relative to the other four probed fil-ters and was not washed any further. After a 10 minute 50 C. wash, the Geiger counter gave the following per-cent signal with probe one being normalized to 100%:
Probe 2, 20%; Probe 3(45 C.), 2%; Probe 4, 92%; and Probe 5, 75%. After a 55 C. wash, the percentages were: Probe 2, 16%; Probe 4, 100%; and Probe 5, 80%. A
final wash at 60 C. yielded the following percentages:
Probe 2, 1.6%; Probe 4, 90%; and Probe 5, 70%.
Thus, in the presence of three I's, as in probes 2 and 4, up to a 60-fold difference in signal is observed as the theoretical Tm (I's not included in the calculation) is approached [based upon a worst case I
base pairing (Probe 2) and a relatively neutral I base pairing case (Probe 4)].
The standardization information gained by the N-myc test hybridizations was utilized in washing and monitoring of the hpG-CSF hybridization as indicated below, to gauge the degree of confidence with which the results of less than stringent washing might be accepted.

Example 4 According to the procedure of Hanahan, et al., J. Mol. Biol., 166, 557-580 (1983), bacteria containing recombinants with cDNA inserts as prepared in Example 2 were spread on 24 nitrocellulose filters (Millipore, Bedford, Massachusetts) laid on agar plates. The plates were then incubated to establish approximately 150,000 colonies which were replica plated to 24 other nitro-cellulose filters. The replicas were incubated until distinct colonies appeared. The bacteria on the filters were lysed on sheets of Whatman 3 MM paper barely satu-rated with sodium hydroxide (0.5M) for 10 minutes, then blotted with Tris (1M) for 2 minutes, followed by blotting with Tris (0.5M) containing NaC1 (1.5M) for 10 minutes. When the filters were nearly dry, they were baked for 2 hours at 80 C. in a vacuum oven prior to nucleic acid hybridization. [Wahl, et al., Proc. Natl.
Acad. Sci. (USA), 76, 3683-3687 (1979)]; and Maniatis, et al., Cell, 81, 163-182 (1976).
The filters were prehybridized for 2 hours at 65 C. in 750 ml of lOX Denhardt's, 0.2% SDS and 6X
SSC. The filters were rinsed in 6X SSC, then placed four in a bag and hybridized for 14 hours in 6X SSC and lOX Denhardt's. There was approximately 15 ml of solu-tion per bag containing 50 x 106 cpm of 32P-labeled probe (oligonucleotides).
After hybridization, the filters were washed three times in 6X SSC (1 liter/wash) at room temperature for 10 minutes each. The filters were then washed two times at 45 C. for 15 minutes each, once at 50 for 15 minutes and once at 55 C. for 15 minutes using 1 liter volumes of 6X SSC. The filters were autoradiographed for 2 hours at -70 C. using an intensifying screen and Kodak XAR-2*film. On this autoradiograph, there were 40-50 positive signals detected including 5 very intense signals.
The areas containing the strongest five signals and an additional five positives were scraped from the master plates and replated for a secondary * Trade Mark c screening using the same probe mixture under the same conditions. The wash procedure differed in that the high temperature washes consisted of two at 55 C. for 15 minutes each and then one at 60 C. for 15 minutes.
Based on the N-myc probe study of Example 3, the final wash temperature in the second screening was raised because the aggregate melting temperature for the 24 23-mers was 60-68 C., similar to that of the N-myc probes. Just after the second 55 C. wash, the filters were left damp and an autoradiograph was made. Compari-son of this autoradiograph with a second autoradiograph taken for a similar period of time after a final wash at 60 C. showed that only two of the 10 clones being tested did not suffer a substantial loss in signal in rising from 55-60 C. These two clones were later shown to be of nearly identical lengths and restriction endoclease patterns. One clone designated Ppo2, was selected for sequencing.
Sequencing of the recombinant hpG-CSF cDNA
clone, Ppo2, obtained by the above procedure was accom-plished by the dideoxy method of Sanger, et al., Proc.
Natl. Acad. Sci. (USA) 74, 5463-5467 (1977). The single-stranded DNA phage M-13 was used as a cloning vector for supplying single-stranded DNA templates from the double-stranded cDNA clones. The Sanger, et al., method revealed the sequence as set forth in Table VII
accompanied by its amino acid translation and a comple-mentary strand in the polypeptide coding region.

.~.

TABLE VII
HindIII
5' - AGCTTGGACTCAGCGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGjfNNNNN]
-12 -10 -1 +1 Leu Trp Hi-s Ser Ala Leu Trp Thr Val Gln Glu Ala Thr Pro Leu Gly Pro CTG TGG CAC AGT GCA CTC TGG ACA GTG CAG GAA GCC ACC CCC CTG GGC CCT
GAC ACC GTG TCA CGT GAG ACC TGT CAC GTC CTT CGG TGG GGG GAC CCG GGA
HgiAI ApaI

Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys Cys Leu Glu Gln Val Arg Lys Ile Gln GCC AGC TCC CTG CCC CAG AGC TTC CTG CTC AAG TGC TTA GAG CAA GTG AGG AAG ATC
CAG
CGG TCG AGG GAC GGG GTC TCG AAG GAC GAG TTC ACG AAT CTC GTT CAC TCC TTC TAG
GTC
N
N

Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu GGC GAT GGC GCA GCG CTC CAG GAG AAG CTG TGT GCC ACC TAC AAG CTG TGC CAC CCC
GAG
CCG CTA CCG CGT CGC GAG GTC CTC TTC GAC ACA CGG TGG ATG TTC GAC ACG GTG GGG
CTC

Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro GAG CTG GTG CTG CTC GGA CAC TCT CTG GGC ATC CCC TGG GCT CCC CTG AGC AGC TGC
CCC
CTC GAC CAC GAC GAG CCT GTG AGA GAC CCG TAG GGG ACC CGA GGG GAC TCG TCG ACG
GGG

---Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr tA
AGC CAG GCC CTG CAG CTG GCA GGC TGC TTG AGC CAA CTC CAT AGC GGC CTT TTC CTC
TAC ~
TCG GTC CGG GAC GTC GAC CGT CCG ACG AAC TCG GTT GAG GTA TCG CCG GAA AAG GAG
ATG

Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr CAG GGG CTC CTG CAG GCC CTG GAA GGG ATC TCC CCC GAG TTG GGT CCC ACC TTG GAC
ACA
GTC CCC GAG GAC GTC CGG GAC CTT CCC TAG AGG GGG CTC AAC CCA GGG TGG AAC CTG
TGT

TABLE VII (cont'd.) Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly CTG CAG CTG GAC GTC GCC GAC TTT GCC ACC ACC ATC TGG CAG CAG ATG GAA GAA CTG
GGA
GAC GTC GAC CTG CAG CGG CTG AAA CGG TGG TGG TAG ACC GTC GTG TAC CTT CTT GAC
CCT

Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln ATG GCC CCT GCC CTG CAG CCC ACC CAG GGT GCC ATG CCG GCC TTC GCC TCT GCT TTC
CAG
TAC CGG GGA CGG GAC GTC GGG TGG CTC CCA CGG TAC GGC CGG AAG CGG AGA CGA AAG
GTC

Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr CGC CGG GCA GGA GGG GTC CTG GTT GCC TCC CAT CTG CAG AGC TTC CTG GAG GTG TCG
TAC
GCG GCC CGT CCT CCC CAG GAC CAA CGG AGG GTA GAC GTC TCG AAG GAC CTC CAC AGC
ATG

Arg Val Leu Arg His Leu Ala Gin Pro OP
CGC GTT CTA CGC CAC CTT GCC CAG CCC TGA GCC AAG CCC TCC CCA TCC CAT GTA TTT
ATC
CGC CAA GAT GCG GTG GAA CGG GTC GGG ACT

TCT ATT TAA TAT TTA TGT CTA TTT AAG CCT CAT ATT TAA AGA CAG GGA AGA GCA GAA
CGG

AGC CCC AGG CCT CTG TGT CCT TCC CTG CAT TTC TGA GTT TCA TTC TCC TGC CTG TAG
CAG t~
StuI ~., TGA GAA AAA GCT CCT GTC CTC CCA TCC CCT GGA CTG GGA GGT AGA TAG GTA AAT ACC
AAG
C.-~
TAT TTA TTA CTA TGA CTG CTC CCC AGC CCT GGC TCT GCA ATG GGC ACT GGG ATG AGC
CGC

TGT GAG CCC CTG GTC CTG AGG GTC CCC ACC TGG GAC CCT TGA GAG TAT CAG GTC TCC
CAC
t.

TABLE VII (cont'd.) GTG GGA GAC AAG AAA TCC CTG TTT AAT ATT TAA ACA GCA GTG TTC CCC ATC TGG GTC
CTT
GCA CCC CTC ACT CTG GCC TCA GCC GAC TGC ACA GCG GCC CCT GCA TCC CCT TGG CTG
TGA
GGC CCC TGG ACA AGC AGA GGT GGC CAG AGC TGG GAG GCA TGG CCC TGG GGT CCC ACG
AAT
TTG CTG GGG AAT CTC GTT TTT CTT CTT AAG ACT TTT GGG ACA TGG TTT GAC TCC CGA
ACA
TCA CCG ACG TGT CTC CTG TTT TTC TGG GTG GCC TCG GGA CAC CTG CCC TGC CCC CAC
GAG
N
GGT CAG GAC TGT GAC TCT TTT TAG GGC CAG GCA GGT GCC TGG ACA TTT GCC TTG CTG
GAC

GGG GAC TGG GGA TGT GGG AGG GAG CAG ACA GGA GGA ATC ATG TCA GGC CTG TGT GTG
AAA
StuI
GGA AGC TCC ACT GTC ACC CTC CAC CTC TTC ACC CCC CAC TCA CCA GTG TCC CCT CCA
CTG

TCA CAT TGT AAC TGA ACT TCA GGA TAA TAA AGT GTT TGC CTC CA -~-'' ...a [f150-200 base poly A plus 25-30 bases plasmid DNA preceding a PvuII
restriction site]-3' _25- 1341537 The following characteristics of the sequence of Table VII are of note. At the 5' end of the sequence there are shown bases corresponding to those of the poly G cDNA linker. There then occur about five bases (designated as "N") whose sequence could not readily be determined unambiguously by the Sanger, et al. method due to the preceding multiple G's. The sequence there-after reveals a series of 12 codons encoding a portion of a putative leader sequence for the polypeptide.
Based on correspondence to the amino terminal sequence of natural isolates of hpCSF described in Example 1, the initial threonine residue of the putative "mature" form of hpG-CSF is indicated by +1. Mature hpG-CSF is thereafter revealed to include 174 residues as indicated. Following the "stop" codon (the OP codon, TGA) are approximately 856 bases of an untranslated 3' sequence and multiple A's of the poly A "tail". Unique HgiAi, and ApaI restriction endonuclease recognition sites, as well as two Stul sites (discussed infra with respect to construction of procaryotic and eucaryotic expression systems) are also designated in Table VII..
Owing to the lack of asparagine residues in the polypeptide, there are no apparent sites for N-glycosylation. The underscored 6 bases near the end of the 3' untranslated sequence represent a potential polyadenylation site.
It is noteworthy that each of two additional cDNA clones identified by the hybridization procedures described above from among a total of 450,000 clones failed to include DNA encoding the entire leader sequence from the transcription initiation site onward. Indeed, all three hpG-CSF clones terminated in the 5' region at exactly the same site, indicating that secondary structure of the mRNA transcribed severely hinders cDNA formation beyond this site. As a practical i34~537 matter, therefore, cDNA expression screening such as described in Okayama, et al., Mol. and Cell. Biol., 3, 280-289 (1983) and as actually employed to isolate GM-CSF in Wong, et al., Science, 228, 810-814 (1985) could not have readily applied to isolation of hpCSF DNA
because such isolation systems ordinarily rely upon the presence of a full length cDNA transcript in the clones assayed.
The above sequence is not readily susceptible for securing direct expression of hpG-CSF in a microbial host. To secure such expression, the hpG-CSF coding region should be provided with an initial ATG codon and the sequence should be inserted in a transformation vector at a site under control of a suitable promoter/-regulator DNA sequence.

Example 5 In this example, cDNA encoding hpG-CSF as isolated in the previous example was used to screen a genomic clone. A phage lambda human fetal liver genomic library [prepared according to the procedure of Lawn, et al. Cell, 15, 1157-1174 (1978) and obtained from T.
Maniatis] was screened using a nick translated probe consisting of two hpG-CSF cDNA fragments isolated by digestion with HgiAI and StuI (HgiAI to StuI, 649 b.p.;
StuI to StuI, 639 b.p.). A total of approximately 500,000 phage were plated on 12 (15 cm) petri dishes and plaque lifted and hybridized to probe using the Benton/Davison procedure [Benton, et al., Science, 196, 180 (1977)]. A total of 12 positive clones were observed. Three clones (1-3) yielding the strongest signals upon autoradiography in a secondary screening were grown in 1 liter cultures and mapped by restriction enzyme digestion and Southern blotting using a radio-labeled 24-mer oligonucleotide (kinased with y-32P ATP) 5'CTGCACTGTCCAGAGTGCACTGTG3'. The mapping results showed that isolates 1 and 3 were identical and 2 con-tained 2000 additional bases 5' to the hpG-CSF gene.
Therefore, clone 2 was used for further characteriza-tion. DNA from clone 2 was digested with R1 to release an 8500 bp hpG-CSF containing fragment which was subse-quently subcloned into pBR322 and further mapped by restriction endonuclease digests, Southern Blotting, M13 subcloning and sequencing. The sequence obtained is as set out in Table VIII.

TABLE VIII
GGGGACAGGCTTGAGAATCCCAAAGGAGAGGGGCAAAGGACACTGCCCCCGCAAGTCTGCCAGAGCAGAGAGGGAGACC

CACAGGCTCGTGCCGCTTCCAGGCGTCTATCAGCGGCTCAGCCTTTGTTCAGCTGTTCTGTTCAAACACTCTGGGGCCA

GGGAGGAAGGGAGTTTGAGGGGGGCAAGGCGACGTCAAAGGAGGATCAGAGATTCCACAATTTCACAAAACTTTCGCAA

CCTGCATTGTCTTGGACACCAAATTTGCATAAATCCTGGGAAGTTATTACTAAGCCTTAGTCGTGGCCCCAGGTAATTT

MetAlaGlyProAlaThrGlnSerProM
TATGTATAAAGGGCCCCCTAGAGCTGGGCCCCAAAACAGCCCGGAGCCTGCAGCCCAGCCCCACCCAGACCCATGGCTG

Crl etLysLeuMetA
-'-TGAAGCTGATGGGTGAGTGTCTTGGCCCAGGATGGGAGAGCCGCCTGCCCTGGCATGGGAGGGAGGCTGGTGTGACAGA

t.Tt laLeuGlnLeuL
GGGAATGGGGATTAAAGGCACCCAGTGTCCCCGAGAGGGCCTCAGGTGGTAGGGAACAGCATGTCTCCTGAGCCCGCTC

~..

TABLE VIII (cont'd.) -10 -1 +1 10 20 euLeuTrpHisSerAlaLeuTrpThrValGlnGluAlaThrProLeuGlyProAlaSerSerLeuProGlnSerPheLe uLeuLysCysLeuGluGlnVa TGCTGTGGCACAGTGCACTCTGGACAGTGCAGGAAGCCACCCCCCTGGGCCCTGCCAGCTCCCTGCCCCAGAGCTTCCT

lArgLysIleGlnGlyAspGlyAlaAlaLeuGlnGluLysLeu GAGGAAGATCCAGGGCGATGGCGCAGCGCTCCAGGAGAAGCTGGTGAGTGAGGTGGGTGAGAGGGCTGTGGAGGGAAGC

N
GATGGAACTGCAGGGCCAACATCCTCTGGAAGGGACATGGGAGAATATTAGGAGCAGTGGAGCTGGGGAAGGCTGGGAA

TGGTGGGGACAGTGCTCGGGAGGGCTGGCTGGGATGGGAGTGGAGGCATCACATTCAGGAGAAAGGGCAAGGGCCCCTG

CAGGGCAGAGAGGAACTGAACAGCCTGGCAGGACATGGAGGGAGGGGAAAGACCAGAGAGTCGGGGAGGACCCGGGAAG

CysAlaThrTyrLysLeuCysHisProGluGluLeuValLeuLeuGlyHisSerLeuGlylleProTrpA ~
GAGTCTCACTCAGCATCCTTCCATCCCCAGTGTGCCACCTACAAGCTGTGCCACCCCGAGGAGCTGGTGCTGCTCGGAC

,_.a.
V't W

TABLE VIII (cont'd.) laProLeuSerSerCysProSerGlnAlaLeuGlnLeu CTCCCCTGAGCAGCTGCCCCAGCCAGGCCCTGCAGCTGGTGAGTGTCAGGAAAGGATAAGGCTAATGAGGAGGGGGAAG

AlaGlyCysLeuSerGln ~
CTCCCCCATGTCTCCAGGTTCCAAGCTGGGGGCCTGACGTATCTCAGGCAGCACCCCCTAACTCTTCCGCTCTGTCTCA

LeuHisSerGlyLeuPheLeuTyrGlnGlyLeuLeuGlnAlaLeuGluGlyIleSerProGluLeuGlyProThrLeuA
spThrLeuGlnLeuAspValA
CTCCATAGCGGCCTTTTCCTCTACCAGGGGCTCCTGCAGGCCCTGGAAGGGATCTCCCCCGAGTTGGGTCCCACCTTGG

laAspPheAlaThrThrIleTrpGlnGln -t-CCGACTTTGCCACCACCATCTGGCAGCAGGTGAGCCTTGTTGGGCAGGGTGGCCAAGGTCGTGCTGGCATTCTGGGCAC

Cn 121 cia MetGluG
GCCCTGTCCATGCTGTCAGCCCCCAGCATTTCCTCATTTGTAATAACGCCCACTCAGAAGGGCCCAACCACTGATCACA

TABLE VIII (cont'd.) luLeuGlyMetAlaProAlaLeuGlnProThrGlnGlyAlaMetProAlaPheAlaSerAlaPheGlnArgArgAlaGl yGlyValLeuValAlaSerHi AACTGGGAATGGCCCCTGCCCTGCAGCCCACCCAGGGTGCCATGCCGGCCTTCGCCTCTGCTTTCCAGCGCCGGGCAGG

sLeuGlnSerPheLeuGluValSerTyrArgValLeuArgHisLeuAlaGlnProOP
TCTGCAGAGCTTCCTGGAGGTGTCGTACCGCGTTCTACGCCACCTTGCCCAGCCCTGAGCCAAGCCCTCCCCATCCCAT

TTATGTCTATTTAAGCCTCATATTTAAAGACAGGGAAGAGCAGAACGGAGCCCCAGGCCTCTGTGTCCTTCCCTGCATT

TGTAGCAGTGAGAAAAAGCTCCTGTCCTCCCATCCCCTGGACTGGGAGGTAGATAGGTAAATACCAAGTATTTATTACT

CTCTGCAATGGGCACTGGGATGAGCCGCTGTGAGCCCCTGGTCCTGAGGGTCCCCACCTGGGACCCTTGAGAGTATCAG

AAATCCCTGTTTAATATTTAAACAGCAGTGTTCCCCATCTGGGTCCTTGCACCCCTCACTCTGGCCTCAGCCGACTGCA

GGCTGTGAGGCCCCTGGACAAGCAGAGGTGGCCAGAGCTGGGAGGCATGGCCCTGGGGTCCCACGAATTTGCTGGGGAA

C)7 CA
TTTTGGGACATGGTTTGACTCCCGAACATCACCGACGTGTCTCCTGTTTTTCTGGGTGGCCTCGGGACACCTGCCCTGC

~~ .
TABLE VIII (cont'd.) GACTCTTTTTAGGGCCAGGCAGGTGCCTGGACATTTGCCTTGCTGGATGGGGACTGGGGATGTGGGAGGGAGCAGACAG

GTGTGAAAGGAAGCTCCACTGTCACCCTCCACCTCTTCACCCCCCACTCACCAGTGTCCCCTCCACTGTCACATTGTAA

TGTTTGCCTCCAGTCACGTCCTTCCTCCTTCTTGAGTCCAGCTGGTGCCTGGCCAGGGGCTGGGGAGGTGGCTGAAGGG

w CGGGGAGGAGGTCTGGGGAGGAGGTCCAGGGAGGAGGAGGAAAGTTCTCAAGTTCGTCTGACATTCATTCCGTTAGCAC

(.rJ
.C~
_.a t.3'!
t.rl A restriction endonuclease map (approximately 3.4 Kb) of genomic DNA containing the hpG-CSF gene is detailed in Figure 1. The restriction endonucleases shown in Figure 1 are: NcoI, N; PstI, P; BamHI, B; ApaI, A; XhoI, X; and Kpn, K. The arrows below the map depict the sequencing strategy used to obtain the genomic sequence. The boxed regions are those found in the cDNA
clone with the dashed open ended box representing sequence not present in the cDNA clone, but identified by probing mRNA blots. The identification of coding sequences proposed for exon one was carried out by Northern blot analysis. A 24 mer oligonucleotide probe, 5'CAGCAGCTGCAGGGCCATCAGCTT3', spanning the predicted splice junctures for exons 1 and 2 was hybridized to hpG-CSF mRNA in a Northern blot format. The resulting blot shows an mRNA the same size (-1650 bp) as that seen with an exon 2 oligonucleotide probe. This data combined with the ability to direct expression of hpG-CSF from the pSVGM-Ppol vector (Example 9) using the Met initiation codon depicted in Table VIII, defines the coding sequences contained in exon 1. Exons 2-5 are defined by the coding sequences obtained in the cDNA clone (Ppo2) of the hpG-CSF
gene (Table VII).

Example 6 This example relates to preparation of a manu-factured gene encoding hpG-CSF and including E.coli preference codons.
Briefly stated, the protocol employed was generally as set out in the disclosure of co-owned Alton, et al., PCT Publication No. W083/04053. The genes were designed for initial assembly of component oligonucleo-tides into multiple duplexes which, in turn, were assembled into three discrete sections. These sections were designed for ready amplification and, upon removal from the amplification system, could be assembled sequentially or through a multiple fragment ligation in a suitable expression vector.
The construction of Sections I, II and II is illustrated in Table IX though XIV. In the construction of Section I, as illustrated in Tables IX and X, oligo-nucleotides 1-14 were assembled into 7 duplexes (1 and 8); 2 and 9; 3 and 10; 4 and 11; 5 and 12; 6 and 13; and 7 and 14). The 7 duplexes were then ligated to form Section I as shown in Table X. It may also be noted in Table X that Section I includes an upstream XbaI sticky end and a downstream BamHI sticky end useful for liga-tion to amplification and expression vectors and for ligation to Section II.

TABLE IX
EChpG-CSFDNA SECTION I

6!1 a~

~

TABLE X
EChpG-CSFDNA SECTION I

CTAGAAAAA ACCAAGGAGG TAATAAATAA TGACTCCATT AGGTCCTGCT TCTTCTCTGC
TTTTT TGGTTCCTCC ATTATTTATT ACTGAGGTAA TCCAGGACGA AGAAGAGACG

XbaI

70 3 80 90 100 4 110 120 ~
CGCAAAGCTT TCTGCTGAAA TGTCTGCAAC AGGTTCGTAA AATCCAGGGT GACGGTGCTG
GCGTTTCGAA AGACGACTTT ACAGACCTTG TCCAAGCATT TTAGGTCCCA CTGCCACGAC d1 10 11 ' CACTGCAAGA AAAACTGTGC GCTACTTACA AACTGTGCCA TCCGGAAGAG CTGGTACTGC
GTGACGTTCT TTTTGACACG CGATGAATGT TTGACACGGT AGGCCTTCTG GACCATGACG

7 190 100 cs TGGGTCATTC TCTTGG
ACCCAGTAAG AGAACCCTAG
14 -"' BamHI ~
W
V

1341~~~' As illustrated in Tables XI and XII, in the construction of Section II, oligonucleotides 15-30 were assembled into 8 duplexes (15 and 23; 16 and 24; 17 and 25; 18 and 26; 19 and 27; 20 and 28; 21 and 29; and 22 and 30). These 8 duplexes were then ligated to form Section II, as shown in Table XII. As further shown in Table XII, Section II has an upstream BamHI sticky end and a downstream EcoRI sticky end useful for ligation to an amplification vector and for ligation to Section I.
Near its downstream end, Section II also includes a downstream SstI site useful in the ev~ntual ligation Sections II and III.

TABLE XI
EChpG-CSFDNA SECTION II

TABLE XII
EChpG-CSFDNA SECTION II

GATCCCGTG GGCTCCGCTG TCTTCTTGTC CATCTCAAGC TCTTCAGCTG GCTGGTTGTC
GGCAC CCGAGGCGAC AGAAGAACAG GTAGAGTTCG AGAAGTCGAC CGACCAACAG

BamHI

TGTCTCAACT GCATTCTGGT CTGTTCCTGT ATCAGGGTCT TCTGCAAGCT CTGGAAGGTA
ACAGAGTTGA CGTAAGACCA GACAAGGACA TAGTCCCAGA AGACGTTCGA GACCTTCCAT

TCTCTCCGGA ACTGGGTCCG ACTCTGGACA CTCTGCAGCT AGATGTAGCT GACTTTGCTA
AGAGAGGCCT TGACCCAGGC TGAGACCTGT GAGACGTCGA TCTACATCGA CTGAAACGAT

CTACTATTTG GCAACAGATG GAAGAGCTCA AAG
GATGATAAAC CGTTGTCTAC CTTCTCGAGT TTCTTAA
SstI EcoRI G3'!

Finally, Section III was constructed as shown in Tables XIII and XIV. For this construction, oligo-nucleotides 31-42 were assembled into 6 duplexes (31 and 37; 32 and 38; 33 and 39; 34 and 40; 35 and 41; and 36 and 42). The 6 duplexes were then ligated to form Sec-tion III as depicted in Table XIV. As also shown in Table XIV, Section III includes an upstream BamHI sticky end and a downstream EcoRI sticky end useful for ligat-ing into an amplification vector, and at least in the case of the EcoRI end, into an expression vector. In addition, Section II has an upstream SstI site useful in the eventual ligation of Sections II and III.

TABLE XIII
EChpG-CSFDNA SECTION III

~'~ =
TABLE XIV

EChpG-CSFDNA SECTION III

GATCCAAAG AGCTCGGTAT GGCACCAGCT CTGCAACCGA CTCAAGGTGC TATGCCGGCA
GTTTC TCGAGCCATA CCGTGGTCGA GACGTTGGCT GAGTTCCACG ATACGGCCGT

BamHI SstI

TTCGCTTCTG CATTCCAGCG TCGTGCAGGA GGTGTACTGG TTGCTTCTCA TCTGCAATCT o AAGCGAAGAC GTAAGGTCGC AGCACGTCCT CCACATGACC AACGAAGAGT AGACGTTAGA

TTCCTGGAAG TATCTTACCG TGTTCTGCGT CATCTGGCTC AGCCGTAATA G
AAGGACCTTC ATAGAATGGC ACAAGACGCA GTAGACCGAG TCGGCATTAT CTTAA

EcoRI
..,a CA
.C-....
t_s'.
t.N

-41- ~3 41~3i The XbaI to BamHI fragment formed by Section I
is ligated into an M13mp1l phage vector opened with XbaI
and BamHI. The vector is then reopened by digestion with BamHI and EcoRI, followed by ligation with the BamHI to EcoRI fragment formed by Section II. At this stage, Sections I and II have been joined in proper orientation. Next, another M13mp1l vector is opened by BamHI to EcoRI digestion and then ligated with the BamHI
to EcoRI fragment formed by Section III.
The vector containing Sections I and II is digested with XbaI and SstI. Likewise, the vector con-taining Section III is digested with SstI and EcoRI.
Both of the smaller of the two fragments resulting from each digestion are ligated into a a plasmid pCFM1156 which is previously opened with XbaI and EcoRI. The product of this reaction is an expression plasmid con-taining a continuous DNA sequence, as shown in Table XV, encoding the entire hpG-CSF polypeptide with an amino terminal methionine codon (ATG) for E.coli translation initiation.

TABLE XV
-1 +1 Met Thr Pro Leu Gly Pro Ala Ser Ser Leu C TAG AAA AAA CCA AGG AGG TAA TAA ATA ATG ACT CCA TTA GGT CCT GCT TCT TCT CTG

CCG CAA AGC TTT CTG CTG AAA TGT CTG GAA CAG GTT CGT AAA ATC CAG GGT GAC GGT
GCT
Pro Gln Ser Phe Leu Leu Lys Cys Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu GCA CTG CAA GAA AAA CTG TGC GCT ACT TAC AAA CTG TGC CAT CCG GAA GAG CTG GTA
CTG

Leu Gly His Ser Leu Gly Ile Pro Trp ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu C't'G GGT CAT TCT CTT GGG ATC CCG TGG GCT CCG CTG TCT TCT TGT CCA TCT CAA GCT
CTT

Gln Leu Ala Gly Cys Leu Ser Gln leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu CAG CTG GCT GCT TGT CTG TCT CAA CTG CAT TCT GGT CTG TTC CTG TAT CAG GGT CTT
CTG
~.a Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp c'N, CAA GCT CTG GAA GGT ATC TCT CCG GAA CTG GGT CCG ACT CTG GAC ACT CTG CAG CTA
GAT
....a Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu leu Gly Met Ala Pro Ala GTA GCT GAC TTT GCT ACT ACT x'1'T TGG CAA CAG ATG GAA GAG CTC GGT ATG GCA CCA
GCT c'"s Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly CTG CAA CCG ACT CAA GGT GCT ATG CCG GCA TTC GCT TCT GCA TTC CAG CGT CGT GCA
GGA

TABLE XV (cont'd.) Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg GGT GTA CTG GTT GCT TCT CAT CTG CAA TCT TTC CTG GAA GTA TCT TAC CGT GTT CTG
CGT

His Leu Ala Gln Pro CAT CTG GCT CAG CCG TAA TAG AAT T

i.J1 Crl Although any suitable vector may be employed to express this DNA, the expression plasmid pCFM1156 may readily be constructed from a plasmid pCFM836, the construction of which is described in published European Patent Application No. 136,490. pCFM836 is first cut with NdeI and then blunt-ended with PolI such that both existing NdeI sites are destroyed. Next, the vector is digested with C1aI and Sacli to remove an existing polylinker before ligation to a substitute polylinker as illustrated in Table XVI. This substitute polylinker may be constructed according to the procedure of Alton, et al., supra. Control of expression in the expression pCFM1156 plasmid is by means of a lambda PL
promoter, which itself may be under the control of a C1857 repressor gene (such as is provided in E.coli strain K12AHtrp).

TABLE XVI

TAGCTAAACTAAGATCTTCCTCCTTATTGTATACCAATTGCGCAACCTTAAGCCATGGTA
1 Clal, 12 XbaI, 29 Ndel, 35 Hincll, Hpal, 39 Mlul, 47 EcoRIl, 53 HgiCl Kpnl, 57 Ncol S1, CCTTCGAATGAGCTCCTAGGCGCCTATTTATTCATTGCTAGG
63 Hindlll, 70 Aval Xhol, 75 BamHI Xho2, 79 Sac2, Ul ...a W
tst CA

Example 7 This example relates to E. coli expression of an hpG-CSF polypeptide by means of a DNA sequence encod-ing [Met-11 hpCSF. The sequence employed was partially synthetic and partially cDNA-derived. The synthetic sequence employed E. coli preference codons.
Plasmid Ppo2, containing the hpG-CSF gene shown in Table VII, was digested with HgiAI and Stul providing an approximately 645 base pair fragment including the gene for mature hpCSF (as shown in Table VII) with seven of the leader sequence residue codons at the 5' end and about 100 base pairs of the 3' non-coding region. HgiAI digestion leaves a 5', 4-base sticky end identical to that of PstI, and StuI leaves a blunt end. This allows for ready insertion of the fragment into M13 mp8 (Rf) cut with PstI and with the blunt-end-forming restriction enzyme, HincIi. Upon amplification in M13, the hpG-CSF DNA was excised by digestion with Apal and BamHI which cut, respectively, at the ApaI site spanning the codons for residues +3 to +5 of hpCSF and at a BamHI site "downstream" of the HinciI site in the M13 mp8 restriction polylinker. In order to allow for E. coli expression of the hpG-CSF polypeptide, a synthetic fragment was prepared as set out in Table XVII
below.

TABLE XVII

5' - C TAG AAA AAA CCA AGG AGG TAA TAA ATA
3' - TTT TTT GGT TCC TCC ATT ATT TAT
XbaI

-1 +1 Met Thr Pro Leu ATG ACA CCT CTG GGC C - 5' TAC TGT GGA GAC -3' ApaI

47 - i3 4 1 537.._ As may be determined from analysis of Table XVII, the linker includes an ApaI sticky end, codons specifying the initial three residues of the amino ter-minal of hpG-CSF ("restoring" the Thri, Pro2, Leu3-specifying codons deleted upon ApaI digestion of the M13 DNA described above and employing codons preferentially expressed in E. coli), a translation initiating ATG, a sequence of 24 base pairs providing a ribosome binding site, and an XbaI sticky end.
The expression vector employed for E. coli expression was that described as pCFM536 in European Patent Application No. 136,490, by Morris, published April 10, 1985. (See also, A.T.C.C. 39934, E. coli JM103 harboring pCFM536). Briefly, plasmid pCFM536 was digested with XbaI and BamHI. The hpG-CSF fragment (ApaI/BamHI) and linker (XbaI/ApaI) described above were then ligated thereinto to form a plasmid designated p536Ppo2.
Plasmid p536PPo2 was transformed into a phage resistant variant of the E. coli AM7 strain which has previously been transformed with plasmid pMW1 (A.T.C.C.
No. 39933) harboring a CI857 gene. Transformation was verified on the basis of the antibiotic (amp) resistance marker gene carried on the pCFM536 progenitor plasmid.
Cultures of cells in LB broth (ampicillin 50 ug lml) were maintained at 28 C. and upon growth of cells in culture to A600 = 0.5, hpCSF expression was induced by raising the culture temperature to 42 C. for 3 hours.
The final O.D. of the culture was A600 = 1.2.
The level of expression of hpG-CSF by the transformed cells was estimated on a SDS-poly acrylamide gel stained with coomassie blue dye to be 3-5% of total cellular protein.
Cells were harvested by centrifugation at 3500 g for 10 minutes in a JS-4.2 rotor. Cells at 25%
(w/v) in water were broken by passing 3 times through a French Pressure Cell at 10,000 p.s.i. The broken cell suspension was centrifuged at 10,000 g for 15 minutes in a JA-20 rotor. The pellet was resuspended in water and solubilized at about 5 mg/ml total protein in 1% lauric acid, 50 mM Tris, pH 8.7. The solubilized pellet material was centrifuged at 15,000 g for 10 minutes and to the supernatant CuSO4 was added to 20 mM. After 1 hour, this sample was loaded onto a C4 HPLC column for purification according to the procedures of example 1 (B) with adjustments made for volume and concentra-tion.
A second purification procedure was developed to yield larger quantities of hpG-CSF formulated in a nonorganic-containing buffer. This material is suitable for in vivo studies. One hundred and fifty grams of cell paste was resuspended in about 600 ml of 1 mM DTT
and passed 4 times through a Manton Gualin Homogenizer at about 7000 PSI. The broken cell suspension was centrifuged at 10,000 g for 30 minutes and the pellet was resuspended in 400 ml of 1% deoxycholate (DOC), 5 mM
EDTA, 5 mM DTT, and 50 mM Tris, pH 9. This suspension was mixed at room temperature for 30 minutes and centrifuged at 10,000 g for 30 minutes. The pellet was resuspended in about 400 ml of water and centrifuged at 10,000 g for 30 minutes. The pellet was solubilized in 100 ml of 2% Sarkosyl and 50 mM at pH 8. CuSO4 was added to 20 },M and the mixture was stirred 16 hours at room temperature, and then centrifuged at 20,000 g for minutes. To the supernatant was added 300 ml 30 acetone. This mixture was put on ice for 20 minutes and then centrifuged at 5000 g for 30 minutes. The pellet was dissolved in 250 ml of 6 M guanidine and 40 mM
sodium acetate at pH 4, and put over a 1,200 ml G-25 column equilibrated and run in 20 mM sodium acetate at pH 5.4. The hpG-CSF peak (about 400 ml) was pooled and put on a 15 ml CM-cellulose column equilibrated in 20 mM

sodium acetate at pH 5.4. After loading, the column was washed with 60 ml of 20 mM sodium acetate at pH 5.4 and with 25 mM sodium chloride, and then the column was eluted with 200 ml of 20 mM sodium acetate at pH 5.4 and with 37 mM sodium chloride. 150 ml of this eluent was concentrated to 10 ml and applied to a 300 ml G-75 column equilibrated and run in 20 mM sodium acetate and 100 mM sodium chloride at pH 5.4. The peak fractions comprising 35 ml were pooled and filter sterilized. The final concentration of hpG-CSF was 1.5 mg/ml, is greater than 95% pure as determined by analysis on a gel, and contained less than 0.5 ng of pyrogen per 0.5 mg of hpG-CSF. The pyrogen level was determined using a Limulus Amebocyte Lysate (LAL) test kit (M. A.
Bioproducts, Walkersville, Maryland).
Example 8 This example relates to the use of recombinant methods to generate analogs of hpG-CSF wherein cysteine residues present at positions 17, 36, 42, 64 and 74 were individually replaced by a suitable amino acid resi-due.
Site directed mutagenesis procedures according to Souza, et al., published PCT Application No.
W085/00817, published February 28, 1985, were carried out on [Met-1] encoding DNA of plasmid p536Ppo2, des-cribed infra, using synthetic oligonucleotides ranging in size from 20 to 23 bases as set out in Table XVIII
below. Oligonucleotide No. 1 allowed for formation of a gene encoding [Serl7]hpG-CSF; oligonucleotide No. 2 allowed for formation of [Ser36]hpG-CSF, and so on.

TABLE XVIII

Oligonucleotide Sequence 1. 5'-CTG CTC AAG TCC TTA GAG CAA GT-3' 2. 3'-GAG AAG CTG TCT GCC ACC TACA-3' 3. 5'-TAC AAG CTG TCC CAC CCC GAG-3' 4. 5'-TGA GCA GCT CCC CCA GCC AG-3' 5. 5'-CTG GCA GGC TCC TTG AGC CAA-3' The Cys to Ser site directed mutagenesis restrictions were carried out using M13 mplO containing an XbaI-BamHI hpG-CSF fragment isolated from p536Ppo2 as a template. DNA from each M13mpl0 clone containing a Cys-Ser substitution was treated with XbaI and BamHI.
The resulting fragment was cloned into expression vector pCFM746 and expression products were isolated as in Example 7.
The plasmid pCFM746 may be constructed by cleaving a plasmid pCFM736 (the construction of which from deposited and publically available materials is described in Morris, published PCT Application No.
W085/00829, published February 28, 1985) with C1aI and BamHI to remove an existing polylinker and by substitut-ing the following polylinker.

TABLE XIX
C1aI
5'CGATTTGATTCTAGAATTCGTTAACGGTACCATGGAA

GCTTACTCGAGGATCCGCGGATAAATAAGTAAC3' CGAATGAGCTCCTAGGCGCCTATTTATTCATTGCTAG5' Sau3a -In a purification procedure for Cys to Ser analogs according to the present invention, about 10-15 g of cell paste was resuspended in 40 ml of 1 mM
DTT and passed 3 times through a French Pressure Cell at 10,000 psi. The broken cell suspension was centrifuged at 1,000 g for 30 minutes. The pellet was resuspended in 1% DOC, 5 mM EDTA, 5 mM DTT, 50 mM Tris, pH 9 and allowed to mix 30 minutes at room temperature. The mixture was centrifuged at 10,000 g for 30 minutes, resuspended in 40 ml H20, and recentrifuged as 10,000 g for 30 minutes. The pellet was dissolved in 10 ml of 2%
Sarkosyl, 50 mM DTT, 50 mM Tris, pH 8. After mixing for 1 hour, the mixture was clarified by centrifugation at 20,000 g for 30 minutes, and then applied to a 300 ml G-75 column equilibrated and run in 1% Sarkosyl, 50 mM
Tris, pH 8. Fractions containing the analog were pooled and allowed to air oxidize by standing with exposure to air for at least one day. Final concentrations ranged from 0.5 - 5 mg/ml.

Example 9 In this example, a mammalian cell expression system was devised to ascertain whether an active poly-peptide product of hpG-CSF DNA could be expressed in and secreted by mammalian cells (COS-1, A.T.C.C. CRL-1650). This system was designed to provide for secre-tion of a polypeptide analog of hpGCSF via expression and secretory processing of a partially synthetic, par-tially cDNA-derived construction encoding [Alal] hpG-CSF
preceded by a leader polypeptide having the sequence of residues attributed to human GM-CSF in Wong, et al., Science, 228, 810-815 (1985) and Lee, et al., Proc.
Nati. Acad. Sci. (USA), 82, 4360-4364 (1985).

1341~-37 The expression vector employed for preliminary studies of expression of polypeptide products of the invention was a "shuttle" vector incorporating both pBR322 and SV40 DNA which had been designed to allow for autonomous replication in both E. coli and mammalian cells, with mammalian cell expression of inserted exog-enous DNA under control of a viral promoter/regulator DNA sequence. This v-~ctor, designated pSVDM-19, harbored in E. coli T 101, was deposited August 23, 1985, with the American Type Culture Collection, 12301 Parkiawn Drive, Rockville, Maryland, and received the accession No. A.T.C.C. 53241.
The specific manipulations involved in the expression vector construction were as follows. A
leader-encoding DNA sequence was synthesized as set out in Table XX below.

TABLE XX

HindiII Met Trp 5' - A GCT TCC AAC ACC ATG TGG
3' - AGG TTG TGG TAC ACC

Leu Gin Ser Leu Leu Leu Leu Gly Thr Val CTG CAG AGC CTG CTG CTC TTG GGC ACT GTG
GAC GTC TCG GAC GAC GAG AAC CCG TGA CAC
-1 +1 Ala Cys Ser Ile Ser Ala Pro Leu GCC TGC AGC ATC TCT GCA CCC CTG GGC G-3' CGG ACG TCG TAG AGA CGT GGG GAC -5' ApaI

134~537 As indicated in Table XX, the sequence includes HindIII and ApaI sticky ends and codons for the 17 amino acid residues attributed to the "leader" of human GM-CSF. There follow codons specifying an alanine residue, a proline residue and a leucine residue. The proline and leucine residues duplicate the amino acids present at positions +2 and +3 of hpG-CSF, while the alanine residue is duplicative of the initial amino terminal (+l) residue of GM-CSF rather than hpG-CSF.
Replacement of threonine by alanine was designed to be facilitative of proper host cell "processing off" of the GM-CSF leader by cellular mechanisms ordinarily involved in GM-CSF secretory processing.
Plasmid pSVDM-19 was digested with KpnI and the site was blunt ended with Klenow enzyme. Thereafter the DNA was cut with HindIiI. The resulting large frag-ment was combined and ligated with the HindIII/PvuII
fragment shown in Table VII (isolated from plasmid Ppo2 as the second largest fragment resulting from HindiII
digestion and partial digestion with PvuII) to for:n plasmid pSV-Ppol. The manufactured GM-CSF leader sequence fragment of Table VIII was then ligated into pSV-Ppol (following its cleavage with HindIil and ~paI) to yield plasmid pSVGM-Ppol.
Calcium phosphate precipitates (1-5ug) of plasmid pSVGM-Ppol DNA was transformed into duplicate 60 mm plates of COS-1 cells essentially as described in Wigler, et al., Cell, 14, 725-731 (1978). As a control, plasmid pSVDM-19 was also transformed into COS-1 cells. Tissue culture supernatants were harvested 5 days post-transfection and assayed for hpG-CSF acti-vity. Yields of [Alal]hpG-CSF from the culture super-natant were on the order of 1 to 2.5 ug/ml.
Following successful expression of the [Alal]hpG-CSF product encoded plasmid pSVGM-Ppol in ,_~.

13 43~

COS-1 cells, another vector was constructed which included the human GM-CSF leader sequence but had a codon for a threonine residue (naturally occurring at position 1 of hpG-CSF) replacing the codon for alanine at that position. Briefly, an oligonucleotide was syn-thesized (5'CAGCATCTCTACACCTCTGGG) for site-directed mutagenesis (SDM). The HindilI to BamHT hpG-CSF frag-ment in pSVGM-Ppol was ligated into M13mp10 for the SDM. The newly synthesized hpG-CSF gene containing a Thr codon in position one was isolated by cleavage with HindIII and EcoRI. The fragment wis then cloned into pSVDM-19 prepared by cleavage with the same two restric-tion endonucleases. The resulting vector pSVGM-Ppo(Thr) was transformed into COS cells and the yields of hpG-CSF
measured in the culture supernates ranged from 1 to 5 j,g/ml.
Finally, the genomic sequence whose isolation is described in Example 5 was employed to form an expression vector for mammalian cell expression of hpG-CSF. More specifically, pSVDM-19 was digested with KpnI and HindIIl and the large fragment used in a four-way ligation with a synthetic linker with HindIII and NcoI sticky ends, as shown in Table XXI. An NcoI-BamHI
fragment containing exon 1 isolated from pBR322 (8500 hpG-CSF), a genomic subclone, and a BamHI-KpnI fragment containing exons 2-5 isolated from the plasmid pBR322 (8500 hpG-CSF genomic subclone). The resulting mammalian expression vector, pSV/ghG-CSF produced 1 to 2.5 ug/ml of hpG-CSF from transformed COS cells.
TABLE XXI
HindIiI
5'AGCTTCCAACAC
AGGTTGTGGTAC5' NcoI
,~.

Exam lp e 10 This example relates to physical and biologi-cal properties or recombinant polypeptide products of the invention.

1. Molecular Weight Recombinant hpG-CSF products of E. coli expression as in Example 7 had an apparent molecular weight of 18.8 kD when determined in reducing SDS-PAGE
(as would be predicted from the deduced amino acid anal-ysis of Table VII;, whereas natural isolates purified as described in Example 1 had an apparent molecular weight of 19.6 kD. The presence of N-glycans associated with the natural isolates could effectively be ruled out on the basis of the lack of asparagine residues in the primary sequence of hpG-CSF in Table VII and therefore a procedure was devised to determine if 0-glycans were responsible for molecular weight differences between natural isolates and the non-glycosylated recombinant products. Approximately 5 ug of the natural isolate material was treated with neuraminidase (Calbiochem, LaJolla, California), a 0.5 pg sample was removed, and the remaining material was incubated with 4 mt1 0-Glycanase (endo-x-n-acetylgalactoseaminidase, Genzyme, Boston, Massachusetts) at 37 C. Aliquots were removed after 1/2, 2 and 4 hours of incubation. These samples were subjected to SDS-PAGE side by side with the E. coli derived recombinant material. After neuraminidase treatment, the apparent molecular weight of the isolate shifted from 19.6 kD to 19.2 kD, suggestive of removal of a sailic acid residue. After 2 hours of treatment with 0-glycanase, the molecular weight shifted to 18.8 kD -- identical to the apparent molecular weight of the E. coli derived material. The sensitivity of the car-bohydrate structure to neuraminidase and 0-glycanase -56- 13 4 153~

suggests the following structure for the carbohydrate component: N-acetyineuraminic acid-a(2-6)(galactose s (1-3) N-acetylgalactoseamine-R, wherein R is serine or threonine.
2. 3H-Thymidine Uptake Proliferation induction of human bone marrow cells was assayed on the basis of increased incorporation of 3H-thymidine. Human bone marrow from healthy donors was subjected to a density cut with Ficoll-Hypaque*(1.077g/ml, Pharmacia) and low density cells were suspended in Iscove's medium (GIBCO) contain-ing 10% fetal bovine serum and glutamine pen-strep.
Subsequently, 2x104 human bone marrow cells were incu-bated with either control medium or the recombinant E.
coli material of Example 7 in 96 flat bottom well plates at 37 C. in 5% CO2 in air for 2 days. The samples were assayed in duplicate and the concentration varied over a 10,000 fold range. Cultures were then pulsed for 4 hours with 0.5 u Ci/well of 3H-Thymidine (New England Nuclear, Boston, Massachusetts). 3=-Thymidine uptake was measured as described in Ventua, et al., Blood, 61, 781 (1983). In this assay human hpG-CSF isolates can induce 3H-Thymidine incorporation into human bone marrow cells at levels approximately 4-10 times higher than control supernatants. The E. coli-derived hpG-CSF mate-rial of Example 6 had similar properties.
A second human bone marrow cell proliferation study was carried out using culture medium of trans-fected COS-1 cells as prepared in Example 9 and yielded similar results, indicating that encoded polypeptide products were indeed secreted into culture medium as active materials.

* trade-mark -3. WEHI-3B D+ Differentiation Induction Capacity of recombinant, E. coli-derived materials to induce differentiation of the murine myelo-monocytic leukemic cell line WEHI-3B D+ was assayed in semi-solid agar medium as described in Metcalf, Int. J.
Cancer, 25, 225 (1980). The recombinant hpG-CSF product and media controls were incubated with -60 WEHI-3B D+
cells/well at 37 C. in 5% C02 in air for 7 days. The samples were incubated in 24 flat bottom well plates and the concentration varied over a 2000-fold range.
Colonies were classified as undifferentiated, partially differentiated or wholly differentiated and colony cell counts were counted microscopically. The E. coli recom-binant material was found to induce differentiation.
4. CFU-GM, BFU-E and CFU-GEMM Assays Natural isolates of pluripotent human G-CSF
(hpG-CSF) and the recombinant pluripotent human G-CSF
(rhpG-CSF) were found to cause human bone marrow cells to proliferate and differentiate. These activities were measured in CFU-GM [Broxmeyer, et al., Exp.Hematol., 5, 87, (1971)] BFU-E and CFU-GEMM assays [Lu, et al., Blood, 61, 250 (1983)] using low density, non-adherent bone marrow cells from healthy human volunteers. A
comparison of CFU-GM, BFU-E and CFU-GEmm biological activities using either 500 units of hpG-CSF or rhpG-CSF
are shown in Table XXII below.
All the colony assays were performed with low density non-adherent bone marrow cells. Human bone marrow cells were subject to a density cut with Ficoll-Hypaque (density, 1.077 g/cm3; Pharmacia). The low density cells were then resuspended in Iscove's modified Dulbecco's medium containing fetal calf serum and placed for adherence on Falcon tissue culture dishes (No. 3003, Becton Dickenson, Cockeysville, MD.) for 1-1/2 hours at 37 C.

- 5 8 - 13 k15 37 TABLE XXII

CFU-GM BFU-E CFU-GEMM
Medium 0 0 26 1 0 0 natural hpG-CSF 83 5.4 83 6.7 4 0 rhpG-CSF 87 5 81 0.1 6 2 Medium control consisted of Iscove's modified Dulbecco medium plus 10% FCS, 0.2 mM hemin and 1 unit of recombinant erythropoietin.
For the CFU-GM assay target cells were plated at 1 x 105 in 1 ml of 0.3% agar culture medium that included supplemented McCoy's 5A medium and 10% heat inactivated fetal calf serum. Cultures were scored for colonies (greater than 40 cells per aggregate) and mor-phology assessed on day 7 of culture. The number of colonies is shown as the mean SEM as determined from quadruplicate plates.
For the BFU-E and CFU-GEMM assays, cells (1 x 105) were added to a 1 ml mixture of Iscove's modi-fied Dulbecco medium (Gibco), 0.8% methylcellulose, 30%
fetal calf serum 0.05 nM 2-mercaptoethanol, 0.2 mM hemin and 1 unit of recombinant erythrc_.)oietin. Dishes were incubated in a humidified atmosphere of 5% C02 and 5%
02. Low oxygen tension was obtained using an oxyreducer from Reming Bioinstruments (Syracuse, N.Y.). Colonies were scored after 14 days of incubation. The number of colonies is shown as the mean SEM, as determined from duplicate plates.
Colonies formed in the CFU-GM assay were all found to be chloracetate esterase positive and non-specific esterase (alpha-naphthyl acetate esterase) -negative, consistent with the colonies being granulocyte in type. Both natural hpG-CSF and rhpG-CSF were found to have a specific activity of a approximately 1 x 108 U/mg pure protein, when assayed by serial dilution in a CFU-GM assay. The BFU-E and CFU-GEMM data in Table XXII
are representative of three separate experiments and similar to the data reported previously for natural hpG-CSF. It is important to note that the rhpG-CSF is extremely pure and free of other potential mammalian growth factors by virtue of its production in E.coli.
Thus rhpG-CSF is capable of supporting mixed colony formation (CFU-GEMM) and BFU-E when added in the presence of recombinant erythropoietin.

5. Cell Binding Assays It was previously reported that WEHI-3B(D+) cells and human leukemic cells from newly diagnosed leukemias will bind 125I-labeled murine G-CSF and that this binding can be complete for by addition of unlabeled G-CSF or human CSF-a. The ability of natural hpG-CSF and rhpG-CSF to compete for binding of 125I-hpG-CSF to human and murine leukemic cells was tested. Highly purified natural hpG-CSF (>95% pure;
lug) was iodinated [Tejedor, et al., Anal.Biochem., 127, 143 (1982)] was separated from reactants by gel filtra-tion and ion exchange chromatography. The specific activity of the natural 125I-hpG-CSF was approximately uCi/ug protein. Murine WEHI-3B(D+) and two human peri-pheral blood myeloid leukemic cell preparations (ANLL, one classified as M4, the other as M5B) were tested for their ability to bind 125I-hpG-CSF.
The murine and freshly obtained human peri-pheral blood myeloid leukemic cells were washed three times with PBS/1% BSA. WEHI-3B(D+) cells (5 x 106) or fresh leukemic cells (3 x 106) were incubated in dupli-cate in PBS/1% BSA (100 ul) in the absence or presence of various concentrations (volume: 10 ul) of unlabeled hpG-CSF, rhpG-CSF or GM-CSF and in the presence of 125I-hpG-CSF (approx. 100,000 cpm or 1 ng) at 0 C. for 90 min. (total volume: 120 ul). Cells were then resuspended and layered over 200 ul ice cold FCS in a 350 ul plastic centrifuge tube and centrifuged (1000 g;
1 min.). The pellet was collected by cutting off the end of the tube and pellet and supernatant counted separately in a gamma counter (Packard).
Specific binding (cpm) was determined as total binding in the absence of a competitor (mean of dupli-cates) minus binding (cpm) in the presence of 100-fold excess of unlabeled hpG-CSF (non-specific binding). The non-specific binding was maximally 2503 cpm for WEHI-3B(D+) cells, 1072 cpm for ANLL (M4) cells and 1125 cpm for ANLL (M5B) cells. Experiments one and two were run on separate days using the same preparation of 125I-hpG-CSF and display internal consistency in the percent inhibition noted for 2000 units of hpG-CSF.
Data obtained are reported in Table XXIII below.

TABLE XXIII

WEHI-3B(D+) ANLL (M4) ANLL (M5B) Competitor (U ml CPM % Inhib. CPM % Inhib. CPM % Inhib.
Exp. 1 none 0 6,608 - 1,218 - 122 -natural hpG-CSF: 10,000 685 90 2,000 1,692 74 34 97 -376 0 200 2,031 69 1 rn rhpG-CSF: 10,000 0 100 2,000 1,185 82 202 83 0 0 200 2,330 65 Exp. 2 -' none 0 2,910 0 natural hpG-CSF: 2,000 628 78 C"

GM-CSF: 2,000 3,311 0 As shown in Table XXIII, 1251-hpG-CSF demon-strated binding to the WEHI-3B(D+) leukemic cells. The binding was inhibited in a dose dependent manner by unlabeled natural hpG-CSF or rhpG-CSF, but not by GM-CSF. In addition, binding of natural hpG-CSF to human myelomonocytic leukemic cells (ANLL, M4) was observed. The binding to these cells is paralleled in response to natural hpG-CSF in liquid cultures by differentiation into mature macrophages as judged by morphology. The absence of binding of natural 125I-hpG-CSF to monocytic leukemic cells from another patient (ANLL, M5B) suggests that certain leukemias may differentially express or lack receptors for hpG-CSF.
The ability of rhpG-CSF to compete for the binding of natural 125I-hpG-CSF, similar to natural hpG-CSF, suggests that the receptors recognize both forms equally well.
These studies demonstrating the binding of natural 125I-labeled hpG-CSF to leukemic cells are paralleled in culture by the ability of natural hpG-CSF
to induce granulocytic and monocytic differentiation of light density bond marrow cells obtained from one patient with an acute promyelocytic leukemia (M3) and a second patient with an acute myeloblastic leukemia (M2). Cells from each patient were cultured for four days in medium alone or in the presence of 1 x 105 units of rhpG-CSF. Cells from the M3 control cultures incu-bated in medium alone were still promyelocyte in type;
while cells cultured in the presence of rhpG-CSF showed mature cells of the myeloid type including a metamyelo-cyte, giant band form and segmented meutrophilis and monocyte. The actual differentials for this patient, on 100 cells evaluated for the control, 100% promyelocytes, and for the rhpG-CSF treated cells, 22% blasts plus promyelocytes, 7% myelocytes, 35% metamyelocytes, 20%
band forms plus segmented neutrophils, 14% monocytes and 2% macrophages. Of note is the fact that one of the polymorphonuclear granulocytes still contained a prom-inent auer rod, suggesting that at least this cell rep-resented a differentiated cell belonging to the leukemic clone. Cells from the second patient with a myelo-blastic leukemia (M2) were also cultured for four days in the presence of absence of rhpG-CSF. Visual analysis of M2 cells cultured in medium alone revealed large "blast-like" cells, some of which had nucleoli. Some of the M2 cells, when treated with rhpG-CSF, differentiated to mature segmented neutrophils displaying residual auer rods in the center neutrophil suggesting differentiation occurring in a cell belonging to the leukemic clone.
The actual differentiation of 100 cells evaluated mor-phologically revealed that control cells consisted of 100% blasts. The rhpG-CSF treated cells consisted of 43% blasts, 1% myelocytes, 15% metamyelocytes, 28% band forms plus segmented neutrophils, 2% promonocytes and 11% monocytes. The leukemic cells were also examined for differentiation at four other concentrations of rhpG-CSF (5 x 103, 1 x 104, 2.5 x 104 and 5 x 104 U/ml, data not shown). Even at the lowest concentration of rhpG-CSF tested (5 x 103 U/ml), there was significant differentiation (cells differentiated beyond myelocytes) of the M3 (50%) and M2 (37%) leukemic cells.
6. Immunoassay To prepare polyclonal antibodies for immuno-assay use the antigen employed was pluripotent G-CSF
purified from the human bladder carcinoma cell line 5637 (lA6) as prepared in Example 1 (B). This material was judged to be 85% pure based on silver nitrate staining of polyacrylamide gels. Six week-old Balb/C mice were immunized with multiple-site subcutaneous injections of antigen. The antigen was resuspended in PBS and emulsi-fied with equal volumes of Freund's complete adjuvant.

The dose was 5 to 7 ug of antigen per mouse per injec-tion. A booster immunization was administered 18 days later with the same amount of antigen emulsified with an equal volume of Freund's incomplete adjuvant. 4 days later mouse serum was taken to test for the antibody specific to human pluripotent G-CSF.
Dynatech Immulon II Removawell*strips in holders (Dynateck Lab., Inc., Alexandria, Virginia) were coated with hpG-CSF 5 ug/ml in 50mM carbonate-bicar-bonate buffer, pH 9.2. Wells were coated with 0.25 ug in a volume of 50 ul. Antigen coated plates were incu-bated 2 hours at room temperature and overnight at 4 C. The solution was decanted and the plates were incubated 30 minutes with PBS containing 5% BSA to block the reactive surface. This solution was decanted and the diluted preimmune or test sera were added to the wells and incubated for 2 hours at room temperature.
Sera were diluted with PBS, pH 7.0 containing 1% BSA.
The serum solution was decanted and plates were washed three times with Wash Solution (KPL, Gaithersburg, Maryland). Approximately 200,000 cpm of iodinated rabbit anti-mouse IgG (NEN, Boston, Massachusetts) in 50 ul PBS, pH 7.0 containing 1% BSA was added to each well. After incubating 1-1/2 hours a-, room temperature, the solution was decanted and plates were washed 5 times with Wash Solution. Wells were removed from holder and counted in a Beckman 5500 gamma counter. High-titered mouse sera showed greater than 12-fold higher reactivity than the corresponding preimmune sera at a dilution of 1:100.
The immunological properties of E. coli-derived hpG-CSF were determined by reactivity to high-titered mouse serum specific to mammalian-cell derived hpG-CSF. 0.25 ug of 90% pure E. coli-derived protein was coated to Immulon II Removawells in a volume of 50 ul and mouse serum was assayed as described above.

* Trade Mark ,~=
~ _.: = .

High-titered mouse sera showed a 24-fold higher reactivity to the E. coli-derived material than did the corresponding preimmune sera at a dilution of 1:100.
7. Serine Analog Bioassays [Ser17]hpG-CSF, [Ser36]hpG-CSF, [Ser42]hpG-CSF, [Ser64]hpG-CSF, and [Ser74]hpG-CSF
products prepared according to Example 9 were assay for hpG-CSF activity in the 3H-thymidine uptake, CFU-GM, and WEHI3B D+ assays. In each assay, the [Ser17] analog had activity comparable to that of recombinant molecules having the native structure. The remaining analogs had on the order of 100-fold lesser activity in the 3H-thymidine uptake assay, 250-fold lesser activity in the CFU-GM assay, and 500-fold lesser activity in the WEHI-3B D+ assay. This data is supportive of the propo-sition that cysteines at positions 36, 42, 64 and 74 may be needed for full biological activity.
8. In vivo Bioassay Alzet osmotic pumps (Alzet Corp., Palo Alto, CA; Model 2001) were connected to indwelling right jugular vein catheters and implanted subcutaneously in seven male Syrian golden hamster. Four of the pumps contained a buffer [20 mM sodium acetate (pH 5.4) and 37 mM sodium chloride] and 1.5 mg/ml E.coli-derived hpG-CSF while 3 contained buffer alone. The claimed pumping rate for the osmotic pumps was 1 microliter/hr.
for up to seven days. At the third day after implantation of the pumps, the mean granulocyte count of the four treated hamsters was six-fold higher than that of the three (buffer) controls and the increased granu-locyte count was reflected in a four-fold increase in total lymphocytes. Erythrocyte count was unchanged by treatment. These results indicate that the recombinant material produces a specific enhancement of production and/or release of granulocytes in a mammal.
In addition to naturally-occurring allelic forms of hpG-CSF, the present invention also embraces other hpG-CSF products such as polypeptide analogs of hpG-CSF and fragments of hpG-CSF. Following the proce-dures of the above-noted published application by Alton, et al. (WO/83/04053) one may readily design and manufac-ture genes coding for microbial expression of polypep-tides having primary conformations which differ from that herein specified for in terms of the identity or location of one or more residues (e.g., substitutions, terminal and intermediate additions and deletions).
Alternately, modifications of cDNA and genomic genes may be readily accomplished by well-known site-directed mutagenesis techniques and employed to generate analogs and derivatives of. Such products would share at least one of the biological properties of hpG-CSF but may differ in others. As examples, projected products of the invention include those which are foreshortened by e.g., deletions; or those which are more stable to hydrolysis (and, therefore, may have more pronounced or longer lasting effects than naturally-occurring); or which have been altered to delete one or more a poten-tial sites for o-glycosylation (which may result in higher activities for yeast-produced products); or which have one or more cysteine residues deleted or replaced by, e.g., alanine or serine residues and are potentially more easily isolated in active form from micrbial systems; or which have one or more tyrosine residues replaced by phenylalanine and may bind more or less readily to hpG-CSF receptors on target cells. Also comprehended are polypeptide fragments duplicating only a part of the continuous amino ac'_d sequence or secondary conformations within hpG-CSF, which fragments may possess one activity of (e.g., receptor binding) and not others (e.g., colony growth stimulating activity).
It is noteworthy that activity is not necessary for any one or more of the products of the invention to have therapeutic utility [see, Weiland, et al., Blut, 44, 173-175 (1982)] or utility in other contexts, such as in assays of hpG-CSF antagonism. Competitive antagonists may be quite useful in, for example, cases of overproduction of hpG-CSF.
According to another aspect of the present invention, the DNA sequence described herein which encodes hpG-CSF polypeptides is valuable for the infor-mation which it provides concerning the amino acid sequence of the mammalian protein which has heretofore been unavailable despite analytical processing of isolates of naturally-occurring products. The DNA
sequences are also conspicuously valuable as products useful in effecting the large scale microbial synthesis of hpG-CSF by a variety of recombinant techniques. Put another way, DNA sequences provided by the invention are useful in generating new and useful viral and circular plasmid DNA vectors, new and useful transformed and transfected microbial procaryotic and eucaryotic host cells (including bacterial and yeast cells and mammalian cells grown in culture), and new and useful methods for cultured growth of such microbial host cells capable of expression of hpG-CSF and its related products. DNA
sequences of the invention are also conspicuously suit-able materials for use as labelled probes in isolating hpG-CSF and related protein encoding human genomic DNA
as well as cDNA and genomic DNA sequences of other mammalian species. DNA sequences may also be useful in various alternative methods of protein synthesis (e.g., in insect cells) or in genetic therapy in humans and other mammals. DNA sequences of the invention are expected to be useful in developing transgenic mammalian species which may serve as eucaryotic "hosts" for pro-duction of hpG-CSF and hpG-CSF products in quantity.
See, generally, Palmiter, et al., Science, 222(4625), 809-814 (1983).
Of applicability to hpG-CSF fragments and polypeptide analogs of the invention are reports of the immunological activity of synthetic peptides which sub-stantially duplicate the amino acid sequence extant in naturally-occurring proteins, glycoproteins and nucleo-proteins. More specifically, relatively low molecular weight polypeptides have been shown to participate in immune reactions which are similar in duration and extent to the immune reactions of physiologically signi-ficant proteins such as viral antigens, polypeptide hormones, and the like. Included among the immune reac-tions of such polypeptides is the provocation of the formation of specific antibodies in immunologically active animals. See, e.g., Lerner, et al., Cell, 23, 309-310 (1981); Ross, et al., Nature, 294, 654-656 (1981); Walter, et al., Proc. Natl. Acad. Sci. (USA), 77, 5197-5200 (1980); Lerner, et al., Proc. Natl. Acad.
Sci. (USA), 78, 3403-3407 (1981); Walter, et al., Proc.
Natl. Acad. Sci. (USA), 78, 4882-4886 (1981); Wong, et al., Proc. Natl. Acad. Sci. (US~, 78, 7412-7416 (1981);
Green, et al., Cell, 28, 477-487 (1982); Nigg, et al., Proc. Natl. Acad. Sci. (USA), 79, 5322-5326 (1982);
Baron, et al., Cell, 28, 395-404 (1982); Dreesman, et al., Nature , 295, 185-160 (1982); and Lerner, Scientific American, 248, No. 2, 66-74 (1983). See, also, Kaiser, et al., Science, 223, 249-255 (1984) relating to biological and immunological activities of synthetic peptides which approximately share secondary structures of peptide hormones but may not share their primary structural conformation.
While the present invention has been described in terms of preferred embodiments, it is understood that variations and modifications will occur to those skilled 13~1537 in the art. Therefore, it is intended that the appended claims cover all such equivalent variations which come within the scope of the invention as claimed.

Claims (82)

THE EMBODIMENTS OF THE INVENTION IN WHICH AN EXCLUSIVE
PROPERTY OR PRIVILEGE IS CLAIMED ARE DEFINED AS FOLLOWS:
1. A purified and isolated DNA sequence for use in securing expression in a procaryotic or eucaryotic host cell of a polypeptide product having at least a part of the primary structural conformation and the hematopoietic biological activity of naturally-occurring pluripotent granulocyte colony-stimulating factor, said DNA selected among:
(a) the DNA sequence set out in Figure 2 or their complementary strands;
(b) DNA sequences which hybridize to the DNA
defined in (a) or fragments thereof; and (c) DNA molecules which, but for the degeneracy of the genetic code would hybridize to the DNA sequences defined in (a) or (b).
2. A purified and isolated DNA sequence comprising part or all of the DNA sequence of Figure 2 coding for procaryotic or eucaryotic host expression of a polypeptide product having part or all of the primary structural conformation and the hematopoietic biological activities of human pluripotent granulocyte colony-stimulating factor.
3. The cDNA sequence according to claim 1 or 2.
4. A genomic DNA sequence according to claim 1.
5. A manufactured DNA sequence according to claim 1 or 2.
6. A manufactured DNA sequence according to claim 5 and including one or more codons preferred for expression in E. coli cells.
7. A manufactured DNA sequence according to claim 5 and including one or more codons preferred for expression in yeast cells.
8. A DNA sequence according to claim 1 or 2 covalently associated with a detectable label substance.
9. A DNA sequence according to claim 8 wherein the detectable label is a radiolabel.
10. A single-stranded DNA sequence according to claim 8.
11. A purified and isolated DNA sequence coding for a polypeptide fragment or polypeptide analog of naturally-occurring pluripotent granulocyte colony-stimulating factor of Figure 2 and possessing the hematopoietic biological activity thereof.
12. A purified and isolated DNA sequence according to claim 11 coding for [Ala1]hpG-CSF.
13. A biologically functional plasmid or viral DNA vector including a DNA sequence according to one of claims 1, 2 or 11.
14. A procaryotic or eucaryotic host cell stably transformed or transfected with a DNA vector according to claim 13 in a manner allowing expression of said polypeptide, fragment or analog.
15. A process for the production of a polypeptide producing having part or all of the hematopoietic biological activity of naturally-occurring pluripotent granulocyte colony-stimulating factor, said process comprising:
growing, under suitable nutrient conditions, procarvotic or eukaryotic host cells transformed or transfected with a DNA sequence according to claim 1, 2 or 11 in a manner allowing expression of said polypeptide product, and isolating desired polypeptide product of the expression of said DNA sequence.
16. A purified and isolated DNA sequence according to claim 1 cording for [Ser17] hpG-CSF.
17. A polypeptide product of the expression in a procaryotic or eucaryotic host cell of a DNA sequence according to claim 16.
18. A biologically functional plasmid or viral DNA
vector including a DNA sequence according to claim 16.
19. A procaryotic or eukaryotic host cell stably transformed or transfected with a DNA vector according to claim 17.
20. A purified and isolated DNA sequence according to claim 11 coding for an analog of hpG-CSF selected from the group consisting of:

[Met-1] hpG-CSF;
[Ser17] hpG-CSF;
[Ser36] hpG-CSF;
[Ser42] hpG-CSF;

[Ser64] hpG-CSF;
[Ser74] hpG-CSF;
[Met-1, Ser17] hpG-CSF;
[Met-1, Ser36] hpG-CSF;
[Met-1, Ser42] hpG-CSF;
[Met-1, Ser64] hpG-CSF; and [Met-1, Ser74] hpG-CSF.
21. A procaryotic or eucaryotic cell transformed or transfected with a DNA sequence according to claim 2 in a manner allowing the host cell to express human pluripotent granulocyte colony-stimulating factor.
22. An E. coli host cell according to claim 21.
23. A yeast host cell according to claim 21.
24. A mammalian host cell according to claim 21.
25. An E. coli host cell according to claim 14.
26. A yeast host cell according to claim 14.
27. A mammalian host cell according to claim 14.
28. A process according to claim 15 wherein said host cells are E. coli cells.
29. A process according to claim 15 wherein said host cells are yeast cells.
30. A process according to claim 15 wherein said host cells are mammalian cells.
31. A non-naturally occurring polypeptide product comprising a polypeptide having only the amino acid sequence set forth in Figure 2.
32. An isolated hpG-CSF polypeptide having an amino acid sequence selected from the group consisting of:

+1 +10 Thr Pro Leu Gly Pro Ala Ser Ser Leu Pro +20 Gln Ser Phe Leu Leu Lys Cys Leu Glu Gln +30 Val Arg Lys Ile Gln Gly Asp Gly Ala Ala +40 Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys +50 Leu Cys His Pro Glu Glu Leu Val Leu Leu +60 Gly His Ser Leu Gly Ile Pro Trp Ala Pro +70 Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln +80 Leu Ala Gly Cys Leu Ser Gln Leu His Ser +90 Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln +100 Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly +110 Pro Thr Leu Asp Thr Leu Gln Leu Asp Val +120 Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln +130 Met Glu Glu Leu Gly Met Ala Pro Ala Leu +140 Gln Pro Thr Gln Gly Ala Met Pro Ala Phe +150 Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly +160 Val Leu Val Ala Ser His Leu Gln Ser Phe +170 Leu Glu Val Ser Tyr Arg Val Leu Arg His +174 Leu Ala Gln Pro;

and and analogs thereof wherein one or more cysteines residues located at positions 17, 36, 42, 64 and 74 are replaced by serine.
33. A pharmaceutical composition comprising an effective amount of the polypeptide having the sequence of amino acids 1-174 of the sequence set forth in Figure 2, and a pharmaceutically acceptable diluent, adjuvant or carrier.
34. A process for the production of a human pluripotent colony-stimulating factor (hpG-CSF) product having the in vivo granulocytopoietic biological property of naturally occurring hpG-CSF comprising the steps of:

(a) culturing under suitable nutrient conditions, mammalian cells comprising promoter DNA, other than hpG-CSF promoter DNA, operatively linked to DNA encoding a hpG-CSF polypeptide having a mature amino acid sequence of Figure 7; and (b) isolating said hpG-CSF expressed by said cells.
35. The process of claim 34 wherein the promoter DNA is viral promoter DNA.
36. The process according to claim 34 wherein said cells are primate cells.
37. The process according to claim 36 wherein said primate cells are COS cells.
A polypeptide defined by the amino acid sequence:
Thr Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys Cys Leu Glu Gln Val Arg Lys Ile Gin Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gin Leu His Ser Gly Leu Phe Leu Tyr Gin Gly Leu Leu Gin Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gin Gin Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gin Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gin Pro.
A DNA encoding a polypeptide defined by the amino acid sequence:
Thr Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys Cys Leu Glu Gln Val Arg Lys ile Gin Gly Asp Gly Ala Ala Leu Gin Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gin Ala Leu Gln Leu Ala Gty Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gin Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gin Gin Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gin Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Vat Leu Val Ala Ser His Leu Gin Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gin Pro.
An expression vector comprising a DNA sequence encoding a polypeptide defined by the amino acid sequence:
Thr Pro Leu Giy Pro Ala Ser Ser Leu Pro Gin Ser Phe Leu Leu Lys Cys Leu Glu Gln Val Arg Lys lle Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gin Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gin Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gin Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gin Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro.
A transformed host cell comprising an expression vector comprising a DNA
encoding a polypeptide defined by the amino acid sequence:
Thr Pro Leu Gly Pro Ala Ser Ser Leu Pro Gin Ser Phe Leu Leu Lys Cys Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gin Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gin Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gin Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gin Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro.
A process for the preparation of a human granulocyte-colony stimulating factor (G-CSF) comprising transforming a host cell with an expression vector containing a DNA
sequence encoding the amino acid sequence:
Thr Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys Cys Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Giy Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro, culturing said transformed host cell and collecting the granulocyte colony-stimulating factor expressed by said transformed cell.
A polypeptide defined by the amino acid sequence:
Met Thr Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys Cys Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Giy Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro.
A recombinant DNA encoding a polypeptide defined by the amino acid sequence:
Met Thr Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys Cys Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro.
An expression vector comprising a DNA sequence encoding a polypeptide defined by the amino acid sequence:
Met Thr Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys Cys Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro.
A transformed host cell comprising an expression vector comprising a DNA
encoding a polypeptide defined by the amino acid sequence:
Met Thr Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys Cys Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro.
A process for the preparation of a human granulocyte-colony stimulating factor (G-CSF) comprising transforming a host cell with an expression vector containing a DNA sequence encoding the amino acid sequence:
Met Thr Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys Cys Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro, culturing said transformed host cell and collecting the granulocyte colony-stimulating factor expressed by said transformed cell.
A polypeptide defined by the amino acid sequence:
Thr Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys Cys Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro, wherein one of the N-terminal amino acids Thr Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys Cys is substituted by a different amino acid.
A DNA encoding a polypeptide defined by the amino acid sequence:
Thr Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys Cys Leu Glu Gln Val Arg Lys lie Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Vai Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro, wherein one of the amino acids in the N-terminal sequence Thr Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys Cys is substituted by a different amino acid.
An expression vector comprising a DNA sequence encoding a a polypeptide defined by the amino acid sequence:
Thr Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys Cys Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly lie Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro, wherein one of the amino acids in the N-terminal sequence Thr Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys Cys is substituted by a different amino acid.
A transformed host cell comprising an expression vector comprising a DNA
encoding a polypeptide defined by the amino acid sequence:
Thr Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys Cys Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr lie Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro, wherein one of the amino acids in the N-terminal sequence Thr Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys Cys is substituted by a different amino acid.
52. A process for the preparation of a human granulocyte-colony stimulating factor (G-CSF) comprising transforming a host cell with an expression vector containing DNA sequence encoding the amino acid sequence:
Thr Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys Cys Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro, wherein one of the amino acids in the N-terminal sequence Thr Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys Cys is substituted by a different amino acid, said process comprising culturing said transformed host cell and collecting the granulocyte colony-stimulating factor expressed by said transformed cell.
53. A polypeptide defined by the amino acid sequence:
.Met Thr Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys Cys Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro, wherein one of the N-terminal amino acids Thr Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys Cys is substituted by a different amino acid,
54. A DNA encoding a polypeptide defined by the amino acid sequence:
Met Thr Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys Cys Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro, wherein one of the amino acids in the N-terminal sequence Thr Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys Cys is substituted by a different amino acid.
An expression vector comprising a DNA sequence encoding a a polypeptide defined by the amino acid sequence:
Met Thr Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys Cys Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro, wherein one of the amino acids in the N-terminal sequence Thr Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys Cys is substituted by a different amino acid, A transformed host cell comprising an expression vector comprising a DNA
encoding a polypeptide defined by the amino acid sequence:
Met Thr Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys Cys Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro, wherein one of the amino acids in the N-terminal sequence Thr Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys Cys is substituted by a different amino acid.
A process for the preparation of a human granulocyte-colony stimulating factor (G-CSF) comprising transforming a host cell with an expression vector containing DNA sequence encoding the amino acid sequence:
Met Thr Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys Cys Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro, wherein one of the amino acids in the N-terminal sequence Thr Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys Cys is substituted by a different amino acid said process comprising culturing said transformed host cell and collecting the granulocyte colony-stimulating factor expressed by said transformed cell.
A polypeptide defined by the amino acid sequence:
Xaa Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys Cys Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro, wherein Xaa is an amino acid other than threonine (Thr).
A DNA encoding a polypeptide defined by the amino acid sequence:
Xaa Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys Cys Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly-Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly lie Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu, Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly lie Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr lie Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro, wherein Xaa is an amino acid other than threonine (Thr).
An expression vector comprising a DNA sequence encoding a a polypeptide defined by the amino acid sequence:
Xaa Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys Cys Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro, wherein Xaa is an amino acid other than threonine (Thr).
A transformed host cell comprising an expression vector comprising a DNA
encoding a polypeptide defined by the amino acid sequence:
Xaa Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys Cys Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro, wherein Xaa is an amino acid other than threonine (Thr).
Process for the preparation of a human granulocyte-colony stimulating factor (G-CSF) comprising transforming a host cell with an expression vector containing DNA sequence encoding the amino acid sequence:
Xaa Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys Cys Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro, wherein Xaa is an amino acid other than threonine (Thr), said process comprising culturing said transformed host cell and collecting the granulocyte colony-stimulating factor expressed by said.
transformed cell.
A polypeptide defined by the amino acid sequence:
Met Xaa Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys Cys Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro, wherein Xaa is an amino acid other than threonine (Thr).
A DNA encoding a polypeptide defined by the amino acid sequence:
Met Xaa Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys Cys Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu leu Gly Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro, wherein Xaa is an amino acid other than threonine (Thr).
An expression vector comprising a DNA sequence encoding a a polypeptide defined by the amino acid sequence:
Met Xaa Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys Cys Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro, wherein Xaa is an amino acid other than threonine (Thr).
A transformed host cell comprising an expression vector comprising a DNA
encoding a polypeptide defined by the amino acid sequence:
Met Xaa Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys Cys Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro, wherein Xaa is an amino acid other than threonine (Thr).
A process for the preparation of a human granulocyte-colony stimulating factor (G-CSF) comprising transforming a host cell with an expression vector containing DNA sequence encoding the amino acid sequence:
Met Xaa Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys Cys Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro, wherein Xaa is an amino acid other than threonine (Thr), said process comprising culturing said transformed host cell and collecting the granulocyte colony-stimulating factor expressed by said transformed cell.
A polypeptide defined by the amino acid sequence:
Thr Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys Xaa Leu Glu Gln Val Arg Lys lie Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro, wherein Xaa is an amino acid other than cysteine (Cys).
A DNA encoding a polypeptide defined by the amino acid sequence:
Thr Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys Xaa Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly lie Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro, wherein Xaa is an amino acid other than cysteine (Cys).
An expression vector comprising a DNA sequence encoding a a polypeptide defined by the amino acid sequence:
Thr Pro Leu Gly Pro Ala Ser Ser.Leu Pro Gln Ser Phe Leu Leu Lys Xaa Leu Glu Gln Val Arg Lys lie Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly lie Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly lie Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr lie Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro, wherein Xaa is an amino acid other than cysteine (Cys).
A transformed-host celt comprising an expression vector comprising a DNA
encoding a polypeptide defined by the amino acid sequence:
Thr Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys Xaa Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr lie Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro, wherein Xaa is an amino acid other than cysteine (Cys).
A process for the preparation of a human granulocyte-colony stimulating factor (G-CSF) comprising transforming a host cell with an expression vector containing DNA sequence encoding the amino acid sequence:
Thr Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys Xaa Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro, wherein Xaa is an amino acid other than cysteine (Cys), said process comprising culturing said transformed host cell and collecting the granulocyte colony-stimulating factor expressed by said transformed cell.
A polypeptide defined by the amino acid sequence:
Met Thr Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys Xaa Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro, wherein Xaa is an amino acid other than cysteine (Cys).
A DNA encoding a polypeptide defined by the amino acid sequence:
Met Thr Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys Xaa Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly lie Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr lie Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro, wherein Xaa Is an amino acid other than cysteine (Cys).
75. An expression vector comprising a DNA sequence encoding a a polypeptide defined by the amino acid sequence:
Met Thr Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys Xaa Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro, wherein Xaa is an amino acid other than cysteine (Cys).
76. A transformed host cell comprising an expression vector comprising a DNA
encoding a polypeptide defined by the amino acid sequence:
Met Thr Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys Xaa Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro, wherein Xaa is an amino acid other than cysteine (Cys).
77. A process for the preparation of a human granulocyte-colony stimulating factor (G-CSF) comprising transforming a host cell with an expression vector containing DNA sequence encoding the amino acid sequence:
Met Thr Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys Xaa Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro, wherein Xaa is an amino acid other than cysteine (Cys), said process comprising culturing said transformed host cell and collecting the granulocyte colony-stimulating factor expressed by said transformed cell.
78. A polypeptide defined by the amino acid sequence:
[Met]n Thr Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys Cys Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro, wherein one of the N-terminal amino acids Thr Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys Cys is substituted by a different amino acid, where n=0 or 1.
79. A DNA encoding a polypeptide defined by the amino acid sequence:
[Met]n Thr Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys Cys Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro, wherein one of the amino acids in the N-terminal sequence Thr Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys Cys is substituted by a different amino acid, where n=0 or 1.
80. An expression vector comprising a DNA sequence encoding a a polypeptide defined by the amino acid sequence:
[Met]n Thr Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys Cys Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro, wherein one of the amino acids in the N-terminal sequence Thr Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys Cys is substituted by a different amino acid, where n=0 or 1.
81. A transformed host cell comprising an expression vector comprising a DNA
encoding a polypeptide defined by the amino add sequence:
[Met]n Thr Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys Cys Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Lou Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Lou Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Lou His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro, wherein one of the amino acids in the N-terminal sequence Thr Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys Cys is substituted by a different amino acid, where n=0 or 1.
82. A process for the preparation of a human granulocyte-colony stimulating factor (G-CSF) comprising transforming a host cell with an expression vector containing DNA sequence encoding the amino add sequence:
[Met]n Thr Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys Cys Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Lou Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro, wherein one of the amino acids in the N-terminal sequence Thr Pro Lou Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys Cys is substituted by a different amino add, where n=0 or 1, said process comprising culturing said transformed host cell and collecting the granulocyte colony-stimulating factor expressed by said transformed cell
CA 516737 1985-08-23 1986-08-25 Production of pluripotent granulocyte colony-stimulating factor Active CA1341537C (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US76895985A true 1985-08-23 1985-08-23
US768,959 1985-08-23
US06/835,548 US4810643A (en) 1985-08-23 1986-03-03 Production of pluripotent granulocyte colony-stimulating factor
US835,548 1986-03-03

Publications (1)

Publication Number Publication Date
CA1341537C true CA1341537C (en) 2007-07-31

Family

ID=27118107

Family Applications (1)

Application Number Title Priority Date Filing Date
CA 516737 Active CA1341537C (en) 1985-08-23 1986-08-25 Production of pluripotent granulocyte colony-stimulating factor

Country Status (23)

Country Link
US (5) US4810643A (en)
EP (1) EP0237545B2 (en)
JP (11) JPH042599B2 (en)
CN (1) CN1020924C (en)
AT (1) AT332375T (en)
AU (1) AU6334686A (en)
CA (1) CA1341537C (en)
CY (1) CY1642A (en)
DE (2) DE3650788T2 (en)
DK (1) DK174980B1 (en)
ES (1) ES2001883A6 (en)
FI (3) FI105191B (en)
GR (1) GR862185B (en)
HK (1) HK1029600A1 (en)
IL (1) IL79805A (en)
MX (1) MX9202992A (en)
NL (1) NL930127I1 (en)
NO (6) NO303544B1 (en)
NZ (1) NZ217334A (en)
PT (1) PT83242B (en)
SA (1) SA1243B1 (en)
SG (2) SG48964A1 (en)
WO (1) WO1987001132A1 (en)

Families Citing this family (294)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU594014B2 (en) * 1984-03-21 1990-03-01 Research Corporation Technologies, Inc. Recombinant DNA molecules
US5718893A (en) * 1984-04-15 1998-02-17 Foster; Preston F. Use of G-CSF to reduce acute rejection
DE3680613D1 (en) * 1985-02-08 1991-09-05 Chugai Pharmaceutical Co Ltd Human granuloxcyt-colony stimulation factor.
US5532341A (en) * 1985-03-28 1996-07-02 Sloan-Kettering Institute For Cancer Research Human pluripotent hematopoietic colony stimulating factor
US5078996A (en) * 1985-08-16 1992-01-07 Immunex Corporation Activation of macrophage tumoricidal activity by granulocyte-macrophage colony stimulating factor
US4810643A (en) * 1985-08-23 1989-03-07 Kirin- Amgen Inc. Production of pluripotent granulocyte colony-stimulating factor
US6004548A (en) 1985-08-23 1999-12-21 Amgen, Inc. Analogs of pluripotent granulocyte colony-stimulating factor
NZ218336A (en) * 1985-12-09 1991-08-27 Kirin Amgen Inc Monoclonal antibodies to human pluripotent granulocyte colony stimulating factor (hpg-csf)
DK203187A (en) * 1986-04-22 1987-10-23 Immunex Corp Human G-CSF Protein Expression
GR871067B (en) * 1986-07-18 1987-11-19 Chugai Pharmaceutical Co Ltd Process for producing stable pharmaceutical preparation containing granulocyte colony stimulating factor
US5186931A (en) * 1986-08-06 1993-02-16 Ajinomoto Co., Inc. Composition and method for supporting bone marrow transplantation
WO1988001297A1 (en) * 1986-08-11 1988-02-25 Cetus Corporation Expression of g-csf and muteins thereof
JPH0618781B2 (en) * 1986-10-18 1994-03-16 中外製薬株式会社 Infectious disease treatment
US6384194B1 (en) * 1987-12-16 2002-05-07 Dsm N.V. Expression and purification of human interleukin-3 and muteins thereof
US6238889B1 (en) * 1986-12-16 2001-05-29 Dsm N.V. Molecular cloning and expression of the Pro8 isoform of human IL-3
NO176799C (en) * 1986-12-23 1995-05-31 Kyowa Hakko Kogyo Kk DNA encoding a polypeptide, the recombinant plasmid encoding and expressing a polypeptide and a method for producing the polypeptide
US5214132A (en) * 1986-12-23 1993-05-25 Kyowa Hakko Kogyo Co., Ltd. Polypeptide derivatives of human granulocyte colony stimulating factor
US5194592A (en) * 1986-12-23 1993-03-16 Kyowa Hakko Kogyo Co. Ltd. Monoclonal antibodies to novel polypeptide derivatives of human granulocyte colony stimulating factor
US5714581A (en) * 1986-12-23 1998-02-03 Kyowa Hakko Kogyo Co., Ltd. Polypeptide derivatives of human granulocyte colony stimulating factor
US5362853A (en) * 1986-12-23 1994-11-08 Kyowa Hakko Kogyo Co., Ltd. Polypeptide derivatives of human granulocyte colony stimulating factor
GB2213821B (en) * 1987-12-23 1992-01-02 British Bio Technology Synthetic human granulocyte colony stimulating factor gene
US5599690A (en) * 1988-02-01 1997-02-04 Amgen Inc. Control of norleucine incorporation into recombinant proteins
JP2618618B2 (en) * 1988-03-04 1997-06-11 協和醗酵工業株式会社 Anti-g-csf derivatives, nd28 monoclonal antibody
CA1329119C (en) * 1988-03-29 1994-05-03 Milton David Goldenberg Cytotoxic therapy
US20030232010A2 (en) * 1988-03-29 2003-12-18 Immunomedics, Inc. Improved cytotoxic therapy
AT452190T (en) * 1988-05-13 2010-01-15 Amgen Inc A process for the isolation and purification of G-CSF
US5070013A (en) * 1988-05-31 1991-12-03 Schering Corporation Immunochemical assay for human granulocyte-macrophage colony stimulating factor
US5082774A (en) * 1988-08-30 1992-01-21 The General Hospital Corporation Recombinant human nerve growth factor
US5218092A (en) * 1988-09-29 1993-06-08 Kyowa Hakko Kogyo Co., Ltd. Modified granulocyte-colony stimulating factor polypeptide with added carbohydrate chains
US5104651A (en) * 1988-12-16 1992-04-14 Amgen Inc. Stabilized hydrophobic protein formulations of g-csf
US20020177688A1 (en) * 1988-12-22 2002-11-28 Kirin-Amgen, Inc., Chemically-modified G-CSF
AT135370T (en) * 1988-12-22 1996-03-15 Kirin Amgen Inc Chemically modified granulocyte colony-causing factor
US6166183A (en) * 1992-11-30 2000-12-26 Kirin-Amgen, Inc. Chemically-modified G-CSF
WO1990012877A1 (en) * 1989-04-19 1990-11-01 Cetus Corporation Multifunctional m-csf proteins and genes encoding therefor
US6254861B1 (en) * 1989-05-23 2001-07-03 Chandra Choudhury Hematopoietic growth factor derived from T lymphocytes
US5605822A (en) * 1989-06-15 1997-02-25 The Regents Of The University Of Michigan Methods, compositions and devices for growing human hematopoietic cells
US5635386A (en) * 1989-06-15 1997-06-03 The Regents Of The University Of Michigan Methods for regulating the specific lineages of cells produced in a human hematopoietic cell culture
WO1990015877A2 (en) * 1989-06-15 1990-12-27 The Regents Of The University Of Michigan Methods, compositions and devices for growing cells
US5763266A (en) * 1989-06-15 1998-06-09 The Regents Of The University Of Michigan Methods, compositions and devices for maintaining and growing human stem and/or hematopoietics cells
US6203976B1 (en) 1989-07-18 2001-03-20 Osi Pharmaceuticals, Inc. Methods of preparing compositions comprising chemicals capable of transcriptional modulation
US5580722A (en) * 1989-07-18 1996-12-03 Oncogene Science, Inc. Methods of determining chemicals that modulate transcriptionally expression of genes associated with cardiovascular disease
US5665543A (en) * 1989-07-18 1997-09-09 Oncogene Science, Inc. Method of discovering chemicals capable of functioning as gene expression modulators
US5776502A (en) 1989-07-18 1998-07-07 Oncogene Science, Inc. Methods of transcriptionally modulating gene expression
EP0447523A4 (en) * 1989-10-10 1991-11-27 Amgen Inc. Compositions and methods for treating or preventing infections in canine and feline animals
CA2025181A1 (en) * 1989-10-12 1991-04-13 William G. Weisburg Nucleic acid probes and methods for detecting fungi
US20040181044A1 (en) * 1989-10-16 2004-09-16 Zsebo Krisztina M. Method of stimulating growth of epithelial cells by administering stem cell factor
GEP20002145B (en) * 1989-10-16 2000-03-10 Amgen Inc Stem Cell Factor
AT403713T (en) * 1989-10-16 2008-08-15 Amgen Inc Stamzellfaktor
ZA9007921B (en) 1989-10-16 1991-08-28 Amgen Inc Stem cell factor
US7144731B2 (en) 1989-10-16 2006-12-05 Amgen Inc. SCF antibody compositions and methods of using the same
US6852313B1 (en) 1989-10-16 2005-02-08 Amgen Inc. Method of stimulating growth of melanocyte cells by administering stem cell factor
US5214133A (en) * 1989-11-17 1993-05-25 The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services SCL: a hematopoietic growth and differentiation factor
US5132212A (en) * 1989-11-17 1992-07-21 The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Scl gene, and a hematopoietic growth and differentiation factor encoded thereby
JPH04218000A (en) * 1990-02-13 1992-08-07 Kirin Amgen Inc Modified polypeptide
US5147799A (en) * 1990-04-25 1992-09-15 Isia Bursuker Repopulation of macrophages and granulocytes using transforming growth factor-beta
GB9107846D0 (en) * 1990-04-30 1991-05-29 Ici Plc Polypeptides
US5399345A (en) * 1990-05-08 1995-03-21 Boehringer Mannheim, Gmbh Muteins of the granulocyte colony stimulating factor
US5258367A (en) * 1990-06-29 1993-11-02 University Of Florida Uteroferrin and rose proteins for stimulating hematopoietic cells
IE912365A1 (en) * 1990-07-23 1992-01-29 Zeneca Ltd Continuous release pharmaceutical compositions
JPH05506673A (en) * 1991-02-22 1993-09-30
DE69233336D1 (en) * 1991-02-26 2004-05-13 Heiberger Ernst vector
US6565841B1 (en) 1991-03-15 2003-05-20 Amgen, Inc. Pulmonary administration of granulocyte colony stimulating factor
FR2686899B1 (en) * 1992-01-31 1995-09-01 Rhone Poulenc Rorer Sa New biologically active polypeptides, their preparation and pharmaceutical compositions containing them.
US6413509B1 (en) 1992-11-24 2002-07-02 S. Christopher Bauer Methods of ex-vivo expansion of hematopoietic cells using interleukin-3 mutant polypeptides with other hematopoietic growth factors
US6153183A (en) * 1992-11-24 2000-11-28 G. D. Searle & Company Co-administration of interleukin-3 mutant polypeptides with CSF's or cytokines for multi-lineage hematopoietic cell production
US20050059149A1 (en) * 1993-11-22 2005-03-17 Bauer S. Christopher Methods of ex-vivo expansion of hematopoeitic cells using multivariant IL-3 hematopoiesis chimera proteins
US6403076B1 (en) 1992-11-24 2002-06-11 S. Christopher Bauer Compositions for increasing hematopoiesis with interleukin-3 mutants
US6361977B1 (en) 1992-11-24 2002-03-26 S. Christopher Bauer Methods of using multivariant IL-3 hematopoiesis fusion protein
US5738849A (en) * 1992-11-24 1998-04-14 G. D. Searle & Co. Interleukin-3 (IL-3) variant fusion proteins, their recombinant production, and therapeutic compositions comprising them
US7091319B1 (en) 1992-11-24 2006-08-15 Bauer S Christopher IL-3 variant hematopoiesis fusion protein
US5772992A (en) * 1992-11-24 1998-06-30 G.D. Searle & Co. Compositions for co-administration of interleukin-3 mutants and other cytokines and hematopoietic factors
US6361976B1 (en) * 1992-11-24 2002-03-26 S. Christopher Bauer Co-administration of interleukin-3 mutant polypeptides with CSF'S for multi-lineage hematopoietic cell production
US6057133A (en) * 1992-11-24 2000-05-02 G. D. Searle Multivariant human IL-3 fusion proteins and their recombinant production
US5581476A (en) * 1993-01-28 1996-12-03 Amgen Inc. Computer-based methods and articles of manufacture for preparing G-CSF analogs
AU2007200247B2 (en) * 1993-01-28 2011-03-10 Amgen Inc. G-CSF analog compositions
AT257176T (en) 1993-09-15 2004-01-15 Chiron Corp Recombinant alphavirus vector
US5874075A (en) * 1993-10-06 1999-02-23 Amgen Inc. Stable protein: phospholipid compositions and methods
CA2139385C (en) * 1994-02-04 2001-12-25 Gottfried Alber Products containing g-csf and tnf binding protein
US6242417B1 (en) 1994-03-08 2001-06-05 Somatogen, Inc. Stabilized compositions containing hemoglobin
US5631219A (en) * 1994-03-08 1997-05-20 Somatogen, Inc. Method of stimulating hematopoiesis with hemoglobin
EP0690127B1 (en) * 1994-03-31 1998-08-05 Amgen Inc. Compositions and methods for stimulating megakaryocyte growth and differentiation
US5795569A (en) * 1994-03-31 1998-08-18 Amgen Inc. Mono-pegylated proteins that stimulate megakaryocyte growth and differentiation
US5536495A (en) * 1994-04-15 1996-07-16 Foster; Preston F. Use of G-CSF to reduce acute rejection
US20030053982A1 (en) * 1994-09-26 2003-03-20 Kinstler Olaf B. N-terminally chemically modified protein compositions and methods
US5824784A (en) * 1994-10-12 1998-10-20 Amgen Inc. N-terminally chemically modified protein compositions and methods
US6100070A (en) * 1995-10-05 2000-08-08 G. D. Searle & Co. G-CSF receptor agonists
US6066318A (en) * 1995-10-05 2000-05-23 G.D. Searle & Co. Multi-functional hematopoietic fusion proteins between sequence rearranged C-MPL receptor agonists and other hematopoietic factors
DE69738521T2 (en) 1996-04-05 2009-05-07 Novartis Vaccines and Diagnostics, Inc., Emeryville Alpha virus vector having a reduced inhibition of the synthesis of cell macromolecules
WO1998012332A1 (en) 1996-09-17 1998-03-26 Chiron Corporation Compositions and methods for treating intracellular diseases
US6162426A (en) * 1997-05-05 2000-12-19 La Gamma; Edmund F. Use of G-CSF to enhance the immune system in neonates
US7153943B2 (en) 1997-07-14 2006-12-26 Bolder Biotechnology, Inc. Derivatives of growth hormone and related proteins, and methods of use thereof
US7495087B2 (en) 1997-07-14 2009-02-24 Bolder Biotechnology, Inc. Cysteine muteins in the C-D loop of human interleukin-11
JP2001510033A (en) * 1997-07-14 2001-07-31 ボルダー バイオテクノロジー, インコーポレイテッド Derivatives of growth hormone and related proteins
US20080076706A1 (en) * 1997-07-14 2008-03-27 Bolder Biotechnology, Inc. Derivatives of Growth Hormone and Related Proteins, and Methods of Use Thereof
US6017876A (en) 1997-08-15 2000-01-25 Amgen Inc. Chemical modification of granulocyte-colony stimulating factor (G-CSF) bioactivity
WO1999017798A1 (en) * 1997-10-02 1999-04-15 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Methods for the modulation of neovascularization and/or the growth of collateral arteries and/or other arteries from preexisting arteriolar connections
US20020034819A1 (en) * 1998-02-23 2002-03-21 Alan K. Smith Human lineage committed cell composition with enhanced proliferative potential, biological effector function, or both; methods for obtaining same; and their uses
US6541033B1 (en) 1998-06-30 2003-04-01 Amgen Inc. Thermosensitive biodegradable hydrogels for sustained delivery of leptin
US6979442B1 (en) 1998-08-17 2005-12-27 Pfizer Inc. Stabilized protein compositions
US5999474A (en) 1998-10-01 1999-12-07 Monolithic System Tech Inc Method and apparatus for complete hiding of the refresh of a semiconductor memory
US6420339B1 (en) 1998-10-14 2002-07-16 Amgen Inc. Site-directed dual pegylation of proteins for improved bioactivity and biocompatibility
US6451346B1 (en) * 1998-12-23 2002-09-17 Amgen Inc Biodegradable pH/thermosensitive hydrogels for sustained delivery of biologically active agents
US6245740B1 (en) 1998-12-23 2001-06-12 Amgen Inc. Polyol:oil suspensions for the sustained release of proteins
WO2000039302A2 (en) 1998-12-31 2000-07-06 Chiron Corporation Improved expression of hiv polypeptides and production of virus-like particles
US7935805B1 (en) 1998-12-31 2011-05-03 Novartis Vaccines & Diagnostics, Inc Polynucleotides encoding antigenic HIV Type C polypeptides, polypeptides and uses thereof
US7208473B2 (en) * 1999-01-06 2007-04-24 Xencor, Inc. Nucleic acids and protein variants of hG-CSF with granulopoietic activity
US6627186B1 (en) 1999-01-06 2003-09-30 Xencor Nucleic acids and protein variants of hG-CSF with granulopoietic activity
US8288126B2 (en) 1999-01-14 2012-10-16 Bolder Biotechnology, Inc. Methods for making proteins containing free cysteine residues
US6753165B1 (en) * 1999-01-14 2004-06-22 Bolder Biotechnology, Inc. Methods for making proteins containing free cysteine residues
EP1146913B1 (en) 1999-01-19 2009-01-14 Molecular Insight Pharmaceuticals, Inc. Conjugates of granulocyte colony stimulating factors for targeting and imaging infection and inflammation
ES2204509T3 (en) * 1999-01-29 2004-05-01 F. Hoffmann-La Roche Ag GCSF conjugates.
US6365583B1 (en) 1999-02-02 2002-04-02 Anormed, Inc. Methods to enhance white blood cell count
KR100356140B1 (en) * 1999-07-08 2002-10-19 한미약품공업 주식회사 Modified Human Granulocyte-Colony Stimulating Factor and Process for Producing Same
US8106098B2 (en) * 1999-08-09 2012-01-31 The General Hospital Corporation Protein conjugates with a water-soluble biocompatible, biodegradable polymer
AU784195B2 (en) 1999-11-12 2006-02-16 Baxter Biotech Technology S.A.R.L. Reduced side-effect hemoglobin compositions
US6831158B2 (en) * 2000-01-10 2004-12-14 Maxygen Holdings Ltd. G-CSF conjugates
AU782580B2 (en) 2000-01-10 2005-08-11 Maxygen, Inc. G-CSF conjugates
US6555660B2 (en) 2000-01-10 2003-04-29 Maxygen Holdings Ltd. G-CSF conjugates
PL371781A1 (en) 2001-07-11 2005-06-27 Maxygen Holdings, Ltd. G-csf conjugates
US6646110B2 (en) 2000-01-10 2003-11-11 Maxygen Holdings Ltd. G-CSF polypeptides and conjugates
DK1129720T3 (en) 2000-02-29 2004-09-27 Pfizer Prod Inc Stabilized granulocyte-colony stimulating factor
NZ521937A (en) * 2000-03-31 2004-08-27 Celgene Corp Inhibition of cyclooxygenase-2 activity
JP2003530847A (en) 2000-04-12 2003-10-21 ヒューマン ゲノム サイエンシズ インコーポレイテッド Albumin fusion protein
US8435939B2 (en) 2000-09-05 2013-05-07 Biokine Therapeutics Ltd. Polypeptide anti-HIV agent containing the same
PT1317537E (en) * 2000-09-08 2007-02-28 Massachusetts Inst Technology G-csf analog compositions and methods
EP1195437A1 (en) * 2000-10-04 2002-04-10 Mitsui Chemicals, Inc. Process for the recombinant production of proteins using a Plac/Np hybrid promoter
JP4242651B2 (en) * 2000-11-30 2009-03-25 ザ チルドレンズ メディカル センター コーポレイション 4-Amino - Synthesis of thalidomide enantiomers
EP1229045A1 (en) 2001-02-01 2002-08-07 Centre National De La Recherche Scientifique Universal carrier for targeting molecules to Gb3 receptor expressing cells
MXPA03007316A (en) 2001-02-19 2003-12-04 Merck Patent Gmbh Method for identification of t-cell epitopes and use for preparing molecules with reeduced immunogenicity.
FR2820979B1 (en) 2001-02-22 2004-03-12 Didier Pourquier New therapeutic application of G-CSF
US6956023B1 (en) 2001-04-19 2005-10-18 University Of Florida Materials and methods for providing nutrition to neonates
EP1409694A4 (en) 2001-07-05 2006-02-08 Chiron Corp Polynucleotides encoding antigenic hiv type b and/or type c polypeptides, polypeptides and uses thereof
JP5033303B2 (en) 2001-07-05 2012-09-26 ノバルティス バクシンズ アンド ダイアグノスティックス,インコーポレーテッド Polynucleotides encoding antigenic type c hiv polypeptide, polypeptides and uses thereof
MXPA04000982A (en) 2001-07-31 2004-04-20 Anormed Inc Methods to mobilize progenitor/stem cells.
US7169750B2 (en) * 2001-07-31 2007-01-30 Anormed, Inc. Methods to mobilize progenitor/stem cells
US20030104996A1 (en) * 2001-08-30 2003-06-05 Tiansheng Li L-methionine as a stabilizer for NESP/EPO in HSA-free formulations
AU2004236174B2 (en) 2001-10-10 2011-06-02 Novo Nordisk A/S Glycopegylation methods and proteins/peptides produced by the methods
DK2322229T3 (en) 2001-10-10 2017-03-27 Novo Nordisk As Remodeling and glycokonjugering of Factor IX
DK2279755T3 (en) 2001-10-10 2014-05-26 Ratiopharm Gmbh Glycokonjugering of remodeling and fibroblast growth factor (FGF)
SI21102A (en) 2001-12-19 2003-06-30 LEK, tovarna farmacevtskih in kemičnih izdelkov, d.d. Process for isolation of biologically active granulocyte colony stimulating factor
EP2261250B1 (en) 2001-12-21 2015-07-01 Human Genome Sciences, Inc. GCSF-Albumin fusion proteins
KR20030062854A (en) * 2002-01-21 2003-07-28 주식회사 엘지생명과학 Manufacturing method of recombinant protein in yeast by the use of secretory type vector
US7557195B2 (en) * 2002-03-20 2009-07-07 Biopolymed, Inc. Stoichiometric conjugates of biocompatible polymers at the unpaired cysteine residue of the wild-type G-CSF
US20030191056A1 (en) 2002-04-04 2003-10-09 Kenneth Walker Use of transthyretin peptide/protein fusions to increase the serum half-life of pharmacologically active peptides/proteins
ES2627445T3 (en) 2002-05-01 2017-07-28 Miltenyi Biotec Technology, Inc. Vector particles lentivirus resistant to inactivation by the complement
US7968569B2 (en) 2002-05-17 2011-06-28 Celgene Corporation Methods for treatment of multiple myeloma using 3-(4-amino-1-oxo-1,3-dihydro-isoindol-2-yl)-piperidine-2,6-dione
US7323479B2 (en) * 2002-05-17 2008-01-29 Celgene Corporation Methods for treatment and management of brain cancer using 1-oxo-2-(2,6-dioxopiperidin-3-yl)-4-methylisoindoline
US20100129363A1 (en) * 2002-05-17 2010-05-27 Zeldis Jerome B Methods and compositions using pde4 inhibitors for the treatment and management of cancers
US7393862B2 (en) 2002-05-17 2008-07-01 Celgene Corporation Method using 3-(4-amino-1-oxo-1,3-dihydro-isoindol-2-yl)-piperidine-2,6-dione for treatment of certain leukemias
MXPA04011310A (en) 2002-05-17 2005-02-14 Celgene Corp Methods and compositions using selective cytokine inhibitory drugs for treatment and management of cancers and other diseases.
CN103494817A (en) 2002-05-17 2014-01-08 细胞基因公司 Methods and compoistions used for treatment and control of multiple myeloma
US7081443B2 (en) * 2002-05-21 2006-07-25 Korea Advanced Institutes Of Science And Technology (Kaist) Chimeric comp-ang1 molecule
WO2004001056A1 (en) * 2002-06-24 2003-12-31 Dr. Reddy's Laboratories Ltd. Process for preparing g-csf
SI21273A (en) * 2002-07-31 2004-02-29 LEK farmacevtska družba d.d. Preparation of inclusion bodies with high fraction of properly twisted heterologous protein precursor
CA2537158C (en) 2002-08-27 2014-07-22 Hirokazu Tamamura Cxcr4 antagonist and use thereof
ES2343518T3 (en) * 2002-09-09 2010-08-03 Hanall Biopharma Co., Ltd. Interferon alfa polypeptide protease resistant they modified.
US7189740B2 (en) * 2002-10-15 2007-03-13 Celgene Corporation Methods of using 3-(4-amino-oxo-1,3-dihydro-isoindol-2-yl)-piperidine-2,6-dione for the treatment and management of myelodysplastic syndromes
CA2501936A1 (en) * 2002-10-15 2004-04-29 Celgene Corporation Selective cytokine inhibitory drugs for treating myelodysplastic syndrome
EP1900369A1 (en) 2002-10-15 2008-03-19 Celgene Corporation Methods of using and compositions comprising immunomodulatory compounds for the treatment and management of myelodysplastic syndromes
US8404716B2 (en) 2002-10-15 2013-03-26 Celgene Corporation Methods of treating myelodysplastic syndromes with a combination therapy using lenalidomide and azacitidine
US8404717B2 (en) * 2002-10-15 2013-03-26 Celgene Corporation Methods of treating myelodysplastic syndromes using lenalidomide
KR100923173B1 (en) 2002-11-06 2009-10-22 셀진 코포레이션 Methods and compositions using selective cytokine inhibitory drugs for treatment and management of cancers and other diseases
US20080138295A1 (en) * 2005-09-12 2008-06-12 Celgene Coporation Bechet's disease using cyclopropyl-N-carboxamide
WO2004047770A2 (en) * 2002-11-26 2004-06-10 Anthrogenesis Corporation Cytotherapeutics, cytotherapeutic units and methods for treatments using them
US7785601B2 (en) * 2002-12-31 2010-08-31 Sygnis Bioscience Gmbh & Co. Kg Methods of treating neurological conditions with hematopoietic growth factors
WO2004058287A2 (en) * 2002-12-31 2004-07-15 Axaron Bioscience Ag Methods of treating neurological conditions with hematopoeitic growth factors
US7695723B2 (en) * 2002-12-31 2010-04-13 Sygnis Bioscience Gmbh & Co. Kg Methods of treating neurological conditions with hematopoietic growth factors
US20040219136A1 (en) * 2003-02-13 2004-11-04 Hariri Robert J Use of umbilical cord blood to treat individuals having a disease, disorder or condition
US7034052B2 (en) 2003-03-12 2006-04-25 Celgene Corporation 7-Amido-isoindolyl compounds and their pharmaceutical uses
WO2004091495A2 (en) * 2003-04-09 2004-10-28 University Of Utah Research Foundation Compositions and methods related to production of erythropoietin
US7501518B2 (en) * 2003-04-22 2009-03-10 Genzyme Corporation Methods of making 2,6-diaryl piperidine derivatives
ES2393188T3 (en) * 2003-04-22 2012-12-19 Genzyme Corporation heterocyclic compounds that bind to chemokine receptors and exhibit improved efficacy
WO2005018663A1 (en) * 2003-08-22 2005-03-03 The Council Of The Queensland Institute Of Medical Research G-csf derivative for inducing immunological tolerance
MX342025B (en) 2003-09-04 2016-09-12 Celgene Corp * Polymorphic forms of 3-(4-amino-1-oxo-1,3 dihydro-isoindol-2-yl)- piperidine-2,6-dione.
US7220407B2 (en) * 2003-10-27 2007-05-22 Amgen Inc. G-CSF therapy as an adjunct to reperfusion therapy in the treatment of acute myocardial infarction
CN1901911A (en) * 2003-11-06 2007-01-24 细胞基因公司 Methods and compositions using thalidomide for the treatment and management of cancers and other diseases
CA2547570A1 (en) * 2003-12-02 2005-06-23 Celgene Corporation 4-(amino)-2-(2,6-dioxo(3-piperidyl))-isoindoline-1,3-dione for induction of fetal hemoglobin in individuals having anemia
NZ556436A (en) 2005-01-10 2010-11-26 Biogenerix Ag Glycopegylated granulocyte colony stimulating factor
EP1711159B1 (en) 2003-12-30 2013-03-20 Durect Corporation Solid implants containing a block copolymer for controlled release of a gnrh compound
BRPI0507118A (en) * 2004-02-02 2007-06-19 Ambrix Inc polypeptide modified human interferon and their uses
SE0400942D0 (en) * 2004-04-08 2004-04-08 Henrik Arnberg Composition and method
US20080199422A1 (en) * 2004-04-14 2008-08-21 Celgene Corporation Method for the Treatment of Myelodysplastic Syndromes Using 1-Oxo-2-(2,6-Dioxopiperidin-3-Yl-)-4-Methylisoindoline
JP2007532642A (en) * 2004-04-14 2007-11-15 セルジーン・コーポレーションCelgene Corporation Using a selective cytokine inhibitory drug for the treatment and management of myelodysplastic syndromes, and compositions containing the same
EP1586334A1 (en) * 2004-04-15 2005-10-19 TRASTEC scpa G-CSF conjugates with peg
EP1789074A4 (en) * 2004-08-09 2009-08-12 Alios Biopharma Inc Synthetic hyperglycosylated, protease-resistant polypeptide variants, oral formulations and methods of using the same
US7597884B2 (en) * 2004-08-09 2009-10-06 Alios Biopharma, Inc. Hyperglycosylated polypeptide variants and methods of use
CA2577046A1 (en) * 2004-08-13 2006-02-23 Anormed Inc. Chemokine combinations to mobilize progenitor/stem cells
WO2006029233A2 (en) 2004-09-07 2006-03-16 Zymequest, Inc. Apparatus for prolonging survival of platelets
KR100980693B1 (en) 2004-09-28 2010-09-07 (주) 에이프로젠 A Pharmaceutical Composition for Treating Erectile Dysfunction Comprising Chimeric Coiled-Coil Molecule as Active Ingredient
CA2585672A1 (en) 2004-11-01 2006-05-11 Novartis Vaccines And Diagnostics Inc. Combination approaches for generating immune responses
WO2006055260A2 (en) * 2004-11-05 2006-05-26 Northwestern University Use of scf and g-csf in the treatment of cerebral ischemia and neurological disorders
EP1828241A1 (en) * 2004-12-23 2007-09-05 Laboratoires Serono S.A. G-csf polypeptides and uses thereof
RU2007132188A (en) 2005-01-25 2009-03-10 Селл Терапьютикс, Инк. (Us) The conjugates of biologically active proteins having a modified half-life in vivo
GB0505353D0 (en) 2005-03-16 2005-04-20 Chem Technologies Ltd E Treatment process for concrete
US20060270707A1 (en) * 2005-05-24 2006-11-30 Zeldis Jerome B Methods and compositions using 4-[(cyclopropanecarbonylamino)methyl]-2-(2,6-dioxopiperidin-3-yl)isoindole-1,3-dione for the treatment or prevention of cutaneous lupus
AT500847T (en) * 2005-06-01 2011-03-15 Maxygen Inc Pegylated G-CSF polypeptides and manufacturing processes for
EP1739179A1 (en) 2005-06-30 2007-01-03 Octapharma AG Serum-free stable transfection and production of recombinant human proteins in human cell lines
DE102005033250A1 (en) 2005-07-15 2007-01-18 Bioceuticals Arzneimittel Ag A method for purifying G-CSF
KR100735784B1 (en) * 2005-07-20 2007-07-06 재단법인 목암생명공학연구소 Mutant of granulocyte-colony stimulating factorG-CSF and chemically conjugated polypeptide thereof
CA2617064A1 (en) * 2005-08-04 2007-02-15 Nektar Therapeutics Al, Corporation Conjugates of a g-csf moiety and a polymer
US8580814B2 (en) * 2006-04-03 2013-11-12 Sunesis Pharmaceuticals, Inc. Methods of using (+)-1,4-dihydro-7-[(3S,4S)-3-methoxy-4-(methylamino)-1-pyrrolidinyl]-4- oxo-1-(2-thiazolyl)-1,8-naphthyridine-3-carboxylic acid for treatment of cancer
WO2007047687A2 (en) * 2005-10-14 2007-04-26 Zymequest, Inc. Compositions and methods for prolonging survival of platelets
US20070155791A1 (en) * 2005-12-29 2007-07-05 Zeldis Jerome B Methods for treating cutaneous lupus using aminoisoindoline compounds
ES2497092T3 (en) * 2006-02-24 2014-09-22 Genzyme Corporation Procedures for increased blood flow and / or stimulation of tissue regeneration
DE202006020194U1 (en) 2006-03-01 2007-12-06 Bioceuticals Arzneimittel Ag G-CSF liquid formulation
WO2007102814A2 (en) * 2006-03-07 2007-09-13 Regenetech, Inc. Recombinant mammalian molecules and method for production thereof
GB0605684D0 (en) * 2006-03-21 2006-05-03 Sicor Biotech Uab Method For Purifying Granulocyte-Colony Stimulating Factor
US20100196336A1 (en) 2006-05-23 2010-08-05 Dongsu Park Modified dendritic cells having enhanced survival and immunogenicity and related compositions and methods
CN104027333B (en) 2006-06-12 2017-05-17 逊尼希思制药公司 Treating cancer compounds and compositions
EP3025712A1 (en) * 2006-08-02 2016-06-01 Sunesis Pharmaceuticals, Inc. Combined use of (+)-1,4-dihydro-7-[(3s,4s)-3-methoxy-4-(methylamino)-1-pyrrolidinyl]-4-oxo-1-(2-thiazolyl)-1,8-naphthyridine-3-carboxylic acid and cytarabine (ara-c) for the treatment of leukemia
CL2007002218A1 (en) 2006-08-03 2008-03-14 Celgene Corp Soc Organizada Ba Use of 3- (4-amino-1-oxo-1,3-dihydro-isoindol-2-yl) -piperidine 2,6-dione for the preparation of a medicament useful for the treatment of lymphoma cell layer medicine.
AU2007281677A1 (en) * 2006-08-07 2008-02-14 Genzyme Corporation Combination therapy
US20100184694A1 (en) 2006-12-21 2010-07-22 Biokine Therapeutics Ltd. T-140 peptide analogs having cxcr4 super-agonist activity for cancer therapy
WO2008096370A2 (en) * 2007-02-05 2008-08-14 Natco Pharma Limited An efficient and novel purification method of recombinant hg-csf
CN101675071B (en) * 2007-05-02 2014-06-18 Ambrx公司 Modified interferon beta polypeptides and their uses
CA2693162C (en) * 2007-07-17 2017-05-16 Acea Biosciences Inc. Heterocyclic compounds and uses as anticancer agents
US7893045B2 (en) 2007-08-07 2011-02-22 Celgene Corporation Methods for treating lymphomas in certain patient populations and screening patients for said therapy
CA2697265A1 (en) 2007-08-09 2009-02-19 Genzyme Corporation Method of treating autoimmune disease with mesenchymal stem cells
UA98001C2 (en) 2007-08-27 2012-04-10 Биодженерикс Аг Liquid formulation of g-csf conjugate
US8562967B2 (en) 2007-08-27 2013-10-22 Biogenerix Ag Stable liquid formulations of G-CSF
US8758761B2 (en) * 2007-09-30 2014-06-24 University Of Florida Research Foundation, Inc. Combination therapies for treating type 1 diabetes
KR100921226B1 (en) 2007-10-04 2009-10-12 학교법인 선목학원 Retrovirus expression vector containing ??-??? human granulocyte-colony stimulating factor gene and Transgenic poultry thereby
EP2214824A4 (en) * 2007-11-28 2015-08-19 Smart Tube Inc Devices, systems and methods for the collection, stimulation, stabilization, and analysis of a biological sample
AU2008335772B2 (en) 2007-12-10 2014-11-27 Sunesis Pharmaceuticals, Inc. Methods of using (+)-1,4-dihydro-7-[(3S,4S)-3- methoxy-4-(methylamino)-1-pyrrolidinyl]-4-oxo-1- (2-thiazolyl)-1,8-naphthyridine-3-carboxylic acid for treatment of antecedent hematologic disorders
MX2010008632A (en) 2008-02-08 2010-08-30 Ambrx Inc Modified leptin polypeptides and their uses.
JP2011519375A (en) * 2008-04-30 2011-07-07 ニュートロン ロウ Use of corticotropin-releasing factor for the treatment of cancer
CA2761582A1 (en) 2008-05-15 2009-11-19 Celgene Corporation Oral formulations of cytidine analogs and methods of use thereof
UA118536C2 (en) 2008-07-23 2019-02-11 Амбркс, Інк. The modified polypeptide bovine granulocyte colony factor and its application
WO2010092571A2 (en) 2009-02-11 2010-08-19 Yeda Research And Development Co. Ltd. Short beta-defensin-derived peptides
JP5645816B2 (en) 2009-05-25 2014-12-24 国立大学法人東京工業大学 A pharmaceutical composition comprising a core factor of the growth and differentiation of central neurons
WO2010146578A2 (en) 2009-06-14 2010-12-23 Biokine Therapeutics Ltd. Peptide therapy for increasing platelet levels
KR101741859B1 (en) 2009-06-22 2017-06-15 암젠 인크 Refolding proteins using a chemically controlled redox state
US20120183536A1 (en) 2009-06-24 2012-07-19 Stephen Evans-Freke Methods of using corticotropin-releasing factor for the treatment of cancer
WO2011056566A2 (en) 2009-10-26 2011-05-12 Sunesis Pharmaceuticals, Inc. Compounds and methods for treatment of cancer
US20110129858A1 (en) * 2009-11-27 2011-06-02 Changhua Christian Hospital Prognosis Biomarker for Evaluating the Cure Level of Stroke Patient and a Method thereof
EA201290541A1 (en) 2009-12-21 2013-05-30 Амбркс, Инк. Modified bovine somatotropin polypeptides and their use
HUE039788T2 (en) 2009-12-31 2019-02-28 Arven Ilac Sanayi Ve Ticaret As A novel process for preparing G-CSF (granulocyte colony stimulating factor)
RU2012140020A (en) 2010-02-19 2014-03-27 Ацея Байосайенсиз Инк. Heterocyclic compounds and their use as anticancer agents
AU2011223627B2 (en) 2010-03-04 2015-06-18 Pfenex Inc. Method for producing soluble recombinant interferon protein without denaturing
WO2011112933A1 (en) 2010-03-12 2011-09-15 Celgene Corporation Methods for the treatment of non-hodgkin's lymphomas using lenalidomide, and gene and protein biomarkers as a predictor
EP2552949B1 (en) 2010-04-01 2016-08-17 Pfenex Inc. Methods for g-csf production in a pseudomonas host cell
WO2012019168A2 (en) * 2010-08-06 2012-02-09 Moderna Therapeutics, Inc. Engineered nucleic acids and methods of use thereof
WO2012078492A1 (en) 2010-12-06 2012-06-14 Celgene Corporation A combination therapy with lenalidomide and a cdk inhibitor for treating multiple myeloma
CN103338753A (en) 2011-01-31 2013-10-02 细胞基因公司 Pharmaceutical compositions of cytidine analogs and methods of use thereof
RS56770B1 (en) 2011-03-11 2018-04-30 Celgene Corp Solid forms of 3-(5-amino-2-methyl-4-oxo-4h-quinazolin-3-yl)-piperidine-2,6-dione, and their pharmaceutical compositions and uses
US8906932B2 (en) 2011-03-11 2014-12-09 Celgene Corporation Methods of treating cancer using 3-(5-amino-2-methyl-4-oxo-4Hquinazolin-3-yl)-piperidine-2,6-dione
NZ617142A (en) 2011-04-29 2015-11-27 Celgene Corp Methods for the treatment of cancer and inflammatory diseases using cereblon as a predictor
US9320777B2 (en) 2011-05-13 2016-04-26 Bolder Biotechnology, Inc. Methods and use of growth hormone supergene family protein analogs for treatment of radiation exposure
EP2771296B1 (en) 2011-10-25 2017-09-27 Corning Incorporated Delamination resistant pharmaceutical glass containers containing active pharmaceutical ingredients
WO2013067043A1 (en) 2011-11-01 2013-05-10 Celgene Corporation Methods for treating cancers using oral formulations of cytidine analogs
US8889630B2 (en) 2011-12-23 2014-11-18 Carlos Lopez Method for hair regrowth using Granulocyte-Colony Stimulating Factor
HU1200171A2 (en) 2012-03-19 2013-09-30 Richter Gedeon Nyrt Methods for the production of polypeptides
HU1200172A2 (en) 2012-03-19 2013-10-28 Richter Gedeon Nyrt Methods for refolding g-csf from inclusion bodies
US9522917B2 (en) 2012-04-11 2016-12-20 Acerta Pharma B.V. Bruton's tyrosine kinase inhibitors for hematopoietic mobilization
WO2013160895A1 (en) 2012-04-24 2013-10-31 Biokine Therapeutics Ltd. Peptides and use thereof in the treatment of large cell lung cancer
ES2699810T3 (en) 2012-06-29 2019-02-12 Celgene Corp Methods to determine the efficacy of drugs using cereblon-associated proteins
TW201434466A (en) 2012-08-09 2014-09-16 Celgene Corp Methods of treating cancer using 3-(4-((4-(morpholinomethyl)benzyl)oxy)-1-oxoisoindolin-2-yl)piperidine-2,6-dione
US9587281B2 (en) 2012-08-14 2017-03-07 Celgene Corporation Cereblon isoforms and their use as biomarkers for therapeutic treatment
SG11201501653RA (en) 2012-09-10 2015-04-29 Celgene Corp Methods for the treatment of locally advanced breast cancer
US9968627B2 (en) 2013-03-26 2018-05-15 Celgene Corporation Solid forms comprising 4-amino-1-β-D-ribofuranosyl-1,3,5-triazin-2(1H)-one and a coformer, compositions and methods of use thereof
SG11201507759WA (en) 2013-04-02 2015-10-29 Celgene Corp Methods and compositions using 4-amino-2-(2,6-dioxo-piperidine-3-yl)-isoindoline-1,3-dione for treatment and management of central nervous system cancers
US9849066B2 (en) 2013-04-24 2017-12-26 Corning Incorporated Delamination resistant pharmaceutical glass containers containing active pharmaceutical ingredients
US9707153B2 (en) 2013-04-24 2017-07-18 Corning Incorporated Delamination resistant pharmaceutical glass containers containing active pharmaceutical ingredients
US9700486B2 (en) 2013-04-24 2017-07-11 Corning Incorporated Delamination resistant pharmaceutical glass containers containing active pharmaceutical ingredients
US9603775B2 (en) 2013-04-24 2017-03-28 Corning Incorporated Delamination resistant pharmaceutical glass containers containing active pharmaceutical ingredients
US9700485B2 (en) 2013-04-24 2017-07-11 Corning Incorporated Delamination resistant pharmaceutical glass containers containing active pharmaceutical ingredients
US9707155B2 (en) 2013-04-24 2017-07-18 Corning Incorporated Delamination resistant pharmaceutical glass containers containing active pharmaceutical ingredients
US9707154B2 (en) 2013-04-24 2017-07-18 Corning Incorporated Delamination resistant pharmaceutical glass containers containing active pharmaceutical ingredients
US9717648B2 (en) 2013-04-24 2017-08-01 Corning Incorporated Delamination resistant pharmaceutical glass containers containing active pharmaceutical ingredients
US9717649B2 (en) 2013-04-24 2017-08-01 Corning Incorporated Delamination resistant pharmaceutical glass containers containing active pharmaceutical ingredients
US9839579B2 (en) 2013-04-24 2017-12-12 Corning Incorporated Delamination resistant pharmaceutical glass containers containing active pharmaceutical ingredients
US9713572B2 (en) 2013-04-24 2017-07-25 Corning Incorporated Delamination resistant pharmaceutical glass containers containing active pharmaceutical ingredients
EP3004877A4 (en) 2013-06-06 2017-04-19 Dana-Farber Cancer Institute, Inc. Compositions and methods for identification, assessment prevention, and treatment of cancer using pd-l1 isoforms
EP2815749A1 (en) 2013-06-20 2014-12-24 IP Gesellschaft für Management mbH Solid form of 4-amino-2-(2,6-dioxopiperidine-3-yl)isoindoline-1,3-dione having specified X-ray diffraction pattern
WO2015057992A1 (en) 2013-10-16 2015-04-23 Izumi Raquel Btk inhibitors for hematopoietic mobilization
US20160296632A1 (en) 2013-11-13 2016-10-13 Aequus Biopharma, Inc. Engineered glycoproteins and uses thereof
US20150359810A1 (en) 2014-06-17 2015-12-17 Celgene Corporation Methods for treating epstein-barr virus (ebv) associated cancers using oral formulations of 5-azacytidine
JP2017528690A (en) 2014-06-27 2017-09-28 セルジーン コーポレイション Compositions and methods for inducing a conformational change in cereblon and other e3 ubiquitin ligase
US9499514B2 (en) 2014-07-11 2016-11-22 Celgene Corporation Antiproliferative compounds and methods of use thereof
EA201790439A1 (en) 2014-08-22 2017-07-31 Селджин Корпорейшн Methods for treating multiple myeloma using the immunomodulatory compounds in combination with antibodies
WO2016146629A1 (en) 2015-03-16 2016-09-22 Arven Ilac Sanayi Ve Ticaret A.S. A process for preparing g-csf (granulocyte colony stimulating factor)
JP2018527302A (en) 2015-06-26 2018-09-20 セルジーン コーポレイション The method of treating Kaposi's sarcoma or kshv induced lymphomas with an immunomodulatory compound, and the use of biomarkers
WO2017066561A2 (en) 2015-10-16 2017-04-20 President And Fellows Of Harvard College Regulatory t cell pd-1 modulation for regulating t cell effector immune responses
CA2998578A1 (en) * 2015-10-19 2017-04-27 Sandoz Ag Improved coding sequence for human g-csf
AU2016342210A1 (en) 2015-10-19 2018-05-10 Sandoz Ag Method for producing a recombinant protein with reduced impurities
SG11201805779TA (en) 2016-01-08 2018-08-30 Celgene Corp Antiproliferative compounds, and their pharmaceutical compositions and uses
US10052315B2 (en) 2016-01-08 2018-08-21 Celgene Corporation Formulations of 2-(4-chlorophenyl)-N-((2-(2,6-dioxopiperidin-3-yl)-1-oxoisoindolin-5-yl)methyl)-2,2-difluoroacetamide
AU2017206039A1 (en) 2016-01-08 2018-07-19 Celgene Corporation Solid forms of 2-(4-chlorophenyl)-N-((2-2,6-dioxopiperidin-3-yl)-1-oxoisoindolin-5-yl) methyl)-2,2-difluoroacetamide, and their pharmaceutical compositions and uses
AU2017240050A1 (en) 2016-04-01 2018-10-11 Signal Pharmaceuticals, Llc Solid forms of (1s,4s)-4-(2-(((3S4R)-3-fluorotetrahydro-2H-pyran-4-yl) amino)-8-((2,4,6-trichlorophenyl) amino)-9H-purin-9-yl)-1-methylcyclohexane-1-carboxamide and methods of their use
EP3443107A1 (en) 2016-04-13 2019-02-20 Synthetic Genomics, Inc. Recombinant arterivirus replicon systems and uses thereof
WO2018013693A1 (en) 2016-07-13 2018-01-18 Celgene Corporation Solid dispersions and cocrystals comprising 3-(4-amino-1-oxo-1,3-dihydro-isoindol-2-yl)-piperidine-2,6-dione compositions and methods of use thereof
WO2018013689A1 (en) 2016-07-13 2018-01-18 Celgene Corporation Solid dispersions and solid forms comprising 4-amino-2-(2,6-dioxopiperidine-3-yl)isoindoline-1,3-dione, method of preparation and use thereof
WO2018165142A1 (en) 2017-03-07 2018-09-13 Celgene Corporation Solid forms of 3-(5-amino-2-methyl-4-oxo-4h-quinazolin-3-yl)-piperidine-2,6-dione, and their pharmaceutical compositions and uses
US20190022074A1 (en) 2017-06-21 2019-01-24 SHY Therapeutics LLC Compounds that interact with the ras superfamily for the treatment of cancers, inflammatory diseases, rasopathies, and fibrotic disease

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4358535B1 (en) * 1980-12-08 1986-05-13
US4394443A (en) * 1980-12-18 1983-07-19 Yale University Method for cloning genes
US6936694B1 (en) * 1982-05-06 2005-08-30 Intermune, Inc. Manufacture and expression of large structural genes
FI82266C (en) * 1982-10-19 1991-02-11 Cetus Corp Foerfarande Foer framstaellning of IL-2 -mutein.
JPS6237316B2 (en) * 1983-07-15 1987-08-12 Tsurumi Gosei Rozai Kk
WO1985000817A1 (en) * 1983-08-10 1985-02-28 Amgen Microbial expression of interleukin ii
US4710473A (en) * 1983-08-10 1987-12-01 Amgen, Inc. DNA plasmids
NZ210501A (en) * 1983-12-13 1991-08-27 Kirin Amgen Inc Erythropoietin produced by procaryotic or eucaryotic expression of an exogenous dna sequence
JPS60206066A (en) * 1984-03-29 1985-10-17 Toshiba Corp Solid-state image pickup device
JPH0428892B2 (en) * 1984-04-03 1992-05-15 Zexel Corp
JPH021667B2 (en) * 1984-04-13 1990-01-12 Mazda Motor
JPH0144200B2 (en) * 1984-07-25 1989-09-26 Chugai Pharmaceutical Co Ltd
DE3680613D1 (en) * 1985-02-08 1991-09-05 Chugai Pharmaceutical Co Ltd Human granuloxcyt-colony stimulation factor.
JPH0615477B2 (en) * 1985-02-08 1994-03-02 中外製薬株式会社 Infection defense agent
JPH01110629A (en) * 1985-04-05 1989-04-27 Chugai Pharmaceut Co Ltd Phylactic
US4810643A (en) * 1985-08-23 1989-03-07 Kirin- Amgen Inc. Production of pluripotent granulocyte colony-stimulating factor
JPH0331437B2 (en) * 1985-08-23 1991-05-07 Kirin Amgen Inc
JPH025395B2 (en) * 1985-09-17 1990-02-01 Chugai Pharmaceutical Co Ltd
AT67517T (en) * 1985-09-30 1991-10-15 Chugai Pharmaceutical Co Ltd Human granulocyte-colony stimulating factor.
US4904584A (en) * 1987-12-23 1990-02-27 Genetics Institute, Inc. Site-specific homogeneous modification of polypeptides
JP2976258B2 (en) * 1992-07-07 1999-11-10 株式会社名機製作所 Hot press insulation mounting structure

Also Published As

Publication number Publication date
JP2718426B2 (en) 1998-02-25
DE3650788T2 (en) 2007-06-14
JPH0242998A (en) 1990-02-13
JP2527365B2 (en) 1996-08-21
EP0237545A1 (en) 1987-09-23
JPH11276168A (en) 1999-10-12
NZ217334A (en) 1991-05-28
CN86106234A (en) 1987-06-17
FI110576B (en) 2003-02-28
JP2000279185A (en) 2000-10-10
PT83242B (en) 1988-07-01
JPH0231675A (en) 1990-02-01
SA1243B1 (en) 2006-09-09
FI107540B (en) 2001-08-31
JPH06181791A (en) 1994-07-05
DK204487D0 (en) 1987-04-22
JPH0690751A (en) 1994-04-05
FI871700A (en) 1987-04-16
NO318755B1 (en) 2005-05-02
FI871700D0 (en)
NL930127I1 (en) 1993-11-01
NO303544B1 (en) 1998-07-27
US5580755A (en) 1996-12-03
NO20045548L (en) 1987-04-22
MX9202992A (en) 1992-07-01
NO20032250L (en) 1987-04-22
FI105191B (en) 2000-06-30
FI107540B1 (en)
NO314902B1 (en) 2003-06-10
JP2952203B2 (en) 1999-09-20
FI110576B1 (en)
FI20000014A (en) 2000-01-04
JP2004041242A (en) 2004-02-12
JPH09224670A (en) 1997-09-02
US4810643A (en) 1989-03-07
US5582823A (en) 1996-12-10
NO2003008I1 (en) 2004-01-05
JP2660178B2 (en) 1997-10-08
NO871679D0 (en) 1987-04-22
IL79805D0 (en) 1986-11-30
US5830705A (en) 1998-11-03
PT83242A (en) 1986-09-01
JPH08231412A (en) 1996-09-10
WO1987001132A1 (en) 1987-02-26
JP2660179B2 (en) 1997-10-08
AU6334686A (en) 1987-03-10
US5676941A (en) 1997-10-14
SG48964A1 (en) 1998-05-18
SG35892G (en) 1992-05-22
JP2002315578A (en) 2002-10-29
JPH042599B2 (en) 1992-01-20
GR862185B (en) 1986-12-23
JP2006101889A (en) 2006-04-20
AT332375T (en) 2006-07-15
NO982132L (en) 1987-04-22
ES2001883A6 (en) 1988-07-01
NO20032250D0 (en) 2003-05-19
CN1020924C (en) 1993-05-26
DK204487A (en) 1987-04-22
CY1642A (en) 1992-11-06
EP0237545B1 (en) 1991-05-22
FI20010334A (en) 2001-02-21
NO2003010I2 (en) 2007-07-09
DK174980B1 (en) 2004-04-05
EP0237545B2 (en) 1999-08-25
NO982132D0 (en) 1998-05-11
NO871679L (en) 1987-04-22
EP0237545A4 (en) 1987-12-17
NO2003010I1 (en) 2004-01-26
FI105191B1 (en)
IL79805A (en) 1991-12-15
FI871700A0 (en) 1987-04-16
HK1029600A1 (en) 2006-09-15
JP3115561B2 (en) 2000-12-11
DE3650788D1 (en) 2006-08-17

Similar Documents

Publication Publication Date Title
Brakenhoff et al. Molecular cloning and expression of hybridoma growth factor in Escherichia coli.
Bell et al. Human epidermal growth factor precursor: cDNA sequence, expression in vitro and gene organization
Park et al. Characterization of the cell surface receptor for a multi-lineage colony-stimulating factor (CSF-2 alpha).
Linzer et al. Nucleotide sequence of a growth-related mRNA encoding a member of the prolactin-growth hormone family
Prats et al. High molecular mass forms of basic fibroblast growth factor are initiated by alternative CUG codons
Cantrell et al. Cloning, sequence, and expression of a human granulocyte/macrophage colony-stimulating factor
Cook et al. Malignant transformation of a growth factor-dependent myeloid cell line by Abelson virus without evidence of an autocrine mechanism
AU729880B2 (en) Recombinant vascular endothelial cell growth factor D (VEGF-D)
EP0043980B1 (en) Mature human leukocyte interferon a, process for its microbial preparation, intermediates therefor and compositions containing it.
US5071761A (en) Hybrid interferons
Meeker et al. Activation of the interleukin-3 gene by chromosome translocation in acute lymphocytic leukemia with eosinophilia [see comments]
CA2038398C (en) Dna encoding a growth factor specific for epithelial cells
Lee et al. Isolation of cDNA for a human granulocyte-macrophage colony-stimulating factor by functional expression in mammalian cells
JP3229590B2 (en) The screening method of making and polypeptides of cDNA library
US7022499B2 (en) Nucleic acids encoding differentiation inhibitor delta 2
US5756084A (en) Human stromal derived factor 1α and 1β
Miyatake et al. Structure of the chromosomal gene for murine interleukin 3
Kato et al. Purification and characterization of thrombopoietin
US5856298A (en) Erythropoietin isoforms
EP0077670B1 (en) Human immune interferon
Rose et al. Oncostatin M is a member of a cytokine family that includes leukemia-inhibitory factor, granulocyte colony-stimulating factor, and interleukin 6
US4877729A (en) Recombinant DNA encoding novel family of primate hematopoietic growth factors
CA2027635C (en) Erythropoietin isoforms
CA1341618C (en) Isolation cloning and expression of primate gm-csf
JP3276933B2 (en) Method for producing a glycoprotein having erythropoietin activity