CA1239115A - Sputtering apparatus and method - Google Patents

Sputtering apparatus and method

Info

Publication number
CA1239115A
CA1239115A CA 550621 CA550621A CA1239115A CA 1239115 A CA1239115 A CA 1239115A CA 550621 CA550621 CA 550621 CA 550621 A CA550621 A CA 550621A CA 1239115 A CA1239115 A CA 1239115A
Authority
CA
Canada
Prior art keywords
cathode target
magnet
magnetic field
sputtering apparatus
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
CA 550621
Other languages
French (fr)
Other versions
CA1239115B (en
Inventor
Kovilvila Ramachandran
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canadian Patents and Development Ltd
Original Assignee
Canadian Patents and Development Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Publication of CA1239115B publication Critical patent/CA1239115B/en
Application filed by Canadian Patents and Development Ltd filed Critical Canadian Patents and Development Ltd
Priority to CA 550621 priority Critical patent/CA1239115A/en
Application granted granted Critical
Publication of CA1239115A publication Critical patent/CA1239115A/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3402Gas-filled discharge tubes operating with cathodic sputtering using supplementary magnetic fields
    • H01J37/3405Magnetron sputtering

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

Abstract An apparatus and method is described for the magnetron sputtering onto a workpiece to deposit a thin metallic film. A rotating magnetic field is provided in the vicinity of the cathode target to produce higher yield from a given cathode target.

Description

I

Sputtering arts and method BACKGROUND OF THE INVENTION
____ This invention relates to an apparatus and a method for depositing metal on a substrate (workups) by a cathode sputtering technique In sputtering apparatus, the vaporizing of the material of a cathode into a mass of metallic atoms by the bombard-mint of gas ions is referred to as a glow discharge.
A number of the atoms are scattered and adhere to the surface of a workups positioned in the vicinity of the anode to form a metallic film thereon.
In the United States Patents Nos. 4,221,652 (September 9, 1980 - N. Quorum) and 4,282,083 (August 4, 1981 -G. Karats and G. Ago), a magnetic field is used in the sputtering apparatus. However in such sputtering apparatus the target tends to wear out and it is desirable to increase the time before the target wears out so as to give a higher yield.
SUMMARY OF THE INVENTION
Jo It is an object of the present invention to provide a sputtering apparatus and a method or sputtering in which a higher yield is obtained prom the target and a longer time of operation can be obtained between target replacements.

, . .
i .
Jo I

According to one aspect of the invention there is provided sputtering apparatus adapted to form a metallic film on a workups, comprising a magnetron sputter device for establishing a glow discharge, said device comprising a cathode target of material to be sputtered so as to coat at least part of said workups with said material, an anode at a different potential to said cathode target to form an electric field there between, a magnet adjacent said cathode target, and an assembly supporting said magnet and capable of rotating said magnet to produce a rotating magnetic field in the vicinity of said cathode target and said workups, said magnet being disposed such that said magnetic field is substantially parallel to the surface of said cathode target in the region to be sputtered.
According to another aspect there is provided a method of forming a metallic film on a workups comprising magnetron sputtering of a cathode target by establishing a glow discharge by means of an electric field in the vicinity of said cathode target, a magnetic field in the vicinity of said cathode target substantially parallel to the surface of said cathode target in the region to be sputtered, and rotation of said magnetic field.
DESCRIPTION OF_THE_D~WINGS
Figure 1 is a diagrammatic representation of one I embodiment of the invention, Figure 2 is a diagrammatic plan view of the arrangement of Figure 1, Figures 3 and 4 are diagrammatic representations of alternate magnetic tracks, Figures 5, 6 and 7 are diagrammatic representations of -an embodiment using a cylindrical target DESCRIPTION OF_PREFERRED_EMBODIMENTS
In Figure 1 there is diagrammatically illustrated, magnetron sputtering apparatus including a magnetron housing
2 and a magnetron sputter device 3. This device consists of -I .
:, ': .
' .
3 --a grounded anode shield electrode 4 located in the housing 2 together with a member 6 that serves both as a support and as a magnetic pole piece. A magnet assembly 8 and 10 is mounted on the member I, to produce a magnetic field 12, and the whole is capable of rotation as indicated by the arrow 14. A stationary cathode target disc 16 is positioned a short distance from the magnet assembly, the magnetic field 12 being substantially parallel to the surface of the cathode target 16 in the region to he sputtered. In operation, sputtering material from the cathode target disc 16 is deposited on the surface of a workups 25.
The anode shield electrode 4 is connected to ground potential at 18 whilst a negative potential of -500 to -1000 volts is applied to the cathode target disk 16 by way of lo terminal 20.
During the sputtering operation, the magnet assembly 8, 10 including the member 6 is rotated constantly at a selected speed, such as 60 rum and the plasma track, i.e. glow discharge, on the target disk 16 follows this rotation.
Consequently target erosion takes place from a much larger area of the target disc 16.
It the magnetic field 12 were stationary, the target erosion during sputtering takes place only along the stationary track defined by the magnetic field 12. This can be seen more clearly from Figure 2 which is a diagrammatic plan view representation of the arrangement within housing 2. The closed track of the air gap between the magnet assembly 8 and 10 is identified as 22, whilst the plasma ring 24 is also shown and it will be seen that rotation of the magnet assembly results in rotation of the plasma track or ring 24 on the target disc 16.
The effect of the magnetic field 12 is to confine most of the plasma 24 along the closed track and it will be understood that a strongly magnetized air gap in the form of the closed track 22 is created at the surface of the target , 16. The magnetic field 12 is, of course, created by suitably shaped magnets 8 and 10 which may be permanent or electron magnets. As seen, the cathode target is located within the vacuum chamber formed by housing 2 and it was found that a s stable plasma discharge was obtained at a suitable gas pressure, for example argon at 3 x 10 4 Torn.
It was found that more complex shapes of the magnetic track 22 were possible Two examples are diagrammatically illustrated in Figures 3 and 4 and in plan view they comprise a closed track formed from a plurality of petal-like outlines extending outwardly from a central location.
In Figure 5 there is diagrammatically illustrated a cylindrical arrangement according to an embodiment of the invention. Figure 6 is a partially cut-away perspective view and Figure 7 is a diagrammatic plan view of this embodiment.
In this embodiment the magnet 60 is cylindrical in shape and is magnetized such that the magnetic field follows a closed, endless track on the surface of the cylinder. This can be achieved either by magnetizing a solid cylinder with its I neutral axis following the closed track or by having two complementary cylindrical sections of opposite magnetic polarity, separated by an air gap following the closed track The natural lines Go force are such that sputtering takes place along the neutral zone of the magnet 60. The target 66 is in the form of a hollow cylinder closely surrounding the magnet fix. The shield electrodes 62 are at ground potential as indicated at 68 whilst a negative potential, of -500 to -1000 volts, is applied at terminal 70 to the cylindrical ;
target 66.
I The plasma is indicated at 64 whilst the plasma sweep on the target is represented by arrow 72 and results from the reciprocating action of the magnetic field.
From the above it will be seen that different shapes and geometries of magnetron sputtering can be achieved.

,, :

. .
:
.

-When other parameters (magnetic field, pressure and potential) are kept constant, total power in the plasma appears to be proportional to the length of the track.
The shape of the track and its sweep over the target determine the utilization efficiency, which could be as high as 80% for the circular disc.
During sputtering most of the power is generated as heat in the target. In the usual way, cooling is achieved by circulating water or other fluid behind the circular disc.
The same fluid can be used to provide the power to rotate the magnet assembly by the use of a small water turbine wheel attached to the shaft. This could eliminate the provision of external rotary power.
The described embodiments using a simplified target lo shape, (e.g. circular disc) appear to provide the following advantages:
1. Higher yield from a given target. These are generally expensive especially when made from precious metals 2. Longer time of operation between target replacements 3. Easier availability of targets in simple shapes, such as a circular disc, without the need for bonding or special geometry
4. The technique is particularly applicable to thin film techniques in the microelectronic industry.
It will be readily apparent to a person skilled in the art that a number of variations and modifications can be made without departing from the true spirit of the invention which will now be pointed out in the appended claims.

Claims (7)

1. Sputtering apparatus adapted to form a metallic film on a workpiece, comprising a magnetron sputter device for establishing a glow discharge, said device comprising (a) a cathode target of material to be sputtered so as to coat at least part of said workpiece with said material, (b) an anode at a different potential to said cathode target to form an electric field therebetween, (c) a magnet adjacent said cathode target, and (d) an assembly supporting said magnet and capable of rotating said magnet to produce a rotating magnetic field in the vicinity of said cathode target and said workpiece, said magnet being disposed such that said magnetic field is substantially parallel to the surface of said cathode target in the region to be sputtered.
2. Sputtering apparatus according to claim 1 wherein an air gap is provided in said magnet which in plan view comprises a spaced-apart pair of parallel straight lengths joined at each end by semi-circular portions to form a closed track.
3. Sputtering apparatus according to claim 1 wherein an air gap is provided in said magnet which in plan view comprises a closed track formed from a plurality of petal-like outlines extending outwardly from a central location.
4. Sputtering apparatus according to claim 1 wherein an air gap is provided in said magnet which in plan view is of closed-rectangular outline.
5. Sputtering apparatus according to claim 1 wherein the magnetic field is concentrated along a closed, endless track on a cylindrical surface, and the cathode target is a hollow cylinder closely surrounding the magnet
6. Sputtering apparatus according to claim 1, 2 or 3 including means for cooling said cathode target by cooling fluid.
7. A method of forming a metallic film on a workups comprising magnetron sputtering of a cathode target by establishing a glow discharge by means of an electric field in the vicinity of said cathode target, a magnetic field in the vicinity of said cathode target substantially parallel to the surface of said cathode target in the region to be sputtered, and rotation of said magnetic field.
CA 550621 1987-10-29 1987-10-29 Sputtering apparatus and method Expired CA1239115A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA 550621 CA1239115A (en) 1987-10-29 1987-10-29 Sputtering apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CA 550621 CA1239115A (en) 1987-10-29 1987-10-29 Sputtering apparatus and method

Publications (2)

Publication Number Publication Date
CA1239115B CA1239115B (en)
CA1239115A true CA1239115A (en) 1988-07-12

Family

ID=4136752

Family Applications (1)

Application Number Title Priority Date Filing Date
CA 550621 Expired CA1239115A (en) 1987-10-29 1987-10-29 Sputtering apparatus and method

Country Status (1)

Country Link
CA (1) CA1239115A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5108574A (en) * 1991-01-29 1992-04-28 The Boc Group, Inc. Cylindrical magnetron shield structure
US5320728A (en) * 1990-03-30 1994-06-14 Applied Materials, Inc. Planar magnetron sputtering source producing improved coating thickness uniformity, step coverage and step coverage uniformity
CN113025978A (en) * 2021-02-26 2021-06-25 张鹏成 Magnetron sputtering coating device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2926161B1 (en) * 2008-01-04 2012-02-10 Horiba Jobin Yvon Sas SOURCE MAGNETRON FOR SPECTROMETER WITH LUMINESCENT DISCHARGE.

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5320728A (en) * 1990-03-30 1994-06-14 Applied Materials, Inc. Planar magnetron sputtering source producing improved coating thickness uniformity, step coverage and step coverage uniformity
US5108574A (en) * 1991-01-29 1992-04-28 The Boc Group, Inc. Cylindrical magnetron shield structure
CN113025978A (en) * 2021-02-26 2021-06-25 张鹏成 Magnetron sputtering coating device

Also Published As

Publication number Publication date
CA1239115B (en)

Similar Documents

Publication Publication Date Title
US4498969A (en) Sputtering apparatus and method
KR960002633B1 (en) Magnetron cathode assembly
EP0211412B1 (en) Planar magnetron sputtering apparatus and its magnetic source
US5364518A (en) Magnetron cathode for a rotating target
US5130005A (en) Magnetron sputter coating method and apparatus with rotating magnet cathode
KR0148007B1 (en) Method and apparatus for sputter coating stepped wafers case b
KR0165860B1 (en) Magnetron sputtering device
US5972185A (en) Cathodic arc vapor deposition apparatus (annular cathode)
US5876576A (en) Apparatus for sputtering magnetic target materials
KR100216900B1 (en) Magnetron sputtering device
US5865970A (en) Permanent magnet strucure for use in a sputtering magnetron
US6036828A (en) Apparatus for steering the arc in a cathodic arc coater
US5409590A (en) Target cooling and support for magnetron sputter coating apparatus
WO2002086937A1 (en) Dipole ion source
JPH05209266A (en) Magnetron-sputter-gun-target-assembly having distributed magnetic field
JPH0639692B2 (en) Spatter device for activating the substratum by coating it with a hard material
CA1239115A (en) Sputtering apparatus and method
EP0451642B1 (en) Sputtering system
CA2093635C (en) Magnetron sputter coating method and apparatus with rotating magnet cathode
JPS59133370A (en) Magnetron sputtering device
JP3749178B2 (en) High target utilization magnetic configuration for frustoconical sputtering targets
WO1990013137A1 (en) Sputtering apparatus
JPS59173265A (en) Sputtering device
RU2242821C2 (en) Magnetron spraying system
JPS63100180A (en) Magnetron sputtering device

Legal Events

Date Code Title Description
NARE Reissued
MKEC Expiry (correction)
MKEX Expiry