BR112013005676B1 - sistema e método para gerar um sinal de tempo alongado e/ou um sinal de frequência transposta a partir de um sinal de entrada e suporte de dados e meio de armazenamento legível por computador não transitório - Google Patents

sistema e método para gerar um sinal de tempo alongado e/ou um sinal de frequência transposta a partir de um sinal de entrada e suporte de dados e meio de armazenamento legível por computador não transitório Download PDF

Info

Publication number
BR112013005676B1
BR112013005676B1 BR112013005676-2A BR112013005676A BR112013005676B1 BR 112013005676 B1 BR112013005676 B1 BR 112013005676B1 BR 112013005676 A BR112013005676 A BR 112013005676A BR 112013005676 B1 BR112013005676 B1 BR 112013005676B1
Authority
BR
Brazil
Prior art keywords
sub
band
analysis
signal
input
Prior art date
Application number
BR112013005676-2A
Other languages
English (en)
Other versions
BR112013005676A2 (pt
Inventor
Lars Villemoes
Original Assignee
Dolby International Ab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dolby International Ab filed Critical Dolby International Ab
Priority to BR122019025142-8A priority Critical patent/BR122019025142B1/pt
Priority to BR122019025121-5A priority patent/BR122019025121B1/pt
Priority to BR122019025115-0A priority patent/BR122019025115B1/pt
Publication of BR112013005676A2 publication Critical patent/BR112013005676A2/pt
Publication of BR112013005676B1 publication Critical patent/BR112013005676B1/pt

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Processing of the speech or voice signal to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/038Speech enhancement, e.g. noise reduction or echo cancellation using band spreading techniques
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Processing of the speech or voice signal to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/0208Noise filtering
    • G10L21/0216Noise filtering characterised by the method used for estimating noise
    • G10L21/0232Processing in the frequency domain
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/02Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders
    • G10L19/0204Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders using subband decomposition
    • G10L19/0208Subband vocoders
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/02Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders
    • G10L19/022Blocking, i.e. grouping of samples in time; Choice of analysis windows; Overlap factoring
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/02Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders
    • G10L19/022Blocking, i.e. grouping of samples in time; Choice of analysis windows; Overlap factoring
    • G10L19/025Detection of transients or attacks for time/frequency resolution switching
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/04Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using predictive techniques
    • G10L19/26Pre-filtering or post-filtering
    • G10L19/265Pre-filtering, e.g. high frequency emphasis prior to encoding
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Processing of the speech or voice signal to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/04Time compression or expansion
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G3/00Gain control in amplifiers or frequency changers without distortion of the input signal
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G3/00Gain control in amplifiers or frequency changers without distortion of the input signal
    • H03G3/20Automatic control
    • H03G3/30Automatic control in amplifiers having semiconductor devices
    • H03G3/3089Control of digital or coded signals

Abstract

TRANSPOSIÇÃO HARMÔNICA BASEADA EM BLOCO DE SUBFAIXA MELHORADA POR PRODUTO VETORIAL. A presente invenção refere-se a uma implementação eficiente de reconstrução de alta frequência (HFR) melhorada por produto vetorial, em que um novo componente na frequência Q(Õmega)+r(Õmega)0 é gerado na base dos componentes existentes em (Õmega) e (Õmega)0. A invenção fornece uma transposição harmônica baseada em bloco, em que um bloco de tempo amostras de subfaixa complexas é processado com uma modificação da fase comum. A superposição de várias amostras modificadas tem o efeito líquido de limitar produtos indesejáveis de intermodulação, deste modo possibilitando uma resolução de frequência mais grossa e/ou um grau inferior de sobreamostragem a ser utilizada. Em uma concretização, a invenção inclui, além disso, uma função de janela adequada para uso com HFR melhorada por produto vetorial a base de blocos. Uma concretização de hardware da invenção pode incluir um banco de filtros de análise (101), uma unidade de processamento de subfaixa 102 configurável por dados de controle (104) e um banco de filtros de síntese (103).

Description

CAMPO TÉCNICO
[001] A presente invenção refere-se a sistemas de codificação de fonte áudio que fazem uso de um método de transposição harmônica para reconstrução de alta frequência (HFR), para processadores de efeitos digitais, tais como excitadores; que geram distorção harmônica para adicionar brilho a um sinal processado, e para esticadores de tempo os quais prolongam uma duração de sinal com conteúdo espectral mantido.
ANTECEDENTES DA INVENÇÃO
[002] No WO98/57436 o conceito de transposição foi estabeleci do como um método para recriar uma faixa de alta frequência a partir de uma faixa de baixa frequência de um sinal de áudio. Uma economia substancial na taxa de bits pode ser obtida usando este conceito na codificação de áudio, em um sistema de codificação de áudio baseado em HFR, um sinal de largura de faixa baixa é apresentado a um codificador de forma de onda central e as frequências mais altas são regeneradas utilizando a transposição e informação lateral adicional da taxa de bits muito baixa descrevendo a forma alvo espectral no lado do decodificador. Para taxas de bits baixas onde a largura de faixa do sinal codificado central é estreita, torna-se cada vez mais importante recriar uma faixa alta com características perceptivelmente agradáveis. A transposição harmônica definida no WO98/57436 funciona muito bem para material musical complexo em uma situação com frequência de transição baixa.
[003] O princípio de uma transposição harmônica é que uma se- noide com frequência !'; é mapeada para uma senoide com frequência ': 'íz,í onde é um número inteiro definindo a ordem da transposição. Em contraste com isto, uma modulação de faixa lateral única (SSB) com base HFR mapeia uma senoide com frequência para uma senoide com frequência 1 onde "sw? é um desvio de frequência fixo. Dado um sinal central com baixa largura de faixa, um artefato de toque dissonante resultará da transposição SSB.
[004] A fim de alcançar o melhor: qualidade de áudio possível, métodos no estado da técnica de harmônicas HFR de alta qualidade empregam bancos de filtros modulados complexos com resolução de frequência muito fina e um elevado grau de sobreamostragem para atingir a qualidade de áudio requerida. A resolução fina é necessária para evitar a distorção de intermodulação indesejável provenientes do tratamento não-linear de somas de senoides. Com subfaixas suficientemente estreitas, os métodos de alta qualidade pretendem ter no máximo uma senoide em cada subfaixa. Um elevado grau de sobreamos- tragem no tempo é necessário para evitar distorção tipo sinônimo, e um certo grau de sobreamostragem na frequência é necessária para evitar pré-ecos para sinais transitórios. A desvantagem óbvia é que a complexidade computacional torna-se muito elevada.
[005] Outra desvantagem comum associada com transpositores de harmônicos torna-se evidente para sinais com uma estrutura periódica proeminente. Tais sinais são sobreposições de senoides harmo- nicamente relacionadas com frequências onde é a frequência fundamental.
[006] Após a transposição harmônica de ordem as senoides de saída têm frequências .... as quais, no caso de
[007] é apenas um subconjunto estrito da desejada série harmônica completa. Em termos de qualidade de áudio resultante tom "fantasma" para a frequência transposta fundamental normalmente será per cebida. Muitas vezes a transposição do harmônico resulta em um caráter de som "metálico" do sinal de áudio codificado e decodificado.
[008] No WO2010/081892, a qual é aqui incorporada por referên cia, o método de produtos vetoriais foi desenvolvido para tratar o problema acima de grau de inclinação fantasma, no caso de transposição de alta qualidade. Dada ou transmitida informação parcial ou completa sobre o valor da frequência fundamental da parte harmônica dominante do sinal a ser transposta com maior fidelidade, as modificações de subfaixa não lineares são suplementadas com combinações não- lineares de pelo menos duas subfaixas de análise diferentes, onde as distâncias entre os índices de subfaixas de análise estão relacionados com a frequência fundamental. O resultado é para regenerar as parciais ausentes na saída transposta, o que acontece, no entanto, a um custo computacional considerável.
[009] Tendo em vista as deficiências acima referidas dos méto dos HFR disponíveis, constitui um objetivo da presente invenção fornecer uma implementação mais eficiente do produto vetorial HFR melhorado. Em particular, é um objetivo proporcionar tal método permitindo uma reprodução de áudio de alta fidelidade com um esforço computacional reduzido em comparação com as técnicas disponíveis.
[0010] A presente invenção consegue, pelo menos, um destes ob jetivos fornecendo dispositivos e métodos, conforme estabelecido nas concretizações.
[0011] Em um primeiro aspecto, a invenção fornece um sistema con figurado para gerar um sinal de tempo alongado e/ou sinal de frequência transposta a partir de um sinal de entrada. O sistema compreende: • um banco de filtros de análise configurado para gerar um número Y de análises de sinais de subfaixa
[0012] A partir do sinal de entrada, em que cada sinal de subfaixa de análise compreende uma pluralidade de amostras de análise de valor complexo, cada uma tendo uma fase e uma magnitude; • uma unidade de processamento de subfaixa configurada para determinar um sinal de subfaixa de síntese dos sinais Y da sub- faixa de análise utilizando um fator de transposição de subfaixa e um fator de alongamento de subfaixa, pelo menos um e S sendo maior do que um, em que a unidade de processamento de subfaixa compreende: • um extrator de blocos configurado para: • i) formar Y quadros de L amostras de entrada, cada quadro sendo extraído da referida pluralidade de amostras de análise de valor complexo em um sinal de subfaixa de análise e o comprimento do quadro sendo L > I; e • ii) aplicar um tamanho de salto do bloco de h amostras para a dita pluralidade de amostras de análise, antes da formação um quadro subsequente de L amostras de entrada, gerando assim uma sequência de quadros de amostras de entrada; • uma unidade de processamento de quadro não-linear configurada para gerar, com base em Y quadros correspondentes de amostras de entrada formadas pelo bloco extrator, um quadro de amostras processadas por meio da determinação de uma fase e magnitude para cada amostra processada do quadro, em que, para pelo menos uma amostra processada: • i) a fase da amostra processada é baseada nas respectivas fases da amostra de entrada correspondente em cada um dos Y quadros de amostras de entrada, e • ii) a magnitude da amostra processada é baseada na magnitude da amostra de entrada correspondente em cada um dos Y quadros de amostras de entrada, e
[0013] Uma unidade de sobreposição e adição configurada para determinar o sinal de subfaixa de síntese pela sobreposição e adição das amostras de uma sequência de quadros de amostras processadas, e • um banco de filtros de síntese configurado para gerar o tempo alongado e/ou o sinal de frequência transposta do sinal de sub- faixa de síntese.
[0014] O sistema pode ser operável para qualquer valor inteiro po sitivo de Y. No entanto, é operável para pelo menos, Y = 2.
[0015] Em um segundo aspecto, a invenção fornece um método para gerar um tempo alongado e/ou sinal de frequência transposta a partir de um sinal de entrada. O método compreende: • extrair uma série de Y> 2 de sinais de subfaixa de análise a partir do sinal de entrada, em que cada sinal de subfaixa de análise compreende uma pluralidade de amostras de análise de valor complexo, cada uma tendo uma fase e uma magnitude; • formar os Y quadros de L amostras de entrada, cada quadro sendo extraída da referida pluralidade de amostras de análise de valor complexo em um sinal de subfaixa de análise e o comprimento do quadro sendo L> 1; • aplicação de um tamanho de salto do bloco de h amostras para a dita pluralidade de amostras de análise, antes da extração de um quadro subsequente de L amostras de entrada, gerando assim uma sequência de quadros de amostras de entrada; • geração, com base em Y quadros correspondentes de amostras de entrada, um quadro de amostras processadas por meio da determinação de uma fase e magnitude para cada amostra processada do quadro, em que, para pelo menos uma amostra processada:
[0016] A fase da amostra processada está baseada nas fases res pectivas da amostra de entrada correspondente em pelo menos uma dos Y quadros de amostras de entrada, e
[0017] a magnitude da amostra processada está baseada na mag nitude da amostra de entrada correspondente em cada uma dos Y quadros de amostras de entrada;
[0018] Determinação do sinal de subfaixa de síntese pela super posição e adição das amostras de uma sequência de quadros de amostras processadas, e • geração do sinal de tempo alongado e/ou o sinal de frequência transposta do sinal de subfaixa de síntese.
[0019] Aqui, Y é um número inteiro arbitrário maior do que um. O sistema de acordo com o primeiro aspecto é operável para levar a cabo o método pelo menos, para Y = 2.
[0020] Um terceiro aspecto da invenção fornece um produto de programa de computador, incluindo um meio legível por computador (ou portador de dados) armazenamento de instruções de software para fazer um computador programável executar o método de acordo com o segundo aspecto.
[0021] A invenção baseia-se na constatação de que o conceito ge ral de produto vetorial HFR melhorado fornecerá melhores resultados quando os dados forem processados dispostos em blocos de amostras de subfaixas complexas. Entre outras coisas, isto torna possível aplicar uma compensação de fase em forma de quadro às amostras, que tenha sido descoberta que reduz os produtos de intermodulação, em algumas situações. Além disso, é possível aplicar um ajuste de magnitude, o que pode levar a efeitos vantajosos semelhantes. A implementação da invenção de produto vetorial HFR melhorado inclui transposição harmônica baseada em bloco de subfaixa, o que pode reduzir significativamente os produtos de inter-modulação. Assim, um banco de filtros com uma resolução mais grosseira de frequência e/ou um menor grau de sobreamostragem (tal como um banco de filtros QMF) pode ser usado enquanto se preserva a alta qualidade de saída. No processamento baseado em blocos de subfaixa, um bloco de tempo de amostras de subfaixa complexas é processado com uma modificação de fase comum, e a superposição de várias amostras modificadas para formar uma amostra de subfaixa de saída tem o efeito líquido da supressão de produtos de intermodulação os quais, de outra forma ocorreriam quando o sinal de entrada de subfaixa consiste de várias senoides. Transposição baseada em processamento baseado em blocos de subfaixa tem complexidade computacional muito mais baixa do que transpositores de alta resolução e atinge quase a mesma qualidade para muitos sinais.
[0022] Ou a finalidade desta descrição, é observado que nas con cretizações em que Y> 2, a unidade de processamento não-linear utiliza como entrada Y quadros "correspondentes" de amostras de entrada no sentido que os quadros são síncronos ou próximos de síncronos. Por exemplo, as amostras nos quadros respectivas podem estar relacionadas com os passos de tempo que têm uma sobreposição de tempo substancial entre os quadros. O termo "correspondente" também é usado no que diz respeito às amostras para indicar que estas são síncronas ou aproximadamente assim. Além disso, o termo "quadro" será usado como sinônimo de "bloco". Consequentemente, o "tamanho do salto do bloco" pode ser igual ao comprimento do quadro (possivelmente ajustada com respeito à diminuição da resolução, se tal for aplicada) ou pode ser menor do que o comprimento do quadro (possivelmente ajustada com respeito à diminuição da resolução, se tal for aplicada), em cujo caso se sobrepõem quadros consecutivos, no sentido de que uma amostra de entrada pode pertencer a mais de um quadro. O sistema não gera necessariamente todas as amostras pro- cessadas em um quadro, pela identificação da sua fase e magnitude baseada na fase e magnitude de todas os Y quadros correspondentes das amostras de entrada; sem se afastar da invenção, o sistema pode gerar a fase e/ou magnitude das mesmas amostras processadas baseado apenas em um número menor de amostras de entrada.
[0023] Em uma concretização, o banco de filtros de análise é um banco de filtros de quadratura em espelho (QMF) ou pseudo banco QMF com qualquer número de derivações e pontos. Pode, por exemplo, ser um banco QMF de 64 pontos.
[0024] O banco de filtros de análise pode ainda ser escolhido da classe das transformadas discretas de Fourier dotadas de janelas ou uma transformada em pequenas ondas. Vantajosamente, o banco de filtros de síntese coincide com o banco de filtros de análise ao ser, respectivamente, um banco QMF inverso um banco, um pseudobanco QMF inverso etc. Sabe-se que tais bancos de filtros podem ter uma resolução de frequência relativamente grosseira e/ou um grau relativamente baixo de sobreamostragem. Ao contrário da técnica anterior, a invenção pode ser concretizada usando tais componentes relativamente simples, sem necessariamente sofrer de uma diminuição da qualidade de saída; tais concretizações, consequentemente, representam uma vantagem econômica sobre a técnica anterior, em uma concretização, um ou mais dos seguintes é verdadeiro para o banco de filtro de análise: A4' • Um período de tempo de análise é ' ' ; Af • um espaçamento de frequências de análise é '" ; • o banco de filtros de análise inclui subfaixas de análise N> 1 indexadas por um índice de subfaixa de análise n = 0,..., N - 1; • uma subfaixa de análise está associada a uma faixa de frequência do sinal de entrada.
[0025] Em uma concretização, um ou mais dos seguintes é verda deiro para o banco de filtros de síntese: • um período de tempo de síntese é Δ/-' ; • um espaçamento de frequências de síntese é - ; • o banco de filtros de síntese inclui subfaixas de síntese M> 1 indexadas por um índice de subfaixa de síntese m=0,... M - 1; • uma subfaixa de síntese está associada com uma faixa de frequência do sinal de tempo alongado e/ou frequência transposta.
[0026] Em uma concretização, a unidade de processamento de quadro não-linear é adaptada para introduzir dois quadro (Y-2) a fim de gerar um quadro das amostras processadas, e a unidade de processamento de subfaixa inclui uma unidade de controle de processamento cruzado para gerar dados de controle de processamento cruzado. Por isso especificando as características quantitativas e/ou qualitativas do processamento de subfaixa, a invenção consegue flexibilidade e adaptabilidade. Os dados de controle podem especificar subfaixas (por exemplo, identificadas pelos índices) que diferem na frequência por uma frequência fundamental do sinal de entrada. Em outras palavras, os índices que identificam as subfaixas podem ser diferentes por um número inteiro aproximando a razão de tal frequência fundamental dividida pelo espaçamento de frequência de análise. Isto levará a uma saída psico-acusticamente agradável, conforme os novos componentes espectrais gerados pela transposição harmônica serão compatíveis com a série de harmônicos naturais.
[0027] Em um desenvolvimento adicional da concretização anteri or, a análise (de entrada) e (saída) os índices de subfaixas de síntese são escolhidos de modo a satisfazer a equação (16) abaixo. Um parâmetro uma que aparece nesta equação faz aplicável a ambos os bancos de filtros empilhados de forma estranha e uniforme. Quando os índices de subfaixa obtidos como uma solução aproximada (por exem- plo, mínimos quadrados) para a equação (16), o novo componente espectral obtido por transposição harmônica será provavelmente para ser compatível com as séries de harmônicos naturais. Assim, o HFR vai ser susceptível de prover uma reconstrução fiel de um sinal original o qual tem tido o seu conteúdo de alta frequência removido.
[0028] Um outro desenvolvimento da concretização anterior forne ce uma forma de selecionar o parâmetro r aparecendo na equação (16) e que representa a ordem da transposição de produto vetorial. Dado um índice m, de subfaixa de saída cada valor da ordem r de transposição determinará dois índices de subfaixas de análise n1, n2. Este desenvolvimento adicional avalia as magnitudes das duas subfai- xas para uma série de opções de r e seleciona o valor que dá maximizado a mínima das duas magnitudes das subfaixas de análise. Esta forma de seleção dos índices pode evitar a necessidade de restaurar a magnitude suficiente, amplificando componentes fracas do sinal de entrada, o que pode levar a uma qualidade de saída deficiente. A este respeito, as magnitudes de subfaixa podem ser calculadas de um modo conhecido per se, tal como pela raiz quadrada das amostras de entrada ao quadrado formando um quadro (bloco) ou parte de um quadro. A magnitude da subfaixa também pode ser calculada como uma grandeza de uma amostra central, ou próxima do centro em um quadro. Esse cálculo pode indicar uma simples, mas, adequada medida de magnitude.
[0029] Em um desenvolvimento adicional da concretização anteri or, uma subfaixa de síntese pode receber contribuições de instâncias de transposição harmônica de acordo tanto com o processamento direto como com processamento baseado em produto vetorial. A este respeito, critérios de decisão podem ser aplicados para determinar se uma possibilidade particular de regenerar uma falta parcial por processamento baseado em produto vetorial deve ser usada ou não. Por exemplo, este desenvolvimento adicional pode ser adaptado para se abster de utilizar uma unidade de processamento cruzado de subfaixa se uma das condições que se seguem for cumprida: a) a razão entre a magnitude Ms da subfaixa de análise de termo de fonte direta produzindo a subfaixa de síntese e a menor magnitude Mc em um par ótimo de termos de fonte cruzada produzindo a subfaixa de síntese é maior do que uma constante predeterminada. b) a subfaixa de síntese já recebe uma contribuição significativa de uma unidade de processamento direto; c) uma frequência fundamental é menor do que o espa çamento do banco de filtro de análise .
[0030] Em uma concretização, a invenção inclui diminuição da re solução (dizimação) do sinal de entrada.
[0031] Com efeito, um ou mais dos quadros de amostras de entra da pode ser determinada por diminuição da resolução das amostras de análise de valor complexo em uma subfaixa, conforme pode ser efetuado pelo extrator de bloco.
[0032] Em um desenvolvimento adicional da concretização anteri or, os fatores de diminuição da resolução que devem ser aplicados satisfazem a equação (15) abaixo. Nem ambos os fatores de diminuição da resolução têm permissão para ser zero, já que isso corresponde a um caso trivial. A equação (15) define uma relação entre os fatores de diminuição da resolução D 1, D2, com o fator de alongamento S da subfaixa e o fator de transposição da subfaixa :'=•?, e ainda mais com os coeficientes de fase T1, T2 que aparecem em uma expressão (13) para determinação da fase de uma amostra processada.
[0033] Isto assegura uma correspondência entre a fase das amos tras processadas, com os outros componentes do sinal de entrada, ao qual as amostras processadas devem ser adicionadas.
[0034] Em uma concretização, os quadros de amostras processa das são dotados de janelas antes de serem sobrepostos e adicionados. Uma unidade de abertura de janelas pode ser adaptada para aplicar uma função de janela de comprimento finito aos quadros das amostras processadas. Funções de janela apropriadas estão enumeradas nas concretizações.
[0035] O inventor percebeu que métodos de produto vetorial do tipo divulgado no WO2G1G/081892 não são totalmente compatíveis com as técnicas de processamento baseadas em blocos de subfaixa desde o início. Embora tal método possa ser satisfatoriamente aplicado a uma das amostras de subfaixa em um bloco, isto pode levar a distorção se fosse estendido de maneira simples para as outras amostras do bloco. Para este fim, uma concretização aplica funções de janela compreendendo amostras de janela que somam - quando ponderadas por pesos complexos e desviada por um tamanho do salto - para uma sequência substancialmente constante. O tamanho do salto pode ser o produto do tamanho h do salto do bloco e o fator de alongamento da subfaixa S. O uso de tais funções de janela reduz o impacto de artefatos de distorção. Alternativamente ou adicionalmente, tais funções de janela podem igualmente permitir outras medidas reduzir artefatos, tais como rotações de fase das amostras processadas.
[0036] De preferência, pesos consecutivos complexos, os quais são aplicados para avaliar a condição nas amostras de janela, diferem somente por uma rotação de fase fixa. Ainda de preferência, a referida rotação de fase fixa é proporcional à frequência fundamental do sinal de entrada. A rotação de fase também pode ser proporcional à ordem da transposição do produto vetorial a ser aplicado e/ou ao parâmetro de transposição física e/ou à diferença dos fatores de diminuição da resolução e/ou ao período de tempo de análise. A rotação de fase pode ser dada pela equação (21), pelo menos em um sentido aproximado.
[0037] Em uma concretização, a presente invenção possibilita transposição harmônica de produto vetorial de transposição harmônica melhorada ao modificar a abertura de janelas de síntese em resposta a um parâmetro de frequência fundamental.
[0038] Em uma concretização, os quadros sucessivos de amostras processadas são adicionados com uma certa sobreposição. Para alcançar a sobreposição adequada, os quadros de quadros processados são adequadamente deslocados por um tamanho de salto que é o tamanho h do salto do bloco elevado pelo fator de alongamento S da subfaixa. Assim, se a sobreposição das quadros consecutivos de amostras de entrada for L - h, então a sobreposição das quadros consecutivos de amostras processadas pode ser S(L - h).
[0039] Em uma concretização, o sistema de acordo com a inven ção é operável para gerar não só uma amostra processada com base em Y = 2 amostras de entrada, mas também com base em Y = 1 de amostra única.
[0040] Assim, o sistema pode regenerar parciais faltantes não só através de uma abordagem baseada no produto vetorial (tal como pela equação (13)), mas, também por uma abordagem direta de subfaixa (tal como pela equação (5) ou (11)). De preferência, uma unidade de controle é configurada para controlar a operação do sistema, incluindo qual abordagem é para ser usada para regenerar um determinado parcial faltante.
[0041] Em um desenvolvimento adicional da concretização prece dente, o sistema é, além disso, adaptado para gerar uma amostra processada, com base em mais do que três amostras, isto é, para Y> 3. Por exemplo, uma amostra processada que pode ser obtida por múltiplas instâncias da transposição harmônica baseada em produto vetorial pode contribuir para uma amostra processada, por múltiplas instâncias do processamento direto de subfaixa, ou por uma combinação de transposição de produto vetorial e transposição direta. Esta opção de adaptação do método de transposição proporciona uma HFR poderosa e versátil. Por conseguinte, nesta forma de realização é operável para levar a cabo o método de acordo com o segundo aspecto da invenção, para Y = 3, 4, 5 etc..
[0042] Uma concretização está configurada para determinar uma amostra processada como um número complexo que tem uma magnitude que é o valor médio das respectivas magnitudes das amostras de entrada correspondentes. O valor médio pode ser uma média aritmética (ponderada), média geométrica (ponderada) ou média harmônica (ponderada) de duas ou mais amostras de entrada. No caso Y = 2, a média está baseada em duas amostras de entrada complexas. Preferivelmente, a magnitude da amostra processada é um valor geométrico ponderado. Mais preferencialmente, o valor geométrico é ponderado por meio dos parâmetros- e 1 - < , como na equação (13). Aqui, o parâmetro de ponderação í da magnitude geométrica é um número real inversamente proporcional ao fator de transposição Q da subfaixa. O parâmetro í pode ser ainda inversamente proporcional ao fator de alongamento S.
[0043] Em uma concretização, o sistema está adaptado para de terminar uma amostra processada como um número complexo tendo uma fase que é uma combinação linear das fases respectivas de amostras de entrada correspondentes nos quadros de amostras de entrada. Em particular, a combinação linear pode compreender as fases relativas a duas amostras de entrada (Y=2). A combinação linear de duas fases pode aplicar-se a coeficientes inteiros diferentes de zero, cuja soma é igual ao fator de alongamento S multiplicado pelo fator Q de transposição da subfaixa. Opcionalmente, a fase obtida pela tal combinação linear é ainda ajustada por um parâmetro fixo de correção de fase. A fase da amostra processada pode ser dada pela equação (13).
[0044] Em uma concretização, o extrator de blocos (ou um passo análogo em um método de acordo com a invenção) está adaptado para interpolar duas ou mais amostras de análise a partir de um sinal da subfaixa de análise, a fim de obter uma amostra de entrada que será incluído em um quadro (bloco). Tal interpolação pode permitir sintetização do sinal de entrada por um fator não inteiro. As amostras de análise a ser interpoladas podem ou não ser consecutivas.
[0045] Em uma concretização, a configuração do processamento da subfaixa pode ser controlado por dados de controle fornecidos a partir de fora da unidade que efetua o processamento. Os dados de controle podem estar relacionados com propriedades acústicas momentâneas do sinal de entrada. Por exemplo, o próprio sistema pode incluir uma seção adaptada para determinar propriedades acústicas momentâneas do sinal, tais como a frequência fundamental (dominante) do sinal. O conhecimento da frequência fundamental fornece uma orientação na seleção das subfaixas de análise a partir das quais as amostras processadas devem ser obtidas. Adequadamente, o espaçamento das subfaixas de análise é proporcional a tal frequência fundamental do sinal de entrada. Como uma alternativa, os dados de controle também podem ser fornecidos de fora do sistema, de preferência, ao serem incluídos em um formato de codificação apropriado para a transmissão como um fluxo de bits através de uma rede de comunicação digital. Além dos dados de controle, tal formato de codificação pode incluir informação relacionada com componentes de frequência mais baixa de um sinal (por exemplo, componentes na pos. 701 na Figura 7).
[0046] Todavia, no interesse da economia de largura de faixa o formato de preferência não inclui informações completas relativas aos componentes de frequência mais alta, (pos. 702), a qual pode ser regenerada pela invenção. A invenção pode em particular fornecer um sistema de decodificação com uma unidade de recepção de dados de controle configurada para receber tais dados de controle, se incluídos em um fluxo de bits recebido que também codifica o sinal de entrada ou recebido como um sinal separado ou fluxo de bits.
[0047] Uma concretização fornece uma técnica para a realização eficiente de cálculos ocasionados pelo método da invenção. Para este fim, uma implementação de hardware pode incluir um pré-normalizador para redimensionar as magnitudes das amostras de entrada correspondentes em algumas dos Y quadros em que um quadro de amostras processadas deve ser baseada. Após tal redimensionamento, uma amostra processada pode ser calculada como um produto complexo (ponderado) das amostras de entrada redimensionadas e, possivelmente não redimensionadas. Uma amostra de entrada que aparece como um fator redimensionado no produto precisa normalmente não reaparecer como um fator não redimensionado. Com a possível exceção do parâmetro de correção de fase θ, é possível avaliar a equação (13) como um produto de amostras de entrada complexas (possivelmente redimensionadas). Isto representa uma vantagem computacional em comparação com os tratamentos separados da magnitude e da fase de uma amostra processada.
[0048] Em uma concretização, um sistema configurado para o caso de Y = 2 compreende dois extratores de bloco adaptados para formar um quadro de amostras de entrada de cada um, em operação paralela.
[0049] Em um desenvolvimento adicional das concretizações que representam Y> 3, um sistema pode compreender uma pluralidade de unidades de processamento de subfaixa, cada uma das quais é configurada para determinar um sinal intermediário de subfaixa de síntese utilizando um fator de transposição de subfaixa diferente e/ou um fator de alongamento de subfaixa diferente e/ou método de transposição diferindo por ser baseado em produto vetorial ou direto. As unidades de processamento de subfaixa podem ser dispostas em paralelo, para funcionamento em paralelo nesta concretização, o sistema pode ainda compreender uma unidade de mesclar disposta a jusante das unidades de processamento de subfaixa e a montante do banco de filtros de síntese. A unidade de mesclar pode ser adaptada para combinar (por exemplo, através da mistura conjunta) sinais correspondentes intermediários de subfaixa de síntese para se obter o sinal de subfaixa de síntese. Como já mencionado, a subfaixa de síntese intermediária, que é mesclada pode ter sido obtida tanto com base na transposição harmonia de produto direto e de produto vetorial. Um sistema de acordo com a concretização pode ainda compreender um núcleo decodifica- dor para decodificar um fluxo de bits em um sinal de entrada. Ele também pode compreender uma unidade de processamento de HFR adaptada para aplicar a informação de faixa espectral, em especial através da realização de modelação espectral. A operação da unidade de processamento de HFR pode ser controlada por informação codificada no fluxo de bits.
[0050] Uma concretização fornece HFR de sinais multidimensio- nais, por exemplo, em um sistema de reprodução de áudio em um formato estéreo, compreendendo canais Z, como esquerdo, direito, central, envolvente, etc.. Em uma implementação possível para o processamento de um sinal de entrada com uma pluralidade de canais, as amostras processadas de cada canal são com base no mesmo número de amostras de entrada, embora o fator de alongamento S e o fator de transposição Q para cada faixa pode variar entre os canais. Para este fim, a implementação pode compreender um banco de filtros de análise para a produção de sinais Y de subfaixa de análise de cada canal, uma unidade de processamento de subfaixa para gerar os sinais de subfaixa Z e um banco de filtros de síntese para gerar sinais de tempo alongado e/ou de frequência transposta os quais formam o sinal de saída.
[0051] Em variações da concretização anterior, o sinal de saída pode compreender canais de saída que são baseados em diferentes números de sinais de subfaixa de análise. Por exemplo, pode ser aconselhável dedicar uma maior quantidade de recursos computacionais para HFR de canais acusticamente importantes; por exemplo, canais a serem reproduzidas por fontes de áudio localizadas em frente a um ouvinte podem ser favorecidos em detrimento de canais envolventes ou traseiros.
[0052] Enfatiza-se que a invenção refere-se a todas as combina ções das características acima, mesmo que estas sejam relatadas em concretizações diferentes.
BREVE DESCRIÇÃO DOS DESENHOS
[0053] A presente invenção agora será descrita por meio de exemplos ilustrativos, não limitando o escopo ou espírito da invenção, com referência aos desenhos anexos.
[0054] A Figura 1 ilustra o princípio de transposição harmônica ba seada em bloco de subfaixa.
[0055] A Figura 2 ilustra a operação de processamento de bloco de subfaixa não linear com uma entrada de subfaixa.
[0056] A Figura 3 ilustra a operação de processamento de bloco de subfaixa não linear com duas entradas de subfaixa.
[0057] A Figura 4 ilustra a transposição harmônica baseada em bloco de subfaixa melhorada por produto vetorial.
[0058] A Figura 5 ilustra um cenário exemplificativo para a aplica ção da transposição baseada em bloco de subfaixa usando várias ordens de transposição em um codec de áudio HFR melhorado.
[0059] A Figura 6 ilustra um cenário exemplificativo para a opera ção de uma transposição baseada em bloco de subfaixa de ordem múltipla aplicando um banco de filtros de análise QMF de 64 faixas.
[0060] As Figuras 7 e 8 ilustram os resultados experimentais do método descrito de transposição baseada em bloco de subfaixa.
[0061] A Figura 9 mostra um detalhe da unidade de processamento não-linear da Figura 2, incluindo um pré-normalizador e um multiplicador.
DESCRIÇÃO DAS CONCRETIZAÇÕES PREFERIDAS
[0062] As concretizações descritas a seguir são meramente ilus trativas dos princípios da presente invenção, transposição harmônica baseada em bloco de subfaixa melhorada por produto vetorial. Entende-se que modificações e variações dos arranjos e detalhes aqui descritos serão evidentes para outros especializados na técnica. É intenção, portanto, que a invenção seja limitada apenas pelo escopo das concretizações e não pelos detalhes específicos apresentados a título de descrição e explicação das concretizações neste documento.
[0063] A Figura 1 ilustra o princípio de transposição harmônica ba seada em bloco de subfaixa, alongamento de tempo, ou uma combinação de transposição e alongamento de tempo. O sinal de entrada de domínio de tempo é introduzido em um banco de filtros de análise 101 que fornece uma multiplicidade de sinais de subfaixa de valores complexos. Estes são alimentados à unidade de processamento da subfaixa 102, cuja operação pode ser influenciada por dados de controle 104. Cada subfaixa de saída pode ser obtida do processamento de uma ou de duas subfaixas de entrada, ou mesmo como uma sobreposição do resultado de várias de tais subfaixas processadas. A multiplicidade de subfaixas de saída de valores complexos é alimentada a um banco de filtros de síntese 103, que por sua vez emite o sinal de domínio de tempo modificado. Os dados de controle opcionais 104 descrevem a confi-guração e os parâmetros de processamento da subfaixa os quais podem ser adaptados ao sinal a ser transposto. Para o caso de transposi- ção melhorada por produto vetorial, esses dados podem transportar in-formações relativas a uma frequência fundamental dominante.
[0064] A Figura 2 ilustra a operação de processamento de bloco de subfaixa não linear com uma entrada de subfaixa. Dados os valores-alvo de alongamento do tempo físico e transposição, e os parâmetros físicos dos bancos de filtros de análise e de síntese 101 e 103, um deduz alongamento de tempo subfaixa e parâmetros de transposição, bem como um índice de subfaixa de origem para cada índice alvo de subfaixa. O objetivo do processamento de bloco de subfaixa então é o de realizar a transposição correspondente, alongamento do tempo, ou uma combinação de transposição e alongamento de tempo do sinal de subfaixa de origem de valores complexos a fim de produzir o sinal de subfaixa alvo.
[0065] Um extrator de bloco 201 amostra um quadro finito de amostras do sinal de entrada de valor complexo. O quadro é definido por uma posição do ponteiro de entrada e o fator de transposição de subfaixa. Este quadro sofre processamento não-linear na seção de processamento 202 é a seguir dotada de janelas por janelas de comprimento finito e possivelmente variável na seção de abertura de janelas 203. As amostras resultantes são adicionadas a amostras produzidas previamente em uma unidade de sobreposição e adição 204 onde a posição do quadro de saída é definida pela posição de um ponteiro de saída. O ponteiro de entrada é incrementado por um valor fixo e o ponteiro de saída é incrementado pelo fator de alongamento de sub- faixa vezes o mesmo valor. Uma iteração dessa cadeia de operações irá produzir um sinal de saída com a duração sendo o fator de alongamento da subfaixa vezes a duração do sinal de entrada da subfaixa, até o comprimento da janela de síntese, e com frequências complexas transpostas pelo fator de transposição da subfaixa. Os sinais de controle 104 podem influenciar cada uma das três seções 201, 202, 203.
[0066] A Figura 3 ilustra a operação de processamento de bloco de subfaixa não linear com duas entradas de subfaixa. Dados os valores- alvo de alongamento do tempo físico e transposição, e os parâmetros físicos dos bancos de filtros de análise e de síntese 101 e 103, um deduz alongamento de tempo subfaixa e parâmetros de transposição, bem como dois índices de subfaixa de origem para cada índice alvo de sub- faixa. No caso em que o processamento não-linear de bloco da subfaixa for para ser usado para a criação de parciais faltando através da adição do produto vetorial, a configuração das seções 301-1, 301-2, 302, 303, bem como os valores dos dois índices da subfaixa de origem, podem depender da saída 403 de uma unidade de controle de processamento cruzado 404. O objetivo do processamento de bloco da subfaixa é realizar a transposição correspondente, alongamento de tempo, ou uma combinação de transposição e alongamento de tempo de dois sinais de subfaixa de valores complexos a fim de produzir o sinal alvo de subfai- xa. Um primeiro extrator de bloco 301-1 amostra um período de tempo finito de amostras da primeira subfaixa de origem de valor complexo, e o segundo extrator de bloco 301-2 amostra um quadro finito de amostras da segunda subfaixa de origem de valor complexo. Os quadros são definidos por uma posição comum do ponteiro de entrada e o fator de transposição de subfaixa. Os dois quadros sofrem processamento não- linear em 302 e são subsequentemente dotados de janelas por janelas de comprimento finito na seção de abertura de janelas 303. A unidade de sobreposição e adição 204 pode ter uma estrutura similar ou idêntica àquela mostrada na Figura 2. Uma iteração dessa cadeia de operações irá produzir um sinal de saída com a duração sendo o fator de alongamento da subfaixa vezes os dois sinais de entrada da subfaixa, (até o comprimento da janela de síntese).
[0067] No caso dos dois sinais de entrada de subfaixa levarem as mesmas frequências, o sinal de saída terá frequências complexas transpostas pelo fator de transposição da subfaixa. No caso em que os dois sinais de subfaixa levam frequências diferentes, a presente invenção ensina que a abertura de janelas 303 pode ser adaptada para gerar um sinal de saída que tem uma frequência-alvo adequada para a geração de parciais faltando no sinal transposto.
[0068] A Figura 4 ilustra o princípio de transposição baseada em bloco de subfaixa melhorada por produto vetorial, alongamento de tempo, ou uma combinação de transposição e alongamento de tempo. A unidade de processamento direto de subfaixa 401 pode ser do tipo já descrito com referência à Figura 2 (seção 202) ou Figura 3. Uma unidade de processamento de subfaixa cruzada 402 é também alimentada com a multidão de sinais de subfaixa de valores complexos, e sua operação é influenciada pelos dados de controle de processamento cruzado 403. A unidade de processamento cruzado de subfaixa 402 executa o processamento não-linear de blocos subfaixa do tipo com duas entradas de subfaixa descritas na Fig. 3, e as subfaixas alvo de saída são adicionadas àquelas do processamento direto de subfaixa no adicionador 405.
[0069] Os dados de controle de processamento cruzado 403 po dem variar para cada posição do ponteiro de entrada e consistem de, pelo menos: • uma lista selecionada de índices de subfaixa-alvo; • um par de índices de subfaixa de origem para cada índice selecionado de subfaixa-alvo; e • uma janela de síntese de comprimento finito.
[0070] Uma unidade de controle de processamento cruzado 404 fornece estes dados de controle de processamento cruzado 403 dada uma parte dos dados de controle 104 descrevendo uma frequência fundamental e a multiplicidade de sinais de subfaixa de valores complexos emitidos do banco de filtros de análise 101. Os dados de con- trole 104 também podem transportar outros parâmetros de configuração de sinal dependentes que influenciam o processamento do produto vetorial.
[0071] No texto a seguir, uma descrição de princípios da transpo sição e alongamento de tempo baseados em bloco de subfaixa melhorada por produto vetorial serão delineados com referências às Figuras 1-4, pela adição de terminologia matemática apropriada.
[0072] Os dois parâmetros configuração principais do transpositor geral de harmônicos e/ou alongador de tempo são: • 5 : o fator de alongamento de tempo físico desejado; e • ': o fator de transposição física desejada.
[0073] Os bancos de filtros 101 e 103 podem ser de qualquer tipo modulado exponencial complexo tal como QMF ou um DFT com janela ou um da transformada de ondas pequenas. O banco de filtros de análise 101 e o banco de filtros de síntese 103 podem ser empilhados de forma estranha e uniforme na modulação e podem ser definidos desde uma ampla faixa de protótipos de filtros e/ou janelas Apesar de todas essas escolhas de segunda ordem afetam os detalhes no projeto subsequente tal como correção de fase e de gestão de mapeamento de subfaixa, os parâmetros de projeto do sistema principal para o processamento de subfaixa geralmente podem ser obtidos a partir dos dois quocientes A:e ” A:! dos seguintes quatro parâmetros de bancos de filtros, todos medidos em unidades físicas. No quociente acima, A<- é a etapa de tempo de amostra da subfaixa ou passo de tempo do banco de filtros de análise 101 (por exemplo, medido em segundos [s]);
[0074] v é o espaçamento de frequências de subfaixa do banco de filtros de análise 103 (por exemplo, medido em Hertz [1/s]); Ar
[0075] ' é a etapa de tempo de amostra da subfaixa ou passo de tempo do banco de filtros de síntese 103 (por exemplo, medido em segundos [s]); e
[0076] é o espaçamento de frequências de subfaixa do banco de filtros de síntese 103 (por exemplo, medido em Hertz [1/s]);
[0077] Para a configuração da unidade de processamento de sub- faixa 102, os seguintes parâmetros devem ser calculados: • S: o fator de alongamento da subfaixa, isto é, o fator alon-gamento que é aplicado dentro da unidade de processamento de sub- faixa 102 como uma proporção das amostras de entrada e de saída a fim de conseguir um alongamento do tempo físico geral do sinal de domínio de tempo por S;
[0078] Q: o fator de transposição da subfaixa, isto é, o fator de transposição que é aplicado dentro da unidade de processamento de subfaixa 102 a fim de conseguir uma transposição global de frequência física do sinal de domínio de tempo pelo fator Q; e • a correspondência entre índices de subfaixa de origem e alvo, em que n denota um índice de uma subfaixa de análise que entra na unidade de processamento de subfaixa 102, e m denota um índice de uma subfaixa de síntese correspondente na saída da unidade de processamento de subfaixa 102.
[0079] A fim de determinar o fator alongamento da subfaixa S ob serva-se que um sinal de entrada para o banco de filtros de análise Aí / 101 de duração física D corresponde a um número das amos tras da subfaixa de análise na entrada da unidade de processamento da subfaixa 302.
[0080] Estas amostras : serão alongadas para ' pe la unidade de processamento de subfaixa 102 a qual aplica o fator de alongamento da subfaixa S.
[0081] Na saída do banco de filtros de síntese103 estas amostras .5 -/Và'. resultam em um sinal de saída tendo uma duração física de :.v . .> ;/. . Uma vez que esta Qltjma duração deve atender ao valor especificado, ou seja, uma vez que a duração do sinal de saída no domínio do tempo deve ser de tempo alongado em comparação com o sinal de entrada no domínio do tempo pelo fator S de alongamento de tempo físico, a seguinte regra de projeto é obtida:
Figure img0001
[0082] A fim de determinar o fator de transposição de subfaixa Q o qual é aplicado dentro da unidade de processamento subfaixa 102 a fim de conseguir uma transposição física ‘:L':, observa-se que uma se- noide de entrada para o banco de filtros análise 101 de frequência física resultará em um sinal complexo de subfaixa de análise com frequência angular de tempo discreto e a contribuição princi- I n -= £1 í Δj \ , . Uma senoide de saída na saída do banco de filtros de síntese 103 da fre- quência física transposta desejada resultará da alimentação da . , . . , . ... n?«ÉL íl• Aft - subfaixa de síntese com o índice - " com um sinal complexo de subfaixa de frequência angular discreta L:r . Neste contex to, deve ser tomado cuidado para evitar a síntese de frequências de saída distorcidas diferentes de Normalmente, isto pode ser evi tado fazendo escolhas apropriadas de segunda ordem tal como discutido, por exemplo, ao selecionar bancos de filtros de análise e/ou de síntese apropriados. A frequência discreta i: ' na saída da unidade de processamento de subfaixa 102 deverá corresponder à frequência de tempo discreta :::z " na entrada da unidade de processamento de subfaixa 102 multiplicada pelo fator de transposição . i_r ry I A ' I de subfaixa Q. Isto é, por definição igual -- • e " a se guinte relação entre o fator de transposição física Q e o fator de transposição da subfaixa Q pode ser determinada.
Figure img0002
(2)
[0083] Da mesma forma, o índice n de subfaixa de origem ou de análise adequado da unidade de processamento de subfaixa 102 para um dado índice m de subfaixa-alvo ou de síntese deve obedecer:
Figure img0003
(3)
[0084] Em uma concretização, ela contém LÍ< ”v-, isto é, o espaçamento de frequência do banco de filtros de síntese 103 corresponde ao espaçamento de frequência do banco de filtros de análise 101 multiplicado pelo fator de transposição física, e o mapeamento de um para um de análise a síntese do índice subfaixa n=m pode ser aplicado. Em outras concretizações, o mapeamento do índice de subfaixa pode depender dos detalhes dos parâmetros do banco de filtros. Em particular, se a fração do espaçamento de frequência do banco de filtros de síntese 103 e o banco de filtros análise 101 é diferente do fator de transposição física *••'", uma ou duas subfaixas de origem podem ser atribuídas a uma subfaixa-alvo determinada. No caso de duas sub- faixas de origem, pode ser preferível utilizar duas subfaixas de origem adjacentes com índice n, n+1, respectivamente.
[0085] Isto é, as subfaixas de origem primeira e segunda são da das por um ou outro (n(m), n(m) + 1) ou (n(m) +1, n(m)).
[0086] O processamento de subfaixa da Figura 2 com uma única subfaixa de origem será descrito agora como uma função os parâmetros de processamento de subfaixa S e Q. Deixe-se x(k) ser o sinal de entrada ao bloco extrator 201, e deixe-se h ser o passo de entrada do bloco. Ou seja, x(k) é um sinal complexo de subfaixa de análise de uma subfaixa de análise com índice n.
[0087] O bloco extraído pelo extrator de bloco 201 pode, sem per da de generalidade, ser considerado como definido por L=R+R2 amos- tras I
Figure img0004
(4)
[0088] Em que o número inteiro l é um índice de contagem de blo- p R co, L é o comprimento do bloco e são inteiros não negativos.
[0089] Observa-se que para Q=1, o bloco é extraído de amostras consecutivas, porém, para Q>1, uma redução da resolução é realizada de tal maneira que os endereços de entrada são estendidos pelo fator Q.
[0090] Se Q for um número inteiro esta operação é normalmente simples de executar, enquanto que um método de interpolação pode ser necessário para valores não inteiros de Q. Este enunciado é relevante também para valores não-inteiros do incremento h, isto é, do passo do bloco de entrada. Em uma concretização, filtros de interpolação curtos, por exemplo, filtros com duas derivações de filtro, podem ser aplicados ao sinal de subfaixa de valor complexo.
[0091] Por exemplo, se uma amostra no índice de tempo fracioná rio k + 0.5 for necessário, uma interpolação de duas derivações da forma •*-M onde os coeficientes a, b podem ser constantes ou podem depender de um índice de subfaixa (vide, por exemplo, WO2004/097794 e WO2007/085275), pode assegurar uma qualidade suficiente.
[0092] Um caso especial interessante da fórmula (4) é i? •" 1 onde o bloco extraído consiste de uma única amostra, ou seja, o com-primento do bloco é L=1.
[0093] Com a representação polar de um número complexo " em que " é a magnitude do número complexo e é a fase do número complexo, a unidade de processamento não-linear 202 produzindo o quadro de saída , a partir da produzindo o quadro de entrada -'•, é vantajosamente definida pelo fator de modificação de fase ; até
Figure img0005
[0094] de magnitude.
[0095] O caso " corresponde a uma modificação de fase pura do bloco extraído. Um valor particularmente atraente da ponderação da magnitude é .=•> - ! para o qual certo alívio de complexidade computacional é obtido independentemente do comprimento do bloco e a resposta transiente resultante é de certa forma melhorada em relação ao caso '. O parâmetro de correção de fase ” depende dos detalhes do banco de filtros e os índices de subfaixa de origem e alvo. Em uma concretização, o parâmetro de correção de fase $ pode ser determinado experimentalmente varrendo um conjunto de senoides de entrada. Além disso, o parâmetro de correção de fase e pode ser obtido por meio do estudo da diferença de fase de dos senoides complexas da subfaixa-alvo adjacentes ou através da otimização do desempenho para um tipo de pulso Dirac de sinal de entrada. Finalmente, com um projeto adequado dos bancos de filtros de análise e de síntese 101 e 103, o parâmetro de correção de fase S pode ser colocado em zero, ou omitido. O fator de modificação de fase T deve ser um número inteiro de tal forma que os coeficientes T-l e l sejam
[0096] Inteiros na combinação linear de fases na primeira linha da fórmula (5). Com esta hipótese, isto é, com o pressuposto de que o fator de modificação de fase T é um número inteiro, o resultado da modificação não linear é bem definido mesmo que as fases sejam am- bíguas por modulo de identificação .
[0097] Ou seja, a fórmula (5) especifica que a fase, de uma amos tra de quadros de saída é determinada pela compensação da fase de uma amostra correspondente de quadro de entrada por um valor de deslocamento constante. Este valor de deslocamento constante pode depender do fator T de modificação, o qual por sua vez depende do fator de alongamento da subfaixa e/ou do fator de transposição da subfaixa. Além disso, o valor de deslocamento constante pode depender da fase de uma amostra de quadro de entrada particular do quadro de entrada. Esta amostra de quadro de entrada em particular é mantida fixa para a determinação da fase de todas as amostras de quadros de saída de um determinado bloco. Na facilidade da fórmula (5), a fase da amostra central do quadro de entrada é utilizada como a fase da amostra de quadro de entrada em particular.
[0098] A segunda linha da formula (5) especifica que, a magnitude de uma amostra do quadro de saída pode depender da amplitude da amostra correspondente do quadro de entrada. Além disso, a magnitude de uma amostra de uma amostra de quadro de saída pode depender da magnitude de uma amostra de quadro de entrada em particular. Esta amostra de quadro de entrada em particular pode ser usada para a de-terminação da magnitude de todas as amostras de quadros de saída. No caso da fórmula (5), a amostra central do quadro de entrada é utilizada como a amostra de quadro de entrada em particular. Em uma concreti-zação, a magnitude de uma amostra do quadro de saída pode corres-ponder à média geométrica da magnitude da amostra correspondente do quadro de entrada e a amostra de quadro de entrada em particular.
[0099] Na unidade de abertura de janelas 203, uma janela w de comprimento L é aplicada à quadro de saída resultando na quadro de saída com janelas:
Figure img0006
(6)
[00100] Finalmente, assume-se que todas os quadros são estendidas por zeros, e a operação de sobreposição e adição 204 é definida por:
Figure img0007
(7)
[00101] Na qual se deve notar que a unidade de sobreposição e adição 204 aplica um passo de bloco de Sh, isto é, um passo de tempo, que é S vezes maior do que o passo h do bloco de entrada. Devido a esta diferença nos passos de tempo da fórmula (4) e (7) a duração do sinal de saída z (k) é S vezes a duração do sinal de entrada x (k), isto é, o sinal de subfaixa de síntese tem sido alongado pelo fator de alongamento de subfaixa S em comparação com o sinal de subfaixa de análise. Deve ser notado que esta observação normalmente se aplica, se o comprimento L da janela for insignificante em comparação com a duração do sinal.
[00102] Para o caso em que uma senoide complexa é usada como entrada, para o processamento de subfaixa 102, isto é, um sinal de subfaixa de análise correspondente a uma senoide complexa:
Figure img0008
[00103] Pode ser determinado por aplicando as fórmulas (4) - (7) que a saída do processamento de subfaixa 102, isto é, o sinal de sub- faixa de síntese, correspondente, é dado por:
Figure img0009
(9)
[00104] Independentemente de ’. Assim, uma senoide complexa de frequência de tempo discreta * será transformada em uma senoide complexa com uma frequência tempo discreta desde que a janela de síntese se desloque com um passo de Sh resuma ao mesmo valor constante K para todos os k,
Figure img0010
(10)
[00105] É ilustrativo considerar o caso especial de transposição pura onde S=1 e T=Q. Se o passo do bloco de entrada for h: -1 e R1 = 0, R2 = 1, todo o acima, isto é, notadamente a fórmula (5), reduz à regra de modificação de fase baseada em "point-wise" ou amostra;
Figure img0011
[00106] A unidade de processamento de subfaixa 102 pode utilizar dados de controle 104 para definir parâmetros de processamento determinados, por exemplo, o comprimento do bloco dos extratores de bloco.
[00107] No que se segue, a descrição do processamento de subfai- xa será estendido para cobrir o caso da Figura 3, com duas entradas de subfaixa. Deixe-se *' 'sks ser o sinal de entrada de subfaixa para o primeiro extrator de bloco 301-1 e deixar - < ! ser o sinal de entrada de subfaixa para o segundo extrator de bloco 301-2. Cada extrator pode usar um fator de redução da resolução diferente, levando aos blocos extraídos,
Figure img0012
[00108] O processamento não-linear 302 produz a quadro de saída e pode ser definida por
Figure img0013
[00109] O processamento em 303 é novamente descrito por (6) e (7) e 204 é idêntico ao processamento de sobreposição e adição descrito no contexto do caso de entrada única.
[00110] A definição dos parâmetros não negativos reais e T T os parâmetros não negativos inteiros e a janela de síntese w agora dependem do modo funcionamento desejado. Observa-se que, se a mesma subfaixa for alimentada a ambas as entradas íÍL(í)θ/A —Q, õ =0» õ = í, õ õ õ ••! as ooeracões (12) e (13) e , as operações (12) e (13) se reduzem a aquelas de (4) e (5), no caso de entrada simples.
[00111] Em uma concretização, em que a proporção do espaçamento da frequência ': do banco de filtros de síntese 103 e o espaçamento da frequência do banco de filtros de análise 101 é diferente do fator de transposição física desejado -••>, pode ser benéfico determinar as amostras de uma subfaixa de síntese com o índice m de duas subfaixas de análise com índice n, n+1, respectivamente. Para um dado índice m, o índice correspondente n pode ser dado pelo valor inteiro obtido ao truncar o valor do índice de análise n dado pela fórmula (3).
[00112] Um dos sinais da subfaixa de análise, por exemplo, o sinal da subfaixa de análise correspondente ao índice n, é alimentado dentro do primeiro extrator de bloco 303-1 e o outro sinal de subfai- xa de análise, por exemplo, o que corresponde a um índice n +, 1 é alimentado no segundo bloco extrator 301-2. Com base nestes dois sinais de subfaixa de análise um sinal de subfaixa de síntese correspondente ao índice m é determinado de acordo com o processamento delineado acima. A atribuição dos sinais de subfaixa de análise adjacentes aos dois extratores de blocos 301 -1 e 302-1 pode ser baseado no restante que é obtido quando se trunca o valor do índice da fórmula (3), isto é, a diferença do valor do índice exato dado pela fórmula (3) e o valor inteiro n truncado obtido a partir da fórmula (3). Se o restante for maior do que 0, 5, então o sinal da subfaixa de análise correspondente ao índice n pode ser atribuído a o segundo extrator de bloco 302-2, de outra forma este sinal da sub- faixa de análise pode ser atribuído a o primeiro extrator de blocos 301-1. Neste modo de operação, os parâmetros podem ser concebidos de tal modo que sinais de entrada de subfaixa compartilhando a mesma frequência complexa w,
Figure img0014
[00113] Leva a um sinal de saída de subfaixa sendo uma senoide complexa com uma frequência tempo discreta ^f,;.
[00114] Ocorre que isso acontece se as seguintes relações se mantêm:
Figure img0015
[00115] Para o modo de operação para gerar parciais faltando por meio de produtos vetoriais, os critérios de projeto são diferentes. Voltando ao parâmetro físico de transposição ^, o objetivo de uma adição de produto vetorial for para produzir uma saída nas frequências OJi-rrÊL ror r = }s..,vβ 1 - n dadas entradas nas frequências e - onde -°- é uma frequência fundamental pertencente a um componente dominante com tom determinado do sinal de entrada.
[00116] Como descrito no WO2010/081892, a adição seletiva de tais termos resultará em uma conclusão da série de harmônicas e uma redução significativa do artefato tom fantasma.
[00117] Um algoritmo construtivo para operar o controle de proces-samento cruzado 404 será agora delineado.
[00118] Dado um índice de subfaixa-alvo m, o parâmetro ' " ‘ ;í: ” ‘ e a frequência fundamental podem-se deduzir os ín dices de subfaixas de origem apropriados n e n2, resolvendo o seguin-
Figure img0016
[00119] Onde Para modulação de banco de filtros empilha dos de forma estranha (como normalmente usado para bancos de filtros QMF e MDCT) e para modulação de banco de filtros empi lhados de forma uniforme (como normalmente usado para bancos de filtros FFT).
[00120] Com as definições, ' • a frequência fundamental medida em unidades do espaçamento da frequência do banco de filtros de análise;
[00121] *: o quociente da síntese para análise de fre quências de subfaixa de espaçamento, e
Figure img0017
: o alvo de valor real para um índice de origem menor de valor inteiro, um exemplo de solução aproximada vantajosa para (16) é dada por selecionar n, como o inteiro mais próximo a ' ;, e como o inteiro mais próximo a í:' ” ” + p.
[00122] Se a frequência fundamental for menor do que o espaçamento banco de filtros de análise, isto é, se 7: , pode ser vantajoso cancelar a adição de um produto vetorial.
[00123] Como é ensinado no WO2010/081892, um produto vetorial não deve ser adicionado a uma subfaixa de saída a qual já tem uma contribuição principal significativa da transposição sem produtos veto- riais. Além disso, no máximo um dos casos ' ? : deve contri buir para a saída do produto vetorial. Aqui, estas regras podem ser re-alizadas através da execução das seguintes três etapas para cada índice m de subfaixa-alvo de saída: 1. Calcular o Mc máximo sobre todas as opções de d 1 da mínima das magnitudes candidatas de subfaixas de ori- :V5,Í Jllrô l/ÍJl , gem : e avaliado em (ou a partir de uma região próxima L _ jLF de) o passo de tempo central ' ' :, em que as subfaixas de origem •< e •' pode ser dado pelos índices n, e n2 como na equação (16); 2. Calcular a magnitude correspondente para o termo de origem direta |x| obtidos a partir de uma subfaixa de origem com índice
Figure img0018
3,
[00124] Ativar o termo cruzado de uma escolha vencedora para Mc no ponto 1 acima. „ d onde q é um valor limiar predeter minado.
[00125] Variações deste procedimento podem ser desejáveis, de-pendendo dos parâmetros de configuração do sistema em particular. Uma dessas variações é substituir o limiar rígido do ponto 3 por regras mais suaves dependendo do quociente ?L; . Outra variação é ex-pandir a maximização no ponto 1 para mais do que ! opções, por exemplo, definida por uma lista finita de valores candidatos para fre-quência fundamental medida em unidades de análise de espaçamento de frequências ' . Ainda outra variação é aplicar medidas diferentes de magnitudes de subfaixa, tal como a magnitude de uma amostra fixa, uma magnitude máxima, uma magnitude média, uma magnitude em norma de sentido ?", etc..
[00126] A lista das faixas alvo de origem m selecionadas pela adição de um produto vetorial junto com os valores de e constitui uma parte principal dos dados de controle de processamento cruzado 403. O que fica por descrever são os parâmetros de configuração > G 7 p - x . , . ~ . T , T; ' , os parâmetros inteiros não negativos que aparecem na rotação de fase (13) e a janela de síntese para ser utilizada no pro-cessamento cruzado de subfaixa 402. Inserindo o modelo senoidal para a situação de produto vetorial conduz aos seguintes sinais da sub- faixa de origem;
Figure img0019
[00127] Onde —e <<! igualmente, a subfaixa de saída desejada é de forma:
Figure img0020
. (18}
[00128] Os cálculos mostram que esta meta de produção pode ser conseguida se (15) for satisfeita conjuntamente com:
Figure img0021
[00129] As condições (15) e (19) são equivalentes a:
Figure img0022
[00130] Que define os fatores inteiros ' ' para a modificação de fase em (13) e fornece uma certa liberdade de projeto na definição dos IP D valores dos fatores de diminuição da resolução "‘ . O parâmetro de ponderação de magnitude pode ser vantajosamente escolhido para . c ' - Como pode ser visto, estes parâmetros de configuração de-pendem apenas da frequência fundamental através da seleção de r. No entanto, por (18) para conter, uma nova condição na janela de síntese w emerge, nomeadamente:
Figure img0023
[00131] Uma janela de síntese w a qual satisfaz (21) exata ou apro-ximadamente deve ser fornecida como a última peça dos dados de controle de processamento cruzado 403.
[00132] É de salientar que o algoritmo acima para computação de processamento cruzado de dados de controle 403 com base nos pa-râmetros de entrada, tal Omo um índice de subfaixa-alvo de saída m e uma frequência fundamental -:, é de uma natureza puramente exem- plificativa e, como tal, não limita o escopo da invenção. Variações desta divulgação dentro do conhecimento do especialista e experimentação de rotina - por exemplo, um método adicional de processamento subfaixa baseado em blocos que fornece um sinal (18) como saída em resposta a sinais de entrada (17) - cai inteiramente dentro do escopo da invenção.
[00133] A Figura 5 ilustra um cenário exemplificativo para a aplicação da transposição baseada em bloco de subfaixa usando várias ordens de transposição em um codec de áudio HFR melhorado. Um fluxo de bits transmitido é recebido em um decodificador central 501, que fornece um sinal decodificado central de baixa largura de faixa em uma frequência de amostragem O sinal decodificado central de baixa largura de faixa é reamostrado para a frequência de amos- tragem de saída <p por meio de um complexo banco de análise de 32 faixas moduladas QMF 502 seguido por um banco de síntese de 64 faixas QMF (QMF inverso) 505. Os dois bancos de filtros 502 e 505 compartem os mesmos parâmetros físicos a unidade de processamento HFR 504 simplesmente deixa passar as subfaixas menores não modificadas correspondentes ao sinal central de baixa largura de faixa. O conteúdo de alta frequência do sinal de saída é obtido por alimentação das subfaixas mais altas do banco de síntese de 64 faixas QMF 505 com as faixas de saída de uma unidade de transposição múltipla 503, sujeita a modelação espectral e modificação executada por uma unidade de processamento HFR 504. O transpositor múltiplo 503 toma como entrada o sinal decodificado central e produz uma multiplicidade de sinais de subfaixa, que representam a análise de faixa QMF 64 de uma sobreposição ou uma combinação de vários componentes do sinal transposto. O objetivo é que, se o processamento HFR for contornado, cada componente corresponde a um número inteiro de transposição física sem alongar o tempo do sinal de central ‘ No cenário da invenção, o sinal de controle do transpositor 104 contém dados que descrevem uma frequência fundamental. Estes dados podem ser transmitidos através do fluxo de bits do codificador de áudio correspondente, deduzido por detecção de tom no decodifica- dor, ou obtido a partir de uma combinação de informações transmitidas e detectadas.
[00134] A Figura 6 ilustra um cenário exemplificativo para a operação de uma transposição baseada em bloco de subfaixa de ordem múltipla aplicando um único banco de filtros de análise QMF de 64 faixas. Aqui três ordens de transposição ! devem ser produ zidas e entregues no domínio de uma QMF de 64 faixas operando a uma taxa de amostragem de saída de A unidade de mesclar 603 simplesmente seleciona e combina as subfaixas relevantes a partir de cada ramificação de fator de transposição em uma multiplicidade única de subfaixas QMF a serem alimentadas para dentro da unidade de processamento HFR. O objetivo é especificamente que a cadeia de processamento de uma análise QMF de 64 faixas 601, uma unidade de processamento de subfaixa 602- : , e uma síntese QMF de 64 faixas 505 resulta em uma transposição física de com •V::=i (isto é, nenhum estiramento). Identificando estes três blocos com 101, 102 e 1.03 da Figura 1, descobre-se que e assim " - e Um projeto de pa-râmetros de configuração específicos para í:<)z será descrito se-paradamente para cada caso -- . Para todos os casos, o pas so de análise é escolhido para ser h=1 e é assumido que o parâmetro de frequência fundamental normalizada é é.é é conhecido.
[00135] Considerar primeiro o caso 7: ’. Então 602-2 tem de realizar um alongamento de subfaixa de S=2, uma transposição de subfaixa de 1 (ou seja, nenhuma) e a correspondência entre sub- faixas de origem n e alvo m é dada por n=m para o processamento direto de subfaixa. No cenário da invenção de adição de produto vetorial existe apenas um tipo de produto vetorial a considerar, nomeadamente r=1 (vide acima, após a equação (15)), e as equações (20) reduzem para << Uma solução exemplificativa n — ft — í , consiste em escolher ; J e : '"P. Para janela de síntese, de pro-cessamento direto, uma janela retangular de comprimento uniforme L=10 com R1=R2=5 pode ser usada, uma vez que satisfaça a condição (10). Para janela de síntese de processamento cruzado, uma janela obtida L=2 pode ser usada com R1=R2=1, a fim de manter em um mínimo a complexidade adicional da adição de produtos vetoriais. Depois de tudo, o efeito benéfico do uso de um bloco longo para o processamento de subfaixa é mais notável no caso de sinais de áudio complexos, onde termos indesejados de intermodulação são suprimidos, para o caso de um tom dominante, tais artefatos são menos prováveis de ocorrer. A janela de derivação L=2 é a mais curta que pode satisfazer (10) desde que h=1 e S=2. Através da presente invenção, contudo, a janela satisfaz vantajosamente (21). Para os parâmetros em mãos, isso equivale a:
Figure img0024
[00136] que é cumprido por escolher - e wíHQ ” eapt&E) - ex.pOíST’j/2).
[00137] Para o caso ' as especificações para 602-3 dadas por (1) - (3) são que ele tem de executar um alongamento da subfaixa de S=2, uma transposição da subfaixa de Q=3/2 e que a correspondência entre as subfaixas de origem n e alvo m para o processamento direto do termo é dada por 1 A Existem dois tipos de termos de produ tos vetoriais r=1, 2, e as equações (20) reduzem para
Figure img0025
[00138] Uma solução exemplificativa consiste em escolher os parâmetros diminuição da resolução como * D1= 0 e D2 = 3 / 2 para r = 1; * D1 = 3/2 e D2 = 0 for r = 2.
[00139] Para janela de síntese, de processamento direto, uma janela retangular de comprimento uniforme L= 8 com R1=R2= 4 pode ser usada. Para janela de síntese de processamento cruzado, uma janela obtida curta L= 2 pode ser usada com R1=R2=1, e que satisfaça:
Figure img0026
[00140] O qual é cumprido por escolher w(o) =1 e
[00141] Para o caso ' as especificações para 602-4 dadas por (1) - (3) são que ele tem de executar um alongamento da subfaixa de S=2, uma transposição da subfaixa de Q=2 e que a correspondência entre as subfaixas de origem n e alvo m para o processamento direto do termo é dada por n=2m. Existem dois tipos de termos de produtos vetoriais r=1, 2, e as equações (20) reduzem para J(4 -r)U -2
[00142] Uma solução exemplificativa consiste em escolher:D1= 0 e D2 = 2 para r = 1;
Figure img0027
[00143] Para janela de síntese de processamento direto, uma janela retangular de comprimento uniforme L= 6 com R1=R2 = 3 pode ser usada. Para janela de síntese de processamento cruzado, uma janela obtida curta L=2 pode ser usada com R1=R2 = 1 e que satisfaça:
Figure img0028
[00144] O qual é cumprido por escolher w(o) =1 e ^-h^^M?^.
[00145] Em cada um dos casos acima referidos onde mais do que um valor de r é aplicável, uma seleção ocorrerá, por exemplo, de forma semelhante ao procedimento de três passos descrito antes da equação (17).
[00146] A Figura 7 descreve o espectro de amplitude de um sinal harmônico com frequência fundamental íi-^504.? •••. A parte de baixas frequências 701 do sinal é para ser usada como entrada para um trans- positor múltiplo. A finalidade do transpositor é gerar um sinal o mais pró-ximo possível da parte de alta frequência 702 do sinal de entrada, de modo que a transmissão da parte de alta frequência 702 torna-se não- imperativa e a taxa de bits disponível pode ser utilizada economicamente.
[00147] A Figura 8 descreve o espectro de amplitude de saídas de um transpositor que tem a parte de baixa frequência 701 do sinal da Figura 7 como entrada. O transpositor múltiplo é construído usando bancos de filtros QMF de 64 faixas, frequência de amostragem / ... ij -, e de acordo com a descrição da Figura 5. Para maior clareza, no entanto, apenas as duas ordens de transposição • = 2,3 são consideradas. Os três painéis diferentes 801-803 representam a saída final obtida usando configurações diferentes dos dados de controle de processamento cruzado.
[00148] O painel de topo 801 descreve o espectro de saída obtido se todo o processamento de produto vetorial for cancelado e apenas o processamento direto de subfaixa 401 está ativo. Este será o caso se o controle de processamento cruzado 404 não receber nenhum tom ou ??"í!. Transposição por gera a saída na faixa de 4 a 8 kHz e transposição por C.= :: ' gera a saída na faixa de 8 a 12 kHz. Como pode ser visto, os parciais criados estão cada vez mais afastados e a saída se desvia significativamente do sinal alvo de alta frequência 702. Artefatos audíveis de tons "fantasmas" duplos e triplos estarão presentes na saída de áudio resultante.
[00149] O painel do meio 802 descreve o espectro de saída obtido se o processamento do produto vetorial estiver ativo, o parâmetro de tons /'• ? é usado (o qual é uma aproximação a 1 Hi'"'-;), po- rm, uma janela de síntese de duas derivações com w(0) = w(-1) = 1, satisfazendo a condição (10), é usada para o processamento de sub- faixa cruzado. Isso equivale a uma combinação simples de processa-mento baseado em blocos de subfaixa e transposição harmônica me-lhorada por produto vetorial. Como pode ser visto, os componentes de sinal de saída adicionais em comparação com 801 não se alinham bem com a série harmônica desejada. Isto mostra que ele leva a uma qualidade de áudio insuficiente ao utilizar o procedimento herdado do projeto de processamento de subfaixa direto para o processamento de produto vetorial.
[00150] O painel inferior 803 descreve o espectro de saída obtido a partir do mesmo cenário para o painel do meio 802, mas, agora com as janelas de síntese de processamento de subfaixa cruzado dado pe- <9 - 2 3 las fórmulas descritas nos casos : da Figura 5. Isto é, uma ja-nela de duas derivações da forma w(0) =1 e *•’ • satisfazen do (21) e com o recurso ensinado pela presente invenção que depende do valor de •< Como pode ser visto, os sinais combinados de saída se alinham muito bem com a série harmônica desejada 702.
[00151] A Figura 9 mostra uma parte da unidade de processamento não-linear de processamento de quadro 202 incluindo seções configuradas para receber duas amostras de entrada e para gerar com base nestas uma amostra processada w, cuja magnitude é dada por uma média geométrica das magnitudes das amostras de entrada, isto é,
Figure img0029
[00152] É possível obter a amostra processada w de acordo com esta especificação por pré-normalização de cada uma das amostras de entrada ;; em um pré-normalizador respectivo 901, 902 e multiplicando as amostras de entrada pré-normalizadas V. “iij dii.r „ Vz = ti?_ /UjP ' em um multiplicador ponderado 910, o qual gera ' “.
[00153] É evidente que a operação dos pré-normallzadores 901, 902 e do multiplicador ponderado 910 é determinada pelos parâmetros de entrada Õ Ã-»* e ;•'. É fácil verificar que as equações (22) serão .. pV'/2 _ . .. . cumpridas se • • . O especialista será prontamente capaz de generalizar este esquema para um número arbitrário A‘-! de amostras de entrada, em que um multiplicador é forne-cido com amostras de entrada das quais algumas ou todas têm experimentado normalização. Observa-se então que uma pré- normalização comum (a=b, implicando que os pré-normalizadores 901, 902 produzem resultados idênticos) é possível se o parâmetro for p. y* jía’’ I 1 ajustado para ? , '•’-'. Isto resulta em uma vantagem compu tacional quando muitas subfaixas são consideradas, uma vez que uma etapa de pré-normalização comum pode ser realizada em todas as subfaixas candidatas antes da multiplicação. Em uma implementação de hardware vantajosa, uma pluralidade de pré-normalizadores funcionando identicamente é substituída por uma única unidade que alterna entre amostras de diferentes subfaixas em uma modalidade de divisão de tempo.
[00154] Concretizações adicionais da presente invenção se tornarão evidentes para um perito na técnica após a leitura da descrição acima. Apesar da presente descrição e os desenhos revelarem concretizações e exemplos, a presente invenção não está limitada a estes exemplos específicos. Numerosas modificações e variações podem ser feitas sem se afastar do espírito ou escopo da presente invenção, o qual é definido pelas concretizações.
[00155] Os sistemas e métodos acima descritos podem ser imple-mentados como software, firmware (programa impresso), hardware ou uma combinação destes. Certos componentes ou todos os componentes podem ser implementados como software executado por um processador de sinal digital ou microprocessador, ou ser implementados como hardware ou como um circuito integrado de aplicação específica. Esse tipo de software pode ser distribuído em mídias legíveis por computador, que podem compreender meios de armazenagem computacional (ou mídia não transitória) e mídia de comunicação (ou mídias transitórias). Como é bem conhecido para uma pessoa perita na técnica, mídia de armazenamento computacional inclui meios tanto voláteis e não voláteis, removíveis e não removíveis implementados em qualquer método ou tecnologia para armazenamento de informações, tais como instruções legíveis por computador, estruturas de dados, módulos de programas ou outros dados. Mídias de armazenamento computacional incluem, mas não se limitam à RAM, ROM, EEPROM, memória flash ou outras tecnologias de memória, CD-ROM, discos digitais versáteis (DVD,) ou armazenamento em outro disco óptico, cassetes magnéticos, fita magnética, armazenamento em disco magnético ou outros dispositivos de armazenamento magnético, ou qualquer outro meio que possa ser utilizado para armazenar a informação desejada e que possa ser acessado por um computador. Além disso, é bem conhecido para o perito que mídias de comunicação normalmente incorporam instruções legíveis por computador, estruturas de dados, módulos de programas ou outros dados em um sinal de dados modulado, como uma onda portadora ou outro mecanismo de transporte e incluem todos os meios de entrega de informação.

Claims (12)

1. Sistema configurado para gerar um sinal de tempo alon-gado e/ou um sinal de frequência transposta a partir de um sinal de entrada, o sistema caracterizado pelo fato de que compreende: um banco de filtros de análise (101) configurado para obter um número Y > 1 de sinais de subfaixa de análise a partir do sinal de entrada, em que cada sinal subfaixa de análise compreende uma plu-ralidade de amostras de análise de valor complexo, cada uma tendo uma fase e uma magnitude, em que o banco de filtros de análise (101) é um dentre um banco de filtros de quadratura em espelho, uma transformada discreta de Fourier com janelas ou uma transformada em pequenas ondas; uma unidade de processamento de subfaixa (102) configurada para gerar um sinal de subfaixa de síntese a partir dos sinais Y da subfaixa de análise utilizando um fator de transposição de subfaixa Q e um fator de alongamento de subfaixa S, pelo menos um dentre Q e S sendo maior do que um, em que a unidade de processamento de subfaixa (102) compreende: um extrator de blocos (201) configurado para: i) formar os Y quadros de L amostras de entrada, cada quadro sendo extraído a partir da pluralidade de amostras de análise de valor complexo em um sinal de subfaixa de análise e o comprimento do quadro sendo L > 1; e ii) aplicar um tamanho de salto do bloco de h amostras para a pluralidade de amostras de análise, antes de formar um quadro sub-sequente de L amostras de entrada, gerando assim uma sequência de quadros de amostras de entrada; uma unidade de processamento de quadro não-linear (202) configurada para gerar, com base em Y quadros correspondentes de amostras de entrada formadas pelo bloco extrator, um quadro de amostras processadas por meio da determinação de uma fase e mag-nitude para cada amostra processada do quadro, em que, para pelo menos uma amostra processada: (1) a fase da amostra processada está baseada nas fases respectivas da amostra de entrada correspondente em cada um dos Y quadros de amostras de entrada, e 11) a magnitude da amostra processada está baseada na magnitude da amostra de entrada correspondente em cada um dos Y quadros de amostras de entrada; e uma unidade de sobreposição e adição (204) configurada para determinar o sinal de subfaixa de síntese por sobreposição e adição de uma sequência de quadros de amostras processadas; e um banco de filtros de síntese (103) configurado para gerar o sinal de tempo alongado e/ou o sinal de frequência transposta a partir do sinal de subfaixa de síntese, em que o sistema é operável pelo menos para Y=2, e em que o extrator de blocos (201) é configurado para obter pelo menos um quadro de amostras de entrada reduzindo a resolução das amostras de análise de valor complexo em um sinal de subfaixa de análise.
2. Sistema, de acordo com a reivindicação 1, caracterizado pelo fato de que o banco de filtros de análise (101) aplica um passo de tempo de análise ΔtA para o sinal de entrada, o banco de filtros de análise tem um espaçamento da fre-quência de análise ΔfA; o banco de filtros de análise tem uma série N de subfaixas de análise, com N > 1, onde n é um índice de subfaixa de análise com n = 0,..., N - 1; uma subfaixa de análise das N subfaixas de análise está associada com uma faixa de frequência do sinal de entrada; o banco de filtros de síntese (103) aplica um passo de tempo de síntese ΔtS ao sinal de subfaixa de síntese; o banco de filtros de síntese tem um espaçamento de fre-quência de síntese ΔfS; o banco de filtros de análise tem um número M de subfai- xas de síntese, com M > 1, onde m é um índice de subfaixa de síntese com m = 0,..., M - 1; e uma subfaixa de síntese das M subfaixas de síntese está associada com uma faixa de frequência do tempo alongado e/ou sinal de frequência transposta, em que a unidade de processamento de subfaixa (102) está configurada para Y=2 e ainda compreende uma unidade de controle de processamento cruzado (404) configurada para gerar dados de controle de processamento cruzado (403) definindo índices de subfaixas n1,n2 associados aos sinais da subfaixa de análise de tal maneira que os índices de subfaixa diferem em um número inteiro p aproximando-se da razão de uma frequência fundamental QO do sinal de entrada e o espaçamento da frequência de análise ΔfA.
3. Sistema, de acordo com a reivindicação 2, caracterizado pelo fato de que os índices de subfaixas n1,n2 são associados aos sinais da subfaixa de análise e o índice da subfaixa de síntese m, cujos índices de subfaixa estão relacionados por serem soluções inteiras aproximadas de:
Figure img0030
em que Q0 é uma frequência fundamental do sinal de entrada, a = 0 oo 1/2, Q=>Q tA QΦ é um fator de transposição; e ré um número inteiro que satisfaz 1 < r < QΦ - 1.
4. Sistema, de acordo com a reivindicação 3, caracterizado pelo fato de que a unidade de controle de processamento cruzado (404) está configurada para gerar dados de controle de processamento de tal forma que os índices de subfaixa n1,n2 são baseados em um valor de r que maximiza o mínimo das magnitudes da subfaixa dos dois quadros formados por extração de amostras de análise a partir de sinais de subfaixa de análise.
5. Sistema, de acordo com qualquer uma das reivindicações 1 a 4, caracterizado pelo fato de que é operável pelo menos para Y=1 e Y=2.
6. Sistema, de acordo com qualquer uma das reivindicações 1 a 5, caracterizado pelo fato de que a unidade de processamento não-linear (102) compreende: um pré-normalizador (901, 902) configurado para redimen- sionar as magnitudes das amostras de entrada correspondentes em pelo menos um dos quadros de amostras de entrada Y das amostras de entrada (v = u- /|um\β-); e um multiplicador complexo (910) configurado para determinar a amostra processada por computação, um produto complexo ponderado In u n n vm.-I de fatores iguais à amostra de entrada correspon- \ n EN —EM J dente em pelo menos dois dos Y quadros de amostras de entrada, pelo menos um dos fatores (v,, - E M t0) sendo obtido a partir de uma amostra com uma magnitude redimensionada pelo pré-normalizador.
7. Sistema, de acordo com qualquer uma das reivindicações 1 a 6, caracterizado pelo fato de que está configurado para Y=2, compreendendo: um banco de filtros de análise (101) configurado para obter um primeiro e segundo sinal da subfaixa de análise a partir do sinal de entrada; uma unidade de processamento de subfaixa (102) configurada para determinar um sinal de subfaixa de síntese a partir do primeiro e segundo sinais da subfaixa de análise, em que a unidade de processamento de subfaixa (102) compreende: um primeiro extrator de blocos (301-1) configurado para: i) formar um primeiro quadro de L amostras de entrada da pluralidade de amostras de análise de valor complexo em um primeiro sinal de subfaixa de análise e o comprimento do quadro sendo L> 1; e ii) aplicar um tamanho de salto do bloco de h amostras para a pluralidade de amostras de análise, antes de formar um quadro sub-sequente de amostras de entrada L, gerando assim uma primeira se-quência de quadros de amostras de entrada; um segundo extrator de blocos (301-2) configurado para: i) formar um segundo quadro de L amostras de entrada da pluralidade de amostras de análise de valor complexo no segundo sinal de subfaixa de análise; e ii) aplicar o tamanho de salto do bloco de h amostras para a pluralidade de amostras de análise, antes de formar um quadro sub-sequente de amostras de entrada L, gerando assim uma segunda se-quência de quadros de amostras de entrada; uma unidade de processamento de quadro não-linear (302) configurada para gerar, baseada na primeira e segundo quadro de amostras de entrada, um quadro de amostras processadas; e uma unidade de sobreposição e adição (204) configurada para formar o sinal de subfaixa de síntese; e um banco de filtros de síntese (103) configurado para gerar o tempo alongado e/ou o sinal de frequência transposta a partir do sinal de subfaixa de síntese.
8. Sistema, de acordo com qualquer uma das reivindicações 1 a 7, caracterizado pelo fato de que ainda compreende: uma pluralidade de unidades de processamento de subfai- xa (401,402; 503; 602-2, 602-3, 602-4), cada uma configurada para determinar um sinal de subfaixa de síntese usando um valor diferente do fator de transposição de subfaixa Q e/ou do fator S de alongamento da subfaixa; e uma unidade de mesclar (405,603) disposta a jusante da pluralidade de unidades de processamento de subfaixa e a montante do banco de filtros de síntese (103) configurada para mesclar sinais intermediários de subfaixa de síntese correspondentes a fim de deter-minar o sinal de subfaixa de síntese.
9. Sistema, de acordo com a reivindicação 8, caracterizado pelo fato de que está configurado para Y=2, em que pelo menos uma das unidades de processamento de subfaixa é uma unidade de pro-cessamento direto de subfaixa (401) a qual está configurada para de-terminar um sinal de subfaixa de síntese a partir de um sinal da subfai- xa de análise utilizando um fator de transposição de subfaixa Q e um fator de alongamento de subfaixa S, e pelo menos uma é uma unidade de processamento cruzado de subfaixa (402), que é configurada para determinar um sinal de subfaixa de síntese a partir de dois sinais de subfaixa de análise usando um fator de transposição de subfaixa Q e um fator de alongamento de subfaixa S, os quais são independentes dos primeiros dois fatores, o sistema estando configurado para desativar pelo menos uma unidade de processamento cruzado de subfaixa (402) se, para uma subfaixa de síntese dada, uma das seguintes condições for satisfeita: a) a razão entre a magnitude Ms da subfaixa de análise de termo de fonte direta produzindo a subfaixa de síntese e pelo menos a magnitude Mc em um par ótimo de termos de fonte cruzada produzindo a subfaixa de síntese é maior do que uma constante predeterminada q: b) a subfaixa de síntese tem uma contribuição significativa de uma unidade de processamento direto; c) uma frequência fundamental QO é menor do que o espa-çamento do banco de filtro de análise ΔfA.
10. Sistema, de acordo com qualquer uma das reivindicações 1 a 9, caracterizado pelo fato de que: o banco de filtros de análise (101) está configurado para formar Y x Z sinais de subfaixa de análise a partir do sinal de entrada; a unidade de processamento de subfaixa (102) é configurada para gerar Z sinais da subfaixa de síntese a partir dos Y x Z sinais de subfaixas de análise, aplicando um par de valores S e Q para cada grupo de Y sinais da subfaixa de análise no qual um sinal de subfaixa de síntese está baseado; e o banco de filtros de síntese (103) é configurado para gerar Z sinais de tempo alongado e/ou de frequência transposta a partir dos Z sinais de subfaixa de síntese.
11. Método para gerar um sinal de tempo alongado e/ou um sinal de frequência transposta a partir de um sinal de entrada, o método caracterizado pelo fato de que compreende as etapas de: obter, por um banco de filtros de análise (101) que é um dentre um banco de filtros de quadratura em espelho, uma transformada discreta de Fourier com janelas ou uma transformada em pequenas ondas, um número Y > 2 de sinais de análise de subfaixa a partir do sinal de entrada, em que cada sinal de análise subfaixa compreende uma pluralidade de amostras de análise valor complexo, cada uma tendo uma fase e uma magnitude; formar os Y quadros de amostras de entrada L, cada quadro sendo extraída da pluralidade de amostras de análise de valor complexo em um sinal de análise de subfaixa e o comprimento do quadro sendo L > 1; aplicar um tamanho de salto do bloco de h amostras para a pluralidade de amostras de análise, antes de obter um quadro subse-quente de L amostras de entrada, gerando assim uma sequência de quadros de amostras de entrada; gerar, com base em Y quadros correspondentes de amostras de entrada, um quadro de amostras processadas por meio da de-terminação de uma fase e uma magnitude para cada amostra processada do quadro, em que, para pelo menos uma amostra processada: 1) a fase da amostra processada é baseada nas respectivas fases da amostra de entrada correspondente em cada uma dos Y quadros de amostras de entrada, e 11) a magnitude da amostra processada é baseada na magnitude da amostras de entrada correspondente em cada um dos Y quadros de amostras de entrada; determinar o sinal de subfaixa de síntese pela superposição e adição das amostras de uma sequência de quadros de amostras processadas; e gerar o sinal de tempo alongado e/ou o sinal de frequência transposta a partir do sinal da subfaixa de síntese, em que formar os quadros de amostras de entrada inclui reduzir a resolução das amostras de análise de valor complexo em um sinal de subfaixa de análise.
12. Meio de armazenamento legível por computador não transitório caracterizado pelo fato de que armazena um método legível por computador que, quando executado por um computador, executa o método conforme definido na reivindicação 11.
BR112013005676-2A 2010-09-16 2011-09-05 sistema e método para gerar um sinal de tempo alongado e/ou um sinal de frequência transposta a partir de um sinal de entrada e suporte de dados e meio de armazenamento legível por computador não transitório BR112013005676B1 (pt)

Priority Applications (3)

Application Number Priority Date Filing Date Title
BR122019025142-8A BR122019025142B1 (pt) 2010-09-16 2011-09-05 Sistema e método para gerar um sinal de tempo alongado e/ou um sinal de frequência transposta a partir de um sinal de entrada e meio de armazenamento legível por computador não transitório
BR122019025121-5A BR122019025121B1 (pt) 2010-09-16 2011-09-05 Sistema e método para gerar um sinal de tempo alongado e/ou um sinal de frequência transposta a partir de um sinal de entrada e meio de armazenamento legível por computador não transitório
BR122019025115-0A BR122019025115B1 (pt) 2010-09-16 2011-09-05 Sistema e método para gerar um sinal de tempo alongado e/ou de frequência transposta a partir de um sinal de entrada e meio de armazenamento legível por computador não transitório

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US38344110P 2010-09-16 2010-09-16
US61/383,441 2010-09-16
US41916410P 2010-12-02 2010-12-02
US61/419,164 2010-12-02
PCT/EP2011/065318 WO2012034890A1 (en) 2010-09-16 2011-09-05 Cross product enhanced subband block based harmonic transposition

Publications (2)

Publication Number Publication Date
BR112013005676A2 BR112013005676A2 (pt) 2016-05-03
BR112013005676B1 true BR112013005676B1 (pt) 2021-02-09

Family

ID=44720852

Family Applications (4)

Application Number Title Priority Date Filing Date
BR122019025142-8A BR122019025142B1 (pt) 2010-09-16 2011-09-05 Sistema e método para gerar um sinal de tempo alongado e/ou um sinal de frequência transposta a partir de um sinal de entrada e meio de armazenamento legível por computador não transitório
BR112013005676-2A BR112013005676B1 (pt) 2010-09-16 2011-09-05 sistema e método para gerar um sinal de tempo alongado e/ou um sinal de frequência transposta a partir de um sinal de entrada e suporte de dados e meio de armazenamento legível por computador não transitório
BR122019025115-0A BR122019025115B1 (pt) 2010-09-16 2011-09-05 Sistema e método para gerar um sinal de tempo alongado e/ou de frequência transposta a partir de um sinal de entrada e meio de armazenamento legível por computador não transitório
BR122019025121-5A BR122019025121B1 (pt) 2010-09-16 2011-09-05 Sistema e método para gerar um sinal de tempo alongado e/ou um sinal de frequência transposta a partir de um sinal de entrada e meio de armazenamento legível por computador não transitório

Family Applications Before (1)

Application Number Title Priority Date Filing Date
BR122019025142-8A BR122019025142B1 (pt) 2010-09-16 2011-09-05 Sistema e método para gerar um sinal de tempo alongado e/ou um sinal de frequência transposta a partir de um sinal de entrada e meio de armazenamento legível por computador não transitório

Family Applications After (2)

Application Number Title Priority Date Filing Date
BR122019025115-0A BR122019025115B1 (pt) 2010-09-16 2011-09-05 Sistema e método para gerar um sinal de tempo alongado e/ou de frequência transposta a partir de um sinal de entrada e meio de armazenamento legível por computador não transitório
BR122019025121-5A BR122019025121B1 (pt) 2010-09-16 2011-09-05 Sistema e método para gerar um sinal de tempo alongado e/ou um sinal de frequência transposta a partir de um sinal de entrada e meio de armazenamento legível por computador não transitório

Country Status (18)

Country Link
US (9) US9172342B2 (pt)
EP (6) EP3975177B1 (pt)
JP (9) JP5951614B2 (pt)
KR (11) KR101610626B1 (pt)
CN (2) CN104851429B (pt)
AU (1) AU2011304113C1 (pt)
BR (4) BR122019025142B1 (pt)
CA (9) CA3102325C (pt)
CL (1) CL2013000717A1 (pt)
DK (3) DK3975178T3 (pt)
ES (3) ES2933477T3 (pt)
IL (11) IL296448A (pt)
MX (1) MX2013002876A (pt)
MY (2) MY176574A (pt)
PL (3) PL3975178T3 (pt)
RU (6) RU2671619C2 (pt)
SG (3) SG188229A1 (pt)
WO (1) WO2012034890A1 (pt)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8958510B1 (en) * 2010-06-10 2015-02-17 Fredric J. Harris Selectable bandwidth filter
EP2682941A1 (de) 2012-07-02 2014-01-08 Technische Universität Ilmenau Vorrichtung, Verfahren und Computerprogramm für frei wählbare Frequenzverschiebungen in der Subband-Domäne
TWI557727B (zh) * 2013-04-05 2016-11-11 杜比國際公司 音訊處理系統、多媒體處理系統、處理音訊位元流的方法以及電腦程式產品
EP3806498B1 (en) 2013-09-17 2023-08-30 Wilus Institute of Standards and Technology Inc. Method and apparatus for processing audio signal
CN105874819B (zh) * 2013-10-22 2018-04-10 韩国电子通信研究院 生成用于音频信号的滤波器的方法及其参数化装置
US10163447B2 (en) * 2013-12-16 2018-12-25 Qualcomm Incorporated High-band signal modeling
KR101627661B1 (ko) 2013-12-23 2016-06-07 주식회사 윌러스표준기술연구소 오디오 신호 처리 방법, 이를 위한 파라메터화 장치 및 오디오 신호 처리 장치
CN106105269B (zh) 2014-03-19 2018-06-19 韦勒斯标准与技术协会公司 音频信号处理方法和设备
CN108307272B (zh) 2014-04-02 2021-02-02 韦勒斯标准与技术协会公司 音频信号处理方法和设备
US9306606B2 (en) * 2014-06-10 2016-04-05 The Boeing Company Nonlinear filtering using polyphase filter banks
WO2016142002A1 (en) * 2015-03-09 2016-09-15 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Audio encoder, audio decoder, method for encoding an audio signal and method for decoding an encoded audio signal
TWI758146B (zh) * 2015-03-13 2022-03-11 瑞典商杜比國際公司 解碼具有增強頻譜帶複製元資料在至少一填充元素中的音訊位元流
EP3171362B1 (en) * 2015-11-19 2019-08-28 Harman Becker Automotive Systems GmbH Bass enhancement and separation of an audio signal into a harmonic and transient signal component
CN110266287B (zh) * 2019-05-05 2023-06-23 深圳信息职业技术学院 电子耳蜗分数延迟滤波器构造方法、存储介质及电子耳蜗
US10938444B2 (en) * 2019-07-12 2021-03-02 Avago Technologies International Sales Pte. Limited Apparatus and method for noise reduction in a full duplex repeater
US11344298B2 (en) 2019-12-06 2022-05-31 Covidien Lp Surgical stapling device

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5774837A (en) 1995-09-13 1998-06-30 Voxware, Inc. Speech coding system and method using voicing probability determination
US5956674A (en) * 1995-12-01 1999-09-21 Digital Theater Systems, Inc. Multi-channel predictive subband audio coder using psychoacoustic adaptive bit allocation in frequency, time and over the multiple channels
SE512719C2 (sv) * 1997-06-10 2000-05-02 Lars Gustaf Liljeryd En metod och anordning för reduktion av dataflöde baserad på harmonisk bandbreddsexpansion
US6266003B1 (en) * 1998-08-28 2001-07-24 Sigma Audio Research Limited Method and apparatus for signal processing for time-scale and/or pitch modification of audio signals
US7272556B1 (en) 1998-09-23 2007-09-18 Lucent Technologies Inc. Scalable and embedded codec for speech and audio signals
US6782360B1 (en) 1999-09-22 2004-08-24 Mindspeed Technologies, Inc. Gain quantization for a CELP speech coder
JP3518737B2 (ja) * 1999-10-25 2004-04-12 日本ビクター株式会社 オーディオ符号化装置、オーディオ符号化方法、及びオーディオ符号化信号記録媒体
SE0004163D0 (sv) 2000-11-14 2000-11-14 Coding Technologies Sweden Ab Enhancing perceptual performance of high frequency reconstruction coding methods by adaptive filtering
CA2365203A1 (en) * 2001-12-14 2003-06-14 Voiceage Corporation A signal modification method for efficient coding of speech signals
JP3537807B2 (ja) * 2002-02-28 2004-06-14 株式会社神戸製鋼所 デジタルデータ処理装置,およびその方法
US7069212B2 (en) * 2002-09-19 2006-06-27 Matsushita Elecric Industrial Co., Ltd. Audio decoding apparatus and method for band expansion with aliasing adjustment
SE0301273D0 (sv) 2003-04-30 2003-04-30 Coding Technologies Sweden Ab Advanced processing based on a complex-exponential-modulated filterbank and adaptive time signalling methods
ATE354160T1 (de) 2003-10-30 2007-03-15 Koninkl Philips Electronics Nv Audiosignalcodierung oder -decodierung
US7460990B2 (en) 2004-01-23 2008-12-02 Microsoft Corporation Efficient coding of digital media spectral data using wide-sense perceptual similarity
US20090299756A1 (en) * 2004-03-01 2009-12-03 Dolby Laboratories Licensing Corporation Ratio of speech to non-speech audio such as for elderly or hearing-impaired listeners
KR100608062B1 (ko) * 2004-08-04 2006-08-02 삼성전자주식회사 오디오 데이터의 고주파수 복원 방법 및 그 장치
MX2007012187A (es) 2005-04-01 2007-12-11 Qualcomm Inc Sistemas, metodos y aparatos para deformacion en tiempo de banda alta.
US20070078645A1 (en) * 2005-09-30 2007-04-05 Nokia Corporation Filterbank-based processing of speech signals
ES2940283T3 (es) 2006-01-27 2023-05-05 Dolby Int Ab Filtración eficiente con un banco de filtros modulado complejo
JP2007316254A (ja) * 2006-05-24 2007-12-06 Sony Corp オーディオ信号補間方法及びオーディオ信号補間装置
US8005678B2 (en) 2006-08-15 2011-08-23 Broadcom Corporation Re-phasing of decoder states after packet loss
JP4918841B2 (ja) * 2006-10-23 2012-04-18 富士通株式会社 符号化システム
EP3296992B1 (en) * 2008-03-20 2021-09-22 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Apparatus and method for modifying a parameterized representation
US9142221B2 (en) * 2008-04-07 2015-09-22 Cambridge Silicon Radio Limited Noise reduction
KR101239812B1 (ko) * 2008-07-11 2013-03-06 프라운호퍼 게젤샤프트 쭈르 푀르데룽 데어 안겐반텐 포르슝 에. 베. 대역폭 확장 신호를 생성하기 위한 장치 및 방법
MY180550A (en) * 2009-01-16 2020-12-02 Dolby Int Ab Cross product enhanced harmonic transposition
CA3107567C (en) * 2009-01-28 2022-08-02 Dolby International Ab Improved harmonic transposition
EP2214165A3 (en) 2009-01-30 2010-09-15 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Apparatus, method and computer program for manipulating an audio signal comprising a transient event
ES2836756T3 (es) * 2010-01-19 2021-06-28 Dolby Int Ab Transposición armónica basada en bloque de sub bandas mejorada
MX2012010415A (es) * 2010-03-09 2012-10-03 Fraunhofer Ges Forschung Aparato y metodo para procesar una señal de audio de entrada utilizando bancos de filtro en cascada.

Also Published As

Publication number Publication date
IL253387B (en) 2018-06-28
US10446161B2 (en) 2019-10-15
CA3220202A1 (en) 2012-03-22
RU2694587C1 (ru) 2019-07-16
EP4148732A1 (en) 2023-03-15
ES2933477T3 (es) 2023-02-09
JP6429966B2 (ja) 2018-11-28
MX2013002876A (es) 2013-04-08
IL240068A (en) 2017-08-31
JP2019012295A (ja) 2019-01-24
ES2938725T3 (es) 2023-04-14
RU2720495C1 (ru) 2020-04-30
IL298230A (en) 2023-01-01
RU2015105671A (ru) 2015-08-20
US9172342B2 (en) 2015-10-27
JP2020190757A (ja) 2020-11-26
KR20140132370A (ko) 2014-11-17
BR122019025115B1 (pt) 2021-04-13
SG10202103492XA (en) 2021-05-28
IL278478B (en) 2021-08-31
CA2961088A1 (en) 2012-03-22
US20180182404A1 (en) 2018-06-28
SG188229A1 (en) 2013-04-30
CA3137515A1 (en) 2012-03-22
RU2685993C1 (ru) 2019-04-23
KR20190099092A (ko) 2019-08-23
JP7053912B6 (ja) 2022-05-16
JP5951614B2 (ja) 2016-07-13
IL224785A (en) 2015-08-31
ES2699750T3 (es) 2019-02-12
IL285298B (en) 2022-04-01
EP3975178A1 (en) 2022-03-30
CA3137515C (en) 2022-09-20
US20130182870A1 (en) 2013-07-18
JP7053912B2 (ja) 2022-04-12
IL265722A (en) 2019-05-30
CA3191597A1 (en) 2012-03-22
US11817110B2 (en) 2023-11-14
CA2808353A1 (en) 2012-03-22
KR101610626B1 (ko) 2016-04-20
JP2018022178A (ja) 2018-02-08
BR112013005676A2 (pt) 2016-05-03
CN103262164B (zh) 2015-06-17
US20170213563A1 (en) 2017-07-27
KR101744621B1 (ko) 2017-06-09
IL240068A0 (en) 2015-08-31
JP6736634B2 (ja) 2020-08-05
EP3975178B1 (en) 2022-11-16
US9940941B2 (en) 2018-04-10
KR20170060191A (ko) 2017-05-31
WO2012034890A1 (en) 2012-03-22
CA3067155C (en) 2021-01-19
RU2551817C2 (ru) 2015-05-27
KR101980070B1 (ko) 2019-05-20
IL285298A (en) 2021-09-30
KR20180128983A (ko) 2018-12-04
IL291501B2 (en) 2023-04-01
IL265722B (en) 2020-11-30
KR101863035B1 (ko) 2018-06-01
RU2682340C1 (ru) 2019-03-19
EP2617035A1 (en) 2013-07-24
IL303921A (en) 2023-08-01
IL253387A0 (en) 2017-09-28
KR20130081290A (ko) 2013-07-16
KR20210124538A (ko) 2021-10-14
CA3191597C (en) 2024-01-02
US10706863B2 (en) 2020-07-07
KR20190053306A (ko) 2019-05-17
RU2020111638A (ru) 2021-09-20
CA2808353C (en) 2017-05-02
CA3102325A1 (en) 2012-03-22
CA3043428C (en) 2020-02-18
EP3975177B1 (en) 2022-12-14
JP6755426B2 (ja) 2020-09-16
JP7273218B2 (ja) 2023-05-12
US20190108850A1 (en) 2019-04-11
CA3067155A1 (en) 2012-03-22
US20240046940A1 (en) 2024-02-08
MY155990A (en) 2015-12-31
DK3975177T3 (da) 2023-01-30
AU2011304113A1 (en) 2013-03-07
RU2013117038A (ru) 2014-10-27
PL2617035T3 (pl) 2019-02-28
KR102073544B1 (ko) 2020-02-05
US20220293113A1 (en) 2022-09-15
JP6218889B2 (ja) 2017-10-25
KR102564590B1 (ko) 2023-08-09
AU2011304113B2 (en) 2015-02-26
JP6849847B2 (ja) 2021-03-31
IL298230B2 (en) 2023-11-01
KR102312475B1 (ko) 2021-10-14
RU2015105671A3 (pt) 2018-08-27
CN104851429B (zh) 2018-10-19
BR122019025121B1 (pt) 2021-04-27
PL3975177T3 (pl) 2023-04-11
CN104851429A (zh) 2015-08-19
US9735750B2 (en) 2017-08-15
IL291501A (en) 2022-05-01
KR102014696B1 (ko) 2019-08-27
RU2671619C2 (ru) 2018-11-02
JP2013537322A (ja) 2013-09-30
CA3043428A1 (en) 2012-03-22
KR20200013092A (ko) 2020-02-05
US20160006406A1 (en) 2016-01-07
EP2617035B1 (en) 2018-10-03
CA2961088C (en) 2019-07-02
PL3975178T3 (pl) 2023-03-13
KR101924326B1 (ko) 2018-12-03
IL259070A (en) 2018-06-28
DK3975178T3 (da) 2022-12-05
IL296448A (en) 2022-11-01
EP3975177A1 (en) 2022-03-30
CL2013000717A1 (es) 2013-07-05
CA3168514C (en) 2023-04-11
EP3503100A1 (en) 2019-06-26
IL298230B1 (en) 2023-07-01
KR102439053B1 (ko) 2022-09-02
IL291501B (en) 2022-12-01
CA3168514A1 (en) 2012-03-22
CA3102325C (en) 2021-12-21
JP2022088591A (ja) 2022-06-14
JP2020106867A (ja) 2020-07-09
KR20230119038A (ko) 2023-08-14
US11355133B2 (en) 2022-06-07
MY176574A (en) 2020-08-17
JP2016173603A (ja) 2016-09-29
US10192562B2 (en) 2019-01-29
EP4145445A1 (en) 2023-03-08
CN103262164A (zh) 2013-08-21
KR20180058847A (ko) 2018-06-01
BR122019025142B1 (pt) 2021-04-27
DK2617035T3 (da) 2019-01-02
JP2021081754A (ja) 2021-05-27
SG10201506914PA (en) 2015-10-29
JP2023086885A (ja) 2023-06-22
US20200395025A1 (en) 2020-12-17
KR20220123752A (ko) 2022-09-08
US20190378525A1 (en) 2019-12-12
AU2011304113C1 (en) 2015-08-06

Similar Documents

Publication Publication Date Title
BR112013005676B1 (pt) sistema e método para gerar um sinal de tempo alongado e/ou um sinal de frequência transposta a partir de um sinal de entrada e suporte de dados e meio de armazenamento legível por computador não transitório
BR122019025118B1 (pt) Sistema e método para gerar um sinal de tempo alongado e/ou um sinal de frequência transposta a partir de um sinal de entrada e meio de armazenamento legível por computador
RU2810281C1 (ru) Гармоническое преобразование на основе блока поддиапазонов, усиленное перекрестными произведениями
AU2022201270B2 (en) Cross Product Enhanced Subband Block Based Harmonic Transposition

Legal Events

Date Code Title Description
B06F Objections, documents and/or translations needed after an examination request according [chapter 6.6 patent gazette]
B06U Preliminary requirement: requests with searches performed by other patent offices: procedure suspended [chapter 6.21 patent gazette]
B06A Patent application procedure suspended [chapter 6.1 patent gazette]
B09A Decision: intention to grant [chapter 9.1 patent gazette]
B16A Patent or certificate of addition of invention granted [chapter 16.1 patent gazette]

Free format text: PRAZO DE VALIDADE: 20 (VINTE) ANOS CONTADOS A PARTIR DE 05/09/2011, OBSERVADAS AS CONDICOES LEGAIS.

B25G Requested change of headquarter approved

Owner name: DOLBY INTERNATIONAL AB (IE)