DK175551B1 - Poly:peptide with granulocyte colony stimulating factor activity - obtd. by recombinant DNA procedures for treating haematopoietic disorders - Google Patents

Poly:peptide with granulocyte colony stimulating factor activity - obtd. by recombinant DNA procedures for treating haematopoietic disorders Download PDF

Info

Publication number
DK175551B1
DK175551B1 DK200301685A DKPA200301685A DK175551B1 DK 175551 B1 DK175551 B1 DK 175551B1 DK 200301685 A DK200301685 A DK 200301685A DK PA200301685 A DKPA200301685 A DK PA200301685A DK 175551 B1 DK175551 B1 DK 175551B1
Authority
DK
Denmark
Prior art keywords
csf
hpg
sequence
polypeptide
dna sequence
Prior art date
Application number
DK200301685A
Other languages
Danish (da)
Inventor
Lawrence M Souza
Original Assignee
Kirin Amgen Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US06/835,548 external-priority patent/US4810643A/en
Application filed by Kirin Amgen Inc filed Critical Kirin Amgen Inc
Priority to DK200301685A priority Critical patent/DK175551B1/en
Publication of DK200301685A publication Critical patent/DK200301685A/en
Priority to DK200401111A priority patent/DK176002B1/en
Application granted granted Critical
Publication of DK175551B1 publication Critical patent/DK175551B1/en

Links

Abstract

Purified and isolated polypeptide (I) having at least part of the primary structural conformation and a biological property (ies) of naturally occurring pluripotent granulocyte colony stimulating factor (hpG-CSF) is new when the (I) is the prod. of procaryotic or eucaryotic expression of an exogenous DNA sequence. DNA sequence for use in securing expression of (I) in a procaryotic or eucaryotic host cell is new. The DNA sequence is either a defined sequence of its complementary strands, or a sequence that hybridises to such sequences or their fragments, or a sequence that, but for the degeneracy of the genetic code, would hydridise to any of these other sequences.

Description

DK 175551 B1DK 175551 B1

Opfindelsen angår et isoleret polypeptid med de hæmatopoietiske biologiske egenskaber for naturligt forekommende pluripotent granulocyt kolonistimulerende 5 faktor (hpG-CSF), hvor polypeptidet har den i tabel VII angivne aminosyresekvens 1-174. I sammenhæng hermed angår opfindelsen en DNA-sekvens, der ved eksprimering i en prokaryotisk eller eukaryotisk værtscelle koder for et polypeptid, de besidder i det mindste en del af de 10 primære struktur og de hæmatopoietiske egenskaber for naturligt forekomende pluripotent granulocyt kolonistimulerende faktor; et biologisk funktionelt plasmid eller viral DNA-vektor; en prokaryotisk eller eukaryotisk ^ værtscelle; en fremgangsmåde til fremstilling af isolerede polypeptider med de hæmatologiske egenskaber for naturligt forekommende pluripotent granulocyt koloni-stimulerende faktor (pG-CSF), hvor polypeptidet har den i tabel VII angivne aminosyresekvens 1-174; et farma-2o ceutisk præparat og anvendelse af et sådant polypeptid til fremstilling af et lægemiddel.The invention relates to an isolated polypeptide having the hematopoietic biological properties of naturally occurring pluripotent granulocyte colony-stimulating factor (hpG-CSF), the polypeptide having the amino acid sequence listed in Table VII 1-174. In this connection, the invention relates to a DNA sequence which, when expressed in a prokaryotic or eukaryotic host cell, encodes a polypeptide, possesses at least a portion of the primary structure and hematopoietic properties of naturally occurring pluripotent granulocyte colony-stimulating factor; a biologically functional plasmid or viral DNA vector; a prokaryotic or eukaryotic host cell; a method for producing isolated polypeptides having the hematologic properties of naturally occurring pluripotent granulocyte colony-stimulating factor (pG-CSF), wherein the polypeptide has the amino acid sequence shown in Table VII 1-174; a pharmaceutical composition and use of such a polypeptide for the preparation of a drug.

Det bloddannende (hæmatopoietiske) system hos mennesker nydanner en række hvide blodlegemer (deriblandt neutrofile, makrophager og basofile/mastceller), 25 røde blodlegemer (erythrocyter) og størkningsfremmende 'celler (megakaryocyter/blodplader). Man har anslået, at' det hæmatopoietiske system hos en gennemsnitlig mandsperson producerer ca. 4,5 x 1011 granulocyter og erythrocyter hvert år, hvilket svarer til en fornyelse afThe blood-forming (hematopoietic) system in humans destroys a variety of white blood cells (including neutrophils, macrophages and basophils / mast cells), 25 red blood cells (erythrocytes) and clotting-promoting cells (megakaryocytes / platelets). It has been estimated that 'the hematopoietic system of an average male person produces approx. 4.5 x 1011 granulocytes and erythrocytes each year, which corresponds to a renewal of

I DK 175551 B1 II DK 175551 B1 I

I II I

I hele kroppens vægt. Dexter et al., BioEssays, 2, 154 - IIn the whole body weight. Dexter et al., BioEssays, 2, 154 - I

I 15Θ (1985). IIn 15Θ (1985). IN

I Man mener, at små mængder af visse hæmatopoieti- IIt is believed that small amounts of certain hematopoietic I

I ske vækstfaktorer er årsag til, at et lille antal "stam- IIn growth factors, a small number of "stem I" causes

I 5 faderceller" deler sig i en række blodcellelinier, at IIn 5 paternal cells "divide into a number of blood cell lines that I

I disse udbreder sig i så høj grad og til sidst uddiffe- IIn these, so widely and eventually diffuse

I rentieres til fuldt udviklede celler i blodet. Da de IYou are rented to fully developed blood cells. When the I

I hæmatopoietiske vækstfaktorer er til stede i umådelig IIn hematopoietic growth factors are present in immense I

I ringe mængde, har bestemmelser og identificering af IIn small quantity, have provisions and identification of I

I 10 disse faktorer hvilet på en række forsøg, som op til nu IIn 10 these factors rested on a number of trials, which up to now I

I kun skelner mellem de forskellige faktorer baseret på IYou only distinguish between the different factors based on I

I deres stimulerende virkning på cellekulturer under kun- IIn their stimulatory effect on cell cultures during culture

I stige omstændigheder. Som et resultat af dette har man IIn rising circumstances. As a result, you have

I frembragt et stort antal navne til betegnelse af et IYou have produced a large number of names to denote an I

I 15 langt mindre antal faktorer. Som et eksempel på den IIn 15 much smaller number of factors. As an example of the I

I herskende forvirring kan man nævne, at betegnelserne IIn the current confusion one can mention that the names I

I IL-3, BPA, multi-CSF, HCGF, MCGF og PSF er forskellige IIn IL-3, BPA, multi-CSF, HCGF, MCGF and PSF are different I

I navne, som man nu tror alle betegner samme hæmatopoieti- IIn names that are now believed to all denote the same hematopoietic I

I ske vækstfaktor hos mus. Metcalf, Science, 229, 16-22 IIn happen growth factor in mice. Metcalf, Science, 229, 16-22 I

I 20 (1985). Se også Burgess et al., J. Biol. Chem. 252, IIn 20 (1985). See also Burgess et al., J. Biol. Chem. 252, I

I 1988 (1977), Das, et al., Blood, 58, 600 (1980), Ihle, IIn 1988 (1977), Das, et al., Blood, 58, 600 (1980), Ihle, I

I et al., J. Immunol,129, 2431 (1982), Nicola, et al., J. IJ. Immunol, 129, 2431 (1982), Nicola, et al., J.I.

I Biol. Chem., 258, 9017 (1983), Metcalf, et al., Int. J. IIn Biol. Chem., 258, 9017 (1983), Metcalf, et al., Int. J. I

I Cancer, 30, 773 (1982), og Burgess, et al., Int. J. IIn Cancer, 30, 773 (1982), and Burgess, et al., Int. J. I

I 25 cancer, 26, 647 (1980), angående forskellige vækstregu- IIn Cancer, 26, 647 (1980), concerning various growth regula- tions

I lerende glycoproteiner hos mus. IIn learning glycoproteins in mice. IN

I Anvendelse af rekombinant genteknik har bragt en IThe use of recombinant genetic engineering has brought an I

I vis orden i dette kaos. For eksempel kender man nu til IIn order of this chaos. For example, you now know you

I aminosyre og DNA-sekvenserne for human erythropoietin, IIn the amino acid and DNA sequences of human erythropoietin, I

I 30 som stimulerer produktionen af erythrocyter. (Se Lin, IIn 30 which stimulates the production of erythrocytes. (See Lin, I

I PCT ansøgning nr. 85/02510, offentliggjort 20. juni IIn PCT Application No. 85/02510, published June 20, I

I 1985). Man har også benyttet rekombinante fremgangsmå- IIn 1985). Recombinant methods have also been used

I der til isolering af cDNA for en human granulocyt- IIn which to isolate cDNA for a human granulocyte I

DK 175551 B1 3 macrophag kolonistimulerende faktor. Se Lee, et al.,DK 175551 B1 3 macrophage colony stimulating factor. See Lee, et al.,

Proc. Natl. Acad. Sci. (USA), 82, 4360-4364 (1985) og Wong, et al.. Science, 228, 810-814 (1985). Se også Yo-kota, et al., Proc. Natl. Acad. Sci. (USA), 81, 1070 5 (1984), Fung, et al., Nature, 307, 233 (1984), og Gough, et al., Nature, 309, 763 (1984) angående kloning af gener fra mus, såvel som Kawasaki, et al., Science, 230, 291 (1985) angående human M-CSF.Proc. Natl. Acad. Sci. (USA), 82, 4360-4364 (1985) and Wong, et al., Science, 228, 810-814 (1985). See also Yo-kota, et al., Proc. Natl. Acad. Sci. (USA), 81, 1070 (1984), Fung, et al., Nature, 307, 233 (1984), and Gough, et al., Nature, 309, 763 (1984) on the cloning of mouse genes, as well as Kawasaki, et al., Science, 230, 291 (1985) on human M-CSF.

Man har vist, at der findes en human hæmatopoie-10 tisk vækstfaktor, kaldet human pluripotent koloni-stimulerende faktor (hpCSF) eller pluripoietin i dyrkningsmediet fra en human blærecarcinomcellelinie, kaldet 5637 og deponeret under restriktive omstændigheder hos American Type Culture Collection, Rockville, Mary-15 land som A.T.C.C. nr. HTB-9. Man har angivet, at phCSF, . oprenset fra denne cellelinie, vil stimulere udbredelse og differentiering af pluripotente stamfaderceller og derved medføre produktion af alle de vigtige blodcelletyper i forsøg, hvor man benytter udgangsceller fra men-20 neskelig knoglemarv. Walte et al., Proc. Natl. Acad.A human hematopoietic growth factor, called human pluripotent colony-stimulating factor (hpCSF) or pluripoietin, has been found in the culture medium of a human bladder carcinoma cell line called 5637 and deposited under restrictive circumstances at American Type Culture Collection, Rockville, Mary. -15 countries like ATCC No. HTB-9. It has been stated that phCSF,. purified from this cell line will stimulate the proliferation and differentiation of pluripotent progenitor cells, thereby leading to production of all the important blood cell types in experiments using human bone marrow output cells. Walte et al., Proc. Natl. Acad.

Sci. Ved rensning af phCSF benyttede man: (NH4)2S04 udfældning; anionbytterchromatografi (DEAE cellulose, DE 52); gelfiltrering (AcA54 søjle); og C18 omvendt fase høj kapacitet væskechromatografi* Man angav, at et prot-25 ein, der blev identificeret som phCSF og blev elueret i den anden af to aktivitetstoppe i Cl8 reversfase HPLC-chromatografi, skulle besidde en molekylvægt (MW) på 18.000, bestemt ved hjælp af natriumdodecylsulphat (SDS)-polyacrylamid gelelektrophorese (PAGE) under an-30 vendelse af farvning med sølv. Tidligere angav man, at hpCSF skulle have et isoelektrisk punkt på 5,5 [Welte, et al., J. Cell. Biochem., Supp. 9A, 116 (1985)] og en høj differentierende aktivitet for den myelomonocytiskeSci. In the purification of phCSF, precipitation was used: (NH 4) 2 SO 4; anion exchange chromatography (DEAE cellulose, DE 52); gel filtration (AcA54 column); and C18 reverse phase high capacity liquid chromatography * It was stated that a protein identified as phCSF and eluted in the second of two activity peaks in C18 reverse phase HPLC chromatography should have a molecular weight (MW) of 18,000, determined by means of sodium dodecyl sulfate (SDS) -polyacrylamide gel electrophoresis (PAGE) using silver staining. Previously, hpCSF was stated to have an isoelectric point of 5.5 [Welte, et al., J. Cell. Biochem., Supp. 9A, 116 (1985)] and a high differentiating activity for the myelomonocytic

I DK 175551 B1 II DK 175551 B1 I

I 4 II 4 I

I leukæmicellelinie WEHI-3B D+ fra mus [welte, et al., IIn mouse leukemia cell line WEHI-3B D + [welte, et al., I

I UCLA Symposia on Molecular and Cellular Biology, Gale, IIn UCLA Symposia on Molecular and Cellular Biology, Gale, I

I et al., eds., New Series, 28 (1985)]. Tidligere studier IEt al., Eds., New Series, 28 (1985)]. Previous Studies I

I tyder på, at den faktor man identificerer som phCSF be- IYou suggest that the factor identified as phCSF is involved

I 5 sidder overvejende granolycyt kolonistimulerende akti- IIn 5, there is predominantly granolyte colony-stimulating activity

I vitet i de første syv dage i et humant CFU-GM forsøg. IIn the first seven days, in a human CFU-GM trial. IN

I Man har endvidere fra den humane blærecarcinom- IFurthermore, from human bladder carcinoma I

I cellelinie 5637 isoleret en anden faktor, betegnet human IIn cell line 5637 isolated another factor, designated human I

I CSF-β, som man beskriver som en konkurrent til 125I-mær- IIn CSF-β, which is described as a competitor to 125 I-label I

I 10 ket granulocyt kolonistimulerende faktor (G-CSF) fra mus IIn 10 ket granulocyte colony stimulating factor (G-CSF) from mouse I

I med hensyn til binding til WEHI-3B D+ celler i en dosis- II for binding to WEHI-3B D + cells in a dose-I

I respons vekselvirkning, der er identisk ved, hvad man IIn response interaction that is identical to what you do

I finder ved ikke-mærket G-CSF fra mus [Nicola, et al., IYou find by unlabeled G-CSF from mice [Nicola, et al., I

I Nature, 314, 625-628 (1985)]. Man har tidligere med- IIn Nature, 314, 625-628 (1985)]. You have previously co- I

I 15 delt, at denne sammenhæng mellem dosis og respons skulle II shared that this dose-response relationship should

I være unik for ikke-mærket G-CSF fra mus, og ikke være IYou must be unique to unlabeled G-CSF from mice, and not be

I til stede hos sådanne faktorer som M-CSF, GM-CSF eller IYou present with such factors as M-CSF, GM-CSF or I

I multi-CSF [Nicola, et al., Proc. Natl. Acad. Sci. (USA), IIn multi-CSF [Nicola, et al., Proc. Natl. Acad. Sci. (USA), I

I 81, 3765-3769 (1984)]. Blandt CSF'er indtager CSF-β og II 81, 3765-3769 (1984)]. Among CSFs, CSF-β and I occupy

I 20 G-CSF den særstilling, at de begge i høj grad er i stand IIn 20 G-CSF the special position that they are both very capable I

I til at inducere differentiering i WEHI-3B D+ celler. II to induce differentiation in WEHI-3B D + cells. IN

I Nicola, et al.. Immunology Today, 5, 76-80 (1984). Ved IIn Nicola, et al., Immunology Today, 5, 76-80 (1984). Do you know

I høje koncentrationer stimulerer G-CSF blandede granulo- IAt high concentrations, G-CSF stimulates mixed granulo-I

I cyt/makrophag kolonidannende celler (Nicola, et al., IIn cyt / macrophage colony forming cells (Nicola, et al., I

I 25 (1984) se ovenfor), hvilket stemmer med tidligere resul- IIn 25 (1984) see above), which is consistent with previous results

I tater, der tyder på, at der forekommer granulocytiske IIn tater suggesting the presence of granulocytic I

I monocytiske og blandede granulocytiske/monocytiske og IIn monocytic and mixed granulocytic / monocytic and I

I eosinophile kolonier (CFU-GEMMM) efter 14 dages inkube- IIn eosinophilic colonies (CFU-GEMMM) after 14 days of incubation

I ring af humane knoglemarvskulturer med phCSF. Man har IIn ring of human bone marrow cultures with phCSF. You have

I 30 også beskrevet CSF-β som stimulerende for dannelse af II also described CSF-β as a stimulant for the formation of I

I neutrofile granulocytkolonier i forsøg, hvor man benyt- IIn neutrophil granulocyte colonies in experiments using I

I ter knoglemarvsceller fra mus, en egenskab, som man har IYou have bone marrow cells from mice, a property that you have

I benyttet til identificering af en faktor som en G-CSF. II used to identify a factor as a G-CSF. IN

5 DK 175551 B1 På basis af disse ligheder har man identificeret human CSF-β med G-CSF (granulocyt kolonistimulerende faktor).5 DK 175551 B1 Based on these similarities, human CSF-β has been identified with G-CSF (granulocyte colony stimulating factor).

Nicola et al., Nature, 314, 625-628 (1985).Nicola et al., Nature, 314, 625-628 (1985).

Det lader til, i betragtning af deres fælles 5 egenskaber, at human CSF-β Ifølge Nlcola, et al., se ovenfor, og hpCSF ifølge Welte, et al., se ovenfor, er den samme faktor, som man passende kan betegne som en human pluripotent granulocyt-koloni-stimulerende faktor (hpG-CSF). Det ville være meget ønskeligt at kunne ka-10 rakterisere og rekombinantproducere hpG-CSF på baggrund af den meddelte evne hos G-CSF fra mus til fuldstændig at undertrykke in vitro population af WEHI-3B D+ leukæmiceller ved "fuldstændig normale koncentrationer", og i betragtning af, at man har rapporteret, at urensede 15 præparationer af G-CSF fra mus ved indsprøjtning kan undertrykke eksisterende transplanterede myeloid-leukæmier hos mus. Metcalf, Science, 229, 16-22 (1985). Se også Sachs, Scientific American, 284(1), 40-47 (1986).In view of their common properties, it would appear that human CSF-β According to Ncola, et al., Supra, and hpCSF of Welte, et al., Supra, are the same factor which may conveniently be termed as a human pluripotent granulocyte colony-stimulating factor (hpG-CSF). It would be highly desirable to be able to characterize and recombinantly produce hpG-CSF based on the reported ability of G-CSF from mice to completely suppress the in vitro population of WEHI-3B D + leukemia cells at "completely normal concentrations", and in Considering that it has been reported that unpurified 15 preparations of G-CSF from mice can suppress existing transplanted myeloid leukemias in mice. Metcalf, Science, 229, 16-22 (1985). See also Sachs, Scientific American, 284 (1), 40-47 (1986).

Hvis hpG-CSF skulle vise sig at være terapeutisk 20 betydningsfuld, og det bliver nødvendigt at kunne fremstille det i kommercielle mængder, vil isolering fra cellekulturen næppe kunne tilvejebringe den nødvendige mængde materiale. For eksempel bør man lægge mærke, til, at der synes at være restriktioner mod kommerciel udnyt-25 telse af celler fra Human Tumor Bank, såsom blærecarci-nom-cellelinie 5637 fra mennesker (A.T.C.C. HTB9), som man har angivet som kilde for naturlige hpCSF-præpara-ter; Welte, et al., (1985), se ovenfor).If hpG-CSF were found to be therapeutically important and it became necessary to produce it in commercial quantities, isolation from the cell culture would hardly be able to provide the necessary amount of material. For example, it should be noted that there appear to be restrictions on commercial utilization of Human Tumor Bank cells, such as human bladder cancer cell line 5637 (ATCC HTB9), cited as a source of natural hpCSF-ter the preparations; Welte, et al. (1985), see above).

Det ovenfor definerede isolerede polypeptid iføl-30 ge opfindelsen er ejendommeligt ved at være ikke naturligt forekommende og være et produkt af prokaryotisk eller eukaryotisk ekspression af en exogen DNA-sekvens.The above isolated polypeptide of the invention is characterized by being non-naturally occurring and being a product of prokaryotic or eukaryotic expression of an exogenous DNA sequence.

Sådanne sekvenser kan omfatte: inkorporerede "fore- !Such sequences may include: incorporated "companies".

I DK 175551 B1 II DK 175551 B1 I

I 6 II 6 I

I trukne" kodoner til eksprimering ved udvalgte ikke-pat- IIn drawn codons for expression by selected non-pat

I tedyrs værtsceller, tilvejebringelse af gennemskærings- IIn mammalian host cells, provision of intersection I

I steder for endo-nuclease restriktionsenzymer; og tilve- IIn sites of endo-nuclease restriction enzymes; and provide

I jebringelse af yderligere DNA-sekvenser anbragt før, ITo provide additional DNA sequences placed before, I

I 5 indeni eller efter omtalte sekvens, som gør konstruktio- II within or following said sequence which makes construction I

I nen af vektorer, der kan eksprimeres uden videre, lette- IIn one of vectors that can be expressed immediately, I-

I re. Mere detaljeret er DNA-sekvensen ifølge opfindelsen IIn re. In more detail, the DNA sequence of the invention is I

I ejendommelig ved at kode for et polypeptid med en amino- II peculiarly by encoding a polypeptide with an amino I

I syresekvens valgt blandt den i Tabel VII angivne poly- IIn acid sequence selected from the poly I listed in Table VII

I 10 peptidsekvens og en hvilken som helst allelisk variant, IIn 10 peptide sequence and any allelic variant, I

I et derivat, en sletningsanalog, substitutionsanalog el- IIn a derivative, a deletion analogue, substitution analogue or I

I ler additionsanalog deraf. IIn the clay addition analogue thereof. IN

I Sådanne DNA-sekvenser ifølge opfindelsen omfatter IIn such DNA sequences of the invention, I

I sekvenser, der er nyttige til at sikre eksprimering i IIn sequences useful to ensure expression in I

I 15 prokaryotiske eller eukaryotiske værtsceller af polypep- IIn 15 prokaryotic or eukaryotic host cells of polypeptide

I tidprodukter med i det mindste en del af den primære IIn time products with at least part of the primary I

I strukturelle konformation og en eller flere af de biolo- IIn structural conformation and one or more of the biological

I giske egenskaber for naturligt forekommende pluripotent IIn natural properties of naturally occurring pluripotent I

I granulocyt kolonistimulerende faktor. DNA-sekvenserne IIn granulocyte colony-stimulating factor. The DNA sequences I

I 20 ifølge opfindelsen kan mere detailleret omfatte: IIn accordance with the invention, more detail may include:

I (a) DNA-sekvenserne, der vises i Tabel VII; (b) en IIn (a) the DNA sequences shown in Table VII; (b) and I.

I genomisk DNA-sekvens, der koder for alleliske varianter, IIn genomic DNA sequence encoding allelic variants, I

I derivater og analoger af hpG-CSF. Disse DNA-sekvenser IIn derivatives and analogues of hpG-CSF. These DNA sequences I

I kan inkorporere kodoner, der gør translation af messen- IYou can incorporate codons that do translation of the mess

I 25 ger rjja i mikrobeværter lettere. Sådanne fremstillede IFor 25 yeasts in microbeads lighter. Such manufactured I

I sekvenser kan fremstilles ved fremgangsmåden ifølge II sequences may be prepared by the method of I

I Alton, et al., offentliggjort PCT ansøgning WO 83/04053. > IIn Alton, et al., PCT application WO 83/04053. > I

I I sammenhæng med de isolerede polypeptider og de IIn the context of the isolated polypeptides and those I

I for sådanne polypeptider ifølge opfindelsen er det bio- IFor such polypeptides of the invention, it is bio-I

I 30 logisk funktionelle plasmid eller den virale DNA-vektor IIn logically functional plasmid or the viral DNA vector I

I ifølge opfindelsen ejendommelig ved at inkludere en IAccording to the invention, peculiar by including an I

I DNA-sekvens ifølge opfindelsen; og en prokaryotisk eller IIn DNA sequence according to the invention; and a prokaryotic or I

I eukaryotisk værtscelle ifølge opfindelsen er ejendomme- IIn the eukaryotic host cell of the invention, property is I

7 DK 175551 B1 lig ved, at der er transformeret eller transficeret med en DNA-sekvens ifølge opfindelsen på en sådan måde, at værten kan eksprimere det pågældende polypeptidprodukt, fortrinsvis ved at være transformeret eller transficeret 5 med en DNA-vektor ifølge opfindelsen.7 is similar in that it is transformed or transfected with a DNA sequence according to the invention in such a way that the host can express the polypeptide product concerned, preferably by being transformed or transfected with a DNA vector according to the invention.

De isolerede polypeptidprodukter ifølge opfindelsen er produkter af eksprimering i prokaryotiske eller eukaryotiske værter (f.eks. bakterier, gær eller dyrkede celler fra planter, insekter og pattedyr) af exogene 10 DNA-sekvenser, opnået ved genomisk eller cDNA-kloning eller ved syntese af gener. Produktet fra typiske gærceller (f.eks. Saccaromyces cerevisiae) eller prokaryotiske værtsceller [f.eks. Escherichia coli (E. coli)] er fri for association med noget som helst pattedyrspro-15 tein. Produktet af mikrobeeksprimering i vertebratcel-ler (f.eks. pattedyr bortset fra mennesker og fugle) er fri for associering med nogen som helst former for humane proteiner. Afhængig af den anvendte vært vil poly-peptiderne ifølge opfindelsen kunne være glycosylerede 20 med pattedyrs- eller andre eukaryotiske carbohydrater eller kan være ikke-glycosylerede. Polypeptider ifølge opfindelsen kan også indeholde en start methionin amino-syrerest (ved stillingen -1).The isolated polypeptide products of the invention are products of expression in prokaryotic or eukaryotic hosts (e.g., bacteria, yeast or cultured cells of plants, insects and mammals) of exogenous DNA sequences obtained by genomic or cDNA cloning or by synthesis of genes. The product from typical yeast cells (e.g., Saccaromyces cerevisiae) or prokaryotic host cells [e.g. Escherichia coli (E. coli)] is free from association with any mammalian protein. The product of microbe expression in vertebrate cells (eg mammals other than humans and birds) is free from association with any human protein. Depending on the host used, the polypeptides of the invention may be glycosylated with mammalian or other eukaryotic carbohydrates or may be non-glycosylated. Polypeptides of the invention may also contain a starting methionine amino acid residue (at position -1).

De opfinderiske farmaceutiske præparater er ejen-25 dommelige ved at omfatte effektive mængder af polypep-tidprodukter ifølge opfindelsen eller fremstillet ifølge opfindelsen sammen med passende fortyndingsmidler, adju-vanser og/eller bærere, som er sædvanlige i hpG-CSF-terapi. Endelig anvendes det omhandlede polypeptid iføl-30 ge opfindelsen til fremstilling af et lægemiddel til hæ-matopoietisk terapi på et pattedyr.The inventive pharmaceutical compositions are useful in comprising effective amounts of polypeptide products of the invention or prepared according to the invention together with appropriate diluents, adjuvants and / or carriers usual in hpG-CSF therapy. Finally, the subject polypeptide of the invention is used to prepare a hematopoietic therapy drug in a mammal.

Polypeptidprodukter ifølge opfindelsen kan mærkes, idet de associeres med en påviselig markørsubstansPolypeptide products of the invention can be labeled as associated with a detectable marker substance

I DK 175551 B1 II DK 175551 B1 I

I II I

I (f.eks. radiomarkeres med 125l), hvorved der tilveje- II (e.g., radiolabelled with 125l), thereby providing I

I bringes reagenser, der er nyttige ved bestemmelse af IYou bring in reagents useful in determining I

I tilstedeværelse og mængde af human hpG-CSF i vævsprøver IIn the presence and amount of human hpG-CSF in tissue samples I

I og i væskeformige prøver, såsom blod eller urin. DNA- IIn and in liquid samples such as blood or urine. DNA-I

I 5 produkter ifølge opfindelsen kan også mærkes med påvise- IIn 5 products according to the invention can also be labeled with detectable I

I lige markører, såsom radiomarkører og ikke-isotop mar- IIn straight markers such as radio markers and non-isotope mar- I

I kører såsom biotin), og anvendes i DNA-hybridiserings- IYou run such as biotin) and are used in DNA hybridization I

I processer, så man kan lokalisere positionen for human IIn processes so that one can locate the position of human I

I hpG-CSF-genet og/eller positionen af en hvilken som IIn the hpG-CSF gene and / or the position of one such as I

I 10 helst beslægtet genfamilie i et kromosomkort. De kan IPreferably, related gene family in a chromosome map. They can

I og<5a anvendes til identifikation af uregelmæssigheder II and <5a are used to identify irregularities I

I vedrørende humant hpG-CSF-gen på DNA-niveauet og benyt- II regarding human hpG-CSF gene at the DNA level and utilize I

I tes som genmarkører til identifikation af nabostillede II theses as gene markers for identification of neighboring I

I 15 gener og deres uregelmæssigheder. IIn 15 genes and their irregularities. IN

I Polypeptidprodukter ifølge opfindelsen kan alene IIn polypeptide products of the invention, only I

I eller kombineret med andre hæmatopoietiske faktorer el- II or in combination with other hematopoietic factors or I

I ler medikamenter være nyttige ved behandling af hæmato- IIn clay medications are useful in the treatment of hematoma

I poietiske afvigelser, såsom aplastisk anæmi. De kan og- IIn poetic disorders, such as aplastic anemia. They can also- I

I 20 så være nyttige ved behandling af hæmapoietiske mangler II 20 so be useful in treating hemapoietic deficiencies I

I forårsaget af chemoterapi eller af stråleterapi. Chan- IIn caused by chemotherapy or by radiation therapy. Chan- I

I een for, at en knoglemarvstransplantation lykkes, kan f. IIn order for a bone marrow transplant to succeed, f. I

I eks. forstærkes, hvis man tilfører hpG-CSF. Behandling IFor example, if you add hpG-CSF, it is enhanced. Treatment I

I med heling af brandsår og behandling af bakteriel for- II with healing of burns and treatment of bacterial form I

I 25 årsaget betændelse kan også forstærkes ved tilføring af IIn 25 caused inflammation can also be enhanced by the application of I

I hpG-CSF. Derudover kan hpG-CSF være nyttig ved behand- IIn hpG-CSF. In addition, hpG-CSF may be useful in treating I

I ling af leukæmi, idet det er publiceret, at den er i IIn leukemia, having been published in I

I stand til at differentiere leukæmiceller. Welte, et IAble to differentiate leukemia cells. Welte, et I

I al., Proc. Natl. Acad. Sci. (USA), 82,,1526-1530 (1985) IIn al., Proc. Natl. Acad. Sci. (USA), 82, 1526-1530 (1985) I

I 30 og Sachs, se ovenfor. IAt 30 and Sachs, see above. IN

I Fagmanden vil, ved at læse følgende detaillerede IIn the skilled person, by reading the following detailed I

I beskrivelse, som illustrerer udførelsen af opfindelsen, IIn a description illustrating the embodiment of the invention, I

I i de for tiden foretrukne udførelsesformer, kunne se IIn the presently preferred embodiments, you can see

I adskillige aspekter og fordele ved opfindelsen. IIn several aspects and advantages of the invention. IN

DK 175551 B1 9DK 175551 B1 9

Tegningen viser ét delvis restriktionsendonude-ase kort over hpG-CSF-genet forsynet med pile til belysning af strategien for sekvensering, som benyttes til opnåelse af den genomiske sekvens.The drawing shows one partial restriction endonudase map of the hpG-CSF gene provided with arrows to elucidate the sequencing strategy used to obtain the genomic sequence.

5 Ifølge opfindelsen har man isoleret og karakteri seret DNA-sekvenser, der koder for hele polypeptidse-kvensen i hpG-CSF eller dele deraf.According to the invention, DNA sequences encoding the entire polypeptide sequence in hpG-CSF or parts thereof have been isolated and characterized.

De følgende Eksempler skal illustrere opfindelsen og er især rettet på procedurer, der udføres inden iden-tifikation af hpG-CSF cDNA og genomiske kloner, procé-durer, der fører til en sådan identifikation og til sekvensering, udvikling af ekspressionssystemer, baseret på cDNA, genomiske og fremstillede gener og bekræftelse af eksprimering af hpG-CSF og lignende produkter i så-15 danne systemer.The following Examples are intended to illustrate the invention and are directed in particular to procedures performed prior to identification of hpG-CSF cDNA and genomic clones, procedures leading to such identification and to sequencing, development of cDNA expression systems, genomic and manufactured genes and confirmation of expression of hpG-CSF and similar products in such systems.

Mere detailleret angår Eksempel 1 aminosyrese-kventering af hpG-CSF. Eksempel 2 angår fremstilling af et cDNA bibliotek til gennemsøgning for kolonihydridise-ring. Eksempel 3 angår fremstilling af hybridiserings-20 sonder. Eksempel 4 angår gennemsøgning for hybridise-ring, identifikation af positive kloner, DNS-sekvense-ring af en positiv cDNA klon og tilvejebringelse af information om den primære strukturelle konformation (ami-25 nosyresekvens) af polypeptidet. Eksempel 5 angår identificering og sekvensering af en genomisk klon, der koder for hpG-CSF. Eksempel 6 angår konstruktion af et fremstillet gen, der koder for hpG-CSF, hvori man anvender kodoner, der hører til E. coli.More in detail, Example 1 relates to amino acid sequencing of hpG-CSF. Example 2 relates to the preparation of a cDNA library for scanning for colony hydration. Example 3 relates to the preparation of hybridization probes. Example 4 relates to hybridization search, identification of positive clones, DNA sequencing of a positive cDNA clone and providing information on the primary structural conformation (amino acid sequence) of the polypeptide. Example 5 relates to the identification and sequencing of a genomic clone encoding hpG-CSF. Example 6 relates to the construction of a manufactured gene encoding hpG-CSF using codons belonging to E. coli.

30 Eksempel 7 angår fremgangsmåder til konstruktion af en E. coli transformationsvektor, der indeholder DNA, der koder for hpG-CSF, anvendelse af denne vektor til prokaryotisk eksprimering af hpG-CSF og analyse af egenskaberne af de rekombinante produkter ifølge opfindels-Example 7 relates to methods for constructing an E. coli transformation vector containing DNA encoding hpG-CSF, using this vector for prokaryotic expression of hpG-CSF, and analyzing the properties of the recombinant products of the invention.

I DK 175551 B1 II DK 175551 B1 I

I 10 II 10 I

I en. Eksempel 8 angår fremgangsmåder til fremstilling af IIn a. Example 8 relates to processes for preparing I

I analoge af. hpG-CSF, hvori cysteinrester er erstattede IIn the analog of. hpG-CSF, in which cysteine residues are replaced

I med andre passende aminosyrerester ved hjælp af mutagen- II with other suitable amino acid residues by means of mutagen-I

ese udført på DNA, der koder for hpG-CSF. Eksempel 9 Iese performed on DNA encoding hpG-CSF. Example 9 I

I 5 angår fremgangsmåder til konstruktion af en vektor, der II 5 relates to methods for constructing a vector which I

I indeholder DNA, der koder for en analog til hpG-CSF, II contains DNA encoding an analog for hpG-CSF, I

I afledt fra en positiv cDNA klon, anvendelse af vektoren II derived from a positive cDNA clone, using the vector I

I til transfektion af COS-1 celler og dyrkning af de II for transfecting COS-1 cells and culturing the I

I transficerede celler. Eksempel 10 angår fysiske og bio- IIn transfected cells. Example 10 relates to physical and bio-I

I 10 logiske egenskaber af opfinderiske og beslægtede rekom- IIn 10 logical properties of inventive and related recom-

I binante polypeptidprodukter. IIn binary polypeptide products. IN

I Eksempel 1 IIn Example 1 I

I (A) Sekvensering udført ved litteraturbekendte frem- II (A) Sequencing performed by literature well-known I

I 15 gangsmåder. IIn 15 ways. IN

I/ En prøve (3-4 pg, 85-90% ren SDS, sølvfarvning- II / A sample (3-4 pg, 85-90% pure SDS, silver staining- I

I PAGE) af hpG-CSF blev opnået fra Sloan Kettering Insti- IIn PAGE) of hpG-CSF was obtained from Sloan Kettering Insti- I

I tute, New York, New York, den var isoleret og renset IIn Tute, New York, New York, it was isolated and cleaned

I 20 ifølge welte, et al., Proc. Natl. Acad. Sci. (USA), 82, IIn welte, et al., Proc. Natl. Acad. Sci. (USA), 82, I

I 1526-1530 (1985). IIn 1526-1530 (1985). IN

I Den N-terminale aminosyresekvens i denne prøve af IIn the N-terminal amino acid sequence in this sample of I

I hpG-CSF blev bestemt i et første forsøg ved mikrose- IIn hpG-CSF was determined in a first experiment by microse I

I kvensanalyse under anvendelse af en AB407A gasfase se- IIn sequence analysis using an AB407A gas phase, se- I

I 25 kvensoopdeler (Applied Biosystems, Foster City, Califor- IIn 25 Gender Divisions (Applied Biosystems, Foster City, Califor- I

I nia) til opnåelse af sekvensen, der vises i Tabel I ne- II nia) to obtain the sequence shown in Table I ne- I

I denfor. I Tabellerne I-IV benyttes enkeltbogstavsko- IIn it. Tables I-IV use single-letter code I

I der, "X" betyder en rest, som ikke kunne bestemmes helt IIn there, "X" means a residue which could not be completely determined

I sikkert, og rester angivet i parentes angiver mulighe- IIn safe, and residues indicated in parentheses indicate the possibility

I 30 der. II 30 there. IN

DK 175551 B1 11DK 175551 B1 11

TABEL ITABLE I

1 5 10 151 5 10 15

K-P-L-G-P-A-S-K-L-K-Q- {G ,V, S) -G-L-X-X-XK-P-L-G-P-A-S-K-L-K-Q- {G, V, S) -G-L-X-X-X

55

Ved alle dele af det forsøg, hvis resultater gives i Tabel I, var der et højt niveau for baggrundsstøj til stede, et tegn på, at prøven indeholdt mange konta-minerende ingredienser, sandsynligvis kemiske rester 10 stammende fra rensningen. Sekvensen er kun givet af referencegrunde .In all parts of the experiment, the results of which are given in Table I, a high level of background noise was present, indicating that the sample contained many contaminating ingredients, probably chemical residues 10 arising from the purification. The sequence is given for reference purposes only.

I forsøg nr. 2 benyttede man en anden prøve (5-6 yg, ca. 95% ren) fra Sloan Kettering som ved forsøg nr.In trial # 2, another sample (5-6 µg, about 95% pure) was used from Sloan Kettering as in trial no.

1, og man udførte sekvenseringen som ved forsøg nr. 1.1, and the sequencing was performed as in Experiment # 1.

15 Denne prøve stammede fra det samme materiale, som blev benyttet til opnåelse af fig. 4 i Welte, et al., Proc.This sample was derived from the same material used to obtain FIG. 4 in Welte, et al., Proc.

Natl. Adac. Sci. (USA), 82, 1526-1530 (1985). Resultaterne gives i Tabel II.Natl. Adac. Sci. (USA), 82, 1526-1530 (1985). The results are given in Table II.

20 TABEL IITABLE II

15 10 15 20 T-P-L-G-P-A-S- (S) -L-P-Q- <S > -M- <L > -X-K- (R) -X-X- (R) - (L) -X- 1 2 3 4 5 615 10 15 20 T-P-L-G-P-A-S- (S) -L-P-Q- <S> -M- <L> -X-K- (R) -X-X- (R) - (L) -X- 1 2 3 4 5 6

Selvom man ved forsøg nr. 2 identificerede flere 2 rester, opnåede man ikke en tilstrækkelig lang sikkert 3 identificeret sekvens, hvorfra man kunne konstruere et 4 fornuftigt antal sonder til brug ved eftersøgning af 5 hpG-CSF DNA. Man beregnede, at man i det mindste skulle 6 bruge 1536 sonder, hvis an ved hjælp af sekvensen i Tabel II skulle isolere cDNA. Igen var kontaminering af prøven sandsynligvis årsag til dette.Although in experiment # 2, several 2 residues were identified, a sufficiently long safe 3 sequence was not obtained, from which a 4 reasonable number of probes could be constructed for searching for 5 hpG-CSF DNA. It was calculated that at least 636 probes would be used if the sequence of Table II was to isolate cDNA. Again, contamination of the sample was likely to cause this.

Derefter fremskaffedes en tredie prøve (3-5 yg, ca. 40% ren) fra Sloan Kettering som ovenfor. Man op-Then, a third sample (3-5 µg, about 40% pure) was obtained from Sloan Kettering as above. Man up

I DK 175551 B1 II DK 175551 B1 I

I 12 II 12 I

I delte denne prøve ved SDS-PAGE og underkastede den elek- IYou divided this sample by SDS-PAGE and subjected it to electronics

I troblot i et forsøg på yderligere rensning. Sekvensana- IIn troblot in an attempt at further purification. Sequence Analysis I

I lyse af denne prøve gav ingen data. IIn light of this sample, no data provided. IN

I 5 (B) Sekvensopdeling ved reviderede fremgangsmåder ISequence breakdown by revised methods

I Til opnåelse af en tilstrækkelig mængde rent ma- II To obtain a sufficient quantity of pure ma

I teriale, hvorpå man kunne udføre en tilstrækkelig nøj ag-In terial on which to perform sufficiently accurate

I tig aminosyresekvensanalyse, tilvejebragte man celler IIn tig amino acid sequence analysis, cells I were obtained

I 10 fra blærecarcinomcellelinie 5737 (underklon 1A6), som de II 10 from bladder carcinoma cell line 5737 (subclone 1A6), which I

I fremstilles hos Sloan-Kettering, fra Dr. E. Platzer. IYou are manufactured at Sloan-Kettering, from Dr. E. Platzer. IN

I Cellerne blev først dyrket i Iscove's medium (GIBCO,The cells were first grown in Iscove's medium (GIBCO,

I Grand Island, New York) i småflasker til de flød sammen. IIn Grand Island, New York) in small bottles until they collapsed. IN

I Derefter forsynede man dyrkningsmedierne med trypsin og IThen the culture media was provided with trypsin and I

I 15 podede dem i rulleflasker (1½ småflasker/flaske), der IIn 15, inoculated them into roller bottles (1½ small bottles / bottle), which you

I hver indeholdt 25 ml forudbehandlet Iscove's medium un- IIn each, 25 ml of pre-treated Iscove's medium contained un- I

I der 5% C02· Cellerne blev dyrket natten over ved 37eC IIn which 5% CO 2 · Cells were grown overnight at 37 ° C

I og 0,3 rpm. II and 0.3 rpm. IN

I Cytodex-l småkugler (Pharmacia, Uppsala, Sverige) IIn Cytodex-1 Small Spheres (Pharmacia, Uppsala, Sweden) I

I 20 blev vasket og steriliseret ved følgende fremgangsmåde. II 20 was washed and sterilized by the following procedure. IN

I Man anbragte 8 g småkugler i en flaske og tilsatte 400 I8 g of beads were placed in a bottle and 400 I added

I ml PBS. Man holdt småkuglerne i suspension, idet man IIn ml of PBS. The pellets were kept in suspension while holding

I rystede blidt i tre timer. Man lod småkuglerne bund- IYou shook gently for three hours. The pellets were dropped

I fælde, hældte PBS fra, rensede småkuglerne i PBS og til- IIn the trap, PBS poured off, cleaned the pellets in PBS and added

I 25 satte ny PBS. Småkuglerne blev autoklaveret i 15 minut- IIn 25 put new PBS. The beads were autoclaved for 15 minutes

I ter. Før anvendelse vaskede man småkuglerne i Iscove's II ter. Before use, wash the balls of Iscove's I

I medium plus 10% kalvefosterserum (FCS), før man tilsatte I frisk medium plus 10% FCS til opnåelse af behandledeIn medium plus 10% calf fetal serum (FCS) before adding in fresh medium plus 10% FCS to obtain treated

I småkugler. IIn small balls. IN

I 30 Man fjernede dyrkningsmedium, bortset fra 30 ml II 30 Culture medium was removed, except 30 ml of I

I fra hver rulleflaske og tilsatte 30 ml frisk medium plus II from each roll bottle and added 30 ml of fresh medium plus I

I 10% FCS og 40 ml behandlede småkugler til flaskerne. IIn 10% FCS and 40 ml treated beads for the bottles. IN

I Flaskerne blev gennemboblet med 5% C02, og man sugede IThe bottles were bubbled with 5% CO 2 and sucked

13 DK 175551 B1 alle bobler bort. Man anbragte flaskerne 1 rulleanordninger ved 3 rpm tø time før man nedsatte hastigheden til 0,3 rpm. Efter tre timers forløb forsynede man yderligere en lille flaske med trypsin, og indholdet blev til-5 sat til alle rulleflaskerne, der indeholdt småkugler.13 DK 175551 B1 all bubbles away. The bottles were placed in 1 roller at 3 rpm th hour before slowing to 0.3 rpm. After three hours, a small bottle of trypsin was added, and the contents were added to all the roll bottles containing beads.

Når sammenflydningen havde nået 40-50%, vaskede man kulturen i rulleflaskerne med 50 ml PBS og rullede videre i 10 minutter, før man fjernede PBS. Cellerne blev dyrket i 48 timer i medium Ά [iscove's medium med 10 indhold af 0,2% PCS, 10”8M hydrocortison, 2 mM glutamin, 100 enheder/ml penicillin og 100 pg/ml streptomycin]. Derefter indhøstede man supernatanten fra kulturen, idet man centrifugerede ved 3000 rpm i 15 minutter og lagrede ved -70°C. Man tilsatte igen til kulturerne medium A 15 med indhold af 10% PCS og dyrkede i 48 timer. Dyrkningsmediet blev kasseret, hvorefter man vaskede celler-ne med PDS som ovenfor og dyrkede i 48 timer i medium A.Once the confluence had reached 40-50%, the culture in the roll bottles was washed with 50 ml of PBS and rolled on for 10 minutes before removing PBS. The cells were grown for 48 hours in medium Ά [iscove's medium containing 10% 0.2% PCS, 10 ”8M hydrocortisone, 2 mM glutamine, 100 units / ml penicillin and 100 µg / ml streptomycin]. The supernatant was then harvested from the culture, centrifuged at 3000 rpm for 15 minutes and stored at -70 ° C. Medium A 15 containing 10% PCS was added to the cultures and cultured for 48 hours. The culture medium was discarded, then the cells were washed with PDS as above and cultured for 48 hours in medium A.

Man indhøstede igen supernatanten og behandlede den som tidligere beskrevet.The supernatant was again harvested and treated as previously described.

20 Man indkoncentrerede ca. 30 1 medium, der inde holdt 1A6 celler til ca. 2 1 på en Millipore Pellicon enhed, forsynet med to kassetter med afskæringer ved molekylvægt 10.000, idet man filtrerede 200 ml pr. minut og tilbageholdt ca. 1000 ml pr. minut. Koncentratet 25 blev diafiltreret mod ca. 10 1 50 mM Tris (pH 7,8) med samme apparat og samme hastigheder. Det diafiltrerede koncentrat blev med en hastighed på 40 ml pr. minut påsat en én liter DE cellulosesøjle, bragt i ligevægt med 50 mM Tris (pH 7,8). Efter påsætning vaskede man søjlen 30 med samme hastighed med en liter 50 mM Tris (pH 7,8) og derefter med to liter 50 mM Tris (pH 7,8) tilsat 50 mM NaCl. Søjlen blev derefter i rækkefølge elueret med seks 1 liter portioner 50 mM Tris (pH 7,5), der inde-20 Concentrated approx. 30 l of medium containing 1A6 cells to ca. 2 1 on a Millipore Pellicon unit, provided with two cassettes with molecular weight cuts 10,000, filtering 200 ml per ml. minute and withheld approx. 1000 ml per minute. The concentrate 25 was diafiltered to ca. 10 1 50 mM Tris (pH 7.8) with the same apparatus and the same speeds. The diafiltered concentrate was taken at a rate of 40 ml per ml. per minute on a one liter DE cellulose column, equilibrated with 50 mM Tris (pH 7.8). After application, column 30 was washed at the same rate with one liter of 50 mM Tris (pH 7.8) and then with two liters of 50 mM Tris (pH 7.8) added 50 mM NaCl. The column was then sequentially eluted with six 1 liter portions of 50 mM Tris (pH 7.5) containing

I DK 175551 B1 II DK 175551 B1 I

I 14 II 14 I

I holdt følgende koncentrationer af NaCl: 75 mM; 100 mM; IYou kept the following concentrations of NaCl: 75 mM; 100 mM; IN

I 125 mH; 150 mM; 200 mM; og 300 mM. Man indsamlede frak- II 125 mH; 150 mM; 200 mM; and 300 mM. Collections were collected

I tioner (50 ml) og sammenbragte de aktive fraktioner, IIions (50 ml) and pooled the active fractions, I

I som blev indkoncentreret til 65 ml på en "Amicon ultra- II which was concentrated to 65 ml on an "Amicon ultra-I

I 5 filtration stirred cell unit" forsynet med en YM5 mem- IIn 5 filtration, the cell unit stared with a YM5 mem- I

I bran. Dette koncentrat blev påsat en 2 liter AcA54 gel- IOn fire. This concentrate was applied to a 2 liter AcA54 gel-I

I filtreringssøjle, bragt i ligevægt med PBS. Gennemløbet IIn filtration column, equilibrated with PBS. The passage I

I var 80 ml/time, og man indsamlede fraktioner på 10 ml. IYou were 80 ml / hour and fractions of 10 ml were collected. IN

I Aktive fraktioner blev sammenbragt og direkte påsat en IActive fractions were pooled and directly applied to an I

I IQ C4 "high performance liquid chromatography" (HPLC) IIn IQ C4 "high performance liquid chromatography" (HPLC) I

I søjle. IIn the pillar. IN

I Prøver, hvis rumfang var 125-850 ml, og som inde- IIn Samples whose volume was 125-850 ml and contained

I holdt 1-8 mg protein, hvoraf 10% var hpG-CSF, blev påsat II kept 1-8 mg of protein, of which 10% was hpG-CSF, I was loaded

I søjlen med en gennemstrømningshastighed på 1-4 ml/min. IIn the column with a flow rate of 1-4 ml / min. IN

I 15 Efter påsætning og en første vask med 0,1 M ammoniumace- II After application and a first wash with 0.1 M ammonium acetate

I tat (pH 6,0-7,0) i 80% 2-propanol med en gennemstrøm- II tat (pH 6.0-7.0) in 80% 2-propanol with a flow I

I ningshastighed på lml/minut. Man indsamlede 1 ml frak- IIn rate of lml / minute. One ml of fraction was collected

I tioner og undersøgte for proteinindhold ved 220 nm, 260 II tions and examined for protein content at 220 nm, 260 I

I nm og 280 nm. IIn nm and 280 nm. IN

I 20 Ved denne rensning blev fraktioner, der indholdt IIn this purification, fractions containing I

I hpG-CSF klart adskilt (som fraktionerne 72 og 73 ud af IIn hpG-CSF clearly separated (as fractions 72 and 73 out of I

I 80) fra andre fraktioner, der indeholdt protein. Man IIn 80) from other fractions containing protein. Man I

I isolerede hpG-CSF (150-300 yg) af en renhed på ca. 85 ± IIn isolated hpG-CSF (150-300 µg) of a purity of ca. 85 ± I.

I 5% og med et udbytte på ca. 50%. Fra dette rensede ma- IIn 5% and with a yield of approx. 50%. From this purified ma- I

I 25 teriale benyttede man 9 yg i forsøg nr. 4, en aminosy- IIn 25 terial, 9 µg was used in experiment # 4, an amino acid

I resekvensanalyse, hvor man påsatte proteinprøven til en IIn sequence analysis, applying the protein sample to an I

I TFA-aktiveret glasfiberskive uden polybren. Man udførte IIn TFA-activated fiberglass without polybrene. They performed

I sekvensanalysen med en AB 470A sekvensopdeler ved frem- IIn the sequence analysis with an AB 470A sequence divider at forward I

I gangsmåden ifølge Hewick, et al., J. Biol. Chem., 256, IIn the method of Hewick, et al., J. Biol. Chem., 256, I

I 30 7990-7997 (1981) og Lai (Anal. Chim. Acta, 163, 243-248 II 30 7990-7997 (1981) and Lai (Anal. Chem. Acta, 163, 243-248 I

I (1984). Resultaterne af forsøg nr. 4 vises i Tabel IIn (1984). The results of Experiment # 4 are shown in Table I

I III. II III. IN

15 DK 175551 B115 DK 175551 B1

TABEL IIITABLE III

1 5 101 5 10

Thr- Pro - Leu - Gly - Pro - Ala - Ser - Ser - Leu -Pro-5 15 20Thr- Pro - Leu - Gly - Pro - Ala - Ser - Ser - Leu -Pro-5 15 20

Gin- Ser - Phe - Leu - Leu - Lys -(Lys)- Leu -(Glu)-Glu- 25 30 10 Val- Arg - Lys - Ile -(Gin)- Gly - Val - Gly - Ala -Ala-Gin-Ser - Phe - Leu - Leu - Lys - (Lys) - Leu - (Glu) -Glu- 30 10 Val-Arg - Lys - Ile - (Gin) - Gly - Val - Gly - Ala-Ala-

Leu -X - X - I forsøg nr. 4 opnåede man efter 31 gennemløb 15 (svarende til rest 31 i Tabel III) ingen yderligere signifikant oplysning om sekvensens forløb. Til opnåelse af en længere tydelig sekvens i et femte forsøg reducerede man 14 yg hpG-CSF oprenset fra behandlet dyrkningsmedium med 10 ]il β-mercaptoethanol i en time ved 45°C, 20 hvorefter man tørrede grundigt under vakuum. Proteinresten blev genopløst i 5% myresyre og påsat en polybren-behandlet glasfiberskive. Sekvensopdelingsanalysen blev udført som ved forsøg nr. 4 ovenfor. Resultaterne fra forsøg nr. 5 gives i Tabel IV:Leu -X - X - In Experiment # 4, no further significant information on the sequence of the sequence was obtained after 31 passes 15 (corresponding to residue 31 in Table III). To obtain a longer clear sequence in a fifth experiment, 14 µg of hpG-CSF purified from treated culture medium was reduced with 10 µl of β-mercaptoethanol for one hour at 45 ° C, then thoroughly dried under vacuum. The protein residue was redissolved in 5% formic acid and applied to a polybrene-treated fiberglass disc. The sequence breakdown analysis was performed as in Experiment # 4 above. The results of Experiment # 5 are given in Table IV:

I DK 175551 B1 II DK 175551 B1 I

I 16 II 16 I

I TABEL IV II TABLE IV

II 5 10 III 5 10 I

I Thr- Pro - Leu - Gly - Pro - Ala - Ser - Ser - Leu- Pro- II Thr- Pro - Leu - Gly - Pro - Ala - Ser - Ser - Leu- Pro- I

I II I

I 15 20 II 15 20 I

I Gin- Ser - Phe - Leu - Leu - Lys - Cys - Leu - Glu- Gin- II Gin-Ser - Phe - Leu - Leu - Lys - Cys - Leu - Glu- Gin- I

I 25 30 II 25 30 I

I Val- Arg - Lys - Ile - Gin - Gly - Asp - Gly - Ala- Ala- II Val-Arg - Light - Ile - Gin - Gly - Asp - Gly - Ala- Ala- I

I 35 40 II 35 40 I

I Leu- Gin - Phe - Lys - Leu - Gly - Ala - Thr - Tyr- Lys- II Leu-Gin - Phe - Lys - Leu - Gly - Ala - Thr - Tyr - Lys- I

I 15 45 II 15 45 I

I Val- Phe - Ser - Thr -(Arg)-(Phe)-(Met)- X- II Val- Phe - Ser - Thr - (Arg) - (Phe) - (Met) - X- I

I Aminosyresekvensen i Tabel IV var tilstrækkelig IIn the amino acid sequence of Table IV, sufficient I

I lang (44 rester) og nøjagtigt bestemt, at man derfra IIn long (44 residues) and precisely determined that from there I

I 20 kunne konstruere sonder til opnåelse af hpG-CSP cDNA som II could construct probes to obtain hpG-CSP cDNA as I

I beskrevet nedenfor. IIn described below. IN

I Eksempel 2 IIn Example 2 I

I Blandt standardfremgangsmåder til isolering af IAmong standard methods for isolating I

I 25 relevante cDNA sekvenser findes en fremstilling af plas- IIn 25 relevant cDNA sequences there is a preparation of plasmid I

midbaserede cDNA "biblioteker", afledt fra revers tran- Imid-based cDNA "libraries", derived from reverse trans- I

skription af mRNA, der findes i donorceller udvalgt på Iscript of mRNA found in donor cells selected on I

I basis af deres eksprimering af et udvalgt gen. Når man IOn the basis of their expression of a selected gene. When you

kender væsentlige dele af aminosyresekvensen af et be- Iknows significant portions of the amino acid sequence of a gene

I 00 stemt polypeptid, kan man benytte mærkede, enkeltstren- IIn 00 tuned polypeptide, labeled single strand I can be used

I gede DNA sondesekvenser, der duplikerer en sekvens, som IIn goat DNA probe sequences that duplicate a sequence such as I

I man antager findes i det relevante cDNA ved en DNA/DNA IIt is believed to exist in the relevant cDNA by a DNA / DNA I

I hybridiseringsprocedure, som man udfører på klonede ko- IIn the hybridization procedure performed on cloned co-I

17 DK 175551 B1 pier af cDNA, som er blevet denatureret, så det forekommer på enkeltstrengsform. Weissman, et al., US patent nr. 4 394 443; Wallace, et al., Nucleic Acids Res., 6, 3543-3557 (1979), og Reyes, et al., Proc. Natl. Acad.17 DK 175551 B1 pier of cDNA which has been denatured to appear in single strand form. Weissman, et al., U.S. Patent No. 4,394,443; Wallace, et al., Nucleic Acids Res., 6, 3543-3557 (1979), and Reyes, et al., Proc. Natl. Acad.

5 Sci. (USA), 79, 3270-3274 (1982), og Jaye, et al.,5 Sci. (USA), 79, 3270-3274 (1982), and Jaye, et al.,

Nucleic Acids Res., 11, 2325-2335 (1983). Se også US patent nr. 4 358 535, Falkow, et al., angående DNA/DNA hybridiseringsprocedure ved diagnose; og Davis, et al., "A Manual for Genetic Engineering, Advanced Bacterial 10 Genetics", Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y. (1980) siderne 55-58 og 174-176 angående teknikken for koloni og plaquehybridisering.Nucleic Acids Res., 11, 2325-2335 (1983). See also U.S. Patent No. 4,358,535, Falkow, et al., On DNA / DNA hybridization procedure at diagnosis; and Davis, et al., "A Manual for Genetic Engineering, Advanced Bacterial 10 Genetics", Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y. (1980) pages 55-58 and 174-176 regarding the technique of colony and plaque hybridization.

Man ekstraherede al RNA fra ca. 1 g celler fra en blærecarcinomcellelinie 5637 (1A6) under anvendelse af 15 guanidiniumthiocyanat til kvantitativ isolering af ubeskadiget RNA. [Chirgwin, et al., Biochemistry, 18, 5294-5299 (1979)].All RNA was extracted from ca. 1 g of cells from a bladder carcinoma cell line 5637 (1A6) using 15 guanidinium thiocyanate to quantitatively isolate undamaged RNA. [Chirgwin, et al., Biochemistry, 18, 5294-5299 (1979)].

Den sterile vandige RNA opløsning indeholdt al RNA fra IA6 cellerne. For tilvejebringelse af messenger 20 rna alene ud fra opløsningen af total RNA lod man denne opløsning passere en søjle, der indeholdt oligodesoxy-thymidylat [oligo(dT)] (Collaborative Research, Inc., Waltham, Massachusetts). Poly-adenylerede (poly-A+) endestykker, der er karakteristiske for messenger RNA, 25 bindes til søjlen, hvorimod ribosom RNA elueres. Som et resultat af denne fremgangsmåde kunne man isolere ca. 90 yg poly-adenyleret messenger RNA (poly-A+ mRNA). Det isolerede poly-A+ messenger RNA blev forbehandlet med methylkviksølvhydroxid (Alpha Ventron, Danvers, Massa-30 chusetts) ved en slutkoncentration på 4 mM i fem minutter ved stuetemperatur før anvendelse i en cDNA reaktion. Behandlingen med methylkviksølvhydroxid denaturerer vekselvirkninger med messenger RNA, både interntThe sterile aqueous RNA solution contained all the RNA from the IA6 cells. To provide messenger 20 RNA alone from the total RNA solution, this solution was passed through a column containing oligodesoxy-thymidylate [oligo (dT)] (Collaborative Research, Inc., Waltham, Massachusetts). Poly-adenylated (poly-A +) terminals characteristic of messenger RNA are bound to the column, whereas ribosome RNA is eluted. As a result of this method, approx. 90 µg poly-adenylated messenger RNA (poly-A + mRNA). The isolated poly-A + messenger RNA was pretreated with methylmercury hydroxide (Alpha Ventron, Danvers, Massa chusetts) at a final concentration of 4 mM for five minutes at room temperature before use in a cDNA reaction. Methylmercury hydroxide treatment denatures interactions with messenger RNA, both internally

I DK 175551 B1 II DK 175551 B1 I

I II I

I og med kontaminerende molekyler, som blokerer transla- IWith contaminant molecules that block transla- I

I tion. Payvar, et al., J. Biol. Chem., 258, 7636-7642 II tion. Payvar, et al., J. Biol. Chem., 258, 7636-7642 I

I (1979). II (1979). IN

I Ifølge Okayama-fremgangsmåden [Okayama, et al,, IIn the Okayama method [Okayama, et al ,, I

I 5 Molecular & Cellular Biology, 2, 161-170 (1982)] frem- IIn Molecular & Cellular Biology, 2, 161-170 (1982)]

I stillede man en cDNA bank, idet man benyttede mRNA, op- IYou set up a cDNA bank, using mRNA, up

I nået fra IA6 celler. Man transformerede cDNA, idet man IIn reached from IA6 cells. CDNA was transformed by

I inkuberede i en værtsmikroorganisme E. coli K-12 stamme IIn incubated in a host microorganism E. coli K-12 strain I

I HB101 til forøgelse af mængden. IIn HB101 to increase the amount. IN

I 10 II 10 I

I Eksempel 3 IIn Example 3 I

I Hybridiseringssonder, konstrueret på basis af den IIn Hybridization probes, constructed on the basis of the I

I terminale aminosyresekvens for hpG-CSP ifølge Tabel IV, IIn the terminal amino acid sequence of hpG-CSP according to Table IV, I

I bestod af et sæt af 24 oligonucleotider, hver med en IYou consisted of a set of 24 oligonucleotides, each with an I

I 15 længde på 23 baser og med et indhold på tre inosinre- IIn 15 lengths of 23 bases and with a content of three inosine re- I

I ster. Sondeoligonucleotiderne blev fremstillet ved II star. The probe oligonucleotides were prepared at 1

I fremgangsmåden Ifølge Caruthers, et al., Genetic IIn the method According to Caruthers, et al., Genetic I

I Engineering, 4, 1-18 (1982) og mærket med y-32P ATP, id- IIn Engineering, 4, 1-18 (1982) and labeled with γ-32P ATP, ID-I

I et de blev kinaseret med polynucleotidkinase. Sondeoli- IIn one they were kinated with polynucleotide kinase. Probe oil I

I 20 gonucleotiderne, der svarede til messenger RNA for re- IIn the 20 gonucleotides corresponding to messenger RNA for re- I

I sterne 23-30 i sekvensen i Tabel IV, illustreres i Tabel IIn stars 23-30 of the sequence in Table IV, Table I is illustrated

I V: II V: I

I TABEL V II TABLE V I

I 25 II 25 I

I hpG-CSF sonder II hpG-CSF without I

I 5’ GC IGC ICC *TC ICC TTG GAT TTT3’ II 5 'GC IGC ICC * TC ICC TTG GAT TTT3' I

I 30 Antagelsen af neutralitet for I-baserne var base- II The assumption of neutrality for the I bases was base I

I ret på offentliggjorte arbejder af Takahashi, et al., IIn Right to Published Works by Takahashi, et al., I

I Proc. Natl. Acad. Sci. (USA), 82, 1931-1935 (1985) og IIn Proc. Natl. Acad. Sci. (USA), 82, 1931-1935 (1985) and I

I Ohtsuka, et al., J. Biol. Chem., 260, 2605-2608 (1985). IIn Ohtsuka, et al., J. Biol. Chem., 260, 2605-2608 (1985). IN

19 DK 175551 B119 DK 175551 B1

Inosin kan imidlertid have en destabiliserende effekt, hvis det baseparres med G eller T. Hos Takahashi, et al., synes inosiner at besidde en neutral effekt, fordi de som gruppe i gennemsnit opnår næsten neutralitet 5 (f.eks. hvis tre med fordel parrer med C, og to ikke med fordel parrer med T).However, inosine can have a destabilizing effect if it is paired with G or T. In Takahashi, et al., Inosins appear to have a neutral effect because, as a group, they achieve on average neutrality 5 (e.g., if three advantageously pair with C, and two do not favor pair with T).

Til afprøvning af virkningen af baseparring mellem I og G konstruerede man kontroleksperimenter ved hjælp af en N-myc gensekvens og klon. Sekvensen, der 10 var udplukket fra N-myc genet, havde samme total indhold af G og C ved de første to stillinger i hvert kodon, som var bestemt for hpG-rCSF sonderne. N-myc prøvesonderne var af samme længde, indeholdt I i samme relative stillinger og havde potentielt samme gennemsnitværdi for Tm 15 (62-66°C, idet de tre eller fire inosinrester, der fandtes, ikke blev talt med) som hpG-CSF sonderne.To test the effect of base pairing between I and G, control experiments were constructed using an N-myc gene sequence and clone. The sequence selected from the N-myc gene had the same total content of G and C at the first two positions in each codon that were determined for the hpG-rCSF probes. The N-myc test probes were of the same length, contained I in the same relative positions and potentially had the same mean value for Tm 15 (62-66 ° C, with the three or four inosine residues found not being counted) as the hpG-CSF probes .

Man konstruerede to grupper N-myc prøvesonder ved fremgangsmåden ifølge Caruthers, et al., se ovenfor.Two groups of N-myc test probes were constructed by the method of Caruthers, et al., Supra.

Sæt I, som illustreret i Tabel VI, inkluderede: 1, en 20 23 mer med fuldstændig tilpasning; 2, i hvilken tre tredie-positions C'er var erstattet med I'er under dannelse af det værst mulige tilfælde ved tilsætning af I; og 3, i hvilken fire tredie-positions C er var erstattet med I'er. Den anden gruppe testsonder var konstrueret, 25 så den repræsenterede en mere tilfældig fordeling af inosinbasepar, hvorved man kunne opnå en baseparrende virkning, der i gennemsnit var neutral. Sæt II, som illustreret i Tabel VI, inkluderede; 4, med indhold af to I'er, der vil danne basepar med C og I med G; og 5, 30 identisk med 4, idet der er tilsat et yderligere I:G basepar.Set I, as illustrated in Table VI, included: 1, a 20 23 mer with complete fit; 2, in which three third-position Cs were replaced by I'er to form the worst possible case by the addition of I; and 3, in which four third-position Cs were replaced by I's. The second group of test probes was constructed to represent a more random distribution of inosine base pairs, thereby obtaining a base pairing effect that was, on average, neutral. Set II, as illustrated in Table VI, included; 4, containing two I's which will form base pairs with C and I with G; and 5, 30 identical to 4, with an additional I: G base pair added.

I DK 175551 B1 II DK 175551 B1 I

I 20 II 20 I

I TABEL VI II TABLE VI

I 1. 5' CAC AAC TAT GCC GCC CCC TCC CC3' II 1. 5 'CAC AAC TAT GCC GCC CCC TCC CC3' I

I 5 2. 5' CAC AAC TAT GCI GCC CCI YCI CC3' II 5 2. 5 'CAC AAC TAT GCI GCC CCI YCI CC3' I

I 3. 5* CAI AAC TAT GCI GCC CCI TCI CC3' II 3.5 * CAI AAC TAT GCI GCC CCI TCI CC3 'I

I 4. 5' AAC GAG CTG TGI GGC AGI CCI GC3' II 4.5 'AAC GAG CTG TGI GGC AGI CCI GC3' I

I 10 II 10 I

I 5. 5' AAI GAG CTG TGI GGC AGI CCI GC3' II 5. 5 'AAI GAG CTG TGI GGC AGI CCI GC3' I

I Fem replikafiltre, der indeholdt N-myc DNA se- II Five replica filters containing N-myc DNA se- I

I kvenser og sekvenser fra DNA fra kyllingevæksthormon IIn Chicken Growth Hormone I DNA Sequences and Sequences

I 15 (gom en negativ kontrol), blev ophedet i to timer ved IIn 15 (erase a negative control), was heated for two hours at 1

I 80°C i en vakuumovn før hybridiseringen. Alle filtre IAt 80 ° C in a vacuum oven before hybridization. All filters I

I blev hybridiseret som beskrevet i Eksempel 4 for hpG-CSF II was hybridized as described in Example 4 for hpG-CSF I

I sonderne, med undtagelse af at hybridiseringsperioden IIn the probes, except that the hybridization period I

I kun var seks timer. Filtre blev vasket tre gange ved IIn only six hours. Filters were washed three times at 1

I 20 stuetemperatur og en gang ved 45°C, 10 minutter hver IAt 20 room temperature and once at 45 ° C, 10 minutes each I

I gang. Filtrene blev kontrolleret med en Geigertæller. IOn it. The filters were checked with a Geiger counter. IN

I Filteret, der repræsenterede en N-myc sonde 3, IIn the Filter representing an N-myc probe 3, I

gav et meget svagt signal i forhold til de andre fire Igave a very weak signal compared to the other four

filtre med sonder og blev ikke vasket yderligere. Efter Ifilters with probes and were not washed further. After I

I 25 ti minutters vask ved 50°C gav Geigertælleren følgende IFor 25 ten minutes washing at 50 ° C, the Geiger counter gave the following I

I procentiske signal, idet sonde 1 sættes til 100%; sonde IIn percent signal, with probe 1 set to 100%; probe I.

I 2 20%; sonde 3 (45°C), 2%; sonde 4 92%; og sonde 5 75%. II 20%; probe 3 (45 ° C), 2%; probe 4 92%; and probe 5 75%. IN

I Efter vask ved 55eC var procentværdierne: sonde 2 16%; IAfter washing at 55 ° C, the percentages were: probe 2 16%; IN

I sonde 4 100%; og sonde 5 80%. En sluttelig vask ved IIn probe 4 100%; and probe 5 80%. A final wash at I

30 60°C gav følgende procentværdier: Sonde 2 1,6%; sonde 4 I30 ° C gave the following percentages: Probe 2 1.6%; probe 4 I

I 90%, og sonde 5 70%. IIn 90%, and probe 5 70%. IN

I Således observerer man under tilstedeværelse af IThus, in the presence of I

I tre I'er, som i sonderne 2 og 4 en op til 60-gange så IIn three, as in probes 2 and 4, you saw up to 60 times

21 DK 175551 B1 stor forskel i signal, når man nærmer sig den teoretiske værdi for Tm (I ikke inkluderet i beregningen) [baseret på det værste tilfælde for baseparring med I (sonde 2) og et relativt neutralt tilfælde med baseparring med I 5 (sonde 4)].Significant difference in signal when approaching the theoretical value of Tm (I not included in the calculation) [based on the worst case for base pairing with I (probe 2) and a relatively neutral case with base pairing with I5 ( probe 4)].

De standardiseringsoplysninger, som man indvandt ved N-myc prøvehybridiseringerne, blev udnyttet, når man skulle vaske og kontrollere hpG-CFS hybridiseringen som nedenfor til at vurdere, i hvor høj grad man kunne have 10 tillid til resultaterne, når man benyttede en mindre ' stringent vaskeprocedure.The standardization information obtained from the N-myc sample hybridizations was used to wash and control the hpG-CFS hybridization as below to assess the extent to which one could have confidence in the results when using a less 'stringent' washing procedure.

Eksempel 4Example 4

Ved fremgangsmåden ifølge Hanahan, et al., J.In the method of Hanahan, et al., J.

15 Mol. Biol. 166, 557-580 (1983) udspredte man bakterier, der indeholdt rekombinanter med cDNA indsætningsstykker, som fremstillet i Eksempel 2 på 24 nitrocellulosefiltre (Millipore, Bedford, Massachusetts), anbragt på agarplader. Man inkuberede derefter pladerne til opnåelse af 20 ca. 150 000 kolonier, som blev replikaplattede på 24 andre nitrocellulosefiltre. Man inkuberede replikafiltrene, indtil man opnåede adskilte kolonier. Bakterierne på filtrene blev lyserede på Whatman 3 MM papir, der var næsten mættet med natriumhydroxid (0,5 M) i ti minutter 25 og derefter plettet med Tris (1M) i to minutter, hvorefter man plettede med Tris (0,5 M) med indhold af NaCl (1,5 M) i ti minutter. Når filtrene var næsten tørre, lod man dem opvarme i to timer ved 80°C i en vakuumovn, før de skulle hybridiseres med nucleinsyre. [wahl, et 30 al., Proc. Natl. Acad. Sci. (USA), 76, 3683-3687 (1979)] ; og Maniatis, et al., Cell, 81, 163-182 (1976).15 mol. Biol. 166, 557-580 (1983), bacteria containing recombinants with cDNA inserts as prepared in Example 2 of 24 nitrocellulose filters (Millipore, Bedford, Massachusetts) were spread onto agar plates. The plates were then incubated to obtain about 150,000 colonies replicated on 24 other nitrocellulose filters. The replica filters were incubated until separate colonies were obtained. The bacteria on the filters were lysed on Whatman 3 MM paper, which was almost saturated with sodium hydroxide (0.5 M) for ten minutes 25 and then stained with Tris (1M) for two minutes, then stained with Tris (0.5 M) containing NaCl (1.5 M) for ten minutes. When the filters were almost dry, they were allowed to warm for two hours at 80 ° C in a vacuum oven before hybridizing with nucleic acid. [Wahl, et al., Proc. Natl. Acad. Sci. (USA), 76, 3683-3687 (1979)]; and Maniatis, et al., Cell, 81, 163-182 (1976).

Man forhybridiserede filtrene i to timer ved 65eC i 750 ml 10 x Denhardt, 0,2% SDS og 6 x SSC. ManThe filters were pre-hybridized for two hours at 65 ° C in 750 ml of 10 x Denhardt, 0.2% SDS and 6 x SSC. You

I DK 175551 B1 II DK 175551 B1 I

I 22 II 22 I

I rensede filtrene i 6 x SSC og anbragte dem fire sammen, IYou cleaned the filters in 6 x SSC and placed them four together, I

I hvorefter man hybridiserede 14 timer i 6 x SSC og 10 x IThen hybridized for 14 hours in 6 x SSC and 10 x 1

I Denhardt. Der var ca. 15 ml opløsning i hybridiserings- IIn Denhardt. There were approx. 15 ml of solution in hybridization I

I beholderen med indhold af 50 x 106 cpm af 32P-mærket IIn the container containing 50 x 106 cpm of the 32P mark I

I 5 sonde (oligonucleotider). IIn 5 probes (oligonucleotides). IN

I Efter hybridisering vaskede man filtrene tre IAfter hybridization, the filters were washed three times

I gange i 6 x SSC (1 liter/vask) ved stuetemperatur, 10 IAt times in 6 x SSC (1 liter / wash) at room temperature, 10 l

I minutter hver gang. Man vaskede filtrene to gange ved IFor minutes every time. The filters were washed twice at 1

I 45*C i 15 minutter, en gang ved 50°C i 15 minutter og en IAt 45 ° C for 15 minutes, once at 50 ° C for 15 minutes and one I

I 10 gang ved 55eC i 15 minutter, idet man benyttede l liter IFor 10 minutes at 55 ° C for 15 minutes, using 1 liter of I

I 6X SSC hver gang. Man autoradiograferede filtrene ved IIn 6X SSC each time. The filters were autoradiographed at I

I -70'c i to timer under benyttelse af en forstærkende II -70'c for two hours using a reinforcing I

I skærm og Kodak XAR-2 film. På denne autoradiograf var IOn screen and Kodak XAR-2 movie. On this autoradiograph you were

I der 40-50 positive signaler, deriblandt fem meget kraf- IThere are 40-50 positive signals, including five very powerful I

I 15 tige signaler. II 15 very signals. IN

I Arealet, der indeholdt de stærkeste fem signaler IThe Area containing the strongest five signals I

I og yderligere fem positive signaler, blev skrabet fra II and another five positive signals were scraped from I

I udgangspladerne og igen udplattet for en anden gennem- IIn the output plates and again plated for another through- I

søgning ved hjælp af samme sondeblanding og samme betin- Isearch using the same probe mix and the same betin- I

I 20 gelser. Vaskningen afveg, idet man vaskede ved høj tem- IIn 20 gels. The washing varied, washing at high tem

I peratur to gange ved 55°C i 15 minutter, og en gang ved IPerature twice at 55 ° C for 15 minutes and once at I

I 60eC i 15 minutter. På baggrund af studiet af N-myc IAt 60 ° C for 15 minutes. Based on the study of N-myc I

I sonden i Eksempel 3 satte man slut vasketemperaturen IIn the probe of Example 3, the washing temperature I was finally set

I i den anden gennemsøgning i vejret, idet det kombinerede IIn the second crawl of the weather, combining

I 25 smeltepunkt for de 24 23-mere var $0-68°C, som i N-myc IAt 25 melting point for the 24 23-mer was $ 0-68 ° C, as in N-myc I

sonderne. Umiddelbart efter den anden vask ved 55°C lod Ithe probes. Immediately after the second wash at 55 ° C, I allowed

I man filtrene autoradiografere i fugtig tilstand. En IIn the filters the autoradiographs in the moist state. And I

sammenligning af denne autoradiografi med en anden auto- Icomparing this autoradiography with another auto- I

I radiografi, optaget samme tidspunkt efter slutvasken ved IIn radiography, recorded at the same time after the final wash at I

30 6o°C, viste at kun to af de ti afprøvede kloner ikke led I30 ° C, showed that only two of the ten clones tested did not suffer from I

et kraftigt tab i signalstyrke, når man forøgede tempe- Ia significant loss in signal strength when increasing temp

I raturen fra 55-60eC. Man kunne senere vise, at disse to IIn the rate from 55-60eC. It could later be shown that these two I

I kloner var af næsten identisk længde og besad næsten IThe clones were of almost identical length and possessed almost you

23 DK 175551 B1 samme mønster for restriktionsendonucleaser. Man udvalgte en klon, betegnet Ppo2, til sekvensopdeling.The same pattern for restriction endonucleases. A clone, designated Ppo2, was selected for sequence breakdown.

Man udførte sekvensopdelingen af den rekombinante hpG-CSF cDNA klon Ppo2, opnået ved den ovennævnte frem-5 gangsmåde ved didesoxymetoden ifølge Sanger, et al.,Sequencing of the recombinant hpG-CSF cDNA clone Ppo2, obtained by the above procedure by the didesoxy method of Sanger, et al., Was performed.

Proc. Natl. Acad. Sci. (USA) 74, 5463-5467 (1977). M-13 strengen med enkeltstrenget DNA blev benyttet som kloningsvektor og leverede enkeltstrenget DNA skabeloner til de dobbeltstrengede cDNA kloner. Sanger, et al.Proc. Natl. Acad. Sci. (USA) 74, 5463-5467 (1977). The M-13 single stranded DNA strand was used as a cloning vector and provided single stranded DNA templates for the double stranded cDNA clones. Singer, et al.

10 fremgangsmåden gav den sekvens, der vises i Tabel VII sammen med den tilsvarende aminosyresekvens og en komplementær streng i den region, der koder for polypep-tid.The procedure gave the sequence shown in Table VII together with the corresponding amino acid sequence and a complementary strand in the polypeptide coding region.

,1»1 '

I DK 175551 B1 II DK 175551 B1 I

I 24 II 24 I

I O Eh C COO 3ϋϋ ΟΟϋ W O O W < PH II O Eh C COO 3ϋϋ ΟΟϋ W O O W <PH I

W O O M < Eh M C £H klUO NC Eh JCCJO IW O O M <Eh M C £ H klUO NC Eh JCCJO I

AOO OOO UUU AOO Eh Eh C Eh < E* IAOO OOO UUU AOO Eh Eh C Eh <E * I

I >iUU 0)0 0 OUO «O O 300 0,0 0 II> iUU 0) 0 0 OUO «O O 300 0.0 0 I

M O O M M Eh C WOO >lOO UH< 0) < S IM O O M M Eh C WOO> lOO UH <0) <S I

O O O m m C Eh A O O O Eh C kJ O O COO IO O O m m C Eh A O O O Eh C kJ O O COO I

I 3 OO <1 0)0 O 0)00 UOO OIOO 300 II 3 OO <1 0) 0 O 0) 00 UOO OIOO 300 I

S «> Eh C NC Eh m C E* 0)0 0 4S Eh C 0) EH <S «> Eh C NC Eh m C E * 0) 0 0 4S Eh C 0) EH <

jf iJ O O kJ C Eh SOO W C E« A H «2 *A ί* Cjf iJ O O kJ C Eh SOO W C E «A H« 2 * A ί * C

I δ ooo croo moo woo 3eh c woo II δ ooo croo moo woo 3eh c woo I

Γ. WOO WOO NO O 0)00 0) EH 3 42 0 0 IΓ. WOO WOO NO O 0) 00 0) EH 3 42 0 0 I

zL A O O C C Eh U Eh C W C Eh kJ O O Eh C £zL A O O C C Eh U Eh C W C Eh kJ O O Eh C £

I S HWOO MOO 300 300 NOO OOO II S HWOO MOO 300 300 NOO OOO I

I g +4200 m Eh C 4) Eh C ft) H < HUU WOO II g +4200 m Eh C 4) Eh C ft) H <HUU WOO I

I § EHHiEH >00 hJOO kJOO OOO A O O II § EHHiEH> 00 hJOO kJOO OOO A O O I

I S <000 cceh moo 000 woo ©nehc II S <000 cceh moo 000 woo © nehc I

I g HOW © M C Eh O NC Eh OwOO O 0) O O OMOO II g HOW © M C Eh O NC Eh OwOO O 0) O O OMOO I

I O -H<OOfMOOO HTJ*iEHVOAOOC0W*iEHHOOOI O -H <OOfMOOO HTJ * iEHVOAOOC0W * iEHHOOO

I R 3 < Eh 300 WOO m Eh C m Eh C 300 II R 3 <Eh 300 WOO m Eh C m Eh C 300 I

I g h2eh H<£h NC E* MOO -H < Eh C) p 2 II g h2eh H <£ h NC E * MOO -H <Eh C) p 2 I

I g OOO OOO Eh Eh < COO SOO .J Eh CI g OOO OOO Eh Eh <COO SOO .J Eh C

I S COO 3<EH WOO 0,0 0 300 3 00 II S COO 3 <EH WOO 0.0 0 300 3 00 I

S rn ·-* < fH ft) EH < 42 0 0 WOO ® Ε-» C m C EhS rn · - * <fH ft) EH <42 0 0 WOO ® Ε- »C m C Eh

> O OOO kJEH< Eh < Eh Eh Eh C JUO OOO> O OOO kJEH <Eh <Eh Eh Eh C JUO OOO

I S moo moo moo ooo c c eh ooo II S moo moo moo ooo c c eh ooo I

I , g to EH C NO O MOO WOO m 2 Eh woo II, g to EH C NO O MOO WOO m 2 Eh woo I

Μ o >00 O Eh 41 COO AOO OOO AOO I> O> 00 O Eh 41 COO AOO OOO AOO I

I w R W < EH moo m£H< OOO WOO wOO II w R W <EH moo m £ H <OOO WOO wOO I

I m g 42 Ο O NC Eh NO Ο M Eh < OOO OOO II m g 42 Ο O NC Eh NO Ο M Eh <OOO OOO I

I ® . g Eh C Eh iJ < Eh O Eh C H C Eh W < Eh CO Eh C II ®. g Eh C Eh iJ <Eh O Eh C H C Eh W <Eh CO Eh C I

I < 52 0,0 0 300 300 NOO 300 OOO II <52 0.0 0 300 300 NOO 300 OOO I

g WOO OEH«i O Eh < MOO O EH < M Eh 3 ** g Eh Eh < kJOO kJOO OOO kJEH< m C Ehg WOO OEH «i O Eh <MOO O EH <M Eh 3 ** g Eh Eh <kJOO kJOO OOO kJEH <m C Eh

I $2 300 300 moo 300 moo no ο II $ 2 300 300 moo 300 moo now ο I

I Mg O EH < ft) Eh C NC Eh ft) Eh C >ιϋ O MOO II Mg O EH <ft) Eh C NC Eh ft) Eh C> ιϋ O MOO I

Mg kJOO kJOO kJ C E· kJOO OEh< oooMg kJOO kJOO kJ C E · kJOO OEh <ooo

I όΗ (0 < Eh μ 0) ο O 300 h Eh 4 NO O 3 C E· II όΗ (0 <Eh μ 0) ο O 300 h Eh 4 NO O 3 C E · I

C 3 MOOC 42 Eh C M < Eh 0)0 0 MOO m 3 EhC 3 MOOC 42 Eh C M <Eh 0) 0 0 MOO m 3 Eh

Mg COOm A Eh 3 OOO OT E· C OOO OOOMg COOm A Eh 3 OOO OT E · C OOO OOO

I y! W Eh < SI w u O COO mOO m C E* 300 II y! W Eh <SI w u O COO mOO m C E * 300 I

3 0)00 0)00 MCE· μ<Εη μΟΟ ΦΕη·4;3 0) 00 0) 00 MCE · μ <Εη μΟΟ ΦΕη · 4;

I 3 w C eh MCE* OOO SOO COO kJOOI 3 w C eh MCE * OOO SOO COO kJOO

I P omoo COO 300 NC EH 300 HQOO II P omoo COO 300 NC EH 300 HQOO I

Γ Μ·Η<ΕΗ m C E· ft) Eh C MOO ft) Eh C moo IΓ Μ · Η <ΕΗ m C E · ft) Eh C MOO ft) Eh C moo I

I g ISOO OOO kJOO OOO kJOO cooI g ISOO OOO kJOO OOO kJOO coo

I 3 ao o ooo moo coo coo coo II 3 ao o ooo moo coo coo coo I

**· WOO OWOO OMOO o ft) EH c Ο m c Eh ο μ < Eh I** · WOO OWOO OMOO o ft) EH c Ο m c Eh ο μ <Eh I

I EhEh< mAOO n<WO miJOO r^OOO <λ Ο Ο Ο II EhEh <mAOO n <WO miJOO r ^ OOO <λ Ο Ο Ο I

I . 300 300 mCEn 300 300 300 II. 300 300 mCEn 300 300 300 I

m Μ Φ Eh C ft) Eh C MOO ft> Eh C 0) Eh 4 ft) Eh Cm Μ Φ Eh C ft) Eh C MOO ft> Eh C 0) Eh 4 ft) Eh C

I m MkJOO kJOO COO kJOO kJOO iJ o oI m MkJOO kJOO COO kJOO kJOO iJ o o

I woo NO o MOO moo 300 II woo NO o MOO moo 300 I

I moo moo mine moo v e· cIn moo moo my moo v e · c

I W Eh 4 OOO >00 COO kJOOI W Eh 4 OOO> 00 COO kJOO

I WOO OiEh c 300 COO NO Ο II WOO OiEh c 300 COO NO Ο I

moo W C Eh ft) Eh C m C Eh mOO Imoo W C Eh ft) Eh C m C Eh mOO I

w c eh coo kJoo ooo ooo Iw c eh coo kJoo ooo ooo I

I moo NO O 300 woo coo II moo NO O 300 woo coo I

I MOO MOO MCEh 0)00 m C Eh I COO OOO OOO UCEh ooo 25 DK 175551 B1 >,tfti C U U kOO O O O o o o HUU π tf Ei >itf Ei f O tf tf O tfI MOO MOO MCEh 0) 00 m C Eh I COO OOO OOO UCEh ooo 25 DK 175551 B1>, tfti C U U kOO O O O o o o HUU π tf Ei> itf Ei f O tf tf O tf

OOO OOO Ei f tf tf O O tf U OOOO OOO Ei f tf tf O O tf U O

aoo α» o o huu f tf p o o o ajtitf js η «i tuop Ei < < o o o .JUO 0.|h< CO £i tf Ei O t· tf tf t· a tf t· «β e« tf πϋϋ tf tf p t; o o nUO « f tf t· O Ei tf Ei E« ooo tfOO >00 O O O tf tf oaoo α »oo huu f tf pooo ajtitf js η« i tuop Ei <<ooo .JUO 0. | h <CO £ i tf Ei O t · tf tf t · a tf t · «β e« tf πϋϋ tf tf pt ; o o nUO «f tf t · O Ei tf Ei E« ooo tfOO> 00 O O O tf tf o

3 C tt κ f tf 300 f tf O tf O O3 C tt κ f tf 300 f tf O tf O O

H tf ti «00 r-l < f tf o p t« ta < C) o U »Eitf OOO O tf Ei O O o uoo to υ o apu u tf o o ti ei IV f <4S HUO tu ti tf U O O tf O tfH tf ti «00 r-l <f tf o p t« ta <C) o U »Eitf OOO O tf Ei O O o uoo to υ o apu u tf o o ti ei IV f <4S HUO tu ti tf U O O tf O tf

Stft· tfOO JOO f O t· E-t < E-i ©COO°®OOotUUU 4! o o < u o rsrHtfti *· £ f tf »©£titf U tf ti O O tfStft · tfOO JOO f O t · E-t <E-i © COO ° ®OOotUUU 4! o o <u o rsrHtfti * · £ f tf »© £ titf U tf ti O O tf

« HUUO HOiEi< O O ti tf O O«HUUO HOiEi <O O ti tf O O

COO (QUO KOO O 4: tf t· O 4! m ri 4! ti rtuo <UOU O O O O ti o 5 OOO tfOO W 4! H t! tf El O tf Ei n DlOU ooo C oo O tf ti 4: tf ti «2 KOO κ O O ri c El O <2 El o o oCOO (QUO KOO O 4: tf t · O 4! M ri 4! Ti rtuo <UOU OOOO ti o 5 OOO tfOO W 4! H t! Tf El O tf Ei n DlOU ooo C oo O tf ti 4: tf ti «2 KOO κ OO ri c El O <2 El ooo

Z ti f 4! 0.00 OOO O f O O O OZ ti f 4! 0.00 OOO O f O O O O

QJOO u O O 3 0 0 O t! 4! O El OQJOO u O O 3 0 0 O t! 4! O El O

H rH t· 4! 0> f tf Q>f< tf El P El O tf H s tf El JOO 2 tf t· O El oH rH t · 4! 0> f tf Q> f <tf El P El O tf H s tf El JOO 2 tf t · O El o

^ κ O O (Q O O tfl t« tf O El O tf O O^ κ O O {Q O O tfl t «tf O El O tf O O

£00 rtoo -H 4; El O tf El O O O£ 00 rtoo -H 4; El O tf El O O O

j f tf Ei 4:oO 0300 O O Ei O O tij f tf Ei 4: oO 0300 O O Ei O O ti

Μ KOO >it< KOO < ti El El El El OΜ KOO> it <KOO <ti El El El El O

£ O O rt O O (UOO AOU O tf O O O£ O O rt O O {UOO AOU O tf O O O

OQ f tf f OOO 03 Ei < O t· < O O O 0 4!OQ f tf f OOO 03 Ei <O t · <O O O 0 4!

iQ O O COO (O O O vOOO O O O O OiQ O O COO (O O O vOOO O O O O O

rt O O ntfEI n O O r* κ O O «£ t< O O Ort O O ntfEI n O O r * κ O O «£ t <O O O

^ 4300 OOO tfOO HftUU tf O Ei tf O^ 4300 OOO tfOO HftUU tf O Ei tf O

V ti tf KOO Ή t· tf COO Ei O tf O OV ti tf KOO Ή t · tf COO Ei O tf O O

£ El tf £ O O (O Ei tf Π tf Ei f O O O f£ El tf £ O O (O Ei tf Π tf Ei f O O O f

O. El tf t* tf El >00 OOO H El O O OO. El tf t * tf El> 00 OOO H El O O O

0.00 OOO 300 (OOO tf t· O O O0.00 OOO 300 (OOO tf t · O O O

OJ tf f KOO 0) El tf rtoo Ei O t· t· OOJ tf f KOO 0) El tf rtoo Ei O t · t · O

tfOU P. O O J O O tf O O O O O O tftfOU P. O O J O O tf O O O O O O tf

(QUO COO rlOO 3 Ei tf El Ei O O O(QUO COO rlOO 3 Ei tf El Ei O O O

ΠΟΟ n tf El tO El tf tU Ei tf O O El t· fΠΟΟ n tf El tO El tf tU Ei tf O O El t · f

tfOO OOO >00 JUO t· f O O OtfOO OOO> 00 JUO t · f O O O

O ri O O 0300 o >iO O O« OO tf O El tf OO ri O O 0300 o> iO O O «OO tf O El tf O

rt (0 El tf m Cl El tf I/IHOO r* tf f Ei t* O O £irt (0 El tf m Cl El tf I / IHOO r * tf f Ei t * O O £ i

rl>OU HJOO rt O O O rlfflOO t» O O t« Orl> OU HJOO rt O O O rlfflOO t »O O t« O

„ 0.0 0 (OOO PitfEi OOO tj El tj tf p 0) tf El ri O O rtoo KOO tf O O Ei Ei„0.0 0 (OOO PitfEi OOO tj El tj tf p 0) tf El ri O O rtoo KOO tf O O Ei Ei

tfOO tfOO OOO tf O O H O O O OtfOO tfOO OOO tf O O H O O O O

300 Oftf (O tf Ei =* «C tj tf 03 tf tf O300 Oftf (O tf Ei = * «C tj tf 03 tf tf O

0) Ei tf KOO rtOO Φ Ei tf tf O u tf Ei O0) Ei tf KOO rtOO Φ Ei tf tf O u tf Ei O

JUO Λ O O tf O O J O O Ei tf CO tf t· OJUO Λ O O tf O O J O O Ei tf CO tf t · O

COO (OOO OO O rt Ei tf Ei O tf tf OCOO (OOO OO O rt Ei tf Ei O tf tf O

ri tf H rtoo KOO IQ El tf El O tf El tfri tf H rtoo KOO IQ El tf El O tf El tf

OOO tfOO tfOO >00 tf O O Ei OOOO tfOO tfOO> 00 tf O O Ei O

3 00 UOO O'O O OOO El O tf El El tU Ei tf at t< tf KOO KOO o o o tf o JUO £ tf El tfOO tfOO El tf El El El «3 00 UOO O'O O OOO El O tf El El tU Ei tf at t <tf KOO KOO o o o tf o JUO £ tf El tfOO tfOO El tf El El El «

I DK 175551 B1 II DK 175551 B1 I

I 26 ' " II 26 '"I

I H 4 H 4 O O II H 4 H 4 O O I

Η P 4 O 4 4 IΗ P 4 O 4 4 I

o h 4 4 o oo h 4 4 o o

I 000400 II 000400 I

η h o o 4 h Iη h o o 4 h I

o o 4 o o o Io o 4 o o o I

I -· o o o o o o II - · o o o o o o I

o o o o o h η η o η o ho o o o o h η η o η o h

I O E* H O O O II O E * H O O O I

H O O 4 O OH O O 4 O O

4 o o o h o I4 o o o h o I

I o o o η o h II o o o η o h I

O O O Η O HO O O Η O H

O Η Η Η O H IO Η Η Η O H I

I 0 4 0 0 0 4 II 0 4 0 0 0 4 I

Η O ϋ O H O IΗ O ϋ O H O I

— η o o h o 4 I- η o o h o 4 I

I <o o h o 4 o o II <o o h o 4 o o I

æ H o o o 4 o Iæ H o o o 4 o I

*J O O H 4 O H I* J O O H 4 O H I

I o 4 U 4 O 4 O II o 4 U 4 O 4 O I

«w O O O O O O«W O O O O O O

o o o o o o Io o o o o o I

I 4 O O Η O H II 4 O O Η O H I

· Η O O < H O O I· Η O O <H O O I

H 4 O O Η H OH 4 O O Η H O

I > 4 4 O H O 4 II> 4 4 O H O 4 I

400000400000

j Eh 4 H 4 O Oj Eh 4 H 4 O O

I u h o o o o o II u h o o o o o I

I H o O 4 H 4 II H o O 4 H 4 I

ffl 4 H 4 4 O O Iffl 4 H 4 4 O O I

I 4 Η O O H O O II 4 Η O O H O O I

4 4 4 H O O4 4 4 H O O

Η 4 O O O H O IΗ 4 O O O H O I

I Η O O H O O II Η O O H O O I

Η O O Η H 4 IΗ O O Η H 4 I

Η O O O Η H IΗ O O O Η H I

I 04HHHH II 04HHHH I

H U O Η Η HH U O Η Η H

O Η O Η Η HO Η O Η Η H

I O O 4 Η O Η II O O 4 Η O Η I

O O O Η Η O IO O O Η Η O I

H O 4 O O HH O 4 O O H

I 400 000 IIn 400,000 I

4 Eh o Η H 4 I4 Eh o Η H 4 I

404000 I404000 I

I O H 4 Η Η H II O H 4 Η Η H I

I 400400 . II 400400. IN

4444 HH4444 HH

I 000 000 II 000 000 I

4 HOO O 4 I4 HOO O 4 I

O O H O 4 O IO O H O 4 O I

I 400000 II 400000 I

00OHO4 I00OHO4 I

000000000000

I O 4 O O 4 H II O 4 O O 4 H I

HOOHOO IHOOHOO I

OOOHHO IOOOHHO I

i Ii

27 DK 175551 B1 < o < Eh < u o < eh o o o27 DK 175551 B1 <o <Eh <u o <eh o o o

Eh E-i o o eη o o oEh E-i o o eη o o o

Eh u o h o o OM E-·Eh u o h o o OM E- ·

0 3 O0 3 O

xi < W < u o < ^xi <W <u o <^

Eh U U ^ ~ o < o °Eh U U ^ ~ o <o °

* < fr- o S* <fr- o S

2 o υ o 1 u e· < o “ o < υ e- * £ < o eh Λ o o o 13 H < O Eh .2 o υ o 1 u e · <o “o <υ e- * £ <o eh Λ o o o 13 H <O Eh.

> 0.00 {i> 0.00 {i

O < < SO <<S

J < u < § o Eh 2 Λ ' M < Eh Eh O 7 « S ^ $ 7 7Γ « 5 s S ss .*· s s g s i O o O % o o o < Λ '2 O EH o 5 < o EH ** 5 O O EH >· 2 O O O næJ <u <§ o Eh 2 Λ 'M <Eh Eh O 7 «S ^ $ 7 7Γ« 5 s S ss. * · Ssgsi O o O% ooo <Λ' 2 O EH o 5 <o EH ** 5 OO EH> · 2 OOO no

Eh O < m UEh O <m U

O Eh o X MO Eh o X M

* » * S M* »* S M

< Eh O Λ ><Eh O Λ>

8 S 5 g S8 S 5 g S

, O O EH 7 e> O O O Λ, O O EH 7 e> O O O Λ

Eh Eh £h S Ih O O Eh C? «S*Eh Eh £ h S Ih O O Eh C? "S *

O < OO <O

O < <O <<

o o Oo o O

O o EHO o EH

I DK 175551 B1 II DK 175551 B1 I

I 28 II 28 I

I De følgende karakteristika for sekvensen i Tabel II The following characteristics of the sequence in Table I

I VII bør bemærkes. I 5'enden af sekvensen vises baser, II VII should be noted. At the 5 'end of the sequence, bases, I

I der svarer til, hvad man finder i en poly G cDNA sammen- IIn line with what one finds in a poly G cDNA together- I

I binder. Derefter findes ca. fem baser (betegnet "N"),You tie. Then there are approx. five bases (designated "N"),

I 5 hvis sekvens ikke kunne bestemmes nøjagtigt ved Sanger, II 5 whose sequence could not be determined exactly by Sanger, I

I et al. fremgangsmåden på grund af den lange G sekvens, .1 I der kommer umiddelbart forud. Sekvensen, der følger,In et al. the procedure due to the long G sequence, .1 in which immediately precedes. The sequence that follows

I udviser en serie af 12 kodoner, der koder for en del af IYou exhibit a series of 12 codons encoding part of I

I en antagen ledersekvens for polypeptidet. På basis af IIn an assumed leader sequence for the polypeptide. On the basis of I

I korrespondens med den terminale aminosyresekvens i na- IIn correspondence with the terminal amino acid sequence of na- I

I turligt isoleret hpCSF, beskrevet i Eksempel 1, er den IIn heparately isolated hpCSF, described in Example 1, it is I

I første threoninrest i den antagne "færdige" form forIn the first threonine residue in the assumed "finished" form of

I hpG-CSF betegnet med +1. Derefter ses det, at færdig IIn hpG-CSF denoted by +1. Then it is seen that you finished

I hpG-CSF omfatter 174 aminosyrerester, som vist. Efter IIn hpG-CSF, 174 amino acid residues, as shown. After I

I 15 "stop" kodonet (OP kodonet, TGA) forekommer omtrent 856In the 15 "stop" codon (OP codon, TGA), approximately 856 occurs

I baser, der tilhører en ikke translateret 3' sekvens og IIn bases belonging to an untranslated 3 'sequence and I

I en række A’er i poly A "halen". Unikke HgiAi og Apal I restriktionsendonucleasesteder, så vel som to Stul ste- I der (diskuteret nedenfor i forbindelse med konstruktionIn a number of A's in the poly A "tail". Unique HgiAi and Apal I restriction endonuclease sites, as well as two Stool I sites (discussed below in conjunction with construction

I 20 af et procaryotisk og eucaryotisk eksprimeringssystem) IIn 20 of a procaryotic and eucaryotic expression system) I

I vises også i Tabel VII. Da der ikke findes asparaginre- IYou are also shown in Table VII. As no asparagine re- I

I ster i polypeptidet, er der tilsyneladende ingen posi-In steres of the polypeptide, there is apparently no positive

I tioner, hvor man kan N-glycosylere. De understregede IIn tions where one can N-glycosylate. They emphasized you

I seks baser nær ved enden af den 3' ikke-translateredeIn six bases near the end of the 3 'untranslated

I 25 sekvens repræsenterer et muligt polyadenyleringssted. IIn sequence, a possible polyadenylation site represents. IN

I Man bør bemærke, at begge de to yderligere cDNAIn One should note that both the two additional cDNA

I kloner, identificeret ved hybridiseringsfremgangsmåden IIn clones identified by the hybridization procedure I

I beskrevet ovenfor ud af total 450 000 kloner, ikke in- IAs described above out of a total of 450,000 clones, not in-

I kluderede DNA, der kodede for hele leader-sekvensen fra ' IYou included DNA encoding the entire leader sequence from 'I

I 30 transkriptions-initieringsstedet og fremad. Alle tre IAt the transcription initiation site and forward. All three

I hpG-CSF kloner terminerede faktisk 5' regionen på nøj ag- IIn hpG-CSF clones, the 5 'region actually terminated at exactly ag I

I tigt samme sted, et tegn på at den sekundære struktur i IIn the same place, a sign that the secondary structure of I

I det transkriberede mRNA i alvorlig grad hindrer dannel- IIn the transcribed mRNA severely inhibits the formation of I

29 DK 175551 B1 sen af cdna hinsides dette sted. I praksis ville derfor en cDNA eksprimeringsscreening, som beskrevet hos Okayama, et al.. Mol. and Cell. Biol., 3, 280-289 (1983) og som blev benyttet til at Isolere GM-CSF hos Wong, et 5 al., Science, 228, 810-814 (1985) uden videre ikke være benyttet til isolering af hpCSF DNA, da sådanne isoleringssystemer almindeligvis er afhængig af tilstedeværelsen af transkriberet cDNA i fuld længde i de kloner, der bliver undersøgt.29 DK 175551 B1 late of cdna beyond this place. In practice, therefore, a cDNA expression screening, as described by Okayama, et al., Mol. and Cell. Biol., 3, 280-289 (1983) and used to isolate GM-CSF by Wong, et al., Science, 228, 810-814 (1985) have not been used for isolation of hpCSF DNA, since such isolation systems are generally dependent on the presence of full-length transcribed cDNA in the clones being examined.

10 Den ovenfor nævnte sekvens er ikke direkte i stand til at sikre direkte eksprimering af hpG-CSF i en mikrobevært. Til opnåelse af en sådan eksprimering skal hpG-CSF koderegionen forsynes med et initial ATG kodon og sekvensen skal anbringes i en transformationsvektor i 15 en position, hvor det kontrolleres af en passende promo-tor/regulator DNA sekvens.The above-mentioned sequence is not directly capable of ensuring direct expression of hpG-CSF in a microcirculator. To achieve such expression, the hpG-CSF coding region must be provided with an initial ATG codon and the sequence must be placed in a transformation vector at a position where it is controlled by an appropriate promoter / regulator DNA sequence.

Eksempel 5 I dette Eksempel benyttede man cDNA, der kodede 20 for hpG-CSF som isoleret i det foregående Eksempel til at gennemsøge en genomisk klon. Et phag λ menneskefosterlever genomisk bibliotek [fremstillet ved fremgangsmåden ifølge Lawn, et al.. Cell, 15, 1157-1174 (1978) og opnået fra T. Maniatis] blev gennemsøgt ved hjælp af en 25 haktranslateret sonde, bestående af to hpG-CSF fragmenter, isoleret ved fordøjelse med HgiAI og Stul (HgiAI til Stul, 649 basepar; Stul til Stul, 639 basepar).Example 5 In this Example, cDNA encoding 20 for hpG-CSF as isolated in the previous Example was used to search a genomic clone. A phag λ human fetal liver genomic library [prepared by the method of Lawn, et al., Cell, 15, 1157-1174 (1978) and obtained from T. Maniatis] was searched by a 25 notch-translated probe consisting of two hpG-CSF fragments isolated by digestion with HgiAI and Stul (HgiAI to Stul, 649 base pairs; Stul to Stul, 639 base pairs).

Ialt ca. 500 000 phager blev udplattet på 12 (15 cm) petriskåle, og de dannede pletter blev udtaget derfra og 30 sondehybridiseret ved hjælp af Benton/Davison fremgangsmåden [Benton, et al., Science, 196, 180 (1977)]. Man observerede ialt 12 positive kloner. Tre kloner (1-3), der gav det stærkeste signal ved autoradiografi i enTotal approx. 500,000 phages were plated on 12 (15 cm) petri dishes, and the resulting spots were removed and 30 probe hybridized using the Benton / Davison method [Benton, et al., Science, 196, 180 (1977)]. A total of 12 positive clones were observed. Three clones (1-3) that gave the strongest signal by autoradiography in one

I DK 175551 B1 II DK 175551 B1 I

I 30 II 30 I

I anden gennemsøgning, blev dyrket i 1 liter kulturer og IIn the second search, were grown in 1 liter cultures and I

I afbildet ved fordøjelse med restriktionsenzymer og Sou- II depicted by digestion with restriction enzymes and Sou-I

I them blot under anvendelse af en radiomærket 24-mer II simply use a radiolabelled 24-mer I

I oligonucleotid (kinaseret med y-32p ATP) IIn oligonucleotide (kinase with γ-32p ATP) I

I 5 5 *CTGCACTGTCCAGAGTGCACTGTG31. Afbildingsresultaterne vi- II 5 5 * CTGCACTGTCCAGAGTGCACTGTG31. The imaging results vi- I

I ste, at isolaterne 1 og 3 var identiske, og 2 indeholdt IAssuming that isolates 1 and 3 were identical and 2 contained I

I 2000 yderligere baser 5'stillet til hpG-CSF genet. Der- IIn 2000 additional bases 5 'provided for the hpG-CSF gene. There- I

I for benyttede man klon 2 til yderligere karakterisering. IIn for, clone 2 was used for further characterization. IN

I Man fordøjede DNA fra klon 2 med RI til frigivelse af et IIn DNA, clone 2 was digested with RI to release an I

I 10 8500 bp fragment med indhold af hpG-CSF, dette blev der- IIn 10,8500 bp fragment containing hpG-CSF, this became I

I efter underklonet i pBR322 og yderligere underkastet af- II after the subclone of pBR322 and further subjected to I

I bildning ved hjælp af fordøjelse med restriktionendonuc- IIn formation by digestion with restriction endonuclease

I leaser, Southern Blot, Ml3 underkloning og sekvensopdel- IIn leases, Southern Blot, Ml3 subcloning and sequence splitting-I

I ing. Den opnåede sekvens vises i Tabel VIII. II ing. The sequence obtained is shown in Table VIII. IN

31 DK 175551 B1 O O O O o o o o o o o o o o η «Ν «*i « in io r* U U U Η X 4 H J u U O U O O U U 3 p U 4 U O u U H « p e« υ u o o. u P j cj31 DK 175551 B1 O O O O o o o o o o o o o o η «Ν« * i «in io r * U U U Η X 4 H J u U O U O O U U 3 p U 4 U O u U H« p e «υ u o o. U P j c j

P O 4 O u U O COP O 4 O u U O CO

u o 4 ε* οι o - u h 4 4 O U 4 «4 u o o U p U U CO U «O 3 p u P §« u h 4 u h « g«u o 4 ε * οι o - u h 4 4 O U 4 «4 u o o U p U U CO U« O 3 p u P § «u h 4 u h« g «

POÉ-IH O O Η I iJ UPOÉ-IH O O Η I iJ U

P Q P U u U 4 <0 oP Q P U u U 4 <0 o

O O P U C. O O HUO O P U C. O O HU

Ο Η H O E« 4 O OΟ Η H O E «4 O O

4 υ P o <o o p < U U H < HU Q u Η O H U 4 P P u UOUU op u o 4 4 O U w U O o o u 4 h eu u o l·* O El u U >1 < o o O H 4 U H o O E-t 5 S i i: 3 g S g 4 o υ η h o < o4 υ P o <open <UUH <HU Q u Η OHU 4 PP u UOUU on uo 4 4 OU w UO oou 4 h eu uol · * O El u U> 1 <oo OH 4 UH o O Et 5 S ii: 3 g S g 4 o υ η ho <o

0 0 0 4 4 0 U O0 0 0 4 4 0 U O

4 O U 4 o JJ O 4 U4 O U 4 o JJ O 4 U

O O H E« « » H o uO O H E «« »H o u

O O Η O I X 4 P UO O Η O I X 4 P U

O E* P o u p o 4 U U 4 U P 4 O H 4 u u o pO E * P o u p o 4 U U 4 U P 4 O H 4 u u o p

4 U 4 U 4 p P4 U 4 U 4 p P

M O 4 4 U o P UM O 4 4 U o P U

Γ1 4 CJ 4 O 4 U UΓ1 4 CJ 4 O 4 U U

□ u40o u o e«□ u40o u o e «

0 4 4 0 U O U0 4 4 0 U O U

> 4 4 U E-> O* 4 E*> 4 4 U E-> O * 4 E *

O U H O 4 O PO U H O 4 O P

4 E-t E« U U O P4 E-t E «U U O P

υ η h e* u o 4υ η h e * u o 4

U O 4 O o 4 OU O 4 O o 4 O

ω P E« 4 4 U O Oω P E «4 4 U O O

w P O U H O O 4w P O U H O O 4

mUH4H 4 p UmUH4H 4 p U

“ E< E« U U U P 4 .OOUU U 4 4 «« 4 E« H O U U p“E <E« U U U P 4 .OOUU U 4 4 «« 4 E «H O U U p

4 U H 4 O O O4 U H 4 O O O

E-IU044 4 O OE-IU044 4 O O

O 4 P E« U H 4O 4 P E «U H 4

U U 4 U O O MU U 4 U O O M

U E« O 4 H U OU E «O 4 H U O

U H 4 H U U OU H 4 H U U O

U O U E- U O E-iU O U E- U O E-i

U E< H 4 O H OU E <H 4 O H O

SH 4 e 4 U OSH 4 e 4 U O

HUE« O U 4HUE «O U 4

U U O O O O OU U O O O O O

4 U 4 4 - U U E-·4 U 4 4 - U U E- ·

U O U 4 U U UU O U 4 U U U

4 4 0 0 U O U4 4 0 0 U O U

0 0 4 0 O 4 O0 0 4 0 O 4 O

O H 4 O 4 O OO H 4 O 4 O O

4 O 4 H U 4 O4 O 4 H U 4 O

4 O U U 4 O 44 O U U 4 O 4

4 O E« U 4 O O4 O E «U 4 O O

U U O H 4 O 4U U O H 4 O 4

O O U 4 4 H OO O U 4 4 H O

0 4 4 4 U 4 U0 4 4 4 U 4 U

O U O 4 U O UO U O 4 U O U

O E-t O H U O UO E-t O H U O U

4 4 0 4 U 4 U4 4 0 4 U 4 U

O H O U O U E-«O H O U O U E- «

4 U 4 O O U P4 U 4 O O U P

O H 4 H O U PO H 4 H O U P

O O U Η H O OO O U Η H O O

4 O O H U O 44 O O H U O 4

4 0 0 4 O §* U4 0 0 4 O § * U

4 0 0 4 4 6* U4 0 0 4 4 6 * U

U 4 O 4 O U UU 4 O 4 O U U

U U O U 4 H 4U U O U 4 H 4

U U O U H O UU U O U H O U

Η H 4 4 U Η PΗ H 4 4 U Η P

4 E-t O U U O O4 E-t O U U O O

4 U H 4 U 4 4 O O E-t O U O 4 4 U H O U H 4 P O O E« O O E-t4 U H 4 U 4 4 O O E-t O U O 4 4 U H O U H 4 P O O E «O O E-t

P O 4 E« O 40 PP O 4 E «O 40 P

E-* E-t O U O co H O 4E- * E-t O U O co H O 4

UOOH 4 H <U H OUOOH 4 H <U H O

OUOO 4 1X4 OOUOO 4 1X4 O

O E-t 4 H 4 30 OO E-t 4 H 4 30 O

4 U 4 E-> Η «Η O4 U 4 E-> Η «Η O

U O O 4 4 JO E-t 4 O O U E«oao 4 0440 O fs >, 4 4U O O 4 4 JO E-t 4 O O U E «oao 4 0440 O fs>, 4 4

O U O E« Η I J 4 OO U O E «Η I J 4 O

O 4 O U 4 J-t O OO 4 O U 4 J-t O O

OUOU E-t » Et OOUOU E-t »Et O

I DK 175551 B1 II DK 175551 B1 I

I 32 II 32 I

I o o o o II o o o o I

o o o o o os O O O r-t fM rio o o o o us O O O r-t fM ri

CO A H p4 Η Η ICO A H p4 Η Η I

I Q II Q I

>U(9UHuau> U (9UHuau

O C <£ U U O O n OO C <£ U U O O n O

y «« u u t· Sy «« u u t · S

I yU«UU<OUI yU «UU <OU

3y<UOUwU3y <UOUwU

>h< f < o u a u> h <f <o u a u

I ου υυπυαυ II ου υυπυαυ I

? < o y o u <-· f? <o y o u <- · f

U t· O O O U >i OU t · O O O U> i O

»o < u < u η ϋ * o o o o « o o u t· o u < u s o · a u U H U U 0) p u<tio<owti»O <u <u η ϋ * o o o o« o o u t · o u <u s o · a u U H U U 0) p u <tio <owti

3U U<OU0>O3U U <OU0> Oh

at· u u < o to ti uuuuo<au 3 0 U U t· O -w <at · u u <o to ti uuuuo <au 3 0 U U t · O -w <

OJttUCUUWU IOJttUCUUWU I

I ουο3Ρ«>.< au <. o u < ^ uIn ουο3Ρ «>. <Au <. o u <^ u

£t«<U UUOO£ t «<U UUOO

ft t· O U U U O 3 Uft t · O U U U O 3 U

>- U u fri U U man au o u o u u u -j W < < U U U 3 o> - U u free U U man au o u o u u u -j W <<U U U 3 o

t, CU O U O U Φ Ht, CU O U O U Φ H

I m * < U S < < O UI m * <U S <<O U

I °} uu e 3 3 u ·~ι o II °} uu e 3 3 u · ~ ι o I

-t-* OOU UUUU ro t· I H 14 U tr u u < > o-t- * OOU UUUU ro t · I H 14 U tr u u <> o

I 0 A U UUUU 3UI 0 A U UUUU 3U

4-1 3 0 UUUOVt·4-1 3 0 UUUOVt ·

I ·— a H O H < U U UI · - a H O H <U U U

J U U U «£ U 30 w, U < o 3 u ή < I μ „ϊ U y « o t· u u I E »i t; < u < u 3 u I E -H pOO<r-l< .J U U U «£ U 30 w, U <o 3 u ή <I μ„ ϊ U y «o t · u u I E» i t; <u <u 3 u I E -H pOO <r-l <.

r1 au ti ti o o u u I > w< ou«<our1 au ti ti o o u u I> w <ou «<ou

<0 U UCUUUU<0 U UCUUUU

I Ί u u u f <t ft u U <U t< U Eh u « u I O E* O 4 4 U "< 4I Ί u u u f <t ft u U <U t <U Eh u «u I O E * O 4 4 U" <4

H u U O O U 4 SI UH u U O O U 4 SI U

I ft u 4 u < u au I ta >i y o 4 u 4 >, u n Ή O E-I El t* < U fI ft u 4 u <u au I ta> i y o 4 u 4>, u n Ή O E-I El t * <U f

^ UU O f 4 4 3 O^ UU O f 4 4 3 O

<> au 4 4 U O a t·<> au 4 4 U O a t ·

„ Φ t· O t· O U »4 U„Φ t · O t · O U» 4 U

E-I UU t! is U U O O u I o u u < «< o » >. *< uUu13UUU4U4E-I UU t! is U U O O u I o u u <«<o»>. * <uUu13UUU4U4

ftUmaif CUU MUftUmaif CUU MU

^ O U U O H O >1 < +.COaOUOOE*ti^ O U U O H O> 1 <+ .COaOUOOE * ti

t* 4 :* 4 u 4 4 W.Ut * 4: * 4 u 4 4 W.U.

I -lflUU<6-iUOjCUI -lflUU <6-iUOjCU

I i u s u 4 o u t< 4I i u s u 4 o u t <4

I <Ur-l-iUUtl<eUI <Ur-l-iUUtl <eU

I 3<UU<ti«C-4UI 3 <UU <ti «C-4U

I -H4 eou4U40 υυ«-Η<υυ<ΌαΕ-ιI -H4 eou4U40 υυ «-Η <υυ <ΌαΕ-ι

CU UU U U U ri >1 UCU UU U U U ri> 1 U

I <-«4 3U4 0UUt· I oua>ti<ti<o I I-IUUUUUU 4I <- «4 3U4 0UUt · I oua> ti <ti <o I I-IUUUUUU 4

10 El O (0 o U O O U10 El O (0 o U O O U

I >O nrHU f O O UI> O nrHU f O O U

I »-<<uut'tu I x:yiQ<tiuuu I E-I < r-ι u U U U f I OtU<UUUU < 'I »- << uut'tu I x: yiQ <tiuuu I E-I <r-ι u U U U f I OtU <UUUU <'

I up>.UtiU*<UI up> .UtiU * <U

I Eiti^O*C<iUUI Eiti ^ O * C <iUU

I 3 u y u u u < t· I aE-iD.E-irfU<f I uym<iuuuI 3 u y u u u <t · I aE-iD.E-irfU <f I uym <iuuu

I <0<<UUUt*UI <0 << UUUt * U

I r-ι u >, U U ti U E-II r-ι u>, U U ti U E-I

I <UrHUUU<<I <UrHUUU <<

I ufUUUU<UI ufUUUU <U

I a u c o o H u u ' I co<>h<<uu< I ocnuuuu<< u I rH--i<auuuo t· I i m u rn t- e c <; u I 0tUM<UUU<I a u c o o H u u 'I co <> h << uu <I ocnuuuu << u I rH - i <auuuo t · I i m u rn t- e c <; u I 0tUM <UUU <

I ^UaU4U<UI ^ UaU4U <U

I t»ti>,rf<2uutiI t »ti>, rf <2uuti

I 3UU<UUUUI 3UU <UUUU

I aHcroufUtiI aHcroufUti

I JUuOE-iOUUIn JUuOE-iOUU

I 3u<<cuc< I aE-ir-iuutiUu 33 DK 175551 B1 O O O O oI 3h << cuc <I aE-ir-iuutiUu 33 DK 175551 B1 O O O O o

O O O o OO O O o O

in vo r- oo H H r-t H r-l «2 c< 4 o o uo U H < O Η ϋ O 3 4 SOU Η α H H «-*3in vo r- oo H H r-t H r-l «2 c <4 o o uo U H <O Η ϋ O 3 4 SOU Η α H H« - * 3

nu H > o 4 UUnow H> o 4 UU

Se» U a U H Η x» u tn < m < o ™ α h u au 4 o Η H * 4See »U a U H Η x» u tn <m <o ™ α h u au 4 o Η H * 4

O α f> 3 0 O OO α f> 3 0 O O

S · J H 01 ft H < au j u u u 4 >) o co u 4 3 uh h < o u o >> u o u o u O H O 3 o o u 4 O O (UH u u O cm a 4 lJU U uS · J H 01 ft H <au j u u u 4>) o co u 4 3 uh h <o u o >> u o u o u O H O 3 o o u 4 O O (UH u u O cm a 4 lJU U u

O r- p—< U n 4 O HO r- p— <U n 4 O H

4 4 O £ O 4 H4 4 O £ O 4 H

o O H 4 y Ho O H 4 y H

4 < au 4 u o u a 4 u o y < <o y 4 4 u 3 0 4 u 3 Η a H u 4 O U J H o u o f* n U O ft O O £ U O 44 <au 4 u o u a 4 u o y <<o y 4 4 u 3 0 4 u 3 Η a H u 4 O U J H o u o f * n U O ft O O £ U O 4

Jj O Η H 4 H OJj O Η H 4 H O

O U O U u HO U O U u H

S 4 ft nu H US 4 ft now H U

® o u au h 4® o u au h 4

t-> o O © >t H 4 Ut-> o O ©> t H 4 U

n 4 u o rH u u u O O Ur-too O 4 m Η H 3 0 O 4 — 4 H <D H H un 4 u o rH u u u O O Ur-too O 4 m Η H 3 0 O 4 - 4 H <D H H u

4 U »J H U U4 U »J H U U

H f ft 3 0 p UH f ft 3 0 p U

H U U h 4 H oH U U h 4 H o

Γ1 O 4 O O O OΓ1 O 4 O O O O

ti 0 4 O O U Oti 0 4 O O U O

> 4 f· nU H 4 4 U au O 4> 4 f · nU H 4 4 U au O 4

ft U nu O Oft U now O O

J 4 U 0» U 4 4J 4 U 0 »U 4 4

O U tn H 3 UO U tn H 3 U

M O U 0) U U ftM O U 0) U U ft

4 4 HH U U4 4 HH U U

to 3 U H 4 O 4to 3 U H 4 O 4

w 3 O >i O O Uw 3 O> i O O U

^ O 4 η O H U^ O 4 η O H U

«. O U O O O U'. O U O O O U

, 4 O 3 4 O O, 4 O 3 4 O O

H U O h 4 O UH U O h 4 O U

H 4 O O < 4 O U 3 0 U 3H 4 O O <4 O U 3 0 U 3

Η Η 0» Η O HΗ Η 0 »Η O H

O U J U O 4 4 h au o 3O U J U O 4 4 h au o 3

O 4 HU Η HO 4 HU Η H

Η H 4 0 H OΗ H 4 0 H O

O O O C O O HO O O C O O H

h 3 O U 0\ H 4 Η Hh 3 O U 0 \ H 4 Η H

a H 4 OU Η Hand H 4 OU Η H

h) U O 3 0 u 4 oeu H aiH u uh) U O 3 0 u 4 oeu H aiH u u

P- H 4 U tJU O HP- H 4 U tJU O H

O U U 3 U 4 UO U U 3 U 4 U

3 0 O β» H O U3 0 O β »H O U

0) H O |J U Η H0) H O | J U Η H

►JO O >1 o O H►YO O> 1 o O H

au o p—i o o c o h HU O O O CM H 4 4 40 H COHOU u CO U h 4 co o H 4 O O U h 4 4au o p — i o o c o h HU O O O CM H 4 4 40 H COHOU u CO U h 4 co o H 4 O O U h 4 4

OU 4 nu OU UOU 4 now OU U

nu 3 >4 ao Unow 3> 4 ao U

a o U HH np Ua o U HH np U

ID 4 U 3 U HH UID 4 U 3 U HH U

ου h an au uου h and au u

nu H JU HH Onow H JU HH O

au o au h 4 < au O £ H nu uau o au h 4 <au O £ H now u

>1 O 4 aH £ U H> 1 O 4 aH £ U H

UH U 3 H H 4 OUH U 3 H H 4 O

nu U an nu Hnow U and now H

a o H JO £ o u tn 4 U >.U H 4 oa o H JO £ o u tn 4 U> .U H 4 o

nu H HU au Hnow H HU au H

a o O O O HU 4a o O O O HU 4

ID 4 H o nu 40 UID 4 H o now 40 U

30 4 coao an U30 4 coao and U

an u tn 4 £ η Hand u tn 4 £ η H

►j u u aH an o►j u u aH and o

oou U H 4 au Hoou U H 4 au H

vo n U U au «4 Uvo n U U au «4 U

au u 3 u 4o u aH H aH au u pH u u J U hu oau u 3 u 4o u aH H aH au u pH u u J U hu o

I DK 175551 B1 II DK 175551 B1 I

I 34 II 34 I

I O O O O O O O O II O O O O O O O O I

O O O O O O O OO O O O O O O O

I nI n

r-tM(M(NrN<NIM(Ss-t M (M (NR N <NIM (S

I "i 4 Ei P P P £i P t< II „i 4 Ei P P P £ i P t <I

I s u 4 p p 4 f 4 p I ·- u e p P 4 p p h φ υ 4 P p p p 4 p I (At· 5 υ u < u < < <o p huu uuhuI s u 4 p p 4 f 4 p I · - u e p P 4 p p h φ υ 4 P p p p 4 p I (At · 5 υ u <u <<<o p huu uuhu

I ri P P fri P 4 Ej P PIn r P P free P 4 Not P P

I <p ti(J<p<U4 I <-· P < Ei u G υ ti pI <p ti (J <p <U4 I <- · P <Ei u G υ ti p

itj ti ti P p p p P Pitj ti ti P p p p P P

I > p p 4 p P P p p 3 G h u u o υ η G mI> p p 4 p P P p p 3 G h u u o υ η G m

I »ti U ti Ei ο υ η GI »ti U ti Ei ο υ η G

I h3 O t* Η P '4 P H <I h3 O t * Η P '4 P H <

I ri P 4 P P P P P PI r P P P P P P P P

I li Éi · ti O ti O P Ei PI li Éi · ti O ti O P Ei P

I >p P4ppGp4 O >, U Ei O *t ti o u oI> p P4ppGp4 O>, U Ei O * t ti o u o

I m «-* p 4 fri p P P Ei PI m «- * p 4 free p P P Ei P

I ri O P Ei U Ei ti < U PI ri O P Ei U Ei ti <U P

I >4 p ti < p u f υI> 4 p ti <p u f υ

I ri P Ei P Ei P 4 4 PI r P P P P P 4 4 P

I p G < f p < u < p I 10 < P 4 4 P O P fr*I p G <f p <u <p I 10 <P 4 4 P O P fr *

I rip P P ti fr< P G PI rip P P ti fr <P G P

I _ 4 P P P P 4 P G PI _ 4 P P P P 4 P G P

I 7? 0>P Éifri 4fr'4PPI 7? 0> P Eifri 4fr'4PP

I t, Ί u < P Ei P P ti p I <0 4P PPp4PPp I « σ>ρ u p P o p p pI t, Ί u <P Ei P P ti p I <0 4P PPp4PPp I «σ> ρ u p P o p p p

I iJ ti P P fri 4 4 P P PI iJ ti P P free 4 4 P P P

I ti 4 P O Éi Ei P < Ei < I 0 c P Ei P P Ei P ti P ; I «Μ ri 4 p p 4 ti h 4 4 :I ti 4 P O Éi Ei P <Ei <I 0 c P Ei P P Ei P ti P; I «Μ ri 4 p p 4 ti h 4 4:

I w PP P fri 4 P P 4 PI w PP P free 4 P P 4 P

I <up pppppppI <up ppppppp

I £ ti PEiPPPPPIn £ ti PEiPPPPP

I p» ti < p < < G < p I ti (Q Ei 4 fr· fri P P P fri I ti ri u p p 4 p p p pI p »ti <p <<G <p I ti (Q Ei 4 fr · free P P P free I ti ri u p p 4 p p p p

I M 4 P P ti < P f P PI M 4 P P ti <P f P P

I > Vi fri P P 4 P P ti P .I> We free P P 4 P P ti P.

I 0) P < P Ei P < P GI 0) P <P Ei P <P G

I mtiotppppppti I j (OP OEipP<tippI mtiotppppppppti I j {OP OEipP <tipp

I riPtrOP<<PPPPIn riPtrOP << PPPP

I M <Pr»MPPEiPPtiPIn M <Pr »MPPEiPPtiP

I w ootprio.pp<pppti I _ i? n ti cp pp pp pp I ffl ri Di Ei ri< P4Ei<Pti I _ (OPPPPEiPPPti I 4 ri u (QP<PP PPEi I <PriPPPPEi£iti , I ti OP 4PP<<Ei< tiI w ootprio.pp <pppti I _ i? n ti cp pp pp pp I ffl ri Di Ei ri <P4Ei <Pti I _ (OPPPPEiPPPti I 4 ri u (QP <PP PPEi I <PriPPPPEi £ iti, I ti OP 4PP << Ei <ti

I . tiP SHPPPPPPI. tiP SHPPPPPP

I eup®H«£ptiPPtiIn eup®H «£ ptiPPti

I -UPJP^PPtiPPI -UPJP ^ PPtiPP

I a)EiomuofiPP<p I X<t^ri< <PtiPPtiI a) EiomuofiPP <p I X <t ^ ri <<PtiPPti

I (0PriXPP<PPPPI (0PriXPP <PPPP

I riPOtPPPPEiPEi I <Pt.P<PEiPEip I > Éi <PPEiPti Pti I ri Ό. 34 4 0 0 4 0 0 I pp®ti3ppp<p I CO >40000 004I riPOtPPPPEiPEi I <Pt.P <PEiPEip I> Éi <PPEiPti Pti I ri Ό. 34 4 0 0 4 0 0 I pp®ti3ppp <p I CO> 40000 004

I ri<riEiPPPP<PI ri <riEiPPPP <P

I PP(0tipEi<PPPI PP (0tipEi <PPP

I ti P > p < <p Ei P PIn ten P> p <<p Ei P P

I jCPPPPPtitiP< I ti<tip<ppp pp I OP<PPPEitititi I tiPtiP<tiPPP< I AO >14400 400 I OC0frifri4 0 0 0 4 4 I η h < tip Ei ti P P P 4 -I jCPPPPPTitiP <I ti <tip <ppp pp I OP <PPPEitititi I tiPtiP <tiPPP <I AO> 14400 400 I OC0free4 0 0 0 4 4 I η h <tip Ei ti P P P 4 -

I ri P P »PtiPP<<PI ri P P »PtiPP << P

I 3PWtitiEi<PPPI 3PWtitiEi <PPP

I ȣirip<pptfpp HI ȣ irip <pptfpp H

I PP IT] ti Ei P |i < << PIn PP IT] ti Ei P | i <<< P

I lOP>P4 Ei<<4tiIn lOP> P4 Ei << 4ti

I riP3PPPPHPPIn riP3PPPPHPP

I <Pri<tiPPEi<< I 0tippp<ptipp I ti P 3P P 4 ti 4 P ti I 0iP<UtiP4Ptititi I (0PPP4444PEiI <Pri <tiPPEi << I 0tippp <ptipp I ti P 3P P 4 ti 4 P ti I 0iP <UtiP4Ptititi I (0PPP4444PEi

I ri P ΟΦΡ 4 4 P 4 P PI ri P ΟΦΡ 4 4 P 4 P P

I 4P vo JC ti ti P P ti P PIn 4P vo JC ti ti P P ti P P

I -tjPri0ititi4PtiPti I ®ti tiPEiPPEip 4I -tjPri0ititi4PtiPti I ®ti tiPEiPPEip 4

I X<ft)P4EiEiPPPI X <ft) P4EiEiPPP

I >i4P4tiP<ti44I> i4P4tiP <ti44

I ri p CPP4 4PPPI ride on CPP4 4PPP

I PPrH4tiPPPEiPIn PPrH4tiPPPEiP

I 3 P pppppppp HI 3 P pppppppp H

I »ti 3PEi<titititi I PP ®Ei4EiP<PEi I 34 PPtiP, . ti 4 P ' ti I ri4mEititiP<Gti 35 DK 175551 B1 o o o o o OOOOt" oo σι o o r* γν cn m oI »ti 3PEi <titititi I PP ®Ei4EiP <PEi I 34 PPtiP ,. ti 4 P 'ti I ri4mEititiP <Gti 35 DK 175551 B1 o o o o o OOOOt "oo σι o o r * γν cn m o

E* ta H HE * ta H H

P tf ta u 3 o tfP tf ta u 3 o tf

U 3 tf HU 3 tf H

u ti ta u ta tf o u ta i p <u ti ta u ta tf o u ta i p <

tf E·* tf Utf E · * tf U

u tf ta ta H O < < p o u tau tf ta ta H O <<p o u ta

H tf U HH tf U H

tf U 13 Utf U 13 U

υ e* o h H H tf tfυ e * o h H H tf tf

tf U Ο Htf U Ο H

3 < tf S3 <tf S

ta 3 ta h ta o o < < Eh O 6« ta υ h tf g tf ta u < 3 G < u h S o < ta tf ta . o t* 3 < 4j tf e« p e ti υ < h h S o o o u ® tf tf ta o f* ta u p u ta ^ O E« Η H tfta 3 ta h ta o o <<Eh O 6 «ta υ h tf g tf ta u <3 G <u h S o <ta tf ta. o t * 3 <4j tf e «p e ti υ <h h S o o o u ® tf tf ta o f * ta u p u ta ^ O E« Η H tf

O ta O O E* OO to O O E * O

*w < e« o < u* w <e «o <u

^ ta U tf U H^ ta U tf U H

o < o e« υ H p u o H tf .o <o e «υ H p u o H tf.

h S υ o < u tj ta. h ta u ta 5 H ' U H tf E« >> tf u u ta u ta υ ta η h _ o u o u tf ►3 t3 H 13 H 3h S υ o <u tj ta. h ta u ta 5 H 'U H tf E «>> tf u u ta u ta υ ta η h _ o u o u tf ►3 t3 H 13 H 3

g O t3 u CJg O t3 u CJ

Μ Η H tf U CJΜ Η H tf U CJ

o ta O η e« CQ tf tf U H tf w ta cj o ta u tf ta p ta tf tf ta tf e« 3 ta _ ta U u u tfo ta O η e «CQ tf tf U H tf w ta cj o ta u tf ta p ta tf tf ta tf e« 3 ta _ ta U u u tf

Εη Η E« tJ fr> UΕη Η E «tJ fr> U

tf u ta υ ta ta tf e* ta p o ta h tf h u ta ta 3 υ u h tf u ta υ υ tf tf e« u ta 3 3 t* o tf ta ta υ tf υ ta ta o u υ «< ta ta e« h ta tf eh h ta ta u h u tf tf ta h h ta o tf tf u h ta u u y h tf tf tf tf u ta u ta o h ta tf ta u η ta ta E4 h o tf ta cj α o u ta o u h u ta ta υ υ l·* h e* tf u ta u ta o e< ta ta ta H H tf Η tf ta tj ta ta u eh u ta tf ta o fr· tf 3 ta tf ta ta h tf u u ta u υ υ tf ta ta ο η u ta ta ta υ h e-· ta ta ta ta uh ta tf tf η u tf 3 o ta ta h ta o ta u h ta h tf tf E-t < u ta ta e* 3 u ta tf ei 3 ta tf u u ta h ta tatf u ta υ ta ta ta tf e * ta po ta h tf hu ta ta 3 υ uh tf u ta υ υ tf tf e «u ta 3 3 t * o tf ta ta υ tf υ ta ta ou υ« <ta ta e «h ta tf eh h ta ta uhu tf tf ta hh ta o tf tf uh ta uuyh tf tf tf tf u ta u ta oh ta tf ta u η ta ta E4 ho tf ta cj α ou ta ouhu ta ta υ υ l · * he * tf u ta u ta oe <ta ta ta HH tf Η tf ta tj ta ta u eh u ta tf ta o fr · tf 3 ta tf ta ta h tf uu ta u υ υ tf ta ta ο η u ta ta ta υ h e- · ta ta ta ta uh ta tf tf η u tf 3 o ta ta h ta o ta uh ta h tf tf Et <u ta ta e * 3 u ta tf ei 3 ta tf uu ta h ta ta

E-t Η E·· ta HE-t Η E ·· ta H

u ta h ta ta tf E·· ta ta e* ta ta h u uu ta h ta ta tf E ·· ta ta e * ta ta h u u

I DK 175551 Bl II DK 175551 Bl I

I 36 II 36 I

I Bt restriktionsendonucleoasekort (ca. 3,4 kb) for II Bt restriction endonucleoase map (about 3.4 kb) for I

I genomisk DNA, der indeholder hpG-CSF genet, vises i de- IIn genomic DNA containing the hpG-CSF gene is shown in de- I

I tailler i fig. 1. Restriktionsendonucleaserne i fig. 1 IIn the waistband of FIG. 1. The restriction endonucleases of FIG. 1 I

I er: Ncol, N; PstI, P; BamHI, B; Apal, A; Xhol, X; og IYou are: Ncol, N; PstI, P; BamHI, B; Apal, A; Xhol, X; and in

I 5 Kpn, K. Pilene under kortet viser den sekvenserings- II 5 Kpn, K. The arrows below the map show the sequencing I

I strategi, man benytter for at opnå den genomiske se- IIn strategy used to obtain the genomic sequence

I kvens. De indrammede regioner er sådanne, som man fin- IIn the quince. The framed regions are those found

I der i cdna klonen og den punkterede åbne indramning re- IIn there, in the cdna clone and the punctured open framing, I-

I præsenterer en sekvens, der ikke findes i cDNA klonen, IYou present a sequence not found in the cDNA clone, I

I 10 men er identificeret med blot med mRNA sonde. Man ud- IIn 10 but is identified by only with mRNA probe. You go out

I førte identifikationen af de kodende sekvenser, der fo- IIn it, the identification of the coding sequences leading to I

I reslås til exon én ved Northern blot analyse. En 24 mer IReset to exon one by Northern blot analysis. A 24 more I

I oligonucleotid sonde, 5'CAGCAGCTGCAGGGCCATCAGCTT3', der IIn oligonucleotide probe, 5'CAGCAGCTGCAGGGCCATCAGCTT3 ', which I

I spændte over de antagne sammensplejsningsforbindelser IYou excited about the assumed joining compounds I

I 15 for exonerne 1 og 2, blev hybridiseret med hpG-CSF mRNA II 15 for exons 1 and 2, was hybridized with hpG-CSF mRNA I

I i Northern blot format. Det resulterende blot viser en IIn Northern blot format. The resultant merely shows an I

I mRNA af samme størrelse (ca. 1650 bp), som man ser med IIn mRNA of the same size (about 1650 bp) as seen with I

I en exon 2 oligonucleotidsonde. Dette resultat og evnen IIn an exon 2 oligonucleotide probe. This result and the ability I

I til at dirigere eksprimering af hpG-CSF ud fra pSVGM- II to direct expression of hpG-CSF from pSVGM-I

I 20 Ppol vektoren (Eksempel 9) med Met initieringskodon, IIn the 20 Ppol vector (Example 9) with Met initiation codon, I

I vist i Tabel VIII, definerer de kodende sekvenser, der IAs shown in Table VIII, the coding sequences defining I

I findes i exon 1. Exonerne 2-5 defineres ved de kodende IYou are in exon 1. Exons 2-5 are defined by the coding I

I sekvenser, som man opnår i cDNA klonen (Ppo2) fra hpG- IIn sequences obtained in the cDNA clone (Ppo2) from hpG-I

I CSF genet (Tabel vil). IIn the CSF gene (Table Will). IN

I 25 II 25 I

I Eksempel 6In Example 6

I Eksemplet angår præparering af et fremstillet IIn the example, preparation of a prepared I relates to

I gen, der koder for hpG-CSF og omfatter kodoner til E. IIn a gene encoding hpG-CSF and comprising codons for E. I

I coli. I - IIn coli. I - I

I 30 I korthed anvendte man samme fremgangsmåde, som IIn brief, the same procedure as I used was used

I vises i PCT publikation W083/04053, Alton, et al. Gener- IYou are shown in PCT Publication W083 / 04053, Alton, et al. Gener- I

I ne blev konstrueret, idet man først samlede komponent II ne was constructed, first assembling component I

I oligonucleotider til multiple duplexer, som derefter 37 DK 175551 B1 blev samlet 1 tre adskilte sektioner. Disse sektioner blev konstrueret, så de let kunne mangfoldiggøres, og efter fjernelse fra mangfoldiggørelsessystemet kunne samles 1 rækkefølge eller ved en ligering af mange frag-5 menter til en passende ekspri-meringsvektor.In multiple duplex oligonucleotides, which were then assembled into three separate sections. These sections were constructed so that they could be readily amplified and, after removal from the amplification system, assembled in one order or by ligation of many fragments into an appropriate expression vector.

Kontruktionen af sektionerne I, II og III illustreres i tabellerne IX-XIV. Ved konstruktionen af sektion I, som illustreret i Tabellerne IX og X, samlede man oligonucleotiderne 1-14 til 7 duplexer (l og 8; 2 og 10 g. 3 0g io; 4 og 11; 5 og 12; 6 og 13; og 7 og 14).The structure of sections I, II and III is illustrated in Tables IX-XIV. In the construction of Section I, as illustrated in Tables IX and X, oligonucleotides 1-14 to 7 duplexes (1 and 8; 2 and 10 g. 30 µg; 4 and 11; 5 and 12; 6 and 13; 7 and 14).

Man sammenbandt derefter de syv duplexer under dannelse af sektion I som vist i Tabel X. Man bør notere i forbindelse med Tabel X, at sektion I indeholder opstrøms en Xbal klæbende ende og nedstrøms en BamHI klæbende 15 ende, der er nyttig til sammenbinding med mangfoldiggørelses- og eksprimeringsvektorer og til ligering til sektion II.The seven duplexes were then bonded to form Section I as shown in Table X. It should be noted in conjunction with Table X that Section I contains upstream an Xbal adhesive end and downstream a BamHI adhesive end useful for bonding with amplification. and expression vectors and for section II ligation.

I DK 175551 B1 II DK 175551 B1 I

I 38 II 38 I

I TABEL XX II TABLE XX I

I 5 II 5 I

I EChpG-CSFDNA SECTION I II EChpG-CSFDNA SECTION I

I CTAGAAAAAACCAAGGAGGTAATAAA 1 II CTAGAAAAAACCAAGGAGGTAATAAA 1 I

I TAATGACTCCATTAGGTCCTGCTTCTTCT 2 II TAATGACTCCATTAGGTCCTGCTTCTTCT 2 I

I 10 CTGCCGCAAAGCTTTCTGCTGAAATGTCTGG 3 II 10 CTGCCGCAAAGCTTTCTGCTGAAATGTCTGG 3 I

I AACAGGTTCGTAAAATCCAGGGTGACGGT 4 II AACAGGTTCGTAAAATCCAGGGTGACGGT 4 I

I GCTGCACTGCAAGAAAAACTGTGCGCTA 5 II GCTGCACTGCAAGAAAAACTGTGCGCTA 5 I

I CTTACAAACTGTGCCATCCGGAAGAGC 6 II CTTACAAACTGTGCCATCCGGAAGAGC 6 I

I TGGTACTGCTGGGTCATTCTCTTGG 7 II TGGTACTGCTGGGTCATTCTCTTGG 7 I

I 15 CATTATTTATTACCTCCTTGGTTTTTT 8 II 15 CATTATTTATTACCTCCTTGGTTTTTT 8 I

I GCAGAGAAGAAGCAGGACCTAATGGAGT 9 II GCAGAGAAGAAGCAGGACCTAATGGAGT 9 I

I TGTTCCAGACATTTCAGCAGAAAGCTTTGCG 10 II TGTTCCAGACATTTCAGCAGAAAGCTTTGCG 10 I

I CAGCACCGTCACCCTGGATTTTACGAACC 11I CAGCACCGTCACCCTGGATTTTACGAACC 11

I TAAGTAGCGCACAGTTTTTCTTGCAGTG 12 II TAAGTAGCGCACAGTTTTTCTTGCAGTG 12 I

I 20 ACCAGCTCTTCCGGATGGCACAGTTTG 13 II 20 ACCAGCTCTTCCGGATGGCACAGTTTG 13 I

I GATCCCAAGAGAATGACCCAGCAGT 14 II GATCCCAAGAGAATGACCCAGCAGT 14 I

39 DK 175551 B1 O CJ O O O O o u o « u U rsi t tf coou t tf H O O HEh< α o o o o o t tf t tf tf t ο o ου t tf t tf u υ o o t tf o o ου O O tf t Et< te o o o o39 DK 175551 B1 O CJ O O O O o u o «u U rsi t tf coou t tf H O O HEh <α o o o o o t tf t tf tf t o o o o t tf t tf u υ o o t tf o o ου O O tf t Et <te o o o o

o t tf o t tf o O Oo t tf o t tf o O O

moo HOU r- tf t o o Huo hoo HC<M O O Hl tft O O tf t h| tf ti ni O O -»lo O O O H|moo HOU r- tf t o o Huo hoo HC <M O O Hl tft O O tf t h | tf ti ni O O - »lo O O O H |

f tf O O tf>|U Of tf O O tf> | U O

«Νίου t < o o o o tf t o o tf t! tf t t tf o Eh tf O tf E-ι o tf t«Νίου t <o o o o tf t o o tf t! tf t t tf o Eh tf O tf E-ι o tf t

O tf E-I iflUOO tf E-I iflUO

tft H E-ι tf h O Otft H E-ι tf h O O

CJ O O CJ O OCJ O O CJ O O

CJ O O O t! tfCJ O O O t! tf

Eh tf Eh tf O CJEh tf Eh tf O CJ

x O O E-I tf t tfx O O E-I tf t tf

tf E-ι O CJ CJ Otf E-ι O CJ CJ O

o cj o cj tf e a t tf tft tft ω ©tft ouo otfE-1o cj o cj tf e a t tf tft tft ω © tft ouo otfE-1

η tf E-ι cn tf t m cj Oη tf E-ι cn tf t m cj O

m t> tf tft Htft* tf e-ι υ υ t tf tf tf El O CJ t! tfm t> tf tft Htft * tf e-ι υ υ t tf tf tf El O CJ t! tf

tf t En tf U Otf t And tf U O

ti E-ι tf U O tf E-i ^ tft Eh tf Eh tf tf e-i ου υ oti E-ι tf U O tf E-i ^ tft Eh tf Eh tf tf e-i ου υ o

E-ι tf En tf O UE-ι tf A tf O U

HH t IHH t I

σου o tf eh ουο o o as z <N o υ oo tf eh Η»ου o tf e O tf Eh tft« H ti tf H t <0 μ . o υ ου ου o enσου o tf eh ουο o o as z <N o υ oo tf eh Η »ου o tf e O tf Eh tft« H ti tf H t <0 μ. o υ ου ου o one

Eh OUOOl titf Eh tf OOEh OUOOl titf Eh tf OO

υ tf Eh υο υ o ου W Hitf f ηίουοΙ tf EH EH tf W υο . t tf ΗI tf Eh CN Eh tf υο uo mitf f η υο tf tf Eh f tf tf Eh Eh tfυ tf Eh υο υ o ου W Hitf f ηίουοΙ tf EH EH tf W υο. t tf ΗI tf Eh CN Eh tf υο uo mitf f η υο tf tf Eh f tf tf Eh Eh tf

ZZ

Q O tf Eh o t tf O tf Eh O U OQ O tf Eh o t tf O tf Eh O U O

Cm H tf £h r-£h tf η O O CJ\ t tf C/l tf Eh U O h tf Eh H Eh tf υ tfEn ου tfEn tfti I tfEHH tft OO OCjHflCm H tf £ h r- £ h tf η O O CJ \ t tf C / l tf Eh U O h tf Eh H Eh tf υ tfEn ου tfEn tfti I tfEHH tft OO OCjHfl

O O <0 tft OO Em tf ΗIO O <0 tft OO Em tf ΗI

α tf Si tft Eh tf MOOα tf Si tft Eh tf MOO

•C t x u o uo oo O O OO tft oo w υ o o o t tf• C t x u o uo oo O O OO tft oo w υ o o o t tf

I DK 175551 B1 II DK 175551 B1 I

I 40 II 40 I

I Som illustreret som i Tabellerne XI og XII i for- II As illustrated as in Tables XI and XII of Form I

I bindelse med konstruktion af sektion II samlede man oli- IIn connection with the construction of section II, oil was collected

I gonucleotiderne 15-20 i 8 duplexer (15 og 23; 16 og 24; IIn gonucleotides 15-20 in 8 duplexes (15 and 23; 16 and 24; I

I 17 og 25; 18 og 26; 19 og 27; 20 og 28; 21 og 29; IIn 17 and 25; 18 and 26; 19 and 27; 20 and 28; 21 and 29; IN

I 5 og 22 og 30). Derefter sammenbandt man disse 8 duplexer IIn 5 and 22 and 30). Then these 8 duplexes were bonded together

I til opnåelse af sektion II, som vist i Tabel XII. Som II to obtain section II, as shown in Table XII. As in

I yderligere vist i Tabel XII besidder sektion II opstrøms IIn further shown in Table XII, section II has upstream I

I en BamHI klæbende ende og nedstrøms en EcoRI klæbende IAt a BamHI adhesive end and downstream an EcoRI adhesive I

I ende, der er nyttig til ligering til en mangfoldiggørel- IEnd that is useful for ligation to a multiplication I

I 10 sesvektor og til ligering til sektion I. Tæt ved ned- IIn section 10 and for ligation to section I. Close to down-

I strømsenden omfatter sektion II også et nedstrøms SstI IAt the stream end, section II also includes a downstream SstI I

I sted, der er nyttig ved eventuel sammenbinding af sek- IIn place which is useful in any connection of sec- I

I tionerne II og III. IIn Tions II and III. IN

I 15 TABEL XI II TABLE XI I

I EChpG-CSFDNA SECTION II II EChpG-CSFDNA SECTION II I

I 20 GATCCCGTGGGCTCCGCTGTCTTCT 15 II 20 GATCCCGTGGGCTCCGCTGTCTTCT 15 I

I TGTCCATCTCAAGCTCTTCAGCTGGC 16 II TGTCCATCTCAAGCTCTTCAGCTGGC 16 I

I TGGTTGTCTGTCTCAACTGCATTCTGGT 17 II TGGTTGTCTGTCTCAACTGCATTCTGGT 17 I

I CTGTTCCTGTATCAGGGTCTTCTG 18 II CTGTTCCTGTATCAGGGTCTTCTG 18 I

I CAAGCTCTGGAAGGTATCTCTCCGGA 19 II CAAGCTCTGGAAGGTATCTCTCCGGA 19 I

I 25 ACTGGGTCCGACTCTGGACACTCTGCA 20 II 25 ACTGGGTCCGACTCTGGACACTCTGCA 20 I

I GCTAGATGTAGCTGACTTTGCTACTACT 21 II GCTAGATGTAGCTGACTTTGCTACTACT 21 I

I ATTTGGCAACAGATGGAAGAGCTCAAAG 22 II ATTTGGCAACAGATGGAAGAGCTCAAAG 22 I

I GACAAGAAGACAGCGGAGCCCACGG 23 II GACAAGAAGACAGCGGAGCCCACGG 23 I

I ACCAGCCAGCTGAAGAGCTTGAGATG 24 II ACCAGCCAGCTGAAGAGCTTGAGATG 24 I

I 30 ACAGACCAGAATGCAGTTGAGACAGACA 25 II 30 ACAGACCAGAATGCAGTTGAGACAGACA 25 I

I CTTGCAGAAGACCCTGATACAGGA 26 II CTTGCAGAAGACCCTGATACAGGA 26 I

I CAGTTCCGGAGAGATACCTTCCAGAG 27 II CAGTTCCGGAGAGATACCTTCCAGAG 27 I

I TAGCTGCAGAGTGTCCAGAGTCGGACC .28 II TAGCTGCAGAGTGTCCAGAGTCGGACC .28 I

I AAATAGTAGTAGCAAAGTCAGCTACATC 29 II ACCEPTED TAGCAAAGTCAGCTACATC 29 I

I AATTCTTTGAGCTCTTCCATCTGTTGCC 30 II AATTCTTTGAGCTCTTCCATCTGTTGCC 30 I

41 DK 175551 B1 o U O β<Ε< ' VOH< Nh< ® Eh < o u hou —t u o41 DK 175551 B1 o U O β <Ε <'VOH <Nh <® Eh <o u hold —t u o

H < O CJ M O OH <O CJ M O O

Η 3 σ\ «£ Eh cm| Eh < «Λ (9 0 h|3eh Eh3cn| eau oa hm eh < p a cn|u p a o ti < < h o a a o o a opu O Eh < O £h <Η 3 σ \ «£ Eh cm | Eh <«Λ (9 0 h | 3eh Eh3cn | eau oa hm eh <p a cn | u p a o ti <<h o a a o o a opu O Eh <O £ h <

in E-I < HUO Γ" U Oin E-I <HUO Γ "U O

uo hou hou O O < Eh < i* < Eh 3 Eh Eh < u o ^ o o o a ^ voiE-· < cn| o a eh < h|Eh 3 Eh < < Eh o o a o o a E-I < Eh < - < fuo keep hold O O <Eh <i * <Eh 3 Eh Eh <u o ^ o o o a ^ voiE- · <cn | o a eh <h | Eh 3 Eh <<Eh o o a o o a E-I <Eh <- <f

MM

ouo ote OB C Kouo ote OB C K

•«r o a ouo «> u o o• «r o a ouo«> u o o

< H H Eh < HOU O<H H Eh <KEEP O

3 H 0U*0 < Eh < W3 H 0U * 0 <Eh <W

UO COOUCM uo 3 H Eh < h|o U O y eh H UO <fH Eh < £hUO COOUCM uo 3 H Eh <h | o U O y eh H UO <fH Eh <£ h

X EH < UO UO OUX EH <UO UO OU

< H Eh< Eh < < H<H Eh <Eh <<H

UO < Eh UO 3 EhUO <Eh UO 3 Eh

MM

OUO OEh< o < E-I O c EHOUO OEh <o <E-I O c EH

W n Eh <5 OOU iftUO Η U O mW n Eh <5 OOU iftUO Η U O m

_ OU Eh < H < £h M Eh < JJ_ OU Eh <H <£ h M Eh <JJ

ffl Eh 3 Up OU U O 01ffl Eh 3 Up OU U O 01

Eh< UO OU® OU COEh <UO OU® OU CO

< UO Eh tf Eh<«n| ««Eh,<UO Eh tf Eh <«n | " 'Eh,

Eh Λ Eh 3 O U O ,Ο O OEh Λ Eh 3 O U O, Ο O O

Eh Eh 3 OU <s|tH < Eh n| U O Eh < U O w|3 EhEh Eh 3 OU <s | tH <Eh n | U O Eh <U O w | 3 Eh

M Eh< UO <Eh OUM Eh <UO <Eh OU

*-H* -H

oou o Eh < o O U oou Z <NEh< ® O U htUO O Eh <oou o Eh <o O U oou Z <NEh <® O U htUO O Eh <

O U O OU HUO N < EHO U O OU HUO N <EH

m OUr»| Eh< Eh 3 OUm OUr »| Eh <Eh 3 OU

Eh iftlU O en U o OU <Eh U H U O Eh 2 O U Up ca eh 3 eh3 oy co uo <εη«λ eh 3 3 Eh OU r^lUOCN up uoEh iftlU O and U o OU <Eh U H U O Eh 2 O U Up ca eh 3 eh3 oy co uo <εη «λ eh 3 3 Eh OU r ^ lUOCN up uo

3 O U h |o U < EH O U3 O U h | o U <EH O U

zz

0 oou O Eh 3 O < EH OOU0 ow O Eh 3 O <EH OOU

b H EH 3 r* U O που «Λ §H < CO OU < Eh HOU H Eh 3 U UO 3 Eh UO ^ 3 1 UO UO UO 3 Eh O O M Eh 3 Eh 3 Eh 3b H EH 3 r * U O που «Λ §H <CO OU <Eh HOU H Eh 3 U UO 3 Eh UO ^ 3 1 UO UO UO 3 Eh O O M Eh 3 Eh 3 Eh 3

a EhSUO UO UOand EhSUO UO UO

C. 3 El H4 Eh< 3 Eh U O IQ OU UO Eh< a « Εη < eh 3 u oC. 3 El H4 Eh <3 Eh U O IQ OU UO Eh <a «Εη <eh 3 u o

I DK 175551 B1 II DK 175551 B1 I

I 42 II 42 I

I Endelig konstruerede man sektion III som vist i IFinally, Section III was constructed as shown in I

I Tabellerne XIII og XIV. Med henblik på denne konstmk- IIn Tables XIII and XIV. For the purpose of this Constitution

I tion samlede man oligonucleotiderne 31-42 i 6 duplexer IIn tion, oligonucleotides 31-42 were pooled into 6 duplexes I

I (31 og 37; 32 og 38; 33 og 39; 34 og 40; 35 og 41; II (31 and 37; 32 and 38; 33 and 39; 34 and 40; 35 and 41; I

I 5 og 36 og 42). Man sammenligerede derefter de 6 duplexer IIn 5 and 36 and 42). The 6 duplexes I were then compared

I under dannelse af sektion III, som vist i Tabel XIV.I forming section III, as shown in Table XIV.

I Som også vist i Tabel XIV omfatter sektion III opstrøms II As also shown in Table XIV, section III comprises upstream I

I en BamHI klæbende ende og nedstrøms en EcoRI klæbendeAt a BamHI adhesive end and downstream an EcoRI adhesive

I ende, nyttig til ligering i en mangfoldiggørelsesvektor IIn the end, useful for ligation in a multiplication vector I

I 10 og, i hvert fald når det drejer sig om EcoRI, i en ek- IIn 10 and, at least in the case of EcoRI, in an ec

I sprimeringsvektor. Derudover besidder sektion II et op- IIn sprinkler vector. In addition, section II has an op- I

I strøms Sstl sted, nyttig ved eventuel ligering af sek- IIn stream Sstl site, useful for possible ligation of sec- I

I tionerne il og III. IIn tions il and III. IN

I 15 TABEL XIII II TABLE XIII I

I ECHGpG-CSFDNA sektion III IIn the ECHGpG-CSFDNA section III I

I GATCCAAAGAGCTCGGTATGGCACCAG 31 II GATCCAAAGAGCTCGGTATGGCACCAG 31 I

I 20 CTCTGCAACCGACTCAAGGTGCTATGCCG 32 II 20 CTCTGCAACCGACTCAAGGTGCTATGCCG 32 I

I GCATTCGCTTCTGCATTCCAGCGTCGTGC 33 II GCATTCGCTTCTGCATTCCAGCGTCGTGC 33 I

I AGGAGGTGTACTGGTTGCTTCTCATCTG 34 II AGGAGGTGTACTGGTTGCTTCTCATCTG 34 I

I CAATCTTTCCTGGAAGTATCTTACCGTGT 35 II CAATCTTTCCTGGAAGTATCTTACCGTGT 35 I

I TCTGCGTCATCTGGCTCAGCCGTAATAG 36 II TCTGCGTCATCTGGCTCAGCCGTAATAG 36 I

I 25 AGAGCTGGTGCCATACCGAGCTCTTTG 37 II AGAGCTGGTGCCATACCGAGCTCTTTG 37 I

I ATGCCGGCATAGCACCTTGAGTCGGTTGC 38 II ATGCCGGCATAGCACCTTGAGTCGGTTGC 38 I

I TCCTGCACGACGCTGGAATGCAGAAGCGA 39 II TCCTGCACGACGCTGGAATGCAGAAGCGA 39 I

I ATTGCAGATGAGAAGCAACCAGTACACC 40 II ATTGCAGATGAGAAGCAACCAGTACACC 40 I

I CAGAACACGGTAAGATACTTCCAGGAAAG 41 II CAGAACACGGTAAGATACTTCCAGGAAAG 41 I

I 30 I AATTCTATTACGGCTGAGCCAGATGACG 42 43 DK 175551 B1 0<h o fri 4 ouu nuoI 30 I AATTCTATTACGGCTGAGCCAGATGACG 42 43 DK 175551 B1 0 <h o fri 4 ouu nuo

O O rH E-) < MO O rH E-) <M

O O 4 fr· 06 O O 4 l·* o OO oo 4 oO O 4 fr · 06 O O 4 l · * o OO oo 4 o

O O O O 4 WO O O O 4 W

fr· 4 fri 4 Eh 4 fr* o o ehfr · 4 free 4 Eh 4 fr * o o eh

fr« 4 fr! 4 O Ofr «4 fr! 4 O O

O O O O 4 fr< O 4 fri inuu HUU fr· 4 EH 4 rH fri <J Ol M 4 fri O O O O «1 4 fr· OO® η*|Εη 4 fri 4O O O O 4 fr <O 4 free inuu HUU fr · 4 EH 4 rH free <J Ol M 4 free O O O O «1 4 fr · OO® η * | Εη 4 free 4

NW fr n[ COIEH 4 o ONW fr n [COIEH 4 o O

n|4 fr* O O O On | 4 fr * O O O O

O O O O O OO O O O O O

fr· 4 fri 4 O OPHl O O fri 4 4 fr« *r\fr · 4 free 4 O OPHl O O free 4 4 fr «* r \

o 4 fri o O O o O Oo 4 free o O O o O O

VOO ooo Ό Eh 4FET ooo Ό Eh 4

O O rH fri 4 HUOO O rH free 4 HUO

O O O O O OO O O O O O

> 4 Eh 4 Eh O O> 4 Eh 4 Eh O O

W 4 fr» Eh 4 vo Eh 4 X O O O O η|θΟ O O fr· 4 Eh 4 fr« 4 O O 4 fr«W 4 fr »Eh 4 vo Eh 4 X O O O O η | θΟ O O fr · 4 Eh 4 fr« 4 O O 4 fr «

1-4 O O O O O O1-4 O O O O O O

W OI fri 4 o 4 fr· o EH 4W OI free 4 o 4 fr · o EH 4

η|θ O «Λ O O in o Oη | θ O «Λ O O in o O

CQ O O O O rH O OCQ O O O O rH O O

^ 4 fr· 4 Eh O O^ 4 fr · 4 Eh O O

4 O O O O fr· 44 O O O O fr · 4

O O O O O OO O O O O O

Eh 4 fr· Eh 4 fr· 4 O O O O frH 4Eh 4 fr · Eh 4 fr · 4 O O O O frH 4

M o O O O O OM o O O O O O

M O O En 4 H 4M O O A 4 H 4

MM

O fri 4 OOO OOOO free 4 OOO OOO

z «Μ 4 fr· »OO H»00z «Μ 4 fr ·» OO H »00

O fri 4 M O O HOOO free 4 M O O HOO

m O O n| 4 Eh 4 fr« EH rH lo O UCSØil fr· 4 O nlo O nioonl Eh 4m O O n | 4 Eh 4 fr «EH rH lo O UCSØil fr · 4 O nlo O nioonl Eh 4

W Eh 4 Μ n fr» 4 O OW Eh 4 Μ n fr »4 O O

W OOJ-» Ih 4 fr· 4 O O « 4 fr· 4 fr· 4 4 fr· W O O fr· 4 55W OOJ- »Ih 4 fr · 4 O O« 4 fr · 4 fr · 4 4 fr · W O O fr · 4 55

O OOO OOO OOOO OOO OOO OOO

bi rH 4 H r- fri 4 n < fr W 4 fr· O O rH 4 fr· 0 4Eh Eh 4 OOrHj 1 O O Eh 4 O O "»1 O O m o O rnlfri 4bi rH 4 H r- fri 4 n <fr W 4 fr · O O rH 4 fr · 0 4Eh Eh 4 OOrHj 1 O O Eh 4 O O "» 1 O O m o O rnlfri 4

O» Eh 33 O O n|o OO »Eh 33 O O n | o O

-c 4 ε υ o o o O O «0 fri 4 Eh 4 W CQI fri|4 fri 4-c 4 ε υ o o o O O «0 free 4 Eh 4 W CQI free | 4 free 4

I DK 175551 B1 II DK 175551 B1 I

I A4 II A4 I

I Xbal-BamHI fragmentet, dannt af sektion I, liger- IIn the XbaI-BamHI fragment formed by section I, ligase I

I es i en M13mpll phag vektor, åbnet med Xbal og BamHI. II es in an M13mpll phag vector, opened with Xbal and BamHI. IN

I Man genåbner derefter vektoren ved fordøjelse med BamHI IThen, the vector reopens by digestion with BamHI I

I og EcoRI, hvorefter man ligerer med BamHI-EcoRI frag- II and EcoRI, then ligating with BamHI-EcoRI fragment

I 5 mentet, dannet af sektion II. På dette trin er sektio- IIn the 5 ment, formed by section II. In this step, section I

I nerne I og II blevet sammenbundet i den rigtige oriente- IIn Nos. I and II have been linked together in the correct orientation

I ring. Derefter åbner man en anden M13mpll vektor ved IIn the ring. Then you open another M13mpll vector at I

I hjælp af fordøjelse med BamHI og EcoRI og ligerer den IBy digestion with BamHI and EcoRI, it ligates I

I derefter med BamHI-EcoRI fragmentet, dannet af sektion IThen, with the BamHI-EcoRI fragment, formed by section I

I 10 m. II 10 m

I Man lader vektoren, der indeholder sektionerne I IThe vector containing the sections I I is let

I og II, fordøje med Xbal og Sstl. Ligeledes lader man II and II, digest with Xbal and Sstl. Likewise, you let me

I vektoren, der indeholder sektion III, fordøje med Sstl IIn the vector containing section III, digest with Sstl I

I og EcoRI. De mindste af de to fragmenter, der i begge II and EcoRI. The smaller of the two fragments contained in both I

I 15 tilfælde dannes ved fordøjelsen, ligeres i et plasmid IIn 15 cases, digestion is formed, ligated into a plasmid I

I pCPM1156, som tidligere er åbnet med Xbal og EcoRI. Re- IIn pCPM1156, previously opened with Xbal and EcoRI. Re- I

I aktionsproduktet er et eksprimeringsplasmid, der inde- IIn the action product is an expression plasmid containing I

I holder en kontinuert DNA sekvens, som vist i Tabel XV, IYou maintain a continuous DNA sequence, as shown in Table XV, I

I og som koder for hele hpG-CSF polypeptidet med en amino- II and which encode the entire hpG-CSF polypeptide with an amino-I

I 20 terminal methioninkodon (ATG) til initiering af trans- IIn 20 terminal methionine codon (ATG) to initiate trans-I

I lation i E. coli. IIn lation in E. coli. IN

45 DK 175551 B1 30 H (0 30 3 H 30 ttH <9 H >,<45 DK 175551 B1 30 H (0 30 3 H 30 ttH <9 H>, <

V H OH 0) Η Φ H 0» E-« (0 4 HU HOV H OH 0) Η Φ H 0 »E-« (0 4 HU HO

JO 04 JO JO JO 40 4 0 O OYES 04 YES YES YES 40 4 0 O O

uH H > H < <9 H 3H 34 04 <0 4 Φ O UH <0 Η Η O β» EH Φ H U O hu UH OO >0 40 JO JO Pi O 40 uh oa 30 C4 >iH CO <0 4 0Ή ® O 4« Φ Η h 4 HU rH< HU uo UH 04 JO OO OO OO 40 40uH H> H <<9 H 3H 34 04 <0 4 Φ O UH <0 Η Η O β »EH Φ HUO hu UH OO> 0 40 JO JO Pi O 40 uh oa 30 C4> iH CO <0 4 0Ή ® O 4 «Φ Η h 4 HU rH <HU uo UH 04 JO OO OO OO 40 40

<0H H >i 30 UH CO 30 O OH<0H H> i 30 UH CO 30 O OH

HO O <H H4 «Ο ή 4 Φ Η Φ H uo 40 OO OO UH OO JO S< 40HO O <H H4 «Ο ή 4 Φ Η Φ H uo 40 OO OO UH OO JO S <40

OH OC 34 04 uH uH >iH C OOH OC 34 04 uH uH> iH C O

U O 4H rH 4 u o >i4 Æ O H O H <U O 4H rH 4 u o> i4 Æ O H O H <

Pi O OO OO Pi O HH H 4 OO OOPi O OO OO Pi O HH H 4 OO OO

>ιΗ ΟΦ OO OH 30 aO 3 0 ΦΟ> ιΗ ΟΦ OO OH 30 aO 3 0 ΦΟ

rH o H rH u O >ιΟ Φ H (04 Φ H ÆHrH o H rH u O> ιΟ Φ H (04 Φ H ÆH

OO 4M P| O OH JO 40 H O Pi HOO 4M P | O OH JO 40 H O Pi H

34 4 a (0 H UH ΦΟ 30 30 <9 434 4 a (0 H UH ΦΟ 30 30 <9 4

® H 4>i -h< φ O ÆH Φ Η H 4 HO® H 4> i -h <φ O ÆH Φ Η H 4 HO

JH 4 J UO UH Pit· JO OO 40JH 4 J UO UH Pit · JO OO 40

0 4 Η O Φ O UH 30 uH 34 UH0 4 Η O Φ O UH 30 uH 34 UH

u O O U >υ ΦΟ Φ H ÆO H 4 ΦΟu O O U> υ ΦΟ Φ H ÆO H 4 ΦΟ

Pi O 04 OH UH JO H4 OO UHPi O 04 OH UH JO H4 OO UH

>HUH HH 30 30 ><H OO -U O <9 H> HUH HH 30 30> <H OO -U O <9 H

b< + Æ O H <0 Φ Η Φ H HO UO Φ H HOb <+ Æ O H <0 Φ Η Φ H HO UO Φ H HO

H 4 0> JO JO OO Pi O S 4 40 •jhjjo o o C o <n 4 o o O ouH o>iH oco o ω oH 4 0> JO JO OO Pi O S 4 40 • jhjjo o o C o <n 4 o o O ouH o> iH oco o ω o

I Φ H CN 4 H nr >i4 SO U o 00 Φ U OHO (NH4 '»ÆHI Φ H CN 4 H nr> i4 SO U o 00 Φ U OHO (NH4 '»ÆH

w S 4 OO J 4 Pi O UH HOO HOO H Pi η CQ 4 43 uo <0 H OH 30 C4 <9 4w S 4 OO J 4 Pi O UH HOO HOO H Pi η CQ 4 43 uo <0 H OH 30 C4 <9 4

H 4 H >i4 HO h 4 Φ Η H 4 HOH 4 H> i4 HO h 4 Φ Η H 4 HO

4 4 OO HH <90 UO JO OO 404 4 OO HH <90 UO JO OO 40

ti 4 os uh ao 3 0 3 4 ao O Oti 4 os uh ao 3 0 3 4 ao O O

^ 4 Η Φ ÆO uo Φ Η H 4 U O U O^ 4 Η Φ ÆO uo Φ Η H 4 U O U O

H OJ H 4 HH HO OO HH PiOH OJ H 4 HH HO OO HH PiO

4 HO <9 H OO C4 OO ΦΗ jj O4 HO <9 H OO C4 OO ΦΗ jj O

4 O >i HO uo H 4 uo Hr* Φ H4 O> i HO uo H 4 uo Hr * Φ H

H HO 40 Pi O OO Pi O S! 4H HO 40 Pi O OO Pi O S! 4

O 4«n «Ο ΦΟ UH UH UH <9 HO 4 «n« Ο ΦΟ UH UH UH <9 H

O 4 >i >iO HH ΦΟ ΦΟ ÆO HOO 4> i> iO HH ΦΟ ΦΟ ÆO HO

4 4 J OH M 4 UH UH H4 404 4 J OH M 4 UH UH H4 40

O 0 3 3 0 NO 3 0 ΦΟ uH >.HO 0 3 3 0 NO 3 0 ΦΟ uH> .H

O Η Φ Φ H HO Φ H HH ÆO HOO Η Φ Φ H HO Φ H HH ÆO HO

4 OJ JO OO JO m 4 H 4 OO4 O Y O Y O Y m 4 H 4 O O

4 0 3 <0 4 3 Η m H ><H <9 H C4 O Η Φ >ι4 Φ H NO Η O Η O H 44 0 3 <0 4 3 Η m H> <H <9 H C4 O Η Φ> ι4 Φ H NO Η O Η O H 4

O OJ J 4 JO OH OO 40 OOO OJ J 4 JO OH OO 40 OO

4 Η Φ 3 4 uH >iE< 34 Φ H UH4 Η Φ 3 4 uH> iE <34 Φ H UH

4 HÆ H 4 ΦΟ HO h4 ÆH ÆO4 HH H 4 ΦΟ HO h4 EH EH

4 H Pi OO UH OO OO Pi Η H44 H Pi OO UH OO OO Pi Η H4

4ouc4<oh<oh30 ao OO4ouc4 <oh <oh30 ao OO

4 O Φ H 4 -H 4 HO Φ H 04 UO4 O Φ H 4 -H 4 HO Φ H 04 UO

4 4 U OO UO 40 JO 40 Pi O4 4 U OO UO 40 JO 40 Pi O

O 4 C 3 0 NH 30 <9 H <9H C 4 4 4 H uh HO Φ H HO HO H 4O 4 C 3 0 NH 30 <9 H <9H C 4 4 4 H uh HO Φ H HO HO H 4

H OO JO OO JO 40 40 OOH OO JO OO JO 40 40 OO

O OOO o <9 4 030 OCO O C 4 OH4 030 H o u m rH o <τ»ΦΗ r~ h 4 h 4 h <9 Η πφηO OOO o <9 4 030 OCO O C 4 OH4 030 H o u m rH o <τ »ΦΗ r ~ h 4 h 4 h <9 Η πφη

O Pi 40 JO OO OO H > O HJOO Pi 40 JO OO OO H> O HJO

I DK 175551 B1 II DK 175551 B1 I

I 46 II 46 I

I Ofx II Ofx I

I w oI w o

I 4 u II 4 u I

I 3(9 II 3 (9 I

I Φ ExI Φ Ex

I II I

I Hfi II Hfi I

I «ExIn «Ex

I >o II> o I

I II I

kl Oclaw

I <u II <u I

I u u i >.< I ** hI u u i>. <I ** h

I ki b II ki b I

I <u u I 05 E-tI <u u I 05 E-t

I ^ ·* < II ^ · * <I

I £ >oI £> o

I s ίί II s ίί I

I o uo luI o uo lu

I W 3 O II W 3 O I

I «ΗI «Η

I % au II% au I

O dl o vo jC ExO dl o vo jC Ex

I J Η ft HI J Η ft H

I pq h EHI pq h EH

I « MEhI «MEh

I <53 II <53 I

£< OU £x£ <OU £ x

I 3 0 Ex II 3 0 Ex I

I Φ < I j o <!I Φ <I j o <!

I WHO IWHO I

I ·Η < < I 33 U fxI · Η <<I 33 U e.g.

I w e-< < II w e- <<I

I φ u < W Ex ExI φ u <W Ex Ex

I <β H «0(9 II <β H «0 (9 I

I -HU f- u uI -HU f- u u

<(9 HPiO<(9 HPiO

I iH Ex G o II iH Ex G o I

I m Eh i-ι < HI m Eh i-ι <H

I > o o uI> o o u

I 30 *Ex II 30 * Ex I

® E· H O® E · H O

I »j o < o II »j o <o I

I Hi 30 II Hi 30 I

<B Ex φ Ex<B Ex φ Ex

> O J U> O J U

I O >iEx O O Ex II O> iEx O O Ex I

ΙΛ iH U -H <ΙΛ iH U -H <

I Ή O O H EC UI Ή O O H EC U

47 DK 175551 B147 DK 175551 B1

Selv om man kan anvende en hvilken som helst passende vektor til at eksprimere dette DNA, kan man uden videre konstruere eksprimeringsplasmidet pCFM1156 ud fra et plasmid pCFM836, hvis konstruktion er beskrevet i EPO 5 publiceret patentansøgning nr. 136 490. Man gennemskærer først pCFM836 med Ndel og afrunder enderne med Poll, således at begge de eksisterende Ndel steder ødelægges. Derefter lader man vektoren fordøje med Clal og SacII, så man fjerner en eksisterende polysammenbinder før lig-10 ering til en substitut polysammenbinder, som illustreret i Tabel XVI. Man kan konstruerer denne substitut polysammenbinder ved fremgangsmåden ifølge Alton, et al., se ovenfor. Kontrol af eksprimeringen i eksprimeringsplasmidet pCFMH56 foregår ved hjælp af en lambda PL promo-15 tor, som selv måske er under kontrol af et Cl857 repressor gen (såsom hvad der tilvejebringes i E. coli stamme Ki2AHtrp).Although any suitable vector can be used to express this DNA, the expression plasmid pCFM1156 can be readily constructed from a plasmid pCFM836, the construction of which is described in EPO 5 published patent application No. 136 490. First, pCFM836 is intersected with Ndel and round off the ends with Poll so that both existing Ndel locations are destroyed. Then, the vector is digested with Clal and SacII to remove an existing polysaminer before ligation to a substitute polysaminer, as illustrated in Table XVI. This substitute can be polysubstituted by the method of Alton, et al., Supra. Expression in the expression plasmid pCFMH56 is controlled by a lambda PL promoter, which itself may be under the control of a Cl857 repressor gene (such as that provided in E. coli strain Ki2AHtrp).

I DK 175551 B1 II DK 175551 B1 I

I A8 II A8 I

I ΉI Ή

Eh tf « CEI Ol I o o o I o o wEh tf «CEI Ol I o o o I o o w

IIN

I b < o o p- o u o oI b <o o p- o u o o

Eh tfEh tf

I Eh tf rHI Eh tf rH

3^ 313 ^ 31

Eh rH CMEh rH CM

o o s υι I O U 18o o s υι I O U 18

Eh tf σι W|Eh tf σι W |

Eh tf coEh tf co

OU σ\ UOU σ \ U

oo * oo r- I t4 u o rH υ o > U O <U| Eh tf » I k tf Eh qJ <Eh cm I tf ej Si o o οι I Eh tf (JO £oo * oo r- I t4 u o rH υ o> U O <U | Eh tf »I k tf Eh qJ <Eh cm I tf ej Si o o οι I Eh tf (JO £

I Eh tf » tf Eh XI Eh tf »tf Eh X

I O O rH tf EhI O O rH tf Eh

W O U rH E-* tf MW O U rH E- * tf M

I «. Eh tf OJ O O £0I «. Eh tf OJ O O £ 0

05 tf Eh cl tf Eh E05 tf Eh cl tf Eh E

Eh tf *rt| tf Eh <fl|Eh tf * rt | tf Eh <fl |

tf tf £h ffil Eh tf OQItf tf £ h ffil Eh tf OQI

O O - tf EhO O - tf Eh

Eh tf Eh t n >h tf Eh in tf Eh co tf Eh P' 31 Eh tf Xi j Eh tfEh tf Eh t n> h tf Eh in tf Eh co tf Eh P '31 Eh tf Xi j Eh tf

Eh »Cfll tf Eh . -Eh »Cfll tf Eh. -

Eh rH, OU rHEh rH, OU rH

O O «Η O O OO O «Η O O O

οα ό ol ao λ I tf eh ζ|υ o a x oo z oo οασι αοΗ tf EH CN r^> Eh tf 031 tf Eh in tf Eh > I o a - o a tflοα ό ol ao λ I tf eh ζ | υ o a x oo z oo οασι αοΗ tf EH CN r ^> Eh tf 031 tf Eh in tf Eh> I o a - o a tfl

I <Ehih«.oOI <Ehih «.oO

Eh tf <0 H tf Eh OEh tf <0 H tf Eh O

a o -O ci o u r» I EH tf xloJ a o I Eh tf XI Eh tf » tf Eh cm Ο O ήa o -O ci o u r »I EH tf xloJ a o I Eh tf XI Eh tf» tf Eh cm Ο O ή

OUrHrHtfEHrHOUrHrHtfEHrH

I Eh tf a EH tf rHI Eh tf and EH tf rH

I EH tf »-Hl EH tf ΌI EH tf »-Hl EH tf Ό

I Ej tf H W aO CI Ej tf H W aO C

I tf Eh ID SI O O «ΗI tf Eh ID SI O O «Η

I OUrH tfEHSIn OUrH tfEHS

I a o alco tf ehI a o alco tf eh

Eh tf tn o O roEh tf tn o O ro

I tf Eh rH o U VOI tf Eh rH o U VO

I rH rH II rH rH I

to 49 DK 175551 B1to 49 DK 175551 B1

Eksempel 7Example 7

Dette Eksempel angår E. coli eksprimering af et hpG-CSF polypeptid ved hjælp af en DNA sekvens, der koder for [Met-1] hpCSP. Den anvendte sekvens var delvis 5 syntetisk og delvis afledt fra cDNA. Den syntetiske sekvens benyttede kodoner egnet til E. coli.This Example relates to E. coli expression of an hpG-CSF polypeptide by a DNA sequence encoding [Met-1] hpCSP. The sequence used was partially synthetic and partially derived from cDNA. The synthetic sequence used codons suitable for E. coli.

Man fordøjede plasmidet Ppo2, der indeholdt hpG-CSF genet vist i Tabel vil, med HgiAI og Stul under tilvejebringelse af et ca. 645 basepar fragment, der inde-10 holdt genet for færdig hpCSF (som vist i Tabel VII) med syv af ledersekvensens kodoner i 5' enden og ca. 100 basepar i den ikke kodende 3’-ende. Fordøjelse med HgiAI tilvejebringer en 5' 4-base klæbende ende, der er identisk med, hvad man får med PstI, og fordøjelse med Stul 15 giver en lige ende. Dette medfører, at man uden videre kan indsætte fragmentet i Ml 3 mp8 (Rf) gennemskåret med PstI, og med det ligeende-rdannende restriktionsenzym Hindi. Efter mangedobling i Ml3 lod man hpG-CSF DNA udskære ved fordøjelse med Apal og BamHl, som henholds-20 vis skærer ved Apal stedet, der indeholder kodonerne for resterne +3 til +5 i hpCSF og ved et BamHl. sted "ned-strøms" i forhold til Hindi stedet i Ml3 mp8 restriktionssammenbinderen. For at man kunne opnå E. coli eksprimering af hpG-CSF polypeptidet, fremstillede man et 25 syntetisk fragment, som vist i Tabel XVII nedenfor.Plasmid Ppo2 containing the hpG-CSF gene shown in Table III was digested with HgiAI and Stul to provide a ca. 645 base pair fragment containing the final hpCSF gene (as shown in Table VII) with seven of the leader sequence codons at the 5 'end and ca. 100 base pairs at the non-coding 3 'end. Digestion with HgiAI provides a 5 '4 base adhesive end that is identical to what one gets with PstI, and digestion with Chair 15 gives a straight end. This means that one can insert the fragment into Ml 3 mp8 (Rf) intersected with PstI and with the equilibrium restriction enzyme Hindi. After multiplication in Ml3, hpG-CSF DNA was excised by digestion with Apal and BamHl, which respectively cut at the Apal site containing the codons for residues +3 to +5 in hpCSF and by a BamHl. place "downstream" relative to Hindi site in the Ml3 mp8 restriction linker. In order to obtain E. coli expression of the hpG-CSF polypeptide, a synthetic fragment was prepared, as shown in Table XVII below.

I DK 175551 B1 II DK 175551 B1 I

I 50 II 50 I

I TABEL XVII II TABLE XVII I

I 5' - C TAG AAA AAA CCA AGG AGG TAA TAA ΑΤΑ II 5 '- C TAG AAA AAA CCA AGG AGG TAA TAA ΑΤΑ I

5 3 * - TTT TTT GGT TCC TCC ATT ATT TAT I5 3 * - TTT TTT GGT TCC TCC ATT ATT TAT I

I Xbal II Xbal I

I -l+i II -l + i I

I Met Thr Pro Leu II With Thr Pro Leu I

ATG ACA CCT CTG GGC C - 5' IATG ACA CCT CTG GGC C - 5 'I

TAC TGT GGA GAC -3* ITAC TGT GGA GAC -3 * I

I . Apal II. Apal I

I Som man kan se ved analyse af Tabel XVII, omfatt- II As can be seen by analysis of Table XVII, I-

er sammenbinderen en Apal klæbende ende, kodoner, der Ithe linker is an Apal adhesive end, codons that you

I koder for de første tre rester i aminoenden af hpG-CSF IYou encode the first three residues at the amino terminus of hpG-CSF I

15 (og som "genopretter" kodonerne, der koder for Thr1, I15 (and which "recovers" the codons encoding Thr1, I

I Pro2 og Leu3, og som blev udslettet ved Apal fordøjelse IIn Pro2 and Leu3, which were wiped out by Apal digestion

I af Ml3 DNA, beskrevet ovenfor, og under anvendelse af II of Ml3 DNA, described above, and using I

I kodoner, der fortrinsvis eksprimeres i E. coli), et IIn codons, which are preferably expressed in E. coli), I

translationsinitierende ATG, en sekvens på 24 basepar, Itranslational initiating ATG, a sequence of 24 base pairs, I

I 20 der tilvejebringer et ribosombindingssted og en Xbal II 20 which provides a ribosome binding site and an Xba I

I klæbende ende. IAt the adhesive end. IN

Eksprimeringsvektoren, som man anvender til E. IThe expression vector used for E. I

coli eksprimering, var den, der beskrives som pCFM536 i Icoli expression was the one described as pCFM536 in I

I epo patentansøgning nr. 136 490, Morris, offentliggjort IIn Epo Patent Application No. 136,490, Morris, published I

I 25 10. april 1985. (Se også A.T.C.C. 39934, E. coli JM103 IIn April 10, 1985. (See also A.T.C.C. 39934, E. coli JM103 I

I med indhold af pCFM536). Kort fortalt fordøjede man II containing pCFM536). In short, you were digested

I plasmid pCFM536 med Xbal og BamHI. Man ligerede deref- IIn plasmid pCFM536 with XbaI and BamHI. They were ligated

I - ter hpG-CSF fragmentet (Apal/BamHl) og sammenbinderen IIterate the hpG-CSF fragment (Apal / BamH1) and the binding I

(Xbal/ Apal), beskrevet ovenfor, under dannelse af et I(Xbal / Apal), described above, to form an I

I 30 plasmid, der blev betegnet p536Ppo2. IIn 30 plasmid designated p536Ppo2. IN

Man transformerede plasmid p536Ppo2 i en phag IPlasmid p536Ppo2 was transformed into a phage I

I modstandsdygtig variant af E. coli AM7 stammen, som tid- IIn resistant variant of E. coli AM7 strain, as time- I

I ligere var blevet transformeret med plasmidet pMWl II had been transformed with the plasmid pMW1 I

51 DK 175551 B1 (A.T.C.C. nr. 39933), der indeholdt et Cl857 gen. Man kontrollerede transformationen ved hjælp af markergenet for antibiotisk modstand (amp), som bæres af stamfader-plasmidet pCFM536. Cellekulturer i I*B urt (ampicillin 5 50 pg 1 ml) blev opretholdt ved 28eC, og efter vækst af celler i kulturen til Α600 = 0,5, inducerede man hpCSF eksprimering, idet man forhøjede temperaturen af kulturen til 42°C i tre timer. Den sluttelige O.D. af kulturen var Ag00 = 1,2.51 DK 175551 B1 (A.T.C.C. No. 39933) containing a Cl857 gene. Transformation was monitored by the antibiotic resistance (amp) marker gene carried by the progenitor plasmid pCFM536. Cell cultures in I * B herb (ampicillin 5 50 µg 1 ml) were maintained at 28 ° C, and after growth of cells in the culture to Α600 = 0.5, hpCSF expression was induced, raising the temperature of the culture to 42 ° C for three hours. hours. The final O.D. of the culture was Ag00 = 1.2.

10 Man bestemte niveauet for eksprimering af hpG-CSFThe level of expression of hpG-CSF was determined

af de transformerede celler på en SDS-polyacrylamidgel, farvet med blå coomassifarve til at være 3-5% af total cellulær protein.of the transformed cells on an SDS-polyacrylamide gel stained with blue coomassi stain to be 3-5% of total cellular protein.

Man indhøstede celler ved centrifugering ved 3500 15 g i 10 minutter på en JS-4,2 rotor. Man knuste celler i vand 25% (w/v), fdet man lod opslæmningen passere tre gange gennem en French trykcelle ved 10.000 psi. Den sønderdelte cellesuspension blev centrifugeret ved 10.000 gi 15 minutter i en JA-20 rotor. Bundfaldet 20 blev igen suspenderet i vand og solubiliseret med et indhold på ca. 5 mg/ml total protein i 1% laurinsyre, 50 mM Tris, pH 8,7. Det solubiliserede materiale fra bundfaldet blev centrifugeret ved 15.000 g i ti minutter, og man satte CuSo4 op til en koncentration på 20 mM til su-25 pernatanten. Efter en time påsatte man denne prøve en C4 HPLC søjle til rensning ifølge fremgangsmåden i Eksempel 1 (B) med korrektioner for rumfang og koncentration.Cells were harvested by centrifugation at 3500 15 g for 10 minutes on a JS-4.2 rotor. Cells were crushed in water 25% (w / v), allowing the slurry to pass three times through a French pressure cell at 10,000 psi. The disrupted cell suspension was centrifuged at 10,000 g for 15 minutes in a JA-20 rotor. The precipitate 20 was again suspended in water and solubilized to a content of ca. 5 mg / ml total protein in 1% lauric acid, 50 mM Tris, pH 8.7. The solubilized material from the precipitate was centrifuged at 15,000 g for ten minutes and CuSo4 was added to a concentration of 20 mM to the supernatant. After one hour, this sample was charged with a C4 HPLC column for purification according to the procedure of Example 1 (B) with volume and concentration corrections.

Man udviklede en anden rensningsfremgangsmåde med 30 henblik på større mængder af hpG-CSF formuleret i en puffer, der indeholdt ikke-organisk materiale. Dette materiale er egnet til in vivo studier. Man udsuspenderede 150 g cellepasta i ca. 600 ml 1 mM DTT og lod detA second purification process was developed for larger amounts of hpG-CSF formulated in a buffer containing non-organic material. This material is suitable for in vivo studies. 150 g of cell paste was suspended for approx. 600 ml of 1 mM DTT and allow it

I DK 175551 B1 II DK 175551 B1 I

I 52 II 52 I

I fire gange passere gennem en Manton Gualin homogenisa- II pass four times through a Manton Gualin homogenisa- I

I tor ved ca. 7000 psi. Den knuste cellesuspension blev IIn tor at approx. 7000 psi. The crushed cell suspension became I

I centrifugeret ved 10.000 g i 30 minutter, og man udsu- ICentrifuge at 10,000 g for 30 minutes and extract

I spenderede bundfaldet i 400 ml desoxycholat (DOC), 5 mMI spent the precipitate in 400 ml of deoxycholate (DOC), 5 mM

I 5 EDTA, 5 mM DTT, og 50 mM Tris, pH 9. Denne suspension IIn 5 EDTA, 5 mM DTT, and 50 mM Tris, pH 9. This suspension I

I blev sammenblandet i 30 minutter ved stuetemperatur og IYou were mixed for 30 minutes at room temperature and 1

I centrifugeret ved 10.000 g i 30 minutter. Man udsuspen-I centrifuged at 10,000 g for 30 minutes. One suspects

I derede igen bundfaldet i ca. 400 ml vand og centrifuge- IAgain, the precipitate settled for approx. 400 ml of water and centrifuge- I

I rede ved 10.000 g i 30 minutter. Bundfaldet blev solu- INest at 10,000 g for 30 minutes. The precipitate was solu- I

I 10 biliseret i 100 ml 2% sarkosyl og 50 mM ved pH Θ. Man IIn 10 mobilized in 100 ml 2% sarcosyl and 50 mM at pH Θ. Man I

I tilsatte CuS04 op til 20 ym og holdt blandingen under I omrøring 16 timer ved stuetemperatur, hvorefter man een-You added CuSO 4 up to 20 µm and kept the mixture under stirring for 16 hours at room temperature, then

I trifugerede ved 20.000 g i 30 minutter. Til supernatan- IYou trifuged at 20,000 g for 30 minutes. For supernatant I

I tan tilsatte man 300 ml acetone. Denne blanding blev IIn tan, 300 ml of acetone was added. This mixture became I

I 15 anbragt på is i 20 minutter og derefter centrifugeret II placed on ice for 20 minutes and then centrifuged

I ved 5000 g i 30 minutter. Bundfaldet blev opløst i 250I at 5000 g for 30 minutes. The precipitate was dissolved in 250

I ml 6 M guanidin og 40 mM natriumacetat ved pH 4 og påsat IIn ml of 6 M guanidine and 40 mM sodium acetate at pH 4 and loaded I

I en 1200 ml G-25 søjle, bragt i ligevægt og drevet med 20 IIn a 1200 ml G-25 column, equilibrated and powered with 20 L

I mM natriumacetat ved pH 5,4. Fraktioner med indhold af IIn mM sodium acetate at pH 5.4. Fractions containing I

I 20 hpG-CSF (ca. 400 ml) blev sammenbragt og påsat en 15 ml IIn 20 hpG-CSF (about 400 ml) was put together and a 15 ml I was applied

I CM-cellulosesøjle, bragt i ligevægt med 20 mM natrium- IIn CM cellulose column, equilibrated with 20 mM sodium I

I acetat ved pH 5,4. Efter påsætningen vaskede man søjlenIn acetate at pH 5.4. After application, the column was washed

I med 60 ml 20 mM natriumacetat ved pH 5,4 og med 25 mM II with 60 ml of 20 mM sodium acetate at pH 5.4 and with 25 mM I

I natriumchlorid og derefter eluerede man søjlen med 200 IIn sodium chloride and then the column was eluted with 200 L

I 25 ml 20 mM natriumacetat ved pH 5,4 og med 37 mM natrium-In 25 ml of 20 mM sodium acetate at pH 5.4 and with 37 mM sodium

I chlorid. 150 ml af dette gennemløb blev indkoncentreret IIn chloride. 150 ml of this passage was concentrated I

I til 10 ml og påsat en 300 ml G-75 søjle, bragt i lige-I to 10 ml and loaded on a 300 ml G-75 column

I vægt og drevet med 20 mM natriumacetat og 100 mM natri- IWeighted and powered with 20 mM sodium acetate and 100 mM sodium I

I umchlorid ved pH 5,4. Fraktioner med relevant indholdIn um chloride at pH 5.4. Fractions with relevant content

I 30 (35 ml) blev sammenbragt og filtersteriliseret. Slut- IIn 30 (35 ml) were pooled and filter sterilized. End I

I koncentrationen af phG-CSF var 1,5 mg/ml, det var mere I end 95% rent som bestemt ved analyse på en gel og inde-In the concentration of phG-CSF was 1.5 mg / ml, it was more than 95% pure as determined by analysis on a gel and

I holdt mindre end 0,5 ng pyrogen pr. 0,5 mg hpG-CSF. IYou kept less than 0.5 ng of pyrogen per day. 0.5 mg hpG-CSF. IN

53 DK 175551 B153 DK 175551 B1

Indholdet af pyrogen blev bestemt under anvendelse af et Limulus Amebocyte Lysate (LAL) prøveudstyr (M. A. Bio-products, Walkersville, Maryland).The content of the pyrogen was determined using a Limulus Amebocyte Lysate (LAL) test equipment (M. A. Bio-products, Walkersville, Maryland).

5 Eksempel 8Example 8

Eksemplet angår anvendelse af rekombinante fremgangsmåder til fremstilling af analoge til hpG-CSF, hvori de cysteinrester, der findes ved positionerne 17, 36, 42, 64 og 74, enkeltvis blev erstattet med en pas- 10 sende aminosyrerest.The example relates to the use of recombinant methods for preparing analogues to hpG-CSF, wherein the cysteine residues found at positions 17, 36, 42, 64 and 74 were individually replaced by a suitable amino acid residue.

Man udførte positionsdirigerede mutageneseproce-durer efter Souza,et al., PCT ansøgning nr. W085/00817, offentliggjort 28. februar 1985, på DNA fra plasmid p536Ppo2, der koder for [Met-1], beskrevet nedenfor un- 15 der anvendelse af syntetiske oligonnucleotider med en længde på 20-23 baser, som vist i Tabel XVIII nedenfor.Position-directed mutagenesis procedures were performed according to Souza, et al., PCT Application No. W085 / 00817, published February 28, 1985, on DNA from plasmid p536Ppo2 encoding [Met-1], described below using synthetic oligonucleotides of 20-23 bases in length, as shown in Table XVIII below.

Med oligonucleotid nr. 1 kunne man danne et gen, der kodede for [Ser17]hpG-CSF, med oligonucleotid nr. 2 kunne man få dannet [Ser36]hpG-CSF osv.With oligonucleotide # 1, one could form a gene encoding [Ser17] hpG-CSF, with oligonucleotide # 2, one could generate [Ser36] hpG-CSF, etc.

2020

TABEL XVIIITABLE XVIII

Oligonucleotid :.....Sekvens__ 25 1. 5 ' -CTG CTC AAG TCC TTA GAG CAA GT-3' 2. 5'-GAG AAG CTG TCT GCC ACC TACA-3* 3. S’-TAC AAG CTG TCC CAC CCC GAG-3’ \ 4. 5 *-TGA GCA GCT CCC CCA GCC AG-3’ 5. 5’-CTG GCA GGC TCC TTG AGC CAA-3* 30Oligonucleotide: ..... Sequence__ 1. 1. 5 '-CTG CTC AAG TCC TTA GAG CAA GT-3' 2. 5'-GAG AAG CTG TCT GCC ACC TACA-3 * 3. S'-TAC AAG CTG TCC CAC CCC GAG-3 '\ 4. 5 * -TGA GCA GCT CCC CCA GCC AG-3' 5. 5'-CTG GCA GGC TCC TTG AGC CAA-3 * 30

Man udførte de positionsdirigerende Cys til Ser mutagenese restriktioner under anvendelse af Ml3 mplO, der indeholdt et Xbal-BamHl hpG-CSF fragment isoleret fra p536Ppo2 som skabelon. Man behandlede DNA fra hverThe position-directing Cys to Ser mutagenesis restrictions were performed using M13 mp10 containing a XbaI-BamH1 hpG-CSF fragment isolated from p536Ppo2 as a template. DNA from each was processed

I DK 175551 B1 II DK 175551 B1 I

I 54 II 54 I

I M13mplO klon, der indeholdt en Cys-Ser substitution med IIn the M13mp10 clone containing a Cys-Ser substitution with I

I Xbal og BamHI. Det resulterende fragment blev klonet i IIn Xbal and BamHI. The resulting fragment was cloned into I

I eksprimeringsvektoren pCFM746, og man isolerede ekspri- IIn the expression vector pCFM746, expression was isolated

I meringsprodukter som i Eksempel 7, IIn breeding products as in Example 7, I

I 5 Man kan konstruere plasmid pCFM746 ved at spalte II You can construct plasmid pCFM746 by cleavage I

I et plasmid pCFM736 (konstruktionen af dette plasmid ud IIn a plasmid pCFM736 (the construction of this plasmid out I)

I fra deponeret og offentlig tilgængeligt materiale be- II from deposited and publicly available material

I skrives i PCT ansøgning nr. W085/00829, Morris, offent- IWritten in PCT Application No. W085 / 00829, Morris, Public

I liggjort 28. februar 1985) med Clal og BamHI til fjer- II laid down Feb. 28, 1985) with Clal and BamHI to feather- I

i n Ii n I

A nelse af en eksisterende polysammenbinder og substitu- IEstablishment of an existing polysaccharide and substitution

I tion af følgende polysammenbinder. II tion of the following polysacchargers. IN

I TABEL XIX II TABLE XIX I

I 5 ^ II 5 ^ I

I 5'cgatttgattctagaattcgttaacggtaccatggaa II 5'cgatttgattctagaattcgttaacggtaccatggaa I

I 3 TAAACTAAGATCTTAAGCAATTGCCATGGTACCTT II 3 TAAACTAAGATCTTAAGCAATTGCCATGGTACCTT I

I 20 GCTTACTCGAGGATCCGCGGATAAATAAGTAAC3' II GCTTACTCGAGGATCCGCGGATAAATAAGTAAC3 'I

I CGAATGAGCTCCTAGGCGCCTATTTATTCATTGCTAG5' II CGAATGAGCTCCTAGGCGCCTATTTATTCATTGCTAG5 'I

Sau3a I 1Sau3a I 1

Ved en rensningsfremgangsmåde for Cys til Ser IBy a purification procedure for Cys to Ser I

I 25 analoge ifølge opfindelsen udsuspenderede man ca. 10-15 IIn 25 analogs of the invention, approx. 10-15 I

I g cellepasta i 40 ml 1 mM DTT og lod det tre gange pas- IIn g of cell paste in 40 ml of 1 mM DTT and allow to pass three times

I sere en French trykcelle ved 10.000 psi. Den opbrudte IIn seres a French pressure cell at 10,000 psi. The broken up I

cellesuspension blev centrifugeret ved 1000 g i 30 mi- Icell suspension was centrifuged at 1000 g for 30 ml

I nutter. Man udsuspenderede bundfaldet i 1% DOC, 5 mM IIn nuts. The precipitate was suspended in 1% DOC, 5 mM I

I 30 EDTA, 5 mM DTT, 50 mM Tris, pH 9 og sammenblandede 30 IIn 30 EDTA, 5 mM DTT, 50 mM Tris, pH 9 and mixed 30 I

I minutter ved stuetemperatur. Man centrifugerede bian- IFor minutes at room temperature. Centrifuged bian- I

I dingen ved 10.000 i 30 minutter, udsuspenderede i 40 ml IDissolve at 10,000 for 30 minutes, suspended in 40 ml of I

I h20 og centrifugerede igen ved 10.000 g i 30 minutter. IIn h 2 O and centrifuged again at 10,000 g for 30 min. IN

55 DK 175551 B155 DK 175551 B1

Man opløste bundfaldet 1 10 ml 2% Sarkosyl, 50 mM DTT, 50 mM Tris, pH 8. Efter sammenblanding 1 en time klarede man blandingen ved centrifugering ved 20.000 g 1 30 minutter, hvorefter man påsatte den en 300 ml G-75 søj-5 le, bragt i ligevægt med og drevet med 1% Sarkosyl, 50 mM Tris,. pH 8. Fraktioner med Indhold af den analoge forbindelse blev sammenbragt, og man lod dem oxydere med luft ved at stå med luftadgang i det mindste én dag. Slutkoncentrationerne var 0,5 - 5 mg/ml.The precipitate was dissolved in 10 ml of 2% Sarkosyl, 50 mM DTT, 50 mM Tris, pH 8. After mixing for 1 hour, the mixture was prepared by centrifugation at 20,000 g for 30 minutes and then a 300 ml G-75 column was added. 5 le, equilibrated with and operated with 1% Sarkosyl, 50 mM Tris,. pH 8. Fractions containing the contents of the analogous compound were pooled and oxidized with air by standing with air access for at least one day. The final concentrations were 0.5 - 5 mg / ml.

1010

Eksempel 9 I dette Eksempel benyttede man et pattedyrscelle-eksprimeringssystem til at fastslå, om et aktivt poly-peptidprodukt ud fra phG-CSF DNA kunne eksprimeres i og !5 udskilles af pattedyrsceller (COS-1, A.T.C.C. CRL-1650). Systemet blev konstrueret, så det kunne tilvejebringe udskillelse af et polypeptid analogt til phGCSF ved eks-primering og udskillelse af en delvis syntetisk, delvis cDNA-afledt konstruktion, der kodede for [Ala1] hpG-CSF, 20 hvor der foran var anbragt et leader polypeptid med en sekvens af aminosyrerester, som henføres til human G--CSF ifølge Wong, et al., Sciense, 228, 810-815 (1985) og Lee, et al., Proc. Natl. Acad. Sci. (USA), 82, 4360-4364 (1985).Example 9 In this Example, a mammalian cell expression system was used to determine whether an active polypeptide product from phG-CSF DNA could be expressed in and secreted by mammalian cells (COS-1, A.T.C.C. CRL-1650). The system was designed to provide secretion of a polypeptide analogous to phGCSF by priming and secretion of a partially synthetic, partially cDNA-derived construct encoding [Ala1] hpG-CSF, where a leader was positioned in front. polypeptide having a sequence of amino acid residues assigned to human G-CSF according to Wong, et al., Sciense, 228, 810-815 (1985) and Lee, et al., Proc. Natl. Acad. Sci. (USA), 82, 4360-4364 (1985).

25 Eksprimeringsvektoren, som man anvendte til fore løbige studier af eksprimering af polypeptidpro.dukter ifølge opfindelsen, var en "shuttle"-vektor, der inkorporerede både pBR322 og SV40 DNA, og som var blevet konstrueret til autonom replikation både i E. coli og i 30 pattedyrsceller, idet eksprimeringen i pattedyrsceller af indsat exogen DNA var under kontrol af en viral pro-mot or/regulator DNA sekvens. Denne vektor, betegnet pSVDM-19 i E. coli Hn 101, blev deponeret 23. augustThe expression vector used for preliminary studies on the expression of polypeptide products of the invention was a "shuttle" vector incorporating both pBR322 and SV40 DNA and which had been engineered for autonomous replication both in E. coli and in 30 mammalian cells, the expression in mammalian cells of inserted exogenous DNA was under the control of a viral pro mot or regulatory DNA sequence. This vector, designated pSVDM-19 in E. coli Hn 101, was deposited on August 23

I DK 175551 B1 II DK 175551 B1 I

I 56 II 56 I

I 1985 hos American Type Culture Collection, 12301 Par- IIn 1985 at the American Type Culture Collection, 12301 Par- I

I klawn DRive, Rockville, Maryland, med nr. A.T.C.C. IIn Clawn DRive, Rockville, Maryland, with No. A.T.C.C. IN

I 53241. II 53241. I

I ved konstruktion af ekspressionsvektoren udførte . II in constructing the expression vector performed. IN

I 5 man følgende specifikke manipulationer. Man syntetise- IIn 5 man the following specific manipulations. One synthesized I

I rede en DNA sekvens, der kodede for leader, som nævnt i II prepared a leader DNA coding sequence as mentioned in I

I Tabel 20 nedenfor. IIn Table 20 below. IN

I TABEL XX II TABLE XX I

I 10 II 10 I

I -17 II -17 I

I Hindlll Met Trp II Hindlll With Trp I

I 5 * - A GCT TCC AAC ACC ATG TGG II 5 * - A GCT TCC AAC ACC ATG TGG I

I 3* - AGG TTG TGG TAC ACC II 3 * - AGG TTG TGG TAC ACC I

I -10 II -10 I

I Leu Gin Ser Leu Leu Leu Leu Gly Thr Val II Leu Gin Ser Leu Leu Leu Leu Gly Thr Val I

I CTG CAG AGC CTG CTG CTC TTG GGC ACT GTG II CTG CAG AGC CTG CTG CTC TTG GGC ACT GTG I

I 2Q GAC GTC TCG GAC GAC GAG AAC CCG TGA CAC II 2Q GAC GTC TCG GAC GAC GAG AAC CCG TGA CAC I

I -1 41 II -1 41 I

I Ala Cys Ser Ile Ser Ala Pro Leu II Ala Cys Ser Ile Ser Ala Pro Leu I

I GCC TGC AGC ATC TCT GCA CCC CTG GGC G .-3' II GCC TGC AGC ATC TCT GCA CCC CTG GGC G.-3 'I

I CGG ACG TCG TAG AGA CGT GGG GAC -5' II CGG ACG TCG TAG AGA CGT GGG GAC -5 'I

H *· y I Apal I 1H * · y I Apal I 1

30 Som det ses af Tabel XX, omfatter sekvensen Hin- IAs seen from Table XX, the sequence comprises Hin-I

I dill og Apal klæbende ender og kodoner for de 17 amino- II dill and Apal adhesive ends and codons for the 17 amino I

I syrerester, som man mener tilhører "leaderen" for human IIn acidic residues that are believed to belong to the "leader" of human I

I GM-CSF. Derefter følger kodoner for en alaninrest, en IIn GM-CSF. Then follow codons for an alanine residue, an I

57 DK 175551 B1 prolinrest og en leucinrest. Prolin- og leucinresterne duplikerer de aminosyrer, der findes ved positionerne +2 og +3 i hpG-CSF, hvorimod alaninresten duplikerer den første aminosyrerest (+1) i GM-CSF snarere end den før-5 ste i hpG-CSF.57 DK 175551 B1 proline residue and a leucine residue. The proline and leucine residues duplicate the amino acids found at positions +2 and +3 in hpG-CSF, whereas the alanine residue duplicates the first amino acid residue (+1) in GM-CSF rather than the first in hpG-CSF.

Man havde konstrueret ombytningen af threonin med alanin, idet det derved ville være lettere for den aktuelle værtscelle at fjerne GM-CSF leaderpeptidet ved cellemekanismer, normalt forbundet med udskillelse af 10 GM-CSF.The exchange of threonine with alanine had been designed, thereby facilitating the removal of the GM-CSF leader peptide by cellular mechanisms, usually associated with secretion of 10 GM-CSF, by the current host cell.

Man fordøjede plasmid pSVDM-19 med Kpnl og udfyldte til lige ender med Klenow enzym. Derefter gennemskår man DNA med Hindlll. Det resulterende store fragment blev kombineret og ligeret med Hindlll/Pvull *5 fragmentet, der er vist i Tabel VII (isoleret fra plasmid Ppo2 som det næststørste fragment efter en Hindlll fordøjelse og en delvis fordøjelse med Pvull) under dannelse af plasmid psv-ppol. Derefter ligerede man det fremstillede GM-CSF leadersekvensfragment i Tabel VIII 20 i psv-Ppol (efter at det var kløvet med Hindlll og Apal) til opnåelse af plasmid pSVGM-Ppol.Plasmid pSVDM-19 was digested with KpnI and filled to even ends with Klenow enzyme. Then, DNA is cut with HindIII. The resulting large fragment was combined and ligated with the HindIII / Pvull * 5 fragment shown in Table VII (isolated from plasmid Ppo2 as the second largest fragment after a HindIII digestion and a partial digestion with Pvull) to form plasmid psv-ppol. Then, the prepared GM-CSF leader sequence fragment was ligated in Table VIII 20 into psv-Ppol (after cleavage with HindIII and Apal) to obtain plasmid pSVGM-Ppol.

Man transformerede calciumphosphatprecipitater (1-5 yg) af plasmid pSVGM-Pol DNA i duplikat 60 mm plader af OOS-1 celler, i det væsentlige som beskrevet 25 ifølge Wigler, et al., Cell, 14, 725-731 (1978). Som kontrol transformerede man også plasmid pSVDM-19 i COS-1 celler. Man indhøstede supernatanten over vævskulturen fem dage efter transficering og analyseredes for hpG-CSF aktivitet. Udbyttet af [Ala^hpG-CSF fra kultursuperna-30 tanten var af størrelsesordenen 1-2,5 yg/ml.Calcium phosphate precipitates (1-5 µg) of plasmid pSVGM-Pol DNA were transformed into duplicate 60 mm plates of OOS-1 cells, essentially as described in Wigler, et al., Cell, 14, 725-731 (1978). As a control, plasmid pSVDM-19 was also transformed into COS-1 cells. The supernatant was harvested over the tissue culture five days after transfection and analyzed for hpG-CSF activity. The yield of [Ala ^ hpG-CSF from the culture supernatant was of the order of 1-2.5 µg / ml.

Efter den positive eksprimering af plasmidet pSVGM-Ppol, der koder for [Ala1]hpG-CSF i COS-1 celler, konstruerede man en anden vektor, som omfattede den hum-Following the positive expression of the plasmid pSVGM-Ppol encoding [Ala1] hpG-CSF in COS-1 cells, another vector was constructed which included the human

I DK 175551 B1 II DK 175551 B1 I

I 58 II 58 I

I ane GM-CSF leadersekvens, men havde en kodon for en II had a GM-CSF leader sequence but had a codon for an I

I threoninrest (naturlig forekommende i position li IIn threonine residue (naturally occurring in position li I

I hpG-CSF), der erstattede kodonet for alanin ved denne IIn hpG-CSF), which replaced the codon for alanine by this I

I stilling. I korthed syntetiserede man et oligonucleotid IIn position. Briefly, an oligonucleotide I was synthesized

I 5 (5'CAGCATCTCTACACCTCTGGG) til positionsrettet mutagenese II 5 (5'CAGCATCTCTACACCTCTGGG) for position-directed mutagenesis I

I (SDM). Man ligerede Hindlll - BamHl hpG-CSF fragmentet II (SDM). The HindIII - BamH1 hpG-CSF fragment I was ligated

I i pSVGM-Ppol i Ml3mpl0 med henblik på SDM. Det nysyn** II in pSVGM-Ppol in Ml3mp10 for SDM. The new look ** I

I tetiserede hpG-CSF gen, der indeholdt en Thr kodon i po- IIn tetized hpG-CSF gene containing a Thr codon in po-I

I sition 1, blev isoleret ved spaltning med Hindlll og IIn Session 1, was isolated by cleavage with HindIII and I

I 10 EcoRI. Derefter klonede man fragmentet i pSVDM-19, IIn EcoRI. Then, the fragment was cloned into pSVDM-19, I

I forberedt ved kløvning med de samme to restriktions- IPrepared by cleavage with the same two restriction I

I endonucleaser. Den resulterende vektor pSVGM-Ppo(Thr) IIn endonucleases. The resulting vector pSVGM-Ppo (Thr) I

I blev transformeret i COS celler, og udbyttet af hpG-CSF II was transformed into COS cells and the yield of hpG-CSF I

I målt i supernatanten fra kulturen lå i området 1-5 IIn the culture supernatant measured in the range 1-5 I

I 15 yg/ml. IIn 15 µg / ml. IN

I Endelig anvendte man den genomiske sekvens, hvis IFinally, the genomic sequence was used if I

I isolering beskrives i Eksempel 5, til at danne en eks- IIn isolation, Example 5 is described to form an example

I pressionsvektor til eksprimering hpG-CSF i pattedyrscel- IIn expression vector for expression of hpG-CSF in mammalian cell I

I ler. Mere detailleret lod man pSVDM-19 fordøje med KpnlYou laugh. More detailed, pSVDM-19 was digested with KpnI

I 20 og Hindlll og benyttede det store fragment i en firedob- II 20 and HindIII and used the large fragment in a quadruple

I belt legering med en syntetisk sammenbinder med Hindlll IIn belt alloy with a synthetic linker with HindIII

I og Ncol klæbende ender, som vist i Tabel XXI. Et Ncol - II and Ncol adhesive ends, as shown in Table XXI. One Ncol - I

I BamHl fragment, der indeholdt exon 1 isoleret fra pBR322 IIn BamH1 fragment containing exon 1 isolated from pBR322 I

I (8500 hpG-CSF), en genomisk subklon, og et BamHl - Kpbl II (8500 hpG-CSF), a genomic subclone, and a BamH1 - Kpbl I

I 25 fragment med indhold af exonerne 2-5, isoleret fra plas- IIn 25 fragments containing exons 2-5, isolated from plasm I

I mid pBR322 (8599 hpG-CSF genomisk subklon). Den resul- IIn mid pBR322 (8599 hpG-CSF genomic subclone). It results

I terende ekspressionsvektor til pattedyrsceller, IIn mammalian expression vector for mammalian cells, I

I pSV/ghG-CSF producerede 1-2,5 yg/ml hpG-CSF fra trans- IIn pSV / ghG-CSF, 1-2.5 µg / ml produced hpG-CSF from trans-I

I formerede COS celler. IIn propagated COS cells. IN

DK 175551 B1 59DK 175551 B1 59

TABEL XXITABLE XXI

Hindlll 5'AGCTTCCAACACHindlll 5'AGCTTCCAACAC

5 AGGTTGTGGTAC5'5 AGGTTGTGGTAC5 '

NcolNco

Eksempel 10Example 10

Eksemplet angår fysiske og biologiske egenskaber 1,0 af opfInderlske og hermed beslagtede rekombinante poly-peptldprodukter.The example relates to physical and biological properties 1.0 of inventive and related recombinant polypeptide products.

1. Molekylvagt1. Molecular Guard

Rekombinante hpG-CSF produkter fra E. coli eks-15 primering som i Eksempel 7 havde en tilsyneladende molekylvagt på 18,8 kD, bestemt ved hjalp af reducerende SDS-PAGE (som man ville vente ud fra de angivne aminosyrer i Tabel vil), hvorimod naturlige isolater renset som 1 Eksempel 1 har en tilsyneladende molekylvagt på 20 19,6 kD. En teori om tilstedevarelse af N-glycaner, associeret med de naturlige isolater, kan afvises, da der mangler asparaginrester 1 primærsekvensen for hpG-CSF i Tabel VII, og som følge heraf konstruerede men en fremgangsmåde til at bestemme, om O-glycaner var ansvarlige 25 for forskelle i molekylvægt mellem de naturlige isolater og de ikke-glycosylerede rekombinante produkter. Man behandlede ca. 5 yg af naturligt isolat med neuraminidase (Calbiochem, LaJolla, Californien), man udtog en prøve på 0,5 yg og inkuberede resten med 4 mU O-glycana-30 se (endo-x-n-acetylgalactoseaminidase, Genzyme, Boston, Massachusetts) ved 37°C. Man udtog lige store portioner efter fc, 2 og 4 timers inkuberuring. Disse prøver blev underkastet SDS-PAGE side om side med det rekombinanteRecombinant hpG-CSF products from E. coli priming as in Example 7 had an apparent molecular weight of 18.8 kD, as determined by reducing SDS-PAGE (as would be expected from the indicated amino acids in Table Will). whereas natural isolates purified as 1 Example 1 have an apparent molecular guard of 20 19.6 kD. A theory of the presence of N-glycans, associated with the natural isolates, may be rejected as lacking asparagine residues in the primary sequence of hpG-CSF in Table VII, and as a result constructed but a method to determine whether O-glycans were responsible 25 for differences in molecular weight between the natural isolates and the non-glycosylated recombinant products. Approx. 5 µg of natural isolate with neuraminidase (Calbiochem, LaJolla, CA), a 0.5 µg sample was taken and the residue incubated with 4 mU O-glycansase (endo-xn-acetylgalactose aminidase, Genzyme, Boston, Massachusetts) at 37 ° C. Equal portions were taken after fc, 2 and 4 hours of incubation. These samples were subjected to SDS-PAGE side by side with the recombinant

I DK 175551 B1 II DK 175551 B1 I

I 60 II 60 I

I materiale, afledt fra E. coli. Efter behandling med IIn material, derived from E. coli. After treatment with I

I neuraminidase ændredes den tilsyneladende molekylvægt af IIn neuraminidase, the apparent molecular weight of I was altered

I isolatet fra 19,6 kD tril 19,2 kD, hvad der kunne skyl- IIn the isolation from 19.6 kD, 19.2 kD vibrated, which could be due to I

I des, at en "sailic acid" rest blev fjernet. Efter to IIn that, a "sailic acid" residue was removed. After two I

I 5 timers behandling med O-glycanase ændredes molekylvægten IIn 5 hours of treatment with O-glycanase, the molecular weight I changed

I til 18,8 kD - denne værdi er identisk med den tilsynela- II to 18.8 kD - this value is identical to the apparent I

I dende molekylvægt af materialet, afledt fra E. coli. På IIn the same molecular weight of the material, derived from E. coli. On I

I grund af carbohydratstrukturens følsomhed overfor neura- IDue to the sensitivity of the carbohydrate structure to neural I

I minidaser og O-glycanase, kan man foreslå følgende IIn minidases and O-glycanase, the following I can be proposed

I 10 struktur for carbohydratkomponenten: N-acetyl-neuramin-In the structure of the carbohydrate component: N-acetyl neuramine

I syre-α(2-6)(galactose β(1-3) N-acetylgalactose-amin-R, IIn acid α (2-6) (galactose β (1-3) N-acetylgalactose-amine-R, I

I ; hvori R er serin eller threonin. II; wherein R is serine or threonine. IN

I 2. Optagelse af 3H-Thymldln II 2. Recording of 3H-Thymldln I

I 15 Man undersøgte induktion af vækst ved celledeling IIn 15 Induction of growth by cell division I was investigated

I for humane knoglemarvsceller, baseret på voksende inkor- IIn human bone marrow cells, based on growing incorporation

I porering af 3H-thymidin. Man underkastede human knogle- IIn the purification of 3H-thymidine. Human bone was subjected to I

I marv fra sunde donorer en opdeling med hensyn til den- IIn marrow from healthy donors a breakdown with regard to the I

I sitet ved hjælp af Picoll-Hypague (1,077 g/ml, Pharma- IIn the site using Picoll-Hypague (1.077 g / ml, Pharma- I

I 20 cie) og udsuspenderede celler med lav densitet i IIn 20 cie) and suspended cells of low density in I

I Iscove's medium (GIBCO), der indeholdt 10% kalvefoster- IIn Iscove's medium (GIBCO) containing 10% fetal calf- I

I serum og glutamin pen-strep. Derefter inkuberede man IIn serum and glutamine pen-strep. Then you incubated

I 2xl04 humane knoglemarvsceller med enten kontrolmedium IIn 2x104 human bone marrow cells with either control medium I

I eller det rekombinante E. coli materiale fra Eksempel 7 IIn or the recombinant E. coli material of Example 7 I

I 25 i plader med 96 fordybninger med flad bund ved 37°C, med II 25 in 96-well flat bottom plates at 37 ° C, with I

I 5% C02 i luften i to dage. Man foretog dobbeltanalyser IIn 5% CO 2 in the air for two days. Double analyzes were performed

I og lod koncentrationen variere med en faktor 10.000. II and let the concentration vary by a factor of 10,000. IN

I Kulturerne blev derefter holdt under pulsering i fire IThe cultures were then kept under pulse for four I

I timer med 0,5 μ Ci/fordybning 3H-thymidin (New England IFor hours with 0.5 µ Ci / well 3H-thymidine (New England I

I 30 Nuclear, Boston, Massachusetts). Man målte optagelsen - II 30 Nuclear, Boston, Massachusetts). The recording was measured - I

I af 3H-thymidin som beskrevet hos Ventua, et al., Blood, II of 3H-thymidine as described in Ventua, et al., Blood, I

I 61, 781 (1983). Ved dette forsøg kan humane hpG-CSF II 61, 781 (1983). In this experiment, human hpG-CSF I

I isolater inducere inkorporering af 3H-thymidin i humane IIn isolates induce incorporation of 3H-thymidine into human I

61 DK 175551 B1 knoglemarvsceller 1 et ca. 4-10 gange højere niveau end ved anvendelse af kontrolsupernatanter. hpG-CSF materialet, afledt fra E. coli, ifølge Eksempel 6, havde lignende egenskaber.61 DK 175551 B1 bone marrow cells 1 and ca. 4-10 times higher than when using control supernatants. The hpG-CSF material, derived from E. coli, of Example 6, had similar properties.

5 Man udførte et andet studie over vækst ved celle deling af humane knoglemarvsceller, idet man anvendte et dyrkningsmedium fra transficerede COS-1 celler ifølge Eksempel 9, og opnåede samme resultater, hvad der var et tegn på, at det kodede polypeptidprodukt faktisk som ak-10 tivt materiale blev udskilt i dyrkningsmediet.Another study on cell division of human bone marrow cells was used, using a culture medium from transfected COS-1 cells of Example 9, and obtained the same results, indicating that the encoded polypeptide product was in fact acting as Ten material was excreted in the culture medium.

3. Inducerinq af differentiering 1 WEHI-3B D*3. Induction of Differentiation 1 WEHI-3B D *

Evnen hos rekombinant materiale afledt fra E. coli, til at inducere differentiering i den myelomonocy-15 tiske leukæmicellelinie WEHI-3B D+ fra mus, blev undersøgt i et halvfast agarmedium, som beskrevet i Metcalf,The ability of recombinant material derived from E. coli to induce differentiation in the myelomonocytic leukemia cell line WEHI-3B D + from mice was investigated in a semi-solid agar medium, as described in Metcalf,

Int. J. Cancer, 25, 255 (1980). Man inkuberede det re-kombinante hpG-CSF produkt og et kontrolmedium med ca.Int. J. Cancer, 25, 255 (1980). The recombinant hpG-CSF product and a control medium were incubated with ca.

60 WEHI-3B D+ celler/fordybning ved 37eC med 5% C02 i 20 luften i syv dage. Man inkuberede prøverne i plader med 24 fordybninger med flad bund og lod koncentrationen variere med en faktor 2000. Kolonierne blev opdelt som ikke-differéntierede, delvis differentierede eller fuldstændig differentierede, og man talte celler i kolo-25 nierne under mikroskop. Man fandt, at det rekombinante materiale fra E. coli inducerede differentiering.60 WEHI-3B D + cells / well at 37 ° C with 5% CO 2 in the air for seven days. The samples were incubated in 24-well flat bottom plates and the concentration varied by a factor of 2000. The colonies were divided as non-differentiated, partially differentiated or completely differentiated, and cells were counted in the colonies under a microscope. It was found that the recombinant material from E. coli induced differentiation.

4. Analyser for CFU-GM, BFU-E oq CFU-GEMM Man fandt, at naturlige isolater af pluripotent 30 human G-CSF (hpG-CSF) og det rekombinante pluripotente human G-CSF (rhpG-CSF) kunne få menneskelige knoglemarvsceller til at undergå celledeling og differentieres. Disse aktiviteter blev målt ved CFU-GM [Broxmeyer,4. Analyzes for CFU-GM, BFU-E and CFU-GEMM It was found that natural isolates of pluripotent human G-CSF (hpG-CSF) and the recombinant pluripotent human G-CSF (rhpG-CSF) could have human bone marrow cells to undergo cell division and differentiate. These activities were measured by CFU-GM [Broxmeyer,

I DK 175551 B1 II DK 175551 B1 I

I 62 II 62 I

I et al., Exp. Hematol., 5, 87, (1971)] BFU-E og CFU-GEMM IIn et al., Exp. Hematol., 5, 87, (1971)] BFU-E and CFU-GEMM I

I assays [Lu, et al., Blood, 61, 250 (1983)] under anven- IIn assays [Lu, et al., Blood, 61, 250 (1983)] used

I delse af ikke-sammenhængende knoglemarvsceller med lav IIn the formation of noncontiguous, low I bone marrow cells

I densitet fra sunde frivillige mennesker. En sammenlig- IIn density from healthy voluntary people. A comparison- I

I 5 ning af CFU-GM, BFU-E og CFU-GEMM biologiske aktiviteter IIn 5 CFU-GM, BFU-E and CFU-GEMM biological activities I

I under anvendelse af enten 500 enheder hpG-CSF eller II using either 500 units of hpG-CSF or I

I rhpG-CSF vises i Tabel XXII nedenfor. IIn rhpG-CSF is shown in Table XXII below. IN

I Alle koloniforsøgene blev udført med lkke-sammen- IAll of the colony experiments were not performed together

I hængende knoglemarvsceller med lav densitet. Man under- IIn low-density hanging bone marrow cells. One under- I

I 10 kastede humane knoglemarvsceller en densitetopdeling med IIn 10, human bone marrow cells threw a density distribution with I

I Ficoll-Hypaque (densitet 1,077 g/cm3; Pharmacia). Man IIn Ficoll-Hypaque (density 1.077 g / cm 3; Pharmacia). Man I

I udsuspenderede cellerne med lav densitet i Iscove's mo- IIn, the low-density cells suspended in Iscove's mo- I

I dificerede Dulbecco's medium, der indeholdt kalvefoster- IIn Dulbecco's medium, containing calf fetuses, I

I serum og anbragte dem på Falcon vævskulturskåle (nr. IIn serum and placed them on Falcon tissue culture dishes (No. I

I 15 3003, Becton Dickenson, Cockeysville, MD.) i 1½ time II 15 3003, Becton Dickenson, Cockeysville, MD.) For 1½ hours I

I ved 37eC. II at 37 ° C. IN

I TABEL XXII II TABLE XXII I

I 20 _CFU-GM BFU-E CFR-GEMM II 20 CFU-GM BFU-E CFR-GEMM I

Kontrolmedium 0±0 26 ±1 0 ± 0 IControl medium 0 ± 0 26 ± 1 0 ± 0 I

Naturligt hpG-CSF 83 ± 5,4 83 ± 6,7 4 ± 0 INatural hpG-CSF 83 ± 5.4 83 ± 6.7 4 ± 0 I

rhpG-CSF 87 ± 5 81 ± 0,1 6 ± 2 IrhpG-CSF 87 ± 5 81 ± 0.1 6 ± 2 I

25 I25 I

Kontrolmediet bestod af Iscove’s modificeret Dul- IThe control medium consisted of Iscove's modified Dul-I

becco medium plus 10% FCS, 0,2 mM hæmin og 1 enhed re- Ibecco medium plus 10% FCS, 0.2 mM hemin and 1 unit re- I

kombinant erythropoietin. Icombinational erythropoietin. IN

Ved et CFU-GM assay udplattede man de pågældende IIn a CFU-GM assay, the I in question was plated

celler i et antal på 1 x 105 i l ml 0,3% agar dyrknings- Icells in a number of 1 x 10 5 in 1 ml of 0.3% agar culture I

medium, der omfattede supplementeret McCoy's 5A medium Imedium that included Supplemental McCoy's 5A medium I

og 10% varmeinaktiveret kalvefosterserum. Man gennem- Iand 10% heat-inactivated fetal serum. You go through- I

søgte kulturerne for kolonier (mere end 40 celler pr.searched the cultures for colonies (more than 40 cells per

63 DK 175551 B1 sammenklumpning) og undersøgte morphologlen den syvende kulturdag. Antallet af kolonier vises som middelværdi ± standardafvigelse, bestemt ud fra firedobbelte for-5 søg.63 DK 175551 B1 clustering) and examined the morphologist on the seventh day of culture. The number of colonies is shown as the mean ± standard deviation, determined from quadruple trials.

Ved BFU-E og CFU-GEMM assays satte man celler (1 x 105) til en 1 ml blanding af Iscove's modificeret Dul-becco medium (Gibco), 0,8% methylcellulose, 30% kalve-fosterserum, 0,05 nM 2-mercaptoethanol, 0,2 mM hemin 10 og 1 enhed rekombinant erythropoietin. Man inkuberede skålene i en fugtig atmosfære, der indeholdt 5% C02 og 5% 02. Man opnåede et lavt oxygentryk ved hjælp af en oxyreducer fra Herning Bioinstruments (Syracuse, N.Y.).For BFU-E and CFU-GEMM assays, cells (1 x 10 5) were added to a 1 ml mixture of Iscove's modified Dul-becco medium (Gibco), 0.8% methylcellulose, 30% calf fetal serum, 0.05 nM 2 -mercaptoethanol, 0.2 mM hemin 10 and 1 unit of recombinant erythropoietin. The dishes were incubated in a humid atmosphere containing 5% CO 2 and 5% O 2. A low oxygen pressure was obtained using an oxygen reducer from Herning Bioinstruments (Syracuse, N.Y.).

Man talte kolonier efter 14 dages inkubering. Antallet 15 af kolonier vises som middelværdi ± standardafvigelse, bestemt ved dobbeltforsøg.Colonies were counted after 14 days of incubation. The number of 15 colonies is shown as mean ± standard deviation, determined by duplicate.

Man fandt, at alle kolonier, der blev dannet i CFU-GM assayet, var positive overfor chloracetatesterase og negative overfor ikke specifik esterase (a-naphthyl-20 acetatesterase), i overensstemmelse med, at kolonierne er af granulocyttype. Man fandt, at både naturlig hpG-CSF og rhpG-CSF havde en specifik aktivitet på ca. l x 10® U/mg rent protein, når det blev undersøgt ved voksende fortynding i et CFU-GM assay. BFU-E og CFU-GEMM 25 data i Tabel XXII er repræsentative for tre adskilte eksperimenter, og resultaterne ligner data, man tidligere har opgivet for naturlig hpG-CSF. Det er vigtigt at bemærke sig, at rhpG-CSF er overordentlig ren og fri for andre mulige vækstfaktorer fra pattedyr på grund af sin 30 frembringelse i E. coli. rhpG-CSF er således i stand til at understøtte dannelse af blandede kolonier (CFU-GEMM), og BFU-E når det tilsættes under tilstedeværelse af rekombinant erythropoietin.It was found that all colonies formed in the CFU-GM assay were positive for chloroacetate esterase and negative for non-specific esterase (α-naphthyl-acetate esterase), according to the colonies being granulocyte type. It was found that both natural hpG-CSF and rhpG-CSF had a specific activity of approx. 1 x 10® U / mg pure protein when tested by increasing dilution in a CFU-GM assay. BFU-E and CFU-GEMM 25 data in Table XXII are representative of three separate experiments and the results are similar to data previously reported for natural hpG-CSF. It is important to note that rhpG-CSF is exceedingly pure and free of other possible mammalian growth factors due to its production in E. coli. Thus, rhpG-CSF is capable of supporting mixed colony formation (CFU-GEMM) and BFU-E when added in the presence of recombinant erythropoietin.

I DK 175551 B1 II DK 175551 B1 I

I 64 II 64 I

I 5. Forsøg med cellebinding II 5. Cell binding experiments I

I Det er tidligere blevet meddelt, at WEHI-3B(D+) IIt has been previously announced that WEHI-3B (D +) I

celler og humane leukæmiceller fra frisk diagnosticeret Icells and human leukemia cells from freshly diagnosed I

I leukæmi vil binde 125l-mærket G-CSF fra mus, og at der IIn leukemia, 125l-labeled G-CSF from mice will bind and that I

I 5 kan foregå konkurrence om denne binding ved tilsætning II 5 may compete for this binding by Addition I

I af ikke-mærket G-CSF eller human CSF-β. Man afprøvede II of unlabeled G-CSF or human CSF-β. You were tested

I evnen hos naturlig hpG-CSF og rhpG-CSF til at konkurrere IIn the ability of natural hpG-CSF and rhpG-CSF to compete

I om binding af 125I-hpG-CSF til leukæmiceller fra menne- II on binding of 125 I-hpG-CSF to human leukemia cells

I sker og mus. Man ioderede høj renset naturlig hpG-CSF IYou guys and mice. High purified natural hpG-CSF I was iodinated

I 10 (>95% ren, I yg) [Trejedor, et al., Anal. Biochem., 127, IIn 10 (> 95% pure, 1g) [Trejedor, et al., Anal. Biochem., 127, I

I 143 (1982)], og man skilte det fra reaktanterne ved II 143 (1982)] and it was separated from the reactants at I

I hjælp af gelfiltrering og ionbytterchromatografi. Den IUsing gel filtration and ion exchange chromatography. The I

I specifikke aktivitet af det naturlige 125I-hpG-CSF var IIn specific activity of the natural 125 I-hpG-CSF I was

I omtrent yCi/yg protein. Man afprøvede WEHI-3B(D+) IIn about yCi / yg protein. WEHI-3B (D +) I was tested

15 fra mus og to præparationer af periferale myeloide leu- I15 from mice and two preparations of peripheral myeloid leu- I

kæmiceller fra menneskeblod (ANLL, én klassificeret som Ihuman blood germ cells (ANLL, one classified as I

M4, en anden som M5B) for deres evne til at binde IM4, another like M5B) for their ability to bind I

l25I-hpG-CSF. Il25I-hpG-CSF. IN

Museleukæmicellerne og de frisk indsamlede humane IThe mouse leukemia cells and the freshly collected human I

20 periferal myeloide leukæmiceller fra blod blev vasket ITwenty peripheral blood myeloid leukemia cells were washed

I tre gange med PBS/1% BSA. Man inkuberede WEHI-3B(D+) IThree times with PBS / 1% BSA. WEHI-3B (D +) I was incubated

I celler (5 x 106) eller friske leukæmiceller (3 x 10^) i IIn cells (5 x 10 6) or fresh leukemia cells (3 x 10 6) in I

I dobbeltforsøg i PBS/1% BSA (100 μΐ) under fravær eller I nærvær af forskellige koncentrationer (rumfang: 10 μΐ) I 25 ikke mærket hpG-CSF, rhpG-CSF eller GM-CSF og under til- I stedeværelse af 125I-hpG-CSF (ca. 100.000 cpm eller 1 I ng) ved 0eC, i 90 minutter. (Totalrumfang; 120 yl). Man I udsuspenderede cellerne igen og anbragte dem som et lag I over 200 μΐ iskold FCS i 350 μΐ plastcentrifugerør og I 30 centrifugerede dem (1000 g, 1 min.). Man indsamlede I bundfaldet ved at skære enden af røret af og talte bund- faldet og supernatanten hver for sig i en gammatæller I (Packard). 1 i 65 DK 175551 B1In duplicate experiments in PBS / 1% BSA (100 μΐ) in the absence or in the presence of different concentrations (volume: 10 μΐ) in 25 unlabeled hpG-CSF, rhpG-CSF or GM-CSF and in the presence of 125 I hpG-CSF (about 100,000 cpm or 1 L ng) at 0 ° C, for 90 minutes. (Total volume; 120 yl). The cells were resuspended and placed as a layer I over 200 μΐ of ice-cold FCS in 350 μΐ plastic centrifuge tubes and centrifuged for 30 μg (1000 g, 1 min). The precipitate was collected by cutting off the end of the tube and the precipitate and supernatant were individually counted in a gamma counter I (Packard). 1 in 65 DK 175551 B1

Man bestemte specifik binding (cpm) som totalbinding under fravær af en konkurrent (gennemsnit af to forsøg) minus bindungen (cpm) under tilstedeværelse af et 100 dobbelt overskud af ikke-mærket hpG-CSF (ikke 5 specifik binding). Den ikke-specifikke binding var maksimal 2503 cpm for WEHI-3B(D+) celler, 1072 cpm for ANLL (M4) celler og 1125 cpm for ANLL (M5B) celler. Det første og det andet eksperiment blev udført på adskilte dage med samme præparation af 1^5I-hpG-CSF, og forsøgene 10 udviser indre konsistens med henseende til procentværdien af inhibition, opnået for 2000 enheder hpG-CSF. Data angives i Tabel XXIII nedenfor.Specific binding (cpm) was determined as total binding in the absence of a competitor (average of two trials) minus the binding kid (cpm) in the presence of a 100-fold excess of unlabeled hpG-CSF (non-specific binding). The non-specific binding was a maximum of 2503 cpm for WEHI-3B (D +) cells, 1072 cpm for ANLL (M4) cells, and 1125 cpm for ANLL (M5B) cells. The first and second experiments were performed on separate days with the same preparation of 1 5 I-hpG-CSF, and experiments 10 showed intrinsic consistency with respect to the percentage of inhibition obtained for 2000 units of hpG-CSF. Data are given in Table XXIII below.

I DK 175551 B1 II DK 175551 B1 I

I 66 II 66 I

HH

Λ I ΉΛ I Ή

£ I O O£ I O O

CC

« -W«-W

in I s #>in I s #>

I j II j I

I 1-3I 1-3

§(S VO O§ (S VO O

E CS» r* 0< ή <n o æ I Ή I £ I mE CS »r * 0 <ή <n o æ I Ή I £ I m

^ C CDC CD

-H-H

I sIce

I — dPI - dP

I H J II H J I

I H JI H J

I HZ CO 't OI HZ CO 't O

S< rH n OS <rH n O

EN <NEN <N

I W - mI W - m

I Λ ^ II Λ ^ I

lu Ilu I

Ια IΙα I

I < II <I

I & s II & s I

I £ ιο^·σ\οΝΐη o co o I + c m vo © co φ I Q -.Η r-tI £ ιο ^ · σ \ οΝΐη o co o I + c m vo © co φ I Q -.Η r-t

I n «»p II n «» p I

I II I

I HI H

I X co m n h o m o o co r-i U o oo m n co η .h rs *h I SE Ό Ό vo o i-ι η σ' vo mI X co m n h o m o o co r-i U o oo m n co η .h rs * h I SE Ό Ό vo o i-ι η σ 'vo m

I CUIn CU

I U Η N H W CN Γ0I U Η N H W CN Γ0

I "" o o o o o o o ooo II "" o o o o o o o ooo I

I H o o o o o o o o I E OONCON o o I · · · ♦I H o o o o o o o o I E OONCON o o I · · · ♦

I D OCaOCN rsj (NI D OCaOCN rsj (N

I w o «-» I ^ 1I w o «-» I ^ 1

4J *· H4J * · H

I c u u I 4> cn w u o> m I U ft O 10 -HU·· I U i—1 r-t I u N ι-t i u I s c u o i cuoca I .* · © 3 o« o · © 3 o« u .I c u u I 4> cn w u o> m I U ft O 10 -HU ·· I U i — 1 r-t I u N ι-t i u I s c u o i cuoca I. * · © 3 o «o · © 3 o« u.

I C © 0i +> ,C 0« æ cn Æ 1 I o x c ta r * c « s I bCHHC u u m z o 67 DK 175551 B1I C © 0i +>, C 0 «æ cn Æ 1 I o x c ta r * c« s I bCHHC u u m z o 67 DK 175551 B1

Som angivet i Tabel XXIII udviste 125I-hpG-CSF binding til WEHI-3B(D+) leukæmicellerne. Bindingen blev dosisafhsngigt inhiberet af umærket naturligt hpG-CSF eller rhpG-CSF, men ikke af GM-CSF. Derudover observe-5 rede man binding af naturligt hpG-CSF til humane myelo-monocytiske leukæmiceller (ANLL, M4). Bindingen til disse celler har en parallel i væskeformige kulturers respons til naturlig hpG-CSF, idet de differentierer til fuldt udviklet macrophager, bedømt ud fra morphologien.As indicated in Table XXIII, 125 I-hpG-CSF showed binding to the WEHI-3B (D +) leukemia cells. The binding was dose dependent inhibited by unlabeled natural hpG-CSF or rhpG-CSF, but not by GM-CSF. In addition, binding of native hpG-CSF to human myeloid monocytic leukemia cells (ANLL, M4) was observed. The binding to these cells has a parallel in the response of liquid cultures to natural hpG-CSF, differentiating into fully developed macrophages, judged by morphology.

10 Den manglende binding af naturlig 125l-hpG-CSF til mono-cytiske leukæmiceller fra en anden patient (ANLL, M5B) kan skyldes, at visse leukæmiceller kan differentiere på en anden måde eller mangle receptorer for hpG-CSF. Evnen af rhpG-CSF til at konkurrere med naturlig hpG-CSF om 15 binding til naturlig 125I-hpG-CSF er et tegn på# at receptorerne genkender begge former i lige høj grad.10 The failure to bind natural 125 I-hpG-CSF to monocytic leukemia cells from another patient (ANLL, M5B) may be due to the fact that some leukemia cells may differentiate differently or lack receptors for hpG-CSF. The ability of rhpG-CSF to compete with natural hpG-CSF for 15 binding to natural 125I-hpG-CSF is indicative of # that receptors recognize both forms equally.

Disse forsøg, der demonstrerer bindingen af naturlig 125i—mærket hpG-CSF til leukæmiceller, har en parallel i evnen hos naturlig hpG-CSF til at inducere 20 granulocytisk og monocytisk differentiering af knoglemarvsceller med lav densitet, opnået fra en patient med akut promyelocytisk leukæmi (M3) og en anden patient med akut myeloblastisk leukæmi (M2). Celler fra de to patienter blev dyrket i fire dage enten i dyrkningsmedium 25 alene eller under tilstedeværelse af 1 x 105 enheder rhpG-CSF. Celler fra M3 kontrolmediet inkuberet alene her var stadig af promyelocyt-type; hvorimod celler, dyrket under tilstedeværelse af rhpG-CSF udviste fuldt udviklede celler af den myeloide type, deriblandt en 30 metamyelocyt, en kæmpe båndform og segmenteret meutro-philis og monocyt. For denne patient var opdelingen af 100 celler i kontrolgruppen 100% promyelocyter, og af rhpG-CSF behandlede celler 22% blastceller plus promye-These experiments demonstrating the binding of natural 125i-labeled hpG-CSF to leukemia cells have a parallel in the ability of natural hpG-CSF to induce 20 low-density granulocytic and monocytic differentiation of bone marrow cells obtained from a patient with acute promyelocytic leukemia ( M3) and another patient with acute myeloblastic leukemia (M2). Cells from the two patients were cultured for four days either in culture medium 25 alone or in the presence of 1 x 10 5 units of rhpG-CSF. Cells from the M3 control medium incubated here alone were still of the promyelocyte type; whereas cells grown in the presence of rhpG-CSF exhibited fully developed myeloid type cells, including a metamyelocyte, a giant band form, and segmented meutrophil and monocyte. For this patient, the division of 100 cells into the control group was 100% promyelocytes, and of rhpG-CSF treated cells 22% blast cells plus promyelocytes.

I DK 175551 B1 II DK 175551 B1 I

I 68 II 68 I

I locyter, 7% myelocyter, 35% metamyelocyter, 20% bånd- IIn loci, 7% myelocytes, 35% metamyelocytes, 20% band I

I former plus segmenterede neutrofile, 14% monocyter og 2% IIn forms plus segmented neutrophils, 14% monocytes and 2% I

I macrophager. En interessant kendsgerning er, at en af IIn macrophages. An interesting fact is that one of I

I de polymorphonucleære granulocyter stadig indeholdt et IIn the polymorphonuclear granulocytes, I still contained one

I 5 dominerende auerlegeme, et tegn på, at i det mindste IIn 5 dominant auer bodies, a sign that at least I

I denne celle repræsenterede en differentieret celle, der IIn this cell represented a differentiated cell which I

I hørte til leukæmiklonen. Celler fra den anden patient IYou belonged to the leukemia clone. Cells of the second patient I

I med myeloblastisk leukæmi (M2) blev også dyrket fire II with myeloblastic leukemia (M2) was also grown four I

I dage under fravær eller tilstedeværelse af rhpG-CSP. IFor days in the absence or presence of rhpG-CSP. IN

I 10 Ved gennemsyn af M2 celler, der var dyrket i mediet II 10 In review of M2 cells grown in medium I

I alene, kunne man iagttage store "blastagtige" celler, af IIn alone, large "blast-like" cells could be observed by I

I hvilke nogle besad kerner. Visse af M2 cellerne diffe- IIn which some possessed cores. Certain of the M2 cells diffuse

I rentierede, når de blev behandlet med rhpG-CSF, til II retained when treated with rhpG-CSF to I

I fuldt udviklede segmenterede neutrophile med rest af au- IIn fully developed segmented neutrophils with the remainder of au- I

I 15 erlegemer i centret af neutrophilen, et tegn på at der IIn 15 bodies in the center of the neutrophil, a sign that I

I var foregået differentiering i en celle, der tilhørte IYou were differentiated into a cell that belonged to you

I leukæmiklonen. En opdeling af 100 celler, der var un- IIn the leukemia clone. A breakdown of 100 cells that were un- I

I dersøgt morphologisk, viste, at cellerne fra kontrol- IIn morphologically examined, the cells from control I showed

I gruppen bestod af 100% blastceller. De celler, der var IThe group consisted of 100% blast cells. The cells that were I

20 behandlet med rhpG-CSP, bestod af 43% blastceller, 1% I20 treated with rhpG-CSP, consisted of 43% blast cells, 1% I

myelocyter, 15% metamyelocyter, 28% båndformer plus Imyelocytes, 15% metamyelocytes, 28% band forms plus I

segmenterede neutrophile, 2% promonocyter og 11% mono- Isegmented neutrophils, 2% promonocytes and 11% mono- I

cyter. Man undersøgte også leukæmicellerne med henblik Icyter. Leukemia cells were also examined for the purpose I

på differentiering ved fire andre koncentrationer af Ion differentiation at four other concentrations of I

25 rhpG-CSF (5 x 103, 1 x 104, 2,5 x 104 og 5 x 104 U/ml, I25 rhpG-CSF (5 x 103, 1 x 104, 2.5 x 104 and 5 x 104 U / ml, I)

data ikke vist). Selv ved de lavest afprøvede koncen- Idata not shown). Even at the lowest tested concentrations

trationer af rhpG-CSF (5 x 103 U/ml) var der tydelig Itrations of rhpG-CSF (5 x 10 3 U / ml) were evident

differentiering (cellerne differentierede længere end Idifferentiation (the cells differentiated longer than I

til myelocyter) af M3 (50%) og M2 (37%) leukæmicel- Ito myelocytes) of M3 (50%) and M2 (37%) of leukemia cell I

30 lerne. I30 lerne. IN

DK 175551 B1 69 6. ImmunassayDK 175551 B1 69 6. Immunoassay

Til fremstilling af polyklone antistoffer til brug i immunassay anvendte man som antigen pluripotent G-CSF, oprenset fra human blærecarcinom cellelinie 5637 5 (ia6), som fremstillet i Eksempel 1 (B). På basis af sølvnitratfarvning af polyacrylamidgeler vurderede man materialet til at være 85% rent. Man immuniserede seks uger gamle Balb/C mus med mange subkutane injektioner af antigenet. Antigenet blev udsuspenderet i PBs og emul-10 geret med lige så store rumfang af Freund's komplette adjuvans.To prepare polyclonal antibodies for use in immunoassay, as antigenic pluripotent G-CSF, purified from human bladder carcinoma cell line 5637 (ia6), as prepared in Example 1 (B), was used. On the basis of silver nitrate staining of polyacrylamide gels, the material was estimated to be 85% pure. Six-week-old Balb / C mice were immunized with many subcutaneous injections of the antigen. The antigen was suspended in PBs and emulsified with equal volumes of Freund's complete adjuvant.

Dosis var 5-7 pg antigen pr, mus pr. injektion.The dose was 5-7 µg antigen per mouse per day. injection.

18 dage senere forstærkede man immuniseringen ved den samme mængde antigen emulgeret med et lige så stort rum-15 fang af Freund's ikke-komplette adjuvans. 4 dage senere udtog man museserum til afprøvning for indhold af det antistof, der var specifikt overfor human pluripotent G-CSF.18 days later, immunization was enhanced by the same amount of antigen emulsified with an equal volume of 15-fold of Freund's incomplete adjuvant. Four days later, mouse serum was taken for testing for the content of the antibody specific to human pluripotent G-CSF.

Man overtrak Dynatech immulon II Removawell 20 strips i holdere (Dynateck Lab., Inc., Alexandria, Virginia) med hpG-CSF 5 pg/ml i 50 mM carbonat-bicarbonat-puffer, pH 9,2. Fordybninger i plader blev overtrukket med 0,25 pg i et rumfang på 50 pi. Man inkuberede de antigendækkede plader to timer ved stuetemperatur natten 25 over ved 4°C. Man fradekanterede opløsningen og inkuberede pladerne 30 minutter med PBS med indhold af 5% BSA for at blokere den reaktive overflade. Man fradekanterede denne opløsning og tilsatte enten fortyndet pre-immunserum eller serum til afprøvning til fordybningerne 30 og inkuberede to timer ved stuetemperatur. Sera blev fortyndet med PBS, pH 7,0, med indhold af 1% BSA. Man fradekanterede serumopløsningen og vaskede pladerne tre gange med Wash Solution (KPL, Gaithersburg, Maryland). Tilsatte ca. 200.000 cpm ioderet kanin-antimus IgG (NEN,Dynatech Immulon II Removawell 20 strips in holders (Dynateck Lab., Inc., Alexandria, Virginia) were coated with hpG-CSF 5 µg / ml in 50 mM carbonate-bicarbonate buffer, pH 9.2. Plates in sheets were coated with 0.25 µg in a volume of 50 µl. The antigen-coated plates were incubated for two hours at room temperature overnight at 4 ° C. The solution was decanted off and the plates incubated for 30 minutes with PBS containing 5% BSA to block the reactive surface. This solution was decanted off and either diluted pre-immune serum or serum added for testing to the wells 30 and incubated for two hours at room temperature. Sera were diluted with PBS, pH 7.0, containing 1% BSA. The serum solution was decanted off and the plates were washed three times with Wash Solution (KPL, Gaithersburg, Maryland). Added approx. 200,000 cpm iodized rabbit anti-mouse IgG (NEN,

I 1 DK 175551 B1 II 1 DK 175551 B1 I

I 70 II 70 I

I Boston, Massachusetts) i 50 ul PBS, pH 7,0, med indhold IIn Boston, Massachusetts) in 50 µl PBS, pH 7.0, with content I

I af 1% BSA til hver fordybning. Efter inkubering 1½ II of 1% BSA for each recess. After incubation 1½ I

I time ved stuetemperatur fradekanterede man denne opløs- IFor one hour at room temperature, this solution was decanted off

I ning og vaskede pladerne fem gange med Wash solution. IWash and wash the plates five times with Wash solution. IN

I 5 Man fjernede fordybningerne fra holderen og talte dem i II 5 The grooves were removed from the holder and spoken in I

I en Beckman 5500 gamma tæller. Højaktiv museserum viste IIn a Beckman 5500 gamma counter. Highly active mouse serum I showed

I mere end 12 gange større reaktivitet end det tilsvarende IIn more than 12 times greater reactivity than the corresponding I

I prs-immune serum ved en fortynding på 1:100. IIn prs immune serum at a dilution of 1: 100. IN

I Man bestemte de immunologiske egenskaber af E. IThe immunological properties of E. I were determined

I 10 coli-afledt hpG-CSF ved reaktivitet over for højaktiv IIn 10 coli-derived hpG-CSF upon reactivity to highly active I

I museserum, der var specifikt overfor pattedyrscelle af- IIn mouse serum specific to mammalian cell of I

I ledt hpG-CSF. Man overtrak Xmmulon II Removawells med IIn led hpG-CSF. Xmmulon II Removawells were coated with I

I 0,25 ug 90% ren E. coli afledt protein i et rumfang på IIn 0.25 µg 90% pure E. coli derived protein in a volume of I

I 50 μΐ og analyserede museserummet som beskrevet oven- II 50 μΐ and analyzed the mouse serum as described above

I 15 for. IIn 15 for. IN

I Højaktive musesera udviste en 24 gange højere re- IIn High-active mouse sera exhibited a 24-fold higher re- I

I aktivitet overfor materiale fra E. coli end de tilsva- IIn activity against E. coli material than they correspond to

I rende præ-immune sera ved en fortynding på 1:100. IIn pre-immune sera at a dilution of 1: 100. IN

I 20 7. Bloassays for serinanaloge II 7. Serial Analog Bloassays I

I Man undersøgte [Ser17]hpG-CSF, [Ser36]hpG-CSF, I[Ser17] studied hpG-CSF, [Ser36] hpG-CSF, I

I [Ser42]hpG-CSF, [Ser64]hpG-CSF og [Ser74]hpG-CSF produk- IIn [Ser42] hpG-CSF, [Ser64] hpG-CSF and [Ser74] hpG-CSF product I

I ter, fremstillet ifølge Eksempel 9 for hpG-CSF aktivitet IIter, prepared according to Example 9 for hpG-CSF activity I

I ved optagelse af 3H-thymidin, CFU-GM og WEHI 3B D+ II by uptake of 3H-thymidine, CFU-GM and WEHI 3B D + I

I 25 assays. I alle assays besad [Ser17] analogen en aktivi- IIn 25 assays. In all assays, [Ser17] had analog and activity

I tet, der kunne sammenlignes med aktiviteten i det rekom- IThis could be compared to the activity of the recom

I binante molekyle med den naturlige struktur. De andre IIn binant molecule with the natural structure. The other I

analoge besad ca. 100 gange mindre aktivitet ved forsø- Ianalogue possessed approx. 100 times less activity in experiments

I get med optag af 3H-thymidin, en 250 gange mindre akti- II get uptake of 3H-thymidine, a 250 times less active

I 30 vitet i CFU-GM essayet, og en 500 gange mindre aktivitet IIn 30 of the CFU-GM essay, and 500 times less activity I

I i WEHI-3B D+ assayet. Disse data støtter den teori, at II in the WEHI-3B D + assay. These data support the theory that you

I cysteinrester er nødvendige i stillingerne 36, 42, 64 og IIn cysteine residues are required in positions 36, 42, 64 and I

I 74 til opnåelse af fuld biologisk aktivitet. II 74 to achieve full biological activity. IN

I II I

71 DK 175551 B1 8. In vivo bloassay71 DK 175551 B1 8. In vivo bloassay

Man forbandt Alzet osmotiske pumper (Aiset Corp.,Alzet osmotic pumps were connected (Aiset Corp.,

Palo Alto, CA; Model 2001) til permanente katetere i den højre halsåre og implanterede dem under huden på syv sy-5 riske guldhamstre. Fire af pumperne indeholdt en puffer [ 20 mM natriumacetat (pH 5,4) og 37 mM natriumchlorid] og 1,5 mg/ml E. coli-afledt hpG-CSF, hvorimod 3 kun indeholdt puffer. Pumpehastigheden var angivet til at være 1 μΐ/time i op til syv dage. Tre dage efter an-10 bringeisen af pumperne var middelantallet af granulocy-ter hos de fire behandlede hamstere seks gange højere end hos de tre kontrolhamstere (puffer), og samtidig med det forøgede antal af granulocyter var der en firedobling i antallet af totale lymfocyter. Antallet af 15 erythrocyter blev ikke ændret ved behandlingen. Disse resultater er et tegn på, at det rekombinante materiale producerer en specifik forstærkning af produktionen af og/eller frigivelse af granulocyter hos et pattedyr.Palo Alto, CA; Model 2001) for permanent catheters in the right neck vein and implanted them under the skin of seven Syrian gold hamsters. Four of the pumps contained a buffer [20 mM sodium acetate (pH 5.4) and 37 mM sodium chloride] and 1.5 mg / ml E. coli-derived hpG-CSF, whereas 3 contained only buffer. The pump speed was set to be 1 μΐ / hour for up to seven days. Three days after the application of the pumps, the mean number of granulocytes in the four treated hamsters was six times higher than in the three control hamsters (buffer), and with the increased number of granulocytes there was a quadrupling in the total lymphocytes. The number of 15 erythrocytes was not altered during treatment. These results indicate that the recombinant material produces a specific enhancement of the production and / or release of granulocytes in a mammal.

De her beskrevne DNA-sekvenser, som koder for 20 hpG-CSF-agtige polypeptider, kan være nyttige i henseende til den information, den leverer om aminosyresekven-sen fra pattedyrsproteinet, som tidligere har været utilgængeligt, trods analyseforsøg på isolater af naturlige forekommende produkter. DNA sekvenserne må også 25 anses for at være værdifulde som produkter, der kan anvendes ved mikrobiel syntese i stor skala af hpG-CSF ved et antal rekombinante fremgangsmåder. Disse DNA-sekvenser kan være egnet materiale til anvendelse som mærkede sonder ved isolering af hpG-CSF og beslægtet protein, 30 der kodes for af human genomisk DNA, såvel som cDNA og genomiske DNA sekvenser fra andre pattedyrsarter. DNA sekvenserne kan også være nyttige ved forskellige andre fremgangsmåder for proteinsyntese (f.eks. i insektcel-The DNA sequences described herein, which encode 20 hpG-CSF-like polypeptides, may be useful in the information it provides about the mammalian protein amino acid sequence that was previously unavailable, despite assays on isolates of naturally occurring products. . The DNA sequences must also be considered valuable as products that can be used in large scale microbial synthesis of hpG-CSF by a number of recombinant methods. These DNA sequences may be suitable material for use as labeled probes in isolating hpG-CSF and related protein encoded by human genomic DNA, as well as cDNA and genomic DNA sequences from other mammalian species. The DNA sequences may also be useful in various other methods of protein synthesis (e.g., in insect cell lines).

I DK 175551 B1 II DK 175551 B1 I

I 72 II 72 I

I ler) eller 1 genetisk terapi på mennesker og andre pat- IIn clay) or 1 genetic therapy in humans and other patients

I tedyr. Man venter, at DNA sekvenser ifølge opfindelsen IIn ted animals. It is expected that DNA sequences of the invention I

I er nyttige ved udvikling af transgene pattedyrs-specier, IYou are useful in developing transgenic mammalian species, I

I som kan tjene som eukaryotiske "værter" ved produktion IYou can serve as eukaryotic "hosts" in production

I ^ af hpG-CSF og hpG-CSF produkter i store mængder. Se i II ^ of hpG-CSF and hpG-CSF products in large quantities. See I

I denne forbindelse Palmiter, et al., Science, 222 (4625), .1In this regard, Palmiter, et al., Science, 222 (4625), .1

I 809-814 (1983). IIn 809-814 (1983). IN

I Med relevans til hpG-CSF derivater og analoger II With relevance to hpG-CSF derivatives and analogs I

I ifølge opfindelsen kan nævnes rapporter om den immunolo- IIn accordance with the invention, mention may be made of the immunologic I

I 10 giske aktivitet af syntetiske peptider, som i det væ- IIn 10 activity of synthetic peptides, as in the liquid

I sentlige duplikerer aminosyresekvenser, der findes i IIn late, amino acid sequences duplicated in I

I naturligt forekommende proteiner, glycoproteiner IIn naturally occurring proteins, glycoproteins I

I og nucleoproteiner. Mere detailleret har man vist, atI and nucleoproteins. In more detail, it has been shown that

I relativt lavmolekylære polypeptider indgår i immunreak- IIn relatively low molecular weight polypeptides are included in the immune response

I 15 tioner, som med henseende til varighed og udbredelse li- IIn 15 tions, which with respect to duration and prevalence lie- I

I gner immunreaktionerne af fysiologisk signifikante prot- IYou stimulate the immune responses of physiologically significant proteins

I einer som virale antigener, polypeptidhormoner og lig- IIn proteins such as viral antigens, polypeptide hormones and lig

I nende. Blandt immunreaktionerne på sådanne polypeptider II nende. Among the immune responses to such polypeptides I

I er inkluderet provokation af dannelse af specifikke an-You include the provocation of formation of specific

I 20 tistoffer i immunologisk aktive dyr. Se f.eks. Lerner, IIn 20 antibodies in immunologically active animals. See, e.g. Lerner, I.

I et al.. Cell, 23, 309-310 (1981); Ross, et al.. Nature, ICell, 23, 309-310 (1981); Ross, et al., Nature, I

I 294, 654-656 (1981); Walter, et al., Proc. Natl. Acad. II 294, 654-656 (1981); Walter, et al., Proc. Natl. Acad. IN

I Sci. (USA), 77, 5197-520.0 (1980); Lerner, et al., Proc. IIn Sci. (USA), 77, 5197-520.0 (1980); Lerner, et al., Proc. IN

I Natl. Acad. Sci. (USA), 78, 3403-3407 (1981); Walter, IIn Natl. Acad. Sci. (USA), 78, 3403-3407 (1981); Walter, I.

I 25 et al., Proc. Natl. Acad. Sci. (USA), 78, 4882-4886 IIn 25 et al., Proc. Natl. Acad. Sci. (USA), 78, 4882-4886 I

I (1981); Wong, et al., Proc. Natl. Acad. Sci. (USA), II (1981); Wong, et al., Proc. Natl. Acad. Sci. (USA), I

I 78, 7412-7416 (1981); Green, et al., Cell, 28, 477-487 II 78, 7412-7416 (1981); Green, et al., Cell, 28, 477-487 I

I (1982); Nigg, et al., Proc. Natl. Acad. Sci. (USA), 79, II (1982); Nigg, et al., Proc. Natl. Acad. Sci. (USA), 79, I

I 5322-5326 (1982); Baron, et al., Cell, 28, 395-404 II 5322-5326 (1982); Baron, et al., Cell, 28, 395-404 I

I 30 (1982); Dreesman, et al., Nature, 295, 185-160 (1982); II 30 (1982); Dreesman, et al., Nature, 295, 185-160 (1982); IN

I og Lerner, et al., Scientific American, 248, nr. 2, II and Lerner, et al., Scientific American, 248, No. 2, I

I 66-74 (1983). Se også Kaiser, et al., Science, 223, IIn 66-74 (1983). See also Kaiser, et al., Science, 223, I

I 249-255 (1984) hvad. angår biologiske og immunologiske IIn 249-255 (1984) what. concerns biological and immunological I

73 DK 175551 B1 aktiviteter af syntetiske peptider, som med tilnærmelse deler den sekundære struktur med peptidhormoner, men muligvis ikke har primær strukturel konformation tilfælles med dem.73 DK 175551 B1 activities of synthetic peptides that approximate the secondary structure with peptide hormones, but may not have primary structural conformation in common with them.

Claims (17)

1. Isoleret polypeptid med de hæmatopoietiske I I biologiske egenskaber for naturligt forekommende pluri- I I potent granulocyt kolonistimulerende faktor (hpG-CSF), I I 5 hvor polypeptidet har den i Tabel VII angivne aminosy- I I resekvens 1-174, kendetegnet ved at være ik- I I ke naturligt forekommende og være et produkt af proka- I I ryotisk eller eukaryotisk ekspression af en exogen DNA- I I sekvens. I I 10 2. Polypeptidanalog ifølge krav 1, k e n d e - I I tegnet ved, at den exogene DNA-sekvens er en I I cDNA-sekvens. IAn isolated polypeptide having the hematopoietic II biological properties of naturally occurring pluri-II potent granulocyte colony-stimulating factor (hpG-CSF), wherein the polypeptide has the amino acid sequence listed in Table VII, characterized by II ke naturally occurring and being a product of prokaryotic or eukaryotic expression of an exogenous DNA II sequence. A polypeptide analog according to claim 1, characterized in that the exogenous DNA sequence is an I I cDNA sequence. IN 3. Polypeptidanalog ifølge krav 1, kende- I I tegnet ved, at den exogene DNA-sekvens er en ge- fl I 15 nomisk sekvens. IA polypeptide analog according to claim 1, characterized in that the exogenous DNA sequence is a genomic sequence. IN 4. Polypeptidanalog ifølge krav 1,kende- I I tegnet ved, at den exogene DNA-sekvens bæres af I I et autonomt replikerende DNA-plasmid eller viral vek- I I tor. I I 20 5. Polypeptid ifølge krav 1, kendeteg- I I net ved at være kovalent associeret med en påviselig I I markørsubstans, især en radioaktiv markør. IThe polypeptide analog of claim 1, characterized in that the exogenous DNA sequence is carried by I in an autonomously replicating DNA plasmid or viral vector. The polypeptide of claim 1, characterized by being covalently associated with a detectable I marker marker substance, especially a radioactive marker. IN 6. DNA-sekvens, der ved eksprimering i en proka- I I ryotisk eller eukaryotisk værtscelle koder for et poly- I I 25 peptidprodukt, der besidder i det mindste en del af den . I I primære struktur og de hæmatopoietiske biologiske egen- I I skaber for naturligt forekommende pluripotent granulo- · I I cyt kolonistimulerende faktor, hvor DNA-sekvenden er I I kendetegnet ved at kode for et polypeptid I I 30 med den i Tabel VII angivne aminosyresekvens 1-1748. I 7. cDNA-sekvens ifølge krav 6. IA DNA sequence which, when expressed in a prokaryotic or eukaryotic host cell, encodes a poly (I) peptide product possessing at least a portion of it. In primary structure and the hematopoietic biological properties, I create naturally occurring pluripotent granulocyte colony stimulating factor, wherein the DNA sequence is characterized by encoding a polypeptide I I with the amino acid sequence listed in Table VII 1-1748. The cDNA sequence of claim 6. I 8. Genomisk DNA-sekvens ifølge krav 6. IThe genomic DNA sequence of claim 6. I 9. DNA-sekvens ifølge krav 6,kendeteg- I 75 DK 175551 B1 net ved, at den er kovalent associeret med en påviselig markørsubstans, især en radioaktiv markør.The DNA sequence of claim 6, characterized in that it is covalently associated with a detectable marker substance, especially a radioactive marker. 10. Enkeltstrenget DNA-sekvens ifølge krav 9.The single stranded DNA sequence of claim 9. 11. Biologisk funktionelt plasmid eller viral . 5 DNA-vektor, kendetegnet ved, at det inklude rer en DNA-sekvens ifølge krav 6.11. Biologically functional plasmid or viral. DNA vector, characterized in that it includes a DNA sequence according to claim 6. 12. Prokaryotisk eller eukaryotisk værtscelle, kendetegnet ved, at den er transformeret el-: ler transficeret med en DNA-sekvens ifølge krav 6 på en 10 sådan måde, at værtscellen kan eksprimere det pågældende polypeptidprodukt.A prokaryotic or eukaryotic host cell, characterized in that it is transformed or transfected with a DNA sequence according to claim 6 in such a way that the host cell can express the polypeptide product in question. 13. Prokaryotisk eller eukaryotisk værtscelle, kendetegnet ved, at den er stabilt transformeret eller transficeret med en DNA-vektor ifølge krav 15 11.Prokaryotic or eukaryotic host cell, characterized in that it is stably transformed or transfected with a DNA vector according to claim 15 11. 14. Værtscelle ifølge krav 12 eller 13, kendetegnet ved, at værten er E. coli.Host cell according to claim 12 or 13, characterized in that the host is E. coli. 15. Værtscelle ifølge krav 12 eller 13, kendetegnet ved, at værten er en pattedyrscelle.Host cell according to claim 12 or 13, characterized in that the host is a mammalian cell. 16. Fremgangsmåde til fremstilling af isolerede polypeptider med de hæmatopoietiske egenskaber for naturligt forekommende human granulocyt kolonistimulerende faktor, hvor polypeptidet har den i Tabel VII angivne aminosyresekvens 1-174, kendetegnet ved, 25 at man under egnede næringsbetingelser dyrker prokaryo-tiske eller især eukaryotiske værtsceller, der er transformeret eller transficeret med en DNA-sekvens ifølge krav 6 på en sådan måde, at de kan eksprimere det nævnte polypeptid, og at man isolerer det ønskede 30 polypeptidprodukt fra ekspressionen af DNA-sekvensen. 1 Farmaceutisk præparat, kendetegnet ved, at det omfatter en effektiv mængde af poly- DK 175551 B1 IA method of producing isolated polypeptides having the hematopoietic properties of naturally occurring human granulocyte colony-stimulating factor, wherein the polypeptide has the amino acid sequence 1-174, characterized in that prokaryotic or especially eukaryotic cells are cultured under appropriate nutritional conditions. transformed or transfected with a DNA sequence according to claim 6 in such a way that they can express said polypeptide and isolate the desired polypeptide product from the expression of the DNA sequence. 1 Pharmaceutical composition, characterized in that it comprises an effective amount of polyethylene. 76 I peptidet ifølge krav 1 og/eller fremstillet ifølge krav I 16, og et farmaceutisk acceptabelt fortyndingsmiddel, I adjuvans eller bærer.76 In the peptide of claim 1 and / or prepared according to claim I 16, and a pharmaceutically acceptable diluent, in adjuvant or carrier. 18. Farmaceutisk præparat ifølge krav 17, yder- I 5 ligere kendetegnet ved at være frit for as- sociation med noget som helst humant protein. IPharmaceutical composition according to claim 17, further characterized by being free from association with any human protein. IN 19. Anvendelse af polypeptidet ifølge krav l til I fremstilling af et lægemiddel til tilvejebringelse af hæmatopoietisk terapi på et pattedyr. IUse of the polypeptide of claim 1 to I in the manufacture of a medicament for providing hematopoietic therapy to a mammal. IN 10 I10 I
DK200301685A 1985-08-23 2003-11-12 Poly:peptide with granulocyte colony stimulating factor activity - obtd. by recombinant DNA procedures for treating haematopoietic disorders DK175551B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DK200301685A DK175551B1 (en) 1985-08-23 2003-11-12 Poly:peptide with granulocyte colony stimulating factor activity - obtd. by recombinant DNA procedures for treating haematopoietic disorders
DK200401111A DK176002B1 (en) 1985-08-23 2004-07-15 Poly:peptide with granulocyte colony stimulating factor activity - obtd. by recombinant DNA procedures for treating haematopoietic disorders

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US76895985A 1985-08-23 1985-08-23
US76895985 1985-08-23
US83554886 1986-03-03
US06/835,548 US4810643A (en) 1985-08-23 1986-03-03 Production of pluripotent granulocyte colony-stimulating factor
DK204487 1987-04-22
DK198702044A DK174980B1 (en) 1985-08-23 1987-04-22 Isolated polypeptide having properties such as hpG-CSF, DNA sequence encoding it, plasmids containing the sequence, transformed / transfected host cells, method for producing the polypeptide, pharmaceutical composition containing it ...
DK200301685 2003-11-12
DK200301685A DK175551B1 (en) 1985-08-23 2003-11-12 Poly:peptide with granulocyte colony stimulating factor activity - obtd. by recombinant DNA procedures for treating haematopoietic disorders

Publications (2)

Publication Number Publication Date
DK200301685A DK200301685A (en) 2003-11-12
DK175551B1 true DK175551B1 (en) 2004-12-06

Family

ID=29715751

Family Applications (3)

Application Number Title Priority Date Filing Date
DK200301684A DK175466B1 (en) 1985-08-23 2003-11-12 Poly:peptide with granulocyte colony stimulating factor activity - obtd. by recombinant DNA procedures for treating haematopoietic disorders
DK200301683A DK175465B1 (en) 1985-08-23 2003-11-12 Poly:peptide with granulocyte colony stimulating factor activity - obtd. by recombinant DNA procedures for treating haematopoietic disorders
DK200301685A DK175551B1 (en) 1985-08-23 2003-11-12 Poly:peptide with granulocyte colony stimulating factor activity - obtd. by recombinant DNA procedures for treating haematopoietic disorders

Family Applications Before (2)

Application Number Title Priority Date Filing Date
DK200301684A DK175466B1 (en) 1985-08-23 2003-11-12 Poly:peptide with granulocyte colony stimulating factor activity - obtd. by recombinant DNA procedures for treating haematopoietic disorders
DK200301683A DK175465B1 (en) 1985-08-23 2003-11-12 Poly:peptide with granulocyte colony stimulating factor activity - obtd. by recombinant DNA procedures for treating haematopoietic disorders

Country Status (1)

Country Link
DK (3) DK175466B1 (en)

Also Published As

Publication number Publication date
DK200301684A (en) 2003-11-12
DK200301685A (en) 2003-11-12
DK175465B1 (en) 2004-11-01
DK200301683A (en) 2003-11-12
DK175466B1 (en) 2004-11-01

Similar Documents

Publication Publication Date Title
DK174980B1 (en) Isolated polypeptide having properties such as hpG-CSF, DNA sequence encoding it, plasmids containing the sequence, transformed / transfected host cells, method for producing the polypeptide, pharmaceutical composition containing it ...
US4999291A (en) Production of human pluripotent granulocyte colony-stimulating factor
US6004548A (en) Analogs of pluripotent granulocyte colony-stimulating factor
EP1018552B1 (en) Production of pluripotent granulocyte colony-stimulating factor
DK175551B1 (en) Poly:peptide with granulocyte colony stimulating factor activity - obtd. by recombinant DNA procedures for treating haematopoietic disorders
AU727724B2 (en) Production of pluripotent granulocyte colony-stimulating factor
DK176002B1 (en) Poly:peptide with granulocyte colony stimulating factor activity - obtd. by recombinant DNA procedures for treating haematopoietic disorders
AU769969B2 (en) Production of pluripotent granulocyte colony-stimulating factor
BG63065B2 (en) Analogues of pluripotent granulocytic colony-stimulating factor
BG63285B2 (en) Production of human pluripotent granulocytic colony-stimulation factor
AU2004202013A1 (en) Production of pluripotent granulocyte colony-stimulating factor

Legal Events

Date Code Title Description
PUP Patent expired