KR100921226B1 - Retrovirus expression vector containing ??-??? human granulocyte-colony stimulating factor gene and Transgenic poultry thereby - Google Patents

Retrovirus expression vector containing ??-??? human granulocyte-colony stimulating factor gene and Transgenic poultry thereby Download PDF

Info

Publication number
KR100921226B1
KR100921226B1 KR1020070099789A KR20070099789A KR100921226B1 KR 100921226 B1 KR100921226 B1 KR 100921226B1 KR 1020070099789 A KR1020070099789 A KR 1020070099789A KR 20070099789 A KR20070099789 A KR 20070099789A KR 100921226 B1 KR100921226 B1 KR 100921226B1
Authority
KR
South Korea
Prior art keywords
csf
cells
poultry
transgenic
transformed
Prior art date
Application number
KR1020070099789A
Other languages
Korean (ko)
Other versions
KR20090034524A (en
Inventor
김태완
이훈택
구본철
권모선
Original Assignee
학교법인 선목학원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 학교법인 선목학원 filed Critical 학교법인 선목학원
Priority to KR1020070099789A priority Critical patent/KR100921226B1/en
Publication of KR20090034524A publication Critical patent/KR20090034524A/en
Application granted granted Critical
Publication of KR100921226B1 publication Critical patent/KR100921226B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/8509Vectors or expression systems specially adapted for eukaryotic hosts for animal cells for producing genetically modified animals, e.g. transgenic
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/52Cytokines; Lymphokines; Interferons
    • C07K14/53Colony-stimulating factor [CSF]
    • C07K14/535Granulocyte CSF; Granulocyte-macrophage CSF
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/8509Vectors or expression systems specially adapted for eukaryotic hosts for animal cells for producing genetically modified animals, e.g. transgenic
    • C12N2015/8518Vectors or expression systems specially adapted for eukaryotic hosts for animal cells for producing genetically modified animals, e.g. transgenic expressing industrially exogenous proteins, e.g. for pharmaceutical use, human insulin, blood factors, immunoglobulins, pseudoparticles
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2740/00Reverse transcribing RNA viruses
    • C12N2740/00011Details
    • C12N2740/10011Retroviridae
    • C12N2740/10041Use of virus, viral particle or viral elements as a vector

Abstract

본 발명은 사람 혈액의 과립구집락자극인자(human Granulocyte-colony Stimulating Factor)를 코딩하는 유전자의 전이와 발현을 위한 레트로바이러스(retrovirus) 벡터, 이에 의해 형질전환된 가금 및 그 제조방법에 관한 것이다.The present invention relates to retrovirus vectors for transduction and expression of genes encoding human Granulocyte-colony Stimulating Factor of human blood, poultry transformed by them, and methods for producing the same.

본 발명의 레트로바이러스 벡터에 의하면 사람의 hG-CSF 유전자를 효율적으로 전이시켜 여러 동물의 세포와 가금류를 hG-CSF 유전자를 발현할 수 있도록 효율적으로 형질전환 할 수 있으며, 형질전환 된 동물 세포나 닭을 생체 반응기로 사용하여 hG-CSF를 경제적으로 대량으로 생산할 수 있다.According to the retroviral vector of the present invention, by efficiently transferring human hG-CSF gene, cells and poultry of various animals can be efficiently transformed to express the hG-CSF gene. Can be used as a bioreactor to economically mass produce hG-CSF.

가금, 형질전환, 자기복제-결핍 레트로바이러스(replication-defective retrovirus), 사람의 과립구집락자극인자(human Granulocyte-Colony Stimulating Factor, hG-CSF) Poultry, transformation, replication-defective retrovirus, human Granulocyte-Colony Stimulating Factor (hG-CSF)

Description

사람 혈액의 과립구집락자극인자(hG-CSF) 유전자를 내장하는 레트로바이러스 발현벡터 및 이에 의해 형질전환된 가금{Retrovirus expression vector containing hG-CSF (human granulocyte-colony stimulating factor) gene and Transgenic poultry thereby} Retroviral expression vector containing human granulocyte-colony stimulating factor gene and transgenic poultry according to which granule colony stimulating factor gene of human blood is incorporated

본 발명은 사람 혈액의 과립구집락자극인자(human Granulocyte-colony Stimulating Factor)를 코딩하는 유전자의 전이와 발현을 위한 레트로바이러스(retrovirus) 벡터, 이에 의해 형질전환된 가금 및 그 제조방법에 관한 것이다.The present invention relates to retrovirus vectors for transduction and expression of genes encoding human Granulocyte-colony Stimulating Factor of human blood, poultry transformed by them, and methods for producing the same.

사람의 과립구집락자극인자(hG-CSF)는 크기가 19.6 kd인 당단백질로서 조혈 전구세포들의 증식과 분화를 조절하고(Bober et al., 1995, Immunopharmacology 29: 111-119), 고형암 및 혈액종양 환자의 항암요법 치료시, 재생불량성 빈혈이나 골수 이형성 증후군 발병시, 그리고 조혈모세포 이식시에 나타나는 호중구 감소증을 치료하기 위하여 사용된다(Kaushansky, 2006, N. Engl J. Med. 354: 2034-2045). 현재 사용되고 있는 대부분의 hG-CSF는 주로 대장균에서 재조합 단백질 형 태로 생산되고 있다. 그러나 대장균에서 생성되는 단백질은 당쇄화(glycosylation)와 같은 유전자 암호번역 이후의 단백질 변형(posttranslational modifucation) 과정에 많은 문제가 있기 때문에 여러 가지 면에서 사용이 제한적이다. 이러한 점을 해결하기 위한 가장 이상적인 방법은 먼저 hG-CSF 유전자가 도입되어 그 유전자를 발현하는 동물, 즉 형질전환가축으로부터 직접 당단백질(glycoprotein)을 수확하는 것이다. Human granulocyte colony stimulating factor (hG-CSF) is a 19.6 kd glycoprotein that regulates the proliferation and differentiation of hematopoietic progenitor cells (Bober et al., 1995, Immunopharmacology 29: 111-119), solid cancer and blood tumors It is used to treat neutropenia in patients with chemotherapy, onset of aplastic anemia, myelodysplastic syndrome, and hematopoietic stem cell transplantation (Kaushansky, 2006, N. Engl J. Med. 354: 2034-2045). . Most of the currently used hG-CSF is produced in recombinant protein form mainly in Escherichia coli. However, proteins produced in E. coli are limited in many ways because they have many problems in posttranslational modifucation, such as glycosylation. The most ideal way to solve this problem is to first harvest the glycoprotein (glycoprotein) directly from the hG-CSF gene is introduced and expressing the animal, that is, the transgenic livestock.

최근까지 형질전환 가축의 생산에 관한 연구의 대부분은 주로 소, 돼지, 양, 토끼 그리고 염소 등의 포유류를 대상으로 이루어졌다. 이들의 경우 시간과 비용의 방대한 투자에도 불구하고 경제적인 측면에서 성공적인 형질전환 가축의 생산에 관한 보고는 미비한 실정이다. 이러한 현상은 대부분 포유류들의 긴 세대 간격, 복잡한 생리적 형태적 특징 및 연구에 드는 천문학적인 비용에 기인한다. Until recently, most of the research on the production of transgenic livestock was carried out mainly on mammals such as cattle, pigs, sheep, rabbits and goats. Despite their large investments in time and money, there are few reports on the successful economic production of transgenic livestock. This is largely due to the long generation intervals of mammals, the complex physiological morphological features, and the astronomical costs of research.

한편 가금은 포유류에 비해 성숙 기간과 세대간격이 짧으며 포유류에 비해 번식능력이 대단히 높기 때문에 형질전환된 가금의 계통성립이 용이하고 비교적 적은 노력과 비용으로 많은 개체를 대상으로 하는 실험이 가능하다는 장점을 가지고 있다(Ivarie, 2003, Trends Biotechnol. 21: 14-19). On the other hand, poultry has a shorter maturation period and generation intervals than mammals, and has a very high reproductive capacity compared to mammals, making it easy to establish transformed poultry and experimenting with large numbers of individuals with relatively little effort and cost. (Ivarie, 2003, Trends Biotechnol. 21: 14-19).

그러나, 가금의 경우 포유류와는 달리 수정 시 일어나는 일반적인 다정자침입(polyspermy) 현상(Perry, 1987, J. Anat. 150: 99-109)이나, 수정 후부터 산란 직후까지의 배발생으로 인하여 배발달 X기(stage X, Eyal-Giladi et al., 1976, Dev. Biol. 49: 321-337)에 해당하는 갓 산란한 계란의 배에는 이미 약 60,000여 개의 분화전능(pluoripotent)한 세포들이 존재한다(Petitte and Mozdziak, 2002, in: Transgenic Animal Technology (edited by C.A. Pinkert, Chapter 11, Academic Press, San Diego). 이러한 형태적, 발생적 특징으로 인해 가금에 있어 포유류의 경우와 동일한 방법으로 외래 유전자를 도입하는 것은 매우 어렵다. 또한 가금의 수란관에서 초기 수정란을 채취하기가 기술적으로 지극히 어려울 뿐만 아니라 산란된 난(卵)의 배는 두꺼운 난각으로 둘러싸여 있기 때문에 포유류에 사용되고 있는 유전자 이식 기술의 적용이 불가능하다.However, unlike in mammals, poultry development is due to the general polyspermy phenomenon (Perry, 1987, J. Anat. 150: 99-109), which is different from mammals due to embryonic development from fertilization to post-production. There are already about 60,000 pluoripotent cells in the embryos of freshly laid eggs (stage X, Eyal-Giladi et al., 1976, Dev. Biol. 49: 321-337) (Petitte and Mozdziak, 2002, in: Transgenic Animal Technology (edited by CA Pinkert, Chapter 11, Academic Press, San Diego) .Because of these morphological and developmental characteristics, introducing foreign genes in poultry in the same way as in mammals It is also very difficult to obtain early fertilized eggs from poultry eggs, as well as the eggs of the eggs that are spawned with thick eggshells. Application of the gene transfer technology used in mammals is impossible.

형질전환 가금의 생산에 있어서 외래유전자의 도입에 이용되는 표적 세포에는 난의 X기의 배반엽 세포(Rosenblum and Chen, 1995, Transgenic Res. 4: 192-198), 원시생식세포(primordial germ cell) (Li et al., 1995, Transgenic Res. 4: 26-29), 갓 수정된 난자(Sherman et al., 1998, Nat. Biotech. 16: 1050-1053), 태아 줄기 세포(embryonic stem cell; Pain et al., 1999, Cells Tissues Organs 165: 212-219) 및 정자(Nakanishi and Iritani, 1993, Mol. Reprod . Dev. 36: 258-261) 등이 있으며, 외래 유전자의 전이를 위해 DNA를 표적세포에 직접 형질감염(transfection)시키는 물리 또는 화학적 방법(Muramatsu et al., 1997, Biochem. Biophys. Res. Commun. 230: 376-380)을 이용하거나 바이러스의 감염성을 이용하는 생물학적인 방법(Thoraval et al., 1995, Transgenic Res. 4: 369-377)을 이용한다. 따라서, 형질전환 닭의 생산방법은 외래 유전자를 전이시키고자 하는 표적 세포와 유전자의 전이 방법에 따라 많은 방법이 있을 수 있는데 이 중에서 X기의 배반엽 세포에 레트로바이러스 벡터 시스템을 이용하는 방법이 가장 일반적으로 사용되고 있다. 이 방법의 가장 큰 장점은 유전자의 전이에 있어서 레트로바이러스 고유의 감염성을 이용하므로 기술적으로 가장 용이하다는 데에 있다. 이 방법을 이용하여 Salter 등(1987, Virology, 157: 236-240)은 닭의 배에 복제-가능 바이러스(replication-competent retrovirus vector)를 직접 주입하여 생식세포에서 외래 유전자의 전이가 확인된 최초의 형질전환 닭을 생산하였고, 그 후 Bosselman 등(1989, Science, 243: 533-535)은 복제-결핍 바이러스(replication-defective retrovirus vector)를 이용하여 형질전환 닭을 생산하였다. 또한, 최근에는 McGrew 등(2004, EMBO reports, 5: 728-733), Lillico 등 (2007, Proc. Natl. Acad. Sci. USA, 104: 1771-1776), Harvey 등(2002, Nat. Biotech., 19: 396-399), Mozdziak 등(2003, Dev. Dyn. 226: 439-445) 및 Rapp 등(2003, Transgenic Res. 12: 569-575)에 의해 성공적인 결과가 보고되었다. 그러나, 이들 연구들은 다음과 같은 단점을 갖는다. 즉, 이들의 연구에서는 EIAV (equine infectious anemia virus) 와 HIV-1 (human immunodeficiency virus type 1)과 같은 lentivirus vector system 혹은 ALV (avian leukosis virus), REV(reticuloendotheliosis virus) 혹은 SNV (spleen necrosis virus)와 같은 조류 레트로바이러스(avain retrovirus) 시스템을 이용하였는데, HIV로 대표되는 lentivirus vector의 경우는 태생적인 생물학적 안전성 문제가 있으며, 조류 retrovirus vector를 사용하는 경우는 전이된 바이러스 벡터와 닭의 세포에 내재되어 있는 내재성 레트로바이러스(endogenous retrovirus)가 서로 상동성 재조합(homologous recombination)됨으로써 복제가 가능한 바이러스가 생산되는 생물학적위험 문제가 나타날 수 있다.Target cells used for the introduction of foreign genes in the production of transgenic poultry include egg x stage blastocyst cells (Rosenblum and Chen, 1995, Transgenic Res. 4: 192-198), primordial germ cells. (Li et al., 1995, Transgenic Res. 4: 26-29), freshly fertilized eggs (Sherman et al., 1998, Nat. Biotech. 16: 1050-1053), embryonic stem cells; Pain et al., 1999, Cells Tissues Organs 165: 212-219) and sperm (Nakanishi and Iritani, 1993, Mol. Reprod. Dev. 36: 258-261), and DNA target cells for the transfer of foreign genes. Biological methods using either physical or chemical methods (Muramatsu et al., 1997, Biochem. Biophys. Res. Commun. 230: 376-380) or directly infecting the virus (Thoraval et al. , 1995, Transgenic Res. 4: 369-377). Therefore, there are many methods for producing transgenic chickens, depending on the target cells and gene transfer methods to transfer foreign genes. Among them, the retroviral vector system is used for X stage blastocyst cells. Is being used. The biggest advantage of this method is that it is technically the easiest because it uses the inherent infectivity of retroviruses in gene transfer. Using this method, Salter et al. (1987, Virology, 157: 236-240) were the first to inject a replication-competent retrovirus vector directly into chicken embryos to confirm the transfer of foreign genes in germ cells. Transgenic chickens were produced, and then Bosselman et al. (1989, Science, 243: 533-535) produced transgenic chickens using a replication-defective retrovirus vector. Recently, McGrew et al. (2004, EMBO reports, 5: 728-733), Lillico et al. (2007, Proc. Natl. Acad. Sci. USA, 104: 1771-1776), Harvey et al. (2002, Nat. Biotech. , 19: 396-399), Mozdziak et al. (2003, Dev. Dyn. 226: 439-445) and Rapp et al. (2003, Transgenic Res. 12: 569-575). However, these studies have the following disadvantages. In other words, these studies used lentivirus vector systems such as EIAV (equine infectious anemia virus) and HIV-1 (human immunodeficiency virus type 1), or ALV (avian leukosis virus), REV (reticuloendotheliosis virus) or SNV (spleen necrosis virus) and The same avian retrovirus system was used. The lentivirus vector represented by HIV has inherent biological safety issues, and the use of the avian retrovirus vector is inherent in transfected viral vectors and chicken cells. Endogenous retroviruses may be subjected to homologous recombination, which may present a biohazard problem in which viruses can be produced.

이러한 문제를 해결하기 위하여 본 발명자들은 등록특허 제696571호에서 쥐 백혈병 바이러스(MLV: murine leukemia virus) 유래의 복제-결핍 레트로 바이러스 발현벡터를 이용한 가금류의 형질 전환 방법에 대해 개시한 바 있다. MLV는 조류 유래의 레트로 바이러스가 아니므로 상기와 같은 생물학적 위험 요인이 적을 뿐 아니라, 고농도의 레트로바이러스 벡터 스톡을 얻는 것이 용이하여 효율적인 유전자 전이가 가능하다. In order to solve this problem, the present inventors have disclosed a method for transforming poultry using a replication-deficient retrovirus expression vector derived from murine leukemia virus (MLV) in Korean Patent No. 696571. Since MLV is not an algae-derived retrovirus, there are few biological risk factors as described above, and it is easy to obtain a high concentration of retroviral vector stock, which enables efficient gene transfer.

아직까지 다른 포유동물에 비해 가금류의 형질전환은 많은 제한을 갖고 있으며, 그로 인하여 가금류의 형질전환에 의한 유효물질의 생산 또한 아직 많은 연구가 이루어지고 있지는 않다.As compared to other mammals, the transformation of poultry has many limitations, and thus, the production of active substances by the transformation of poultry has not been studied yet.

본 발명은 전술한 바와 같은 종래기술의 문제점을 해결하기 위한 것으로, 사람의 hG-CSF 유전자의 전이 및 발현이 용이하고 생물학적 위험성이 낮은 레트로바이러스 벡터를 제공하는 것을 목적으로 한다.The present invention is to solve the problems of the prior art as described above, an object of the present invention is to provide a retroviral vector that is easy to transfer and expression of human hG-CSF gene and low biological risk.

또한 본 발명은 상기 레트로바이러스 벡터를 사용하여 포유류에 비해 번식능력이 높고, 성숙 기간과 세대간격이 짧은 가금류를 형질전환하는 방법 및 그에 의해 형질전환 된 가금류를 제공하고자 하는 것을 또 다른 목적으로 한다.In another aspect, the present invention is to provide a method for transforming poultry having a high reproduction capacity, short maturity and generation intervals compared to mammals using the retroviral vector, and to provide a poultry transformed thereby.

전술한 목적을 달성하기 위한 본 발명은 서열번호 1의 재조합 hG-GSF 유전자 를 내장하는 발현용 레트로바이러스(retrovirus) 벡터인 것을 특징으로 한다.The present invention for achieving the above object is characterized in that the expression retrovirus (retrovirus) vector containing the recombinant hG-GSF gene of SEQ ID NO: 1.

본 발명에 사용된 retrovirus vector system의 장점은 다른 외래유전자 도입방식에 비해 유전적으로 안정성을 나타내며(Temin, Genome 31:17-22, 1989), 외래유전자가 표적세포의 genome에 삽입될 때 반복되지 않는 단일 유전자만이 진정염색질 부위 내로 선택적으로 도입될 수 있고, 다양한 종류의 세포에 다양한 종류의 외래유전자를 높은 효율로 감염시킬 수 있다는 점을 들 수 있다(Rohdewohld 등, J. Virol. 61: 336-343, 1987). The advantages of the retrovirus vector system used in the present invention are genetically stable compared to other foreign gene introduction methods (Temin, Genome 31: 17-22, 1989), and do not repeat when the foreign gene is inserted into the genome of the target cell. Only a single gene can be selectively introduced into the chromosome region, and it is possible to infect various kinds of cells with various kinds of foreign genes with high efficiency (Rohdewohld et al., J. Virol. 61: 336-). 343, 1987).

본 발명에서 발현시키고자 하는 서열번호 1의 hG-CSF 유전자는 레트로바이러스 벡터 내에 도입한 CMV (cytomegalo virus) promoter의 3'에 위치하게 하여 hG-CSF 유전자의 발현이 CMV promoter 통제하에 일어나게 하였으며, 또한 hG-CSF 유전자의 발현을 최대화하기 위해 우드척 간염 바이러스의 포스트-전사 조절 요소(WPRE: woodchuck hepatitis virus post-transcriptional regulatory element) DNA 조각을 hG-CSF cDNA의 3' 위치에 도입하였다(도 1). The hG-CSF gene of SEQ ID NO: 1 to be expressed in the present invention is located at 3 'of the CMV (cytomegalo virus) promoter introduced into the retroviral vector so that the expression of the hG-CSF gene occurs under the control of the CMV promoter. To maximize the expression of the hG-CSF gene, a woodchuck hepatitis virus post-transcriptional regulatory element (WPRE) DNA fragment was introduced at the 3 'position of the hG-CSF cDNA (FIG. 1). .

상기 레트로바이러스 벡터로는 ALV(avian leukosis virus), REV(reticuloendotheliosis virus), SNV(spleen necrosis virus) 또는 쥐 백혈병 바이러스(MLV: murine leukemia virus) 시스템 등을 사용할 수 있으며, 감염된 세포 내에서 자유롭게 복제·재생산되어 다른 세포를 감염시키는 문제를 방지하기 위하여 입자 형성과 복제에 관여하는 gag, pol 및 env 유전자가 제거된 복제-결핍 레트로바이러스 시스템을 사용하는 것이 바람직하다. 또한, 가금류의 형질전환에는 동일 조류 레트로바이러스 시스템을 이용하는 경우 스스로 복제가 되지 않는 복제- 결핍 바이러스 벡터를 사용한다고 할 지라도 전이된 바이러스 벡터와 가금류의 세포에 내재되어 있는 내재성 레트로바이러스(endogenous retrovirus)가 서로 상동성 재조합되어 복제가 가능한 바이러스가 생산되는 생물학적 문제가 나타날 수 있으므로 MVL 유래의 복제-결핍 레트로바이러스인 것이 보다 바람직하다.The retroviral vector may be avian leukosis virus (ALV), reticuloendotheliosis virus (REV), spleen necrosis virus (SNV), or murine leukemia virus (MLV) system, and can be freely replicated in infected cells. It is desirable to use a replication-deficient retroviral system in which the gag, pol and env genes involved in particle formation and replication have been removed to avoid the problem of reproduction and infecting other cells. In addition, poultry transformation involves endogenous retroviruses that are inherent in transfected viral vectors and in poultry cells, even if the same avian retrovirus system uses replication-deficient virus vectors that do not replicate themselves. It is more preferred that the MVL-derived replication-deficient retroviruses be present because biological problems may arise where homologous recombination may produce a virus capable of replication.

본 발명의 실시예에서는 pGEM-Teasy-WPRE로부터 분리한 WPRE를 pUC18-GCSF에 도입하여 pUC18-GCSFW를 cloning하고 Spe I, Mungbean nuclease 및 Hind III enzyme을 차례로 처리하여 hG-CSF cDNA와 WPRE가 연결된 서열번호 2의 DNA 조각을 분리하였다. 상기 과정에서 부위-특이적인 DNA 절단 및 결합은 당해 기술분야에서 일반적으로 알려진 조건 하에 전술한 제한 효소를 처리하여 수행하였다. 분리한 hGCSF-WPRE는 Cla I, Mungbean nuclease 및 Hind III를 차례로 처리한 MLV 유래의 복제-결핍 바이러스 벡터인 pLNCX에 ligation하여 최종적으로 pLNC-GCSFW plasmid를 구축하였다. 플라스미드 pLNC-GCSFW의 개열지도는 도 2에 도시된 바와 같다. 이러한 본 발명에 의한 발현용 바이러스 벡터인 LNC-GCSFW를 2007년 9월 13일자로 국제기탁기관인 대전시 유성구 어은동 52번지 소재의 KCTC (Korean Collection for Type Cultures, KCTC)에 수탁번호 KCTC 11200BP로 기탁하였다. In an embodiment of the present invention, a WPRE isolated from pGEM-Teasy-WPRE is introduced into pUC18-GCSF to clone pUC18-GCSFW and to process Spe I, Mungbean nuclease, and Hind III enzyme in sequence to connect hG-CSF cDNA and WPRE. DNA fragment of number 2 was isolated. Site-specific DNA cleavage and binding in this process was performed by treatment of the restriction enzymes described above under conditions generally known in the art. The isolated hGCSF-WPRE Is a MLV-derived replication-deficient virus vector sequentially processed by Cla I, Mungbean nuclease, and Hind III By ligation to pLNCX, pLNC-GCSFW plasmid was finally constructed. The cleavage map of the plasmid pLNC-GCSFW is as shown in FIG. 2. LNC-GCSFW which is a viral vector for expression according to the present invention On September 13, 2007, it was deposited with KCTC (Korean Collection for Type Cultures, KCTC), 52, Eeun-dong, Yuseong-gu, Daejeon, Korea.

본 발명의 다른 일양태는 상기 레트로바이러스 벡터 LNC-GCSFW에 의해 형질전환된 동물세포에 관한 것이다. 상기 동물세포는 가금류의 동물세포 뿐 아니라, 소, 돼지 또는 쥐와 같은 포유류의 동물세포 또한 포함한다. 보다 구체적으로는 실시예에 기재되어 있는 것과 같은 소의 태아섬유아세포, 닭의 배아섬유아세포, 사 람의 세포인 HeLa 세포 또는 쥐의 세포인 NIH3T3 세포인 것이 바람직하다. Another aspect of the invention relates to an animal cell transformed with said retroviral vector LNC-GCSFW. The animal cells include not only animal cells of poultry, but also animal cells of mammals such as cattle, pigs or mice. More specifically, it is preferable that they are fetal fibroblasts, chicken embryo fibroblasts, HeLa cells as human cells, or NIH3T3 cells as mouse cells as described in the Examples.

본 발명의 벡터에 의한 동물세포의 형질전환은 MLV-유래의 복제-결핍 레트로바이러스 벡터 LNC-GCSFW를 패키징 세포로 전이 및 발현시켜 수득한 레트로바이러스를 사용하여 수행된다. 보다 구체적으로, 레트로바이러스 벡터인 LNC-GCSFW를 제조하여 PT67 패키징 세포(ClonTech, USA)에 전이 및 발현시키고 G418을 처리하여 형질전환된 세포를 선별한다. 선별된 세포로부터 바이러스 스톡을 회수하여 다시 GP2-293 세포(ClonTech, USA)에 감염시킨다. 상기 감염된 GP2-293 세포에 pVSV-G (ClonTech, USA)를 전이 및 발현시키고 새로운 배지로 갈아준 후 배양하여 얻은 배양액 또는 이를 원심분리하고 여과하여 농축한 고농도의 바이러스 스톡을 사용하여 동물세포를 감염시킨다. 감염된 세포를 G418로 처리하여 형질전환된 세포를 얻는다. Transformation of animal cells with the vectors of the invention is carried out using retroviruses obtained by transferring and expressing MLV-derived replication-deficient retroviral vector LNC-GCSFW to packaging cells. More specifically, LNC-GCSFW, a retroviral vector, is prepared to metastasize and express to PT67 packaging cells (ClonTech, USA) and treated with G418 to select transformed cells. Virus stocks are recovered from selected cells and infected again with GP2-293 cells (ClonTech, USA). Transfecting and expressing pVSV-G (ClonTech, USA) on the infected GP2-293 cells, and then transformed into a fresh medium, the animal cells were infected by using a culture medium obtained by culturing or centrifugation and filtration and concentrated virus stock. Let's do it. Infected cells are treated with G418 to obtain transformed cells.

상기 형질전환된 동물세포의 배양액 중 hG-CSF의 농도를 ELISA 방법으로 측정한 결과 모든 동물세포의 배양액에서 hG-CSF가 발현된 것을 알 수 있었다. 특히, 형질전환된 닭세포의 배양액에서는 약 3mg/ml의 농도로 hG-CSF가 존재하여 본 발명에 의해 형질전환된 동물세포가 hG-CSF를 경제적으로 대량생산하는 생체반응기로 사용될 수 있음을 확인할 수 있었다.As a result of measuring the concentration of hG-CSF in the culture medium of the transformed animal cells by ELISA method, it was found that hG-CSF was expressed in the culture medium of all animal cells. In particular, in the culture of transformed chicken cells, the presence of hG-CSF at a concentration of about 3mg / ml confirmed that the animal cells transformed by the present invention can be used as a bioreactor for economic mass production of hG-CSF Could.

본 발명의 또 다른 일양태는 상기 레트로바이러스 벡터 LNC-GCSFW에 의해 형질전환되어 hG-CSF 유전자를 발현할 수 있는 것을 특징으로 하는 형질전환 가금에 관한 것이다. Another aspect of the present invention relates to a transgenic poultry characterized in that the retroviral vector LNC-GCSFW can be transformed to express the hG-CSF gene.

본 발명에서 "가금(poultry)"이란 조류 중에서 가축을 말하며, 닭, 오리, 칠면조, 기러기, 메추라기 및 비둘기를 포함한다. As used herein, "poultry" refers to livestock among birds and includes chickens, ducks, turkeys, geese, quails and pigeons.

계란에 virus를 주입하고 부화시키는 방법으로는 ex-ovo culture 방법(Petitte and Mozdziak, 2002, Transgenic Animal Technology, second ed., Academic Press, San Diego, 2002, pp. 279-306)을 사용하였다. 닭의 배는 단계 Ⅰ에서 단계 ⅩⅣ까지를 포함하는데, 난할(clevage) 단계(단계Ⅰ에서 단계Ⅵ), 투명대 형성(formation of the a. pellucida) 단계(단계 Ⅶ에서 단계 Ⅹ) 및 형태 발생(morphogenetic development) 단계(단계 XI에서 단계ⅩⅣ)로 이루어져 있다. 본 발명에서 "배"는 발생 초기 단계로 난생 또는 난태생을 하는 동물에서는 2세포기부터 개체발생을 마치고 부화(수정막·난막을 가수분해하거나 파괴하고 밖으로 나오는 것)하여 유생(幼生)으로 되기 전까지의 개체를 말하며 형질전환 가금 제작을 위한 바이러스 감염이 이루어지는 시기이다. 본 발명에서 바이러스 입자로 감염시키는 단계는 바람직하게는 난할의 마지막 단계인 Ⅹ기이다. Ⅹ기는 갓 낳은 난 상태로 내배엽 형성의 처음 징후들이 나타나고 배반엽의 후부(posterior region)에서 그물 같은 층을 형성하는 작은 세포들의 무리(cluster)들이 관찰된다. The ex-ovo culture method (Petitte and Mozdziak, 2002, Transgenic Animal Technology, second ed., Academic Press, San Diego, 2002, pp. 279-306) was used as a method of injecting and hatching viruses into eggs. Chicken embryos include stage I through stage IV, including the clevage stage (from stage I to VI), the formation of the a.pellucida stage (from stage VII) and morphogenetic development) step (from step XI to step XIV). In the present invention, the "embryo" is an early stage of development, in an embryonic or egg-bearing animal, until the end of individual development from the two-cell stage and hatching (hydrolyzing or destroying the fertilized membrane and egg film) to become larvae. It is the time when viral infection occurs for production of transgenic poultry. The step of infecting with viral particles in the present invention is preferably wheezing, which is the last step of the eggplant. The streak is freshly laid and the first signs of endoderm formation appear and clusters of small cells forming a net-like layer in the posterior region of the blastocyst.

총 140개의 계란에 동물세포의 형질전환에 사용한 것과 동일한 재조합 LNC-GCSFW 바이러스를 주입하여 17마리의 Go 형질전환 병아리를 부화시켰으며, 모든 부화된 병아리의 혈액에서 hG-CSF가 발현됨을 확인하였다. 그 중 13마리의 병아리를 대상으로 혈액 중 hG-CSF의 농도를 ELISA 방법으로 확인하였다.A total of 140 eggs were injected with the same recombinant LNC-GCSFW virus as used for the transformation of animal cells to hatch 17 Go transgenic chicks and confirmed that hG-CSF was expressed in the blood of all hatched chicks. Among them, the concentration of hG-CSF in the blood of 13 chicks was confirmed by ELISA method.

형질전환 닭으로부터 생산된 hG-CSF의 생물학적 활성도는 대장균에서 생산한 것에 비해 생물학적 활성도가 현저히 높아, 본 발명에 의한 형질전환된 가금으로부터 hG-CSF를 생산하는 방법이 종래 형질전환 대장균으로부터 생산한 것에 비해 효과가 우수함을 증명할 수 있었다. The biological activity of hG-CSF produced from transgenic chickens is significantly higher than that produced in Escherichia coli, so that the method of producing hG-CSF from the transformed poultry according to the present invention was produced from conventionally transformed E. coli. It was proved that the effect is excellent.

또한 본 발명에 의해 형질전환된 닭 (Go)에 도입된 hG-CSF 유전자는 다음 세대인 G1 세대의 닭에도 생식선을 통해 유전되어, 본 발명에 의해 단순한 형질전환 가금이 아니라 새로운 hG-CSF 형질전환 가금의 품종을 확립할 수 있음을 확인하였다.Also hG-CSF gene was introduced in the transition chicken (Go) transformed by the present invention are oil through the gonads in the next-generation G chicken of the first generation, the new hG-CSF transformed not just a transgenic fowl by this invention It was confirmed that breeding of convert poultry could be established.

본 발명의 실시예에서는 기재하지 않았으나, 본 발명에 의해 형질전환된 가금류가 생산한 알(卵) 역시 hG-CSF를 함유하고 있을 것으로 기대할 수 있다. 따라서 본 발명에 의해 형질전환된 가금류의 알은 포유동물과는 달리 특유한 hG-CSF의 공급원으로서 보다 편리하게 이용할 수 있을 것이다.Although not described in the examples of the present invention, it can be expected that the eggs produced by the poultry transformed by the present invention also contain hG-CSF. Therefore, eggs of poultry transformed by the present invention will be more conveniently used as a source of unique hG-CSF, unlike mammals.

이상과 같이 본 발명의 레트로바이러스 벡터에 의하면 사람의 hG-CSF 유전자를 효율적으로 전이시켜 여러 동물의 세포와 가금류를 hG-CSF 유전자를 발현할 수 있도록 효율적으로 형질전환 할 수 있다. 또한 형질전환 된 동물 세포나 가금을 생체 반응기로 사용하여 hG-CSF를 경제적으로 대량으로 생산할 수 있다.As described above, according to the retroviral vector of the present invention, the human hG-CSF gene can be efficiently transferred, and cells and poultry of various animals can be efficiently transformed to express the hG-CSF gene. In addition, transformed animal cells or poultry can be used as bioreactors to economically mass produce hG-CSF.

이하 실시예를 통하여 본 발명을 상세하게 설명한다. 그러나, 이들 실시예는 예시적인 목적일 뿐 본 발명이 이에 한정되는 것은 아니다.The present invention will be described in detail through the following examples. However, these examples are for illustrative purposes only and the present invention is not limited thereto.

실시예 1 : CMV 프로모터 통제 하에 hG-CSF 단백질을 발현하는 레트로바이러스벡터의 제작 (Example 1: Construction of a retroviral vector expressing hG-CSF protein under CMV promoter control ( PlasmidPlasmid pLNCpLNC -- GCSFWGCSFW 의 구축)Build)

등록특허 제696571호에 기재된 방법에 따라 본 발명자가 plasmid pGEM-Teasy (미국의 Promega사에서 구입)에 WPRE sequence (Donello et al., 1998, J Virol. 72: 5085-5092)를 삽입하여 구축한 Plasmid pGEM-Teasy-WPRE를 EcoRI enzyme으로 처리하여 분리한 WPRE sequence를 동일한 EcoR I enzyme으로 처리한 pUC18-GCSF (전북대 cytokine bank에서 구입)에 도입하여 pUC18-GCSFW를 구축하고 cloning하였다. Cloning한 pUC18-GCSFW에 Spe I, Mungbean nuclease, 그리고 Hind III enzyme을 차례로 처리하여 hG-CSF cDNA와 WPRE sequence가 연결된 DNA 조각을 분리하고, 분리한 서열번호 2의 hGCSF-WPRE 조각을 Cla I, Mungbean nuclease, 그리고 Hind III로 처리한 pLNCX(Miller and Rosman, 1989, Biotechniques 7: 980-990)에 ligation하여 최종적으로 pLNC-GCSFW plasmid (7914 bp)를 구축하였다(도 1). 플라스미드 pLNC-GCSFW의 개열지도는 도 2에 도시된 바와 같다.According to the method described in Korean Patent No. 696571, the inventors constructed a WPRE sequence (Donello et al., 1998, J Virol. 72: 5085-5092) into the plasmid pGEM-Teasy (purchased from Promega, USA). Plasmid pGEM-Teasy-WPRE was treated with EcoRI enzyme, and the WPRE sequence was isolated and introduced into pUC18-GCSF (purchased from Chonbuk National University cytokine bank) treated with the same EcoR I enzyme to construct and cloning pUC18-GCSFW. The cloned pUC18-GCSFW was treated with Spe I, Mungbean nuclease, and Hind III enzyme in order to isolate DNA fragments linked with hG-CSF cDNA and WPRE sequence. pLNC-GCSFW plasmid (7914 bp) was finally constructed by ligation to pLNCX (Miller and Rosman, 1989, Biotechniques 7: 980-990) treated with nuclease and Hind III (FIG. 1). The cleavage map of the plasmid pLNC-GCSFW is as shown in FIG. 2.

상기 발현벡터인 pLNC-GCSFW는 2007년 9월 13일자로 국제기탁기관인 KCTC(Korean Collection for Type Cultures, KCTC)에 기탁수탁번호 KCTC 11200BP를 부여받았다. The expression vector, pLNC-GCSFW, was assigned a deposit accession number KCTC 11200BP to KCTC (Korean Collection for Type Cultures, KCTC), an international depository institution, on September 13, 2007.

실시예 2 : LNC-GCSFW 레트로바이러스에 의해 유전자가 전이된 여러 동물세포에서의 hG-CSF의 발현 Example 2 Expression of hG-CSF in Various Animal Cells Transfected by LNC-GCSFW Retrovirus

레트로바이러스 벡터인 pLNC-GCSFW를 PT67 패키징 세포(Clontech, USA)에 전이 및 발현하여 G418 (800 ㎍/㎖)이 첨가된 선별용액으로 2주간 배양하였다. G418이 함유된 선별용액에서 살아남은 PT67 세포로부터 수확한 바이러스 스톡을 GP2-293(Clontech, USA) 세포에 감염시켜 G418 (800 ㎍/㎖)이 첨가된 선별용액으로 2주간 선별하였다. 선별된 G418-저항성 GP2-293-LNC-GCSFW 세포에 인산칼슘 방법으로 20 ㎍의 pVSV-G (Clontech, USA)로 전이 및 발현하여 37℃, 5% CO2조건에서 8시간 배양 후 새 배양액으로 갈아주었다. 48시간이 경과한 후 레트로바이러스를 포함한 배양액을 수확하였다. The retroviral vector pLNC-GCSFW was transferred to PT67 packaging cells (Clontech, USA) and expressed and cultured for two weeks in a selection solution to which G418 (800 μg / ml) was added. Virus stocks harvested from PT67 cells surviving G418 containing screening solutions were infected with GP2-293 (Clontech, USA) cells and screened for 2 weeks with screening solutions added with G418 (800 μg / ml). Of 20 ㎍ the calcium phosphate method for the screening G418- resistant GP2-293-LNC-GCSFW cell pVSV-G (Clontech, USA) and expressed as a transition to 8 hours after incubation at 37 ℃, 5% CO 2 condition as a new culture medium Changed After 48 hours, the culture solution containing the retrovirus was harvested.

수확한 배양액을 0.45 ㎛ 기공-크기의 셀룰로즈 아세테이트 필터를 이용하여 여과한 후, 바이러스가 함유된 배양액으로 소의 태아섬유아세포(Bovine Fetal Fibroblast), 닭의 배아섬유아세포 (Chicken Fetal Fibroblast), 사람의 세포인 HeLa 세포, 쥐의 세포인 NIH3T3 세포, 그리고 돼지의 태아섬유아세포(Porcine Fetal Fibroblast)를 감염시켰다. The harvested culture was filtered using a 0.45 μm pore-sized cellulose acetate filter, followed by bovine fetal fibroblasts, chicken fetal fibroblasts, and human cells. HeLa cells, rat NIH3T3 cells, and porcine fetal fibroblasts were infected.

감염된 세포를 G418 (800 ㎍/㎖)이 첨가된 선별용액으로 2주간 선별한 다음 선별된 G418-저항성세포의 배양액을 취하여 배양액 중의 hG-CSF 농도를 ELISA (enzyme-linked immunosorbent assay) 방법으로 다음과 같이 측정하였다. Standard 에 해당하는 재조합 hG-CSF (Komabiotech, Korea), 대조구와 실험구의 세포 배양액을 전날 anti-human G-CSF monoclonal antibody (BD Biosciences, USA)로 coating시켜둔 96 well plate에 100 ㎕씩 첨가하여 4℃에서 16시간 반응시킨 후 수세한 다음, biotinylate rat anti-human G-CSF monoclonal antibody (BD Biosciences, USA)를 처리하였다. 다시 수세한 후 각 well에 streptavidin-HRP conjugate (BD Biosciences, USA) 용액을 첨가하여 반응시킨 후, 수세 과정을 재실시하고 기질인 TMB (tetramethylbenzidine, Komabiotech, Korea)를 첨가하여 암조건에서 20분간 반응시켰다. 반응 후, microplate reader를 사용하여 450 nm의 파장에서 흡광도를 측정한 다음 standard hG-CSF의 흡광도와 비교하여 최종 농도를 결정하였다. 도 3에서 확인할 수 잇듯이, 여러 동물 세포 중 닭의 세포에서 hC-GSF가 가장 많이 생산됨을 확인할 수 있었다. 도 3의 X 축에서 세포명 다음의 "LNC-GCSFW"는 해당 세포에 LNC-GCSFW 바이러스가 전이 된 것을 의미한다. Infected cells were screened for 2 weeks with G418 (800 μg / ml) -added selection solution, and then cultured cultures of selected G418-resistant cells were obtained. Measured together. 100 μl of the recombinant hG-CSF (Komabiotech, Korea), the control and experimental cells of the standard and the experimental group were added to 100 wells of 96 well plates coated with anti-human G-CSF monoclonal antibody (BD Biosciences, USA) the day before. After 16 hours of reaction at C, the cells were washed with water, and then treated with biotinylate rat anti-human G-CSF monoclonal antibody (BD Biosciences, USA). After washing again, streptavidin-HRP conjugate (BD Biosciences, USA) solution was added to each well and reacted. After washing again, TMB (tetramethylbenzidine, Komabiotech, Korea) was added and the substrate was reacted for 20 minutes under dark conditions. I was. After the reaction, the absorbance was measured at a wavelength of 450 nm using a microplate reader, and then the final concentration was determined by comparing the absorbance of standard hG-CSF. As can be seen in Figure 3, it was confirmed that the most produced hC-GSF in the cells of the chicken of the various animal cells. "LNC-GCSFW" following the cell name in the X axis of Figure 3 means that the LNC-GCSFW virus has been transferred to the cell.

실시예 3 : 레트로바이러스 벡터인 LNC-GCSFW에 의해 hG-CSF 유전자를 발현하는 형질전환된 닭의 생산Example 3 Production of Transgenic Chickens Expressing the hG-CSF Gene by the Retroviral Vector LNC-GCSFW

먼저, 계란에 주입할 고농도로 농축된 바이러스 스톡을 다음과 같은 방법으로 준비하였다. 실시예 2에서 제조된 레트로바이러스 벡터의 유전자가 도입된 G418-저항성 GP2-293-LNC-GCSFW 세포의 배양액 100 ml의 바이러스 스톡을 4℃에서 16,700 rpm으로 90분간 vertical rotor (Beckman 70Ti)를 이용하여 원심분리를 한 다음, 상등액을 완전히 제거한 후 침전물에 100 ml의 0.1 X HBSS(Hank's Balanced Salt Solution)이나 DMEM (Dulbecco's Modified Eagle's Medium)을 첨가하여 4℃에서 16시간 방치한 후 재부유하였다. 그 결과 약 1,000배로 농축된 바이러스 스톡은 0.45 ㎛ 기공-크기의 셀룰로즈 아세테이트 필터를 이용하여 여과한 후 -70℃에 보관한 후 사용하였다. First, a highly concentrated virus stock to be injected into eggs was prepared in the following manner. A virus stock of 100 ml of the culture medium of the G418-resistant GP2-293-LNC-GCSFW cells into which the gene of the retroviral vector prepared in Example 2 was introduced was subjected to 90 minutes at 16,700 rpm at 4 ° C. using a vertical rotor (Beckman 70Ti). After centrifugation, the supernatant was completely removed, and 100 ml of 0.1 X Han's Balanced Salt Solution (HBSS) or DMEM (Dulbecco's Modified Eagle's Medium) was added to the precipitate, which was left for 16 hours at 4 ° C and resuspended. As a result, the virus stock concentrated at about 1,000-fold was filtered using a 0.45 μm pore-size cellulose acetate filter and stored at −70 ° C. before use.

계란에 virus를 주입하고 부화시키는 방법으로는 ex-ovo culture 방법(Petitte and Mozdziak, 2002, Transgenic Animal Technology, second ed., Academic Press, San Diego, 2002, pp. 279-306)을 사용하였다. 즉, Ⅹ기의 난의 내용물을 peptri dish에 옮긴 후 배자에 polybrene (10 ㎍/ml) 이 첨가된 농축된 virus 용액 5 ㎕ 정도 주입한다. Virus가 주입 된 계란의 내용물은 다시 지름이 약 33 mm인 구멍이 뚫린 빈 난각에 모두 옮긴 후 파라필름(parafilm)으로 구멍을 밀봉한 다음 37.7℃의 온도와 상대습도 60% 조건의 부화기에 입란하여 3일간 전란시키면서 발생시킨다. 발생 4일째에는 다시 계란의 내용물을 다른 빈 난각에 옮긴 다음 부화 때까지 37.7℃의 온도와 상대습도 70% 조건하에서 발생시킨다. 전란은 발생 19일째부터는 하지 않으며, 발생 20일 째부터는 병아리가 난각에서 쉽게 나올 수 있게끔 하기 위해 난각을 밀봉하고 있는 parafilm을 petridish의 뚜껑으로 대체하였다. The ex-ovo culture method (Petitte and Mozdziak, 2002, Transgenic Animal Technology, second ed., Academic Press, San Diego, 2002, pp. 279-306) was used as a method of injecting and hatching viruses into eggs. In other words, transfer the contents of the eggs to a peptri dish and inject 5 µl of concentrated virus solution containing polybrene (10 ㎍ / ml) into the embryo. The contents of the virus-injected eggs are again transferred to an empty eggshell with a diameter of about 33 mm, sealed with a parafilm, and placed in an incubator at a temperature of 37.7 ℃ and a relative humidity of 60%. Occurs during eggplant for 3 days. On the fourth day of development, the contents of the eggs are transferred to another empty egg shell and then under the condition of 37.7 ° C. and 70% relative humidity until hatching. The egg was not fertilized from the 19th day of development, and from the 20th day of development, the parafilm sealing the eggshell was replaced with a petridish cap to make it easier for the chicks to escape from the eggshell.

그 결과, 총 140개의 계란에 재조합 LNC-GCSFW virus를 주입하여 17마리의 Go 형질전환 병아리를 부화시켰으며, 모든 부화된 병아리의 혈액에서 hG-CSF가 발현됨을 확인하였고, 그 중 13마리의 병아리를 대상으로 혈액 중 hG-CSF의 농도를 ELISA 방법으로 확인하였다 (도 4). 도 4의 X축 아래에 ELISA를 행한 Go 닭의 고 유번호와 성(sex)을 나타내었다.As a result, a total of 140 eggs were injected with recombinant LNC-GCSFW virus to incubate 17 Go transgenic chicks, and it was confirmed that hG-CSF was expressed in the blood of all hatched chicks, 13 of which were chicks. The concentration of hG-CSF in blood was confirmed by ELISA method (Fig. 4). The unique number and sex of Go chickens subjected to ELISA under the X axis of FIG. 4 are shown.

실시예 4 : 닭으로부터 생산된 hG-CSF의 생물학적 활성도 비교Example 4 Comparison of Biological Activity of hG-CSF Produced from Chickens

형질전환 닭으로부터 생산된 hG-CSF의 생물학적 활성도는 MNFS-60 세포의 증식 정도를 측정하여 비교하였다. The biological activity of hG-CSF produced from transgenic chickens was compared by measuring the extent of proliferation of MNFS-60 cells.

먼저 2.5 × 104개의 MNFS-60 세포를 96 well plate의 각 well에 Fetal Calf Serum이 5% 첨가된 50 ㎕의 RPMI 1640과 50 ㎕의 닭 혈청 시료 (혹은 대장균에서 생산한 여러 농도의 hG-CSF(독일의 Strathmann Biotech 회사에서 구입)가 혼합된 배양액에 18시간 동안 배양하였다. 그 후 각 well에 tritiated thymiodine (0.5 μCi/well)을 첨가한 후 4시간 동안 배양한 다음 수거한 세포를 scitillation counter로 방사선 양을 측정하였다. 그 결과 형질전환 닭에서 생산된 hG-CSF("-○―○―○―"로 표시)가 대장균에서 생산한 hG-CSF("―●―●―●―"로 표시)에 비해 생물학적 활성도가 현저히 높음을 확인하였다(도 5). First, 2.5 × 10 4 MNFS-60 cells were added to each well of a 96 well plate with 50 μl RPMI 1640 and 50 μl chicken serum samples (or Escherichia coli-produced concentrations of hG-CSF added 5% Fetal Calf Serum). Incubated for 18 hours in a mixed medium (purchased by Strathmann Biotech, Germany), and then tritiated thymiodine (0.5 μCi / well) was added to each well and incubated for 4 hours, and then the collected cells were transferred to a scitillation counter. The amount of radiation was measured, and as a result, hG-CSF (indicated by "-○-○-○-") produced in transgenic chickens was expressed as hG-CSF ("-● ― ● ― ● ―") produced by E. coli. It was confirmed that the biological activity is significantly higher than) (Fig. 5).

실시예Example 5 :  5: hGhG -- CSFCSF 유전자의 생식선 전이 Germline transmission of genes

hG-CSF 유전자가 발현하는 17마리의 Go 닭 중 9마리가 수컷이었다. 이들 9 마리의 수컷의 정액 내에 hG-CSF 유전자가 염색체에 삽입된 정자가 존재하는지의 여부를 PCR을 통해 조사하였다. Nine of the 17 Go chickens expressing the hG-CSF gene were male. The sperm inserted into the chromosome of the hG-CSF gene in these semen of 9 males was examined by PCR.

hG-CSF 유전자에 특이적인 primer 쌍으로 서열번호 3의 5'- AGAAGCTGTGTGCCACCTACAAGC-3' 와 서열번호 4의 5'-GTACGACACCTCCAGGAAGCTCTG-3'을 사용하였다. 총 PCR 반응 cycle 수는 35이며 각 cycle 당 혼합액(reaction mixture)을 94℃에서 30초, 54℃에서 30초, 그리고 72℃에서 30초로 반응시켰다. PCR 반응을 위한 혼합액(50 ㎕)은 genomic DNA 1 ㎍, 10 pmol의 각 primer, 5㎕의 10X PCR buffer (미국의 Promega에서 구입),1.5 mM MgCl2,각 0.2 mM의 dNTP, 그리고 2.5U의 Taq polymerase(Promega에서 구입)를 혼합하여 준비하였다. 총 9마리의 수컷 정액 sample 중에서 6 마리의 sample에서 예정된 398 bp의 증폭된 DNA band를 확인할 수 있었다 (도 6). 도 6에서 "M"은 molecular size marker, "P"와 "N"은 각각 plasmid pLNC-GCSFW와 비형질전환 닭의 정액을 PCR한 것을 나타낸다. 각 Lane 위의 숫자는 각 수탉의 고유번호를 의미한다.As primer pairs specific for the hG-CSF gene, 5'- AGAAGCTGTGTGCCACCTACAAGC-3 'of SEQ ID NO: 3 and 5'-GTACGACACCTCCAGGAAGCTCTG-3' of SEQ ID NO: 4 were used. The total number of PCR reaction cycles was 35, and the reaction mixture was reacted for 30 seconds at 94 ° C, 30 seconds at 54 ° C, and 30 seconds at 72 ° C for each cycle. The mixture for the PCR reaction (50 μl) contains 1 μg genomic DNA, 10 pmol of each primer, 5 μl of 10X PCR buffer (purchased from Promega, USA), 1.5 mM MgCl 2 , 0.2 mM dNTP each, and 2.5 U. Taq polymerase (purchased from Promega) was prepared by mixing. A total of 398 bp amplified DNA bands were confirmed in 6 samples among 9 male semen samples (FIG. 6). In FIG. 6, "M" indicates molecular size markers, "P" and "N" indicate PCR of plasmid pLNC-GCSFW and semen from non-transgenic chicken, respectively. The numbers above each lane represent the unique numbers of each rooster.

대조군으로 GAPDH (glyceraldehydes phosphate dehydrogenase) 유전자에 대한 primer 쌍 (5'-TGATGCCCCCATGTTTGTGA-3' (서열번호 5) 과 5'-CAAGAAGGGAACACGCAGGG-3' (서열번호 6)을 사용하였는데 모든 정액 sample 에서 예정된 691 bp의 band가 나타났다. As a control, primer pairs (5'-TGATGCCCCCATGTTTGTGA-3 ') (SEQ ID NO: 5) and 5'-CAAGAAGGGAACACGCAGGG-3' (SEQ ID NO: 6) for the glyceraldehydes phosphate dehydrogenase (GAPDH) gene were used. band appeared.

이상의 결과로 9 마리의 수컷 Go 형질전환 닭 중에서 6 마리의 생식선에 hG-CSF 유전자가 전이되었음을 확인할 수 있었다. As a result, it was confirmed that the hG-CSF gene was transferred to 6 gonads among 9 male Go trans chickens.

실시예Example 6 :  6: LNCLNC -- GCSFWGCSFW 레트로바이러스 벡터에 의해 전이된  Transferred by retroviral vectors hGhG -- CSFCSF 유전자의 다음 세대로의 유전  Heredity to the next generation of genes

LNC-GCSFW 레트로바이러스 벡터에 의해 Go 형질전환 닭에 의해 전이된 hG-CSF 유전자가 다음 세대인 G1 세대의 닭에도 유전되는지의 여부를 Southern blot을 통해 조사하였다. Southern blot의 probe는 hG-CSF 유전자에 특이적인 primer 쌍(5'-CATGAAGCTGATGGCCCTGC-3' (서열번호 7) 와 5'-GCTCTGCAGATGGGAGGCAA-3' (서열번호 8) 을 이용하여 PCR로 생산한 541 bp DNA fragment를 이용하였다. Southern blot was used to determine whether the hG-CSF gene transferred by Go transgenic chickens by the LNC-GCSFW retroviral vector is also inherited by chickens of the next generation, G1. The Southern blot probe is a 541 bp DNA produced by PCR using primer pairs specific for the hG-CSF gene (5'-CATGAAGCTGATGGCCCTGC-3 '(SEQ ID NO: 7) and 5'-GCTCTGCAGATGGGAGGCAA-3' (SEQ ID NO: 8)). fragment was used.

도 6의 003 수탉과 비형질전환 암탉과의 교미에서 생산된 3마리의 G1 닭의 혈액에서 채취한 DNA를 Hind III 제한효소로 처리한 다음 Southern blot을 한 결과 hG-CSF 유전자가 1마리에서는 각 세포당 2 copy 나머지 2마리에서는 각 세포당 1 copy가 존재함을 확인하였다 (도 7). 도 7에서 M은 molecular size marker, P는 palsmid pLNC-GCSFW를 Hind III로 처리한 후 Southern blot한 것이고, N은 형질전환 닭이 아닌 정상 닭의 혈액 DNA를 Hind III로 처리한 후 Southern blot한 것이다. 각 Lane 위의 1~3은 각 G1 닭의 혈액 DNA를 Hind III로 처리한 후 Southern blot한 것이다.DNA from the blood of three G 1 chickens produced in the mating of 003 roosters and non-transgenic hens of FIG. 6 was treated with Hind III restriction enzyme followed by Southern blot, and in one hG-CSF gene, Two copies of each cell were confirmed to exist 1 copy of each cell in the remaining two (Fig. 7). In FIG. 7, M is a molecular size marker, P is Southern blot after treatment with palsmid pLNC-GCSFW with Hind III, and N is Southern blot after treatment with blood DNA of a normal chicken, not a transgenic chicken, with Hind III. . 1 to 3 above each lane are Southern blot after Hind III treatment of blood DNA of each G 1 chicken.

도 1은 pLNC-GCSFW의 제작 과정을 보여주는 개략 흐름도이다. 1 is a schematic flowchart showing a manufacturing process of pLNC-GCSFW.

도 2는 플라스미드 pLNC-GCSFW의 개열지도이다.2 is a cleavage map of the plasmid pLNC-GCSFW.

도 3은 레트로바이러스 벡터인 LNC-GCSFW에 의해 유전자가 전이된 소(BFF), 닭(CEF), 사람(HeLa), 쥐(NIH3T3) 및 돼지(PFF)의 세포에서 hG-CSF 유전자의 발현을 보여주는 그래프.Figure 3 shows the expression of the hG-CSF gene in the cells of bovine (BFF), chicken (CEF), human (HeLa), rat (NIH3T3) and pig (PFF), which gene has been transferred by the retroviral vector LNC-GCSFW. Showing graph.

도 4는 레트로바이러스 벡터인 LNC-GCSFW에 의해 형질전환된 닭의 혈액에서의 hG-CSF의 농도를 보여주는 그래프.4 is a graph showing the concentration of hG-CSF in the blood of chickens transformed with the retroviral vector LNC-GCSFW.

도 5는 형질전환 닭(―○―○―○―)과 대장균(E.coli)(―●―●―●―)에서 생산된 hG-CSF의 생물학적 활성도를 비교하여 보여주는 그래프.5 is a graph showing a comparison of the biological activity of hG-CSF produced in transgenic chickens (-○-○-○-) and E. coli ( E. coli ) (-●-●-●-).

도 6은 형질전환된 Go 수탉의 정액내에 hG-CSF 유전자가 존재함을 보여주는 PCR 결과 사진.6 is a PCR result picture showing the presence of hG-CSF gene in the semen of the transformed Go rooster.

도 7은 형질전환 닭에 전이된 hG-CSF 유전자가 G1 세대로 유전됨을 보여주는 서던 블럿 결과 사진. 7 is a Southern blot result photograph showing that the hG-CSF gene transferred to transgenic chickens is inherited by G1 generation.

<110> SUN MOK INSTITUTE EDUCATION FOUNDATION <120> Retrovirus expression vector containing hG-CSF (human granulocyte-colony stimulating factor) gene and Transgenic poultry thereby <160> 8 <170> KopatentIn 1.71 <210> 1 <211> 615 <212> DNA <213> hG-CSF <400> 1 atggctggac ctgccaccca gagccccatg aagctgatgg ccctgcagct gctgctgtgg 60 cacagtgcac tctggacagt gcaggaagcc acccccctgg gccctgccag ctccctgccc 120 cagagcttcc tgctcaagtg cttagagcaa gtgaggaaga tccagggcga tggcgcagcg 180 ctccaggaga agctgtgtgc cacctacaag ctgtgccacc ccgaggagct ggtgctgctc 240 ggacactctc tgggcatccc ctgggctccc ctgagcagct gccccagcca ggccctgcag 300 ctggcaggct gcttgagcca actccatagc ggccttttcc tctaccaggg gctcctgcag 360 gccctggaag ggatctcccc cgagttgggt cccaccttgg acacactgca gctggacgtc 420 gccgactttg ccaccaccat ctggcagcag atggaagaac tgggaatggc ccctgccctg 480 cagcccaccc agggtgccat gccggccttc gcctctgctt tccagcgccg ggcaggaggg 540 gtcctggttg cctcccatct gcagagcttc ctggaggtgt cgtaccgcgt tctacgccac 600 cttgcccagc cctga 615 <210> 2 <211> 1247 <212> DNA <213> Artificial Sequence <220> <223> hGCSF-WPRE <400> 2 atggctggac ctgccaccca gagccccatg aagctgatgg ccctgcagct gctgctgtgg 60 cacagtgcac tctggacagt gcaggaagcc acccccctgg gccctgccag ctccctgccc 120 cagagcttcc tgctcaagtg cttagagcaa gtgaggaaga tccagggcga tggcgcagcg 180 ctccaggaga agctgtgtgc cacctacaag ctgtgccacc ccgaggagct ggtgctgctc 240 ggacactctc tgggcatccc ctgggctccc ctgagcagct gccccagcca ggccctgcag 300 ctggcaggct gcttgagcca actccatagc ggccttttcc tctaccaggg gctcctgcag 360 gccctggaag ggatctcccc cgagttgggt cccaccttgg acacactgca gctggacgtc 420 gccgactttg ccaccaccat ctggcagcag atggaagaac tgggaatggc ccctgccctg 480 cagcccaccc agggtgccat gccggccttc gcctctgctt tccagcgccg ggcaggaggg 540 gtcctggttg cctcccatct gcagagcttc ctggaggtgt cgtaccgcgt tctacgccac 600 cttgcccagc cctgagccaa gggtaccgag ctcgaattcg atttctgttc ctgttaatca 660 acctctggat tacaaaattt gtgaaagatt gactggtatt cttaactatg ttgctccttt 720 tacgctatgt ggatacgctg ctttaatgcc tttgtatcat gctattgctt cccgtatggc 780 tttcattttc tcctccttgt ataaatcctg gttgctgtct ctttatgagg agttgtggcc 840 cgttgtcagg caacgtggcg tggtgtgcac tgtgtttgct gacgcaaccc ccactggttg 900 gggcattgcc accacctgtc agctcctttc cgggactttc gctttccccc tccctattgc 960 cacggcggaa ctcatcgccg cctgccttgc ccgctgctgg acaggggctc ggctgttggg 1020 cactgacaat tccgtggtgt tgtcggggaa gctgacgtcc tttccatggc tgctcgcctg 1080 tgttgccacc tggattctgc gcgggacgtc cttctgctac gtcccttcgg ccctcaatcc 1140 agcggacctt ccttcccgcg gcctgctgcc ggctctgcgg cctcttccgc gtcttcgcct 1200 tcgccctcag acgagtcgga tctccctttg ggccgcctcc ccgcctg 1247 <210> 3 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 3 agaagctgtg tgccacctac aagc 24 <210> 4 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 4 gtacgacacc tccaggaagc tctg 24 <210> 5 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 5 tgatgccccc atgtttgtga 20 <210> 6 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 6 caagaaggga acacgcaggg 20 <210> 7 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 7 catgaagctg atggccctgc 20 <210> 8 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 8 gctctgcaga tgggaggcaa 20 <110> SUN MOK INSTITUTE EDUCATION FOUNDATION <120> Retrovirus expression vector containing hG-CSF (human          granulocyte-colony stimulating factor) gene and transgenic          poultry thereby <160> 8 <170> KopatentIn 1.71 <210> 1 <211> 615 <212> DNA <213> hG-CSF <400> 1 atggctggac ctgccaccca gagccccatg aagctgatgg ccctgcagct gctgctgtgg 60 cacagtgcac tctggacagt gcaggaagcc acccccctgg gccctgccag ctccctgccc 120 cagagcttcc tgctcaagtg cttagagcaa gtgaggaaga tccagggcga tggcgcagcg 180 ctccaggaga agctgtgtgc cacctacaag ctgtgccacc ccgaggagct ggtgctgctc 240 ggacactctc tgggcatccc ctgggctccc ctgagcagct gccccagcca ggccctgcag 300 ctggcaggct gcttgagcca actccatagc ggccttttcc tctaccaggg gctcctgcag 360 gccctggaag ggatctcccc cgagttgggt cccaccttgg acacactgca gctggacgtc 420 gccgactttg ccaccaccat ctggcagcag atggaagaac tgggaatggc ccctgccctg 480 cagcccaccc agggtgccat gccggccttc gcctctgctt tccagcgccg ggcaggaggg 540 gtcctggttg cctcccatct gcagagcttc ctggaggtgt cgtaccgcgt tctacgccac 600 cttgcccagc cctga 615 <210> 2 <211> 1247 <212> DNA <213> Artificial Sequence <220> <223> hGCSF-WPRE <400> 2 atggctggac ctgccaccca gagccccatg aagctgatgg ccctgcagct gctgctgtgg 60 cacagtgcac tctggacagt gcaggaagcc acccccctgg gccctgccag ctccctgccc 120 cagagcttcc tgctcaagtg cttagagcaa gtgaggaaga tccagggcga tggcgcagcg 180 ctccaggaga agctgtgtgc cacctacaag ctgtgccacc ccgaggagct ggtgctgctc 240 ggacactctc tgggcatccc ctgggctccc ctgagcagct gccccagcca ggccctgcag 300 ctggcaggct gcttgagcca actccatagc ggccttttcc tctaccaggg gctcctgcag 360 gccctggaag ggatctcccc cgagttgggt cccaccttgg acacactgca gctggacgtc 420 gccgactttg ccaccaccat ctggcagcag atggaagaac tgggaatggc ccctgccctg 480 cagcccaccc agggtgccat gccggccttc gcctctgctt tccagcgccg ggcaggaggg 540 gtcctggttg cctcccatct gcagagcttc ctggaggtgt cgtaccgcgt tctacgccac 600 cttgcccagc cctgagccaa gggtaccgag ctcgaattcg atttctgttc ctgttaatca 660 acctctggat tacaaaattt gtgaaagatt gactggtatt cttaactatg ttgctccttt 720 tacgctatgt ggatacgctg ctttaatgcc tttgtatcat gctattgctt cccgtatggc 780 tttcattttc tcctccttgt ataaatcctg gttgctgtct ctttatgagg agttgtggcc 840 cgttgtcagg caacgtggcg tggtgtgcac tgtgtttgct gacgcaaccc ccactggttg 900 gggcattgcc accacctgtc agctcctttc cgggactttc gctttccccc tccctattgc 960 cacggcggaa ctcatcgccg cctgccttgc ccgctgctgg acaggggctc ggctgttggg 1020 cactgacaat tccgtggtgt tgtcggggaa gctgacgtcc tttccatggc tgctcgcctg 1080 tgttgccacc tggattctgc gcgggacgtc cttctgctac gtcccttcgg ccctcaatcc 1140 agcggacctt ccttcccgcg gcctgctgcc ggctctgcgg cctcttccgc gtcttcgcct 1200 tcgccctcag acgagtcgga tctccctttg ggccgcctcc ccgcctg 1247 <210> 3 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 3 agaagctgtg tgccacctac aagc 24 <210> 4 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 4 gtacgacacc tccaggaagc tctg 24 <210> 5 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 5 tgatgccccc atgtttgtga 20 <210> 6 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 6 caagaaggga acacgcaggg 20 <210> 7 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 7 catgaagctg atggccctgc 20 <210> 8 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 8 gctctgcaga tgggaggcaa 20  

Claims (7)

삭제delete 서열번호 1의 재조합 hG-CSF 유전자를 내장하는 쥐 백혈병 바이러스 유래의 복제-결핍 레트로바이러스(retrovirus)인 것을 특징으로 하는 발현용 레트로바이러스 벡터.An expression retroviral vector characterized in that it is a replication-deficient retrovirus derived from murine leukemia virus containing the recombinant hG-CSF gene of SEQ ID NO: 1. 제 2 항에 있어서, The method of claim 2, 상기 벡터는 plasmid 형태가 pLNC-GCSF (KCTC 11200BP)인 것을 특징으로 하는 발현용 레트로바이러스 벡터.The vector is a retroviral vector for expression, characterized in that the plasmid type is pLNC-GCSF (KCTC 11200BP). 제 2 항에 의한 레트로바이러스 벡터에 의해 형질전환된 동물세포. Animal cell transformed with the retroviral vector according to claim 2. 제 4 항의 동물세포는 소의 태아섬유아세포, 닭의 배아섬유아세포, HeLa 세 포, 쥐의 NIH3T3세포 또는 닭의 배아섬유아세포인 형질전환된 동물세포. The animal cell of claim 4 is a fetal fibroblast cell, embryonic fibroblast cell of chicken, HeLa cells, mouse NIH3T3 cell or chicken embryo fibroblast cell. 제 2 항에 의한 레트로바이러스 벡터에 의해 형질전환되어 hG-CSF 유전자를 발현할 수 있는 것을 특징으로 하는 형질전환 가금. Transgenic poultry which can be transformed by the retroviral vector according to claim 2 to express the hG-CSF gene. 제 6 항에 있어서, The method of claim 6, 상기 가금은 닭, 오리, 칠면조, 기러기, 메추라기 또는 비둘기인 형질전환 가금. The poultry is a chicken, duck, turkey, geese, quail or pigeon transgenic poultry.
KR1020070099789A 2007-10-04 2007-10-04 Retrovirus expression vector containing ??-??? human granulocyte-colony stimulating factor gene and Transgenic poultry thereby KR100921226B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070099789A KR100921226B1 (en) 2007-10-04 2007-10-04 Retrovirus expression vector containing ??-??? human granulocyte-colony stimulating factor gene and Transgenic poultry thereby

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070099789A KR100921226B1 (en) 2007-10-04 2007-10-04 Retrovirus expression vector containing ??-??? human granulocyte-colony stimulating factor gene and Transgenic poultry thereby

Publications (2)

Publication Number Publication Date
KR20090034524A KR20090034524A (en) 2009-04-08
KR100921226B1 true KR100921226B1 (en) 2009-10-12

Family

ID=40760388

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070099789A KR100921226B1 (en) 2007-10-04 2007-10-04 Retrovirus expression vector containing ??-??? human granulocyte-colony stimulating factor gene and Transgenic poultry thereby

Country Status (1)

Country Link
KR (1) KR100921226B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5830705A (en) 1985-08-23 1998-11-03 Amgen Inc. Method for recombinant production of human pluripotent granulocyte colony-stimulating factor
US5891443A (en) * 1995-07-03 1999-04-06 The United States Of America As Represented By The Secretary Of Agriculture Method to produce granulocyte colony stimulating factor from immortalized avian T lymphocytes to produce immortalized cells
US6110702A (en) * 1996-03-27 2000-08-29 The Regents Of The University Of California PSA positive regulating (PSAR) sequences and uses thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5830705A (en) 1985-08-23 1998-11-03 Amgen Inc. Method for recombinant production of human pluripotent granulocyte colony-stimulating factor
US5891443A (en) * 1995-07-03 1999-04-06 The United States Of America As Represented By The Secretary Of Agriculture Method to produce granulocyte colony stimulating factor from immortalized avian T lymphocytes to produce immortalized cells
US6110702A (en) * 1996-03-27 2000-08-29 The Regents Of The University Of California PSA positive regulating (PSAR) sequences and uses thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Cytokines Cell Mol. Ther.(2000)Vol.6, pp.61-70.

Also Published As

Publication number Publication date
KR20090034524A (en) 2009-04-08

Similar Documents

Publication Publication Date Title
Sang Prospects for transgenesis in the chick
Motono et al. Production of transgenic chickens from purified primordial germ cells infected with a lentiviral vector
Shin et al. Generation of transgenic quail through germ cell‐mediated germline transmission
Koo et al. Tetracycline-dependent expression of the human erythropoietin gene in transgenic chickens
Chul Koo et al. Production of germline transgenic chickens expressing enhanced green fluorescent protein using a MoMLV‐based retrovirus vector
Kwon et al. Generation of transgenic chickens that produce bioactive human granulocyte‐colony stimulating factor
US20050273872A1 (en) Protein production in transgenic avians
JP2009082033A (en) Method for producing completely human antibody
Koo et al. Production of transgenic chickens constitutively expressing human erythropoietin (hEPO): Problems with uncontrollable overexpression of hEPO gene
KR100921226B1 (en) Retrovirus expression vector containing ??-??? human granulocyte-colony stimulating factor gene and Transgenic poultry thereby
KR101574204B1 (en) Transgenic aves expressing codon-optimized human epidermal growth factor and method for preparing the same
JPWO2005065450A1 (en) Transgenic birds and their production
EP1672076A1 (en) Method of constructing transgenic bird using lentivirus vector and transgenic bird obtained thereby
KR100696571B1 (en) - - Methods for transgenic poultry production using murine leuckemia virus-derived replication-defective retroviral vectors and the resulting transgenic poultry
EP2752112B1 (en) Transgenic bird expressing foreign gene using endoplasmic reticulum chaperone promoter
WO2009142186A1 (en) Cytotoxic composition
KR101038532B1 (en) Retrovirus expression vetor containing hEPO gene and transgenic animal cell and poultry thereby
KR102627008B1 (en) Preparation method for producing avian species producing Adiponectin and target proteins
JP4995574B2 (en) Methods for producing transgenic birds
KR20110037060A (en) Tetracycline-inducible retrovirus expression vector containing hg-csf (human granulocyte-colony stimulating factor) gene and transgenic poultry thereby
KR20110099421A (en) Method of production of transgenic avian producing urokinase-type plasminogen activator
JP2006271266A (en) Highly expressing and efficient transgenic birds
Etches Production of novel proteins in chicken eggs
KR20160041090A (en) Method of production of transgenic avian producing human epidermal growth factor

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121004

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20131004

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20140930

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20150930

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20180928

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20190930

Year of fee payment: 11