BE828372A - Procede pour la preparation de composes oxo - Google Patents

Procede pour la preparation de composes oxo

Info

Publication number
BE828372A
BE828372A BE155754A BE155754A BE828372A BE 828372 A BE828372 A BE 828372A BE 155754 A BE155754 A BE 155754A BE 155754 A BE155754 A BE 155754A BE 828372 A BE828372 A BE 828372A
Authority
BE
Belgium
Prior art keywords
emi
general formula
phenyl
silanol
isomerization
Prior art date
Application number
BE155754A
Other languages
English (en)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GB1834474A external-priority patent/GB1457025A/en
Application filed filed Critical
Publication of BE828372A publication Critical patent/BE828372A/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/1608Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes the ligands containing silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/2208Oxygen, e.g. acetylacetonates
    • B01J31/2226Anionic ligands, i.e. the overall ligand carries at least one formal negative charge
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C403/00Derivatives of cyclohexane or of a cyclohexene or of cyclohexadiene, having a side-chain containing an acyclic unsaturated part of at least four carbon atoms, this part being directly attached to the cyclohexane or cyclohexene or cyclohexadiene rings, e.g. vitamin A, beta-carotene, beta-ionone
    • C07C403/14Derivatives of cyclohexane or of a cyclohexene or of cyclohexadiene, having a side-chain containing an acyclic unsaturated part of at least four carbon atoms, this part being directly attached to the cyclohexane or cyclohexene or cyclohexadiene rings, e.g. vitamin A, beta-carotene, beta-ionone having side-chains substituted by doubly-bound oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/51Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by pyrolysis, rearrangement or decomposition
    • C07C45/511Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by pyrolysis, rearrangement or decomposition involving transformation of singly bound oxygen functional groups to >C = O groups
    • C07C45/512Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by pyrolysis, rearrangement or decomposition involving transformation of singly bound oxygen functional groups to >C = O groups the singly bound functional group being a free hydroxyl group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/50Redistribution or isomerisation reactions of C-C, C=C or C-C triple bonds
    • B01J2231/52Isomerisation reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/50Complexes comprising metals of Group V (VA or VB) as the central metal
    • B01J2531/56Vanadium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/16Systems containing only non-condensed rings with a six-membered ring the ring being unsaturated

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description


  Procédé pour la préparation de composés oxo 

  
 <EMI ID=1.1> 

  
 <EMI ID=2.1> 

  
être isomérisés catalytiquement en les cétones ou aldéhydes a,p-non saturés de manière très simple avec un bon rendement

  
et un taux de conversion élevé par isomérisation en présence d'un catalyseur d'oxyde d'hydroxycarbyl-siloxy-vanadium sous addition d'un hydrocarbyl-silanol, au moins un groupe phényle substitué par des groupes attracteurs d'un ou plusieurs électrons étant présent dans le catalyseur et/ou le silanol.

  
Les catalyseurs employés jusqu'à présent dans cette isomérisation présentent l'inconvénient d'être relativement instables et de ne pouvoir être employés qu'une ou peu de fois. Le système composé du catalyseur et du silanol utilisé dans cette invention est par contre bien plus stable et permet d'effectuer un grand nombre d'isomérisations sans changer de catalyseur. Avec ce système catalytique, on peut effectuer des isomérisations en un temps relativement court et dans un intervalle de température compris entre environ 20 et 150[deg.], ce qui peut avoir une importance décisive avec des substances de départ et des composés finals thermolabiles.

  
L'invention se base sur cette découverte et concerne

  
un procédé pour la préparation de composés oxo de formule générale

  

 <EMI ID=3.1> 


  
 <EMI ID=4.1> 

  
ou un groupe alcoyle inférieur, R2 représente un radical alcoyle ou alcényle pouvant être lié avec

  
un radical cycloalcoyle, cycloalcényle ou phényle,

  
ou un radical cycloalcoyle, cycloalcényle ou phényle ;

  
 <EMI ID=5.1> 

  
cycloalcényle, lequel peut être de son côté condensé

  
r  <EMI ID=6.1> 

  
ou un radical alcoyle ou alcényle pouvant être lié avec un radical cycloalcoyle, cycloalcényle ou phényle, ou un radical cycloalcoyle, cycloalcényle ou phényle ; les radicaux alcoyle, alcényle, cycloalcoyle, cycloalcényle et phényle cités étant éventuellement substitués par des groupes -alcoyle inférieur, alcoxy inférieur, hydroxy, alcanoyle inférieur, aroyle, alcanoyloxy inférieur, ou aroyloxy, ou [à- l'exception du groupe phényle] par un groupe oxo ou oxo cétalisé,

  
par isomérisation catalytique d'un carbinol tertiaire de formule générale

  

 <EMI ID=7.1> 


  
 <EMI ID=8.1> 

  
tion que ci-dessus.

  
Le procédé est caractérisé en ce qu'on effectue l'isomérisation avec un catalyseur de formule générale

  

 <EMI ID=9.1> 


  
dans laquelle KW représente un radical hydrocarbure de la série des alcoyle inférieur, cycloalcoyle, phényle ou phényl-alcoyle inférieur, le radical phényle pouvant être substitué par un ou plusieurs groupes attracteurs d'électrons, R représente un

  
 <EMI ID=10.1> 

  
n = 0, 1 ou 2, et m + n = 3,  <EMI ID=11.1> 

  

 <EMI ID=12.1> 


  
dans laquelle KW, m et n ont la même signification que ci-dessus,

  
le catalyseur de formule générale III et/ou le silanol de formule générale IV possédant au moins un radical phényle contenant un ou plusieurs groupes attracteurs d'électrons.

  
Les groupes de catalyseurs suivants couverts par la formule générale III sont particulièrement importants :

  
Catalyseurs de formule générale

  

 <EMI ID=13.1> 


  
dans laquelle m et n ont la même signification que

  
 <EMI ID=14.1> 

  
de la série des alcoyle inférieur, cycloalcoyle phényle ou phényl-alcoyle inférieur, R' représente le groupe KW' ou le radical -Si(KW')3,

  
ainsi que des catalyseurs de formule générale

  

 <EMI ID=15.1> 


  
dans laquelle m et n ont la même signification que ci-dessus, KW" représente un radical phényle substitué par un ou plusieurs groupes attracteurs d'électrons et R" = KW" ou KW'.

  
..,. 

  
 <EMI ID=16.1> 

  
1

  
Silanols de formule générale

  

 <EMI ID=17.1> 


  
dans laquelle m, n, KW" et R" ont la même signification que ci-dessus,

  
ainsi que les silanols de formule générale

  

 <EMI ID=18.1> 


  
 <EMI ID=19.1> 

  
que ci-dessus.

  
 <EMI ID=20.1> 

  
 <EMI ID=21.1> 

  
carbone, par exemple les groupes méthyle, éthyle, propyle, isopropyle, etc.

  
 <EMI ID=22.1> 

  
 <EMI ID=23.1> 

  
contenir jusqu'à 30 atomes de carbone.

  
 <EMI ID=24.1> 

  
membres inférieurs, de préférence le groupe méthyle, parmi les membres supérieurs ayant de préférence une structure isoprène ou analogue, les radicaux : 

  
 <EMI ID=25.1> 

  
5-éthyl-4-méthyl-pent-3-ényle , 

  
4-hydroxy-4-méthyl-pentyle,

  
4-méthoxy-4-méthyl-pentyle, 

  
4,8-diméthyl-nona-3,7-diényle,

  
4,8,12-triméthyl-tridécyle ainsi que 4,8,12-triméthyl-tridéca-3,7,11-triényle.

  
Comme exemples de radicaux R2 représentant un groupe cycloalcoyle et cycloalcényle, on peut citer les suivants :

  
cyclohex-1-yle,

  
2,6,6-triméthyl-cyclohex-1-yle, 3-méthyl-cyclohex-3-én-1-yle, et 4-méthyl-cyclohex-3-én-l-yle.

  
Le composant cyclcalcoyle éventuellement substitué

  
 <EMI ID=26.1> 

  
tenir jusqu'à 20 atomes de carbone. Comme exemples de tels radicaux cycloalcoyle liés à des radicaux R2 saturés ou non saturés, ramifiés ou non ramifiés, de préférence alcoyle de structure d'isoprène ou analogue, on peut citer :

  
 <EMI ID=27.1> 

  
2-(4-oxo-2,6,6-triméthyl-cyclohex-1-én-1-yl)-vinyle, 2-(4,4-éthylènedioxy-2,6,6-triméthyl-cyclohex-l-én-lyl)-vinyle,

  
6-(2,6,6-triméthyl-cyclohex-1-én-1-yl)-4-méthyl-hexa1,3,5-triényle,

  
6-(4-oxo-2,6,6-triméthyl-cyclohex-l-én-l-yl)-4-méthylhexa-l,3,5-triényle, ainsi que

  
6-(4,4-éthylènedioxy-2,6.6-triméthyl-cyclohex-1-én-1yl)-4-méthyl-hexa-1,3,5-triényle,

  
 <EMI ID=28.1> 
- parmi les membres inférieurs les radicaux  <EMI ID=29.1> 

  
Comme exemples de composés de départ de formule générale

  
 <EMI ID=30.1> 

  
forment un radical cycloalcoyle saturé ou non-saturé, éventuellement substitué, on peut citer :

  
le 1-éthynyl-cyclopentanol,

  
le 1-éthynyl-cyclohexanol,

  
le 1-éthynyl-2,6,6-triméthyl-cyclohexanol,

  
le 4-éthynyl-4-hydroxy-1-oxo-3,5,5-triméthyl-cyclohex2-ène,et

  
 <EMI ID=31.1> 

  
cyclohex-2-ène.

  
Comme exemples de composés de départ de formule générale

  
 <EMI ID=32.1> 

  
lequel est condensé de son côté avec un radical cycloalcoyle s.ituré ou non-saturé, on peut citer :

  
le prégn-5-én-20-yne-3&#65533;,17-diol,

  
 <EMI ID=33.1> 

  
la 13-éthyl-17-hydroxy-18,19-di-nor-17a-prégn-4-én-20-yn3-one [Norgestrel], et

  
 <EMI ID=34.1> 

  
[Mestranol].

  
Le système cyclique ci-dessus formé par les substituants

  
 <EMI ID=35.1> 

  
Comme substituants des radicaux alcoyle, alcényle, cycloalcoyle, cycloalcényle et phényle cités ci-dessus, entrent en ligne de compte : les radicaux alcoyle inférieurs contenant de 1 à 6 atomes de carbone tels que méthyle, éthyle, propyle, isopropyle etc: ; des radicaux alcoxy inférieurs contenant de 1 à 6 atomes de carbone tels que méthoxy, éthoxy,  <EMI ID=36.1> 

  
propionyle, butyryle, etc. ; les radicaux aroyle, notamment benzoyle ; les radicaux alcanoyloxy inférieurs contenant de 1 à 6 atomes de carbone tels qu'acétyloxy, propionyloxy, butyryloxy etc ; les radicaux aroyloxy, notamment benzoyloxy.

  
Un groupe oxo peut être cétalisé par des alcanols inférieurs ou des glycols, par exemple le méthanol ou l'éthylèneglycol.

  
Le radical représenté par KW dans la formule générale III représente de préférence un groupe alcoyle inférieur contenant jusqu'à 7 atomes de carbone, par exemple les groupes méthyle, éthyle, isopropyle ou n-butyle ; mais également des groupes alcoyle supérieurs contenant de 8 à 20 atomes de carbone, par exemple octyle, décyle, dodécyle, pentadécyle et octadécyle ; ainsi qu'un groupe phényle et alcoyle inférieur-phényle, tel

  
que tolyle ou xylyle, et en outre un groupe phényl-alcoyle inférieur, tel que benzyle ou phénéthyle.

  
Parmi les composés couverts par la formule générale I,

  
5 groupes de composés particulièrement importants peuvent être

  
 <EMI ID=37.1> 

  
suivantes :

  

 <EMI ID=38.1> 


  
 <EMI ID=39.1> 

  
alcoyle ou cycloalcényle pouvant être substitué par des groupes alcoyle inférieur, alcoxy inférieur, hydroxy ou oxo éventuellement cétalisé ;

  

 <EMI ID=40.1> 
 

  
 <EMI ID=41.1> 

  
des groupes alcoyle inférieur, alcoxy inférieur, hydroxy ou [à l'exception du groupe phényle] un groupe oxo éventuellement cétalisé;

  

 <EMI ID=42.1> 


  
 <EMI ID=43.1> 

  
ou un groupe alcoyle inférieur, et a = 1, b = 1, c = 1,

  
 <EMI ID=44.1> 

  
a = 0, b = 0, c = 0, les membres a, b, c étant éventuellement substitués par un groupe hydroxy et/ou alcoxy inférieur, et les liaisons en pointillés représentent une liaison C-C éventuelle ;

  
0

  
 <EMI ID=45.1> 

  
d

  
(0) 

  

 <EMI ID=46.1> 


  
dans laquelle le cycle A peut être entièrement ou partiellement non-saturé, le cycle B partiellement non-saturé, et X représente un groupe alcoyle inférieur Y un atome d'hydrogène ou un groupe alcoyle inférieur et Z un groupe hydroxy, oxo, alcoxy ou acyloxy.

  
Les composés de départ de formule générale II nécessaires

  
Il  <EMI ID=47.1> 

  
ID et IE peuvent être représentée. générales suivantes : 

  

 <EMI ID=48.1> 


  
 <EMI ID=49.1> 

  
que ci-dessus.

  
Comme exemples, on peut citer entre autres :

  
le 1-éthynyl-cyclohexanol,

  
le 1-éthynyl-2,6,6-triméthyl-cyclohexanol et

  
 <EMI ID=50.1> 

  
cyclohex-2-ène &#65533; 

  
u

  

 <EMI ID=51.1> 


  
dans laquelle R"2 a la même signification que ci-dessus.

  
Cette formule couvre par exemple le 3-hydroxy-3-phénylprop-1-yne ;

  

 <EMI ID=52.1> 


  
 <EMI ID=53.1> 

  
ou un groupe alcoyle inférieur et les symboles a, b et c et les liaisons en pointillés ont la même

  
signification que ci-dessus. 

  
 <EMI ID=54.1> 

  

 <EMI ID=55.1> 


  
dans laquelle d a la même signification que cidessus.

  
Comme exemples, on peut citer entre autres :

  
le 5-(2,6,6-triméthyl-cyclohex-l-én-l-yl)-3-hydroxy-3-

  
 <EMI ID=56.1> 

  
le 9-(4,4-éthylènedioxy-2,6,6-triméthyl-cyclohex-1-én-1yl)-3-hydroxy-3,7-diméthyl-nona-4,6,8-trién-1-yne ;

  

 <EMI ID=57.1> 


  
dans laquelle X, Y et Z ont la même signification que ci-dessus et le cycle A peut être entièrement ou  <EMI ID=58.1> 

  
i

  
Selon le procédé de l'invention, on peut préparer les composés suivants d'une manière particulièrement avantageuse :

  
aldéhyde sénécioique (Prénal),

  
3-méthyl-pent-2-én-1-al,

  
3,7-diméthyl-4-éthyl-octa-2,6-dién-1-al, non-2-én-l-al,

  
Citral,

  
7-(hydroxy ou méthoxy)-citral,

  
Farnésal,

  
Phytal,

  
cyclohexylidène-acétaldéhyde

  
aldéhyde 2,6,6-triméthyl-cyclohexylidène-acétique, aldéhyde cinnamique,

  
 <EMI ID=59.1> 

  
aldéhyde vitaminique A,

  
2-méthyl-hept-2-én-4-one,

  
2,5-diméthyl-hex-2-én-4-one,

  
17-(formylméthylène)-androst-5-én-3P-ol,

  
 <EMI ID=60.1> 

  
3-méthoxy-19-nor-prégna-l,3,5(10),17(20)-tétraén-21-al.

  
Parmi les catalyseurs de l'invention de formule générale

  
 <EMI ID=61.1> 

  
formule générale
 <EMI ID=62.1> 
  <EMI ID=63.1> 

  
cycloalcoyle, phényle ou phényl-alcoyle inférieur,

  
sont préférés. Comme exemples représentatifs des composés de formule générale IIIaa, on peut citer :

  
l'oxyde de tris-[triméthyl-siloxy]-vanadium,

  
l'oxyde de tris-[tricyclohexyl-siloxy]-vanadium et l'oxyde de tris-[triphényl-siloxy]-vanadium.

  
Les composés de formule générale IIIe,dans laquelle

  
n = 0 et B représente un groupe sulfone, peuvent être préparés par exemple par un procédé caractérisé en ce qu'on fait réagir du 4-hydroxy-3-méthyl-but-2-én-l-al ou l'acétate ou

  
le bromure de cet alcool dans un solvant polaire, par exemple dans l'isopropanol ou le n-butanol, comme (.'écrit ci-dessus, avec l'acide sulfinique décrit ci-dessus ou avec un sel de métal alcalin de cet acide.

  
Les composés de silicium métalliphères de formules générales'IIIa et IIIaa sont des composés connus. Ils peuvent être préparés selon des méthodes connues, par exemple
-par réaction,par exemple, de pentoxyde de vanadium, <EMI ID=64.1> 

  
azéotrope de l'eau libérée lors de la réaction au moyen d'un agent entraînant tel que le benzène;
- par réaction, par exemple, de trichlorovanadium, <EMI ID=65.1> 

  
présence d'une base telle que la pyridine ou l'ammoniac;
- par réaction, par exemple,de trichlorovanadium, par exemple avec un trialcoyl-[ou triphényl]-silanolate <EMI ID=66.1>   <EMI ID=67.1>  trialcoyl-[ou triphényl]-silanol, éventuellement en présence de quantités catalytiques d'un alcoyl ou phényl-silanolate d'alcali, par exemple un trialcoyl-silanolate d'alcali ;
- par réaction, par exemple,d'un oxyde de siloxy- <EMI ID=68.1> 

  
un trialcoyl-silanol ou un triphényl-silanol en présence de quantité catalytique d'un silanolate d'alcali tel qu'un tri-(alcoyle inférieur)-silanolate d'alcali ;
- par réaction, par exemple,d'orthovanadate d'argent de formule générale Ag3V04,par exemple avec un halogénure de trialcoyl[ou triphényl)-silyle de formule générale <EMI ID=69.1> 

  
le benzène ou le chlorure de méthylène ;
- par réaction, par exemple,de pentoxyde de vanadine, par exemple avec un hexa-alcoyldisiloxane de formule générale <EMI ID=70.1> 

  
à environ 100[deg.] ou finalement aussi
- par double réaction d'un ester d'acide vanadique de <EMI ID=71.1> 

  
[ou triphénylj-silyle par exemple l'orthovanadate de tripropyle avec l'acétate de triméthylesilyle sous élimination d'acétate de propyle.

  
 <EMI ID=72.1> 

  
pour l'isomérisation selon l'invention, les composés de silicium de formule générale
 <EMI ID=73.1> 
  <EMI ID=74.1> 

  
d'électrons sont préférés. 

  
Par groupes attracteurs d'électrons, on entend spécialement les groupes cités par Fieser et Fieser dans

  
 <EMI ID=75.1> 

  

 <EMI ID=76.1> 


  
Comme exemples de catalyseurs de l'invention de formules générales IIIb et IIIbb, on peut citer :
- oxyde de tris-[tri-(p-fluorophényl)-siloxy]-vanadium
-oxyde de tris-[tri-(p-chlorophényl)-siloxy]-vanadium
-oxyde de tris-[tri-(p-bromophényl)-siloxy]-vanadium
- oxyde de tris-[tri-(a,a,a-trifluoro-m-tolyl)-siloxy]vanadium
- oxyde de tris-[tri-(a,a,a-trifluoro-p-tolyl)siloxy]-vanadium
- oxyde de tris-[bis-(3-nitro-4-bromophényl)-(4-bromophényl)-siloxy]-vanadium
- oxyde de (tri-p-fluorophényl)-siloxy-bis(triphénylsiloxy)-vanadium
- oxyde de tris-[tri-(4-biphénylyl)-siloxy]-vanadium
- oxyde de bis[tri-(p-fluorophényl)-siloxy]triphényl-siloxy-vanadium   <EMI ID=77.1> 

  
Les catalyseurs de formules générales III, IIIb et IIIbr sont nouveaux et peuvent être préparés selon-des méthodes connues, par exemple
- par réaction de pentoxyde de vanadium avec un <EMI ID=78.1> 

  
KW" représente un radical phényle substitué par un ou plusieurs groupes attracteurs d'électrons] sous élimination azéotrope de l'eau libérée lors de la réaction au moyen d'un agent entraînant tel que le benzène ; 
- par réaction d'oxyde de trichlorovanadium avec un silanol de formule générale KW"SiOH [dans laquelle KW" représente un groupe phényle substitué par un ou plusieurs groupes attracteurs d'électrons] en présence d'une base telle que la pyridine ou l'ammoniac ;
- par réaction d'oxyde de trichlorovanadium avec un <EMI ID=79.1> 

  
 <EMI ID=80.1> 

  
substitué par un ou plusieurs groupes attracteurs d'électrons] dans un solvant inerte, tel que l'éther diéthylique ;
- par réaction d'un ester d'acide vanadique de <EMI ID=81.1> 

  
de formule générale KW"SiOH [dans laquelle KW" représente un groupe phényle substitué par un

  
ou plusieurs groupes attracteurs d'électrons] éventuellement en présence de quantités catalytiques d'un alcoyl- ou phénylsilanolate d'alcali, par exemple un trialcoylsilanolate d'alcali ;  <EMI ID=82.1>  <EMI ID=83.1> 

  
KW" représente un groupe phényle substitué par un ou plusieurs groupes attracteurs d'électrons], éventuellement en présence de quantités catalytiques d'un silanolate d'alcali, tel qu'un tri-(alcoyle inférieur)-silanolate d'alcali ;
- par réaction d'orthovanadate d'argent de formule <EMI ID=84.1> 

  
 <EMI ID=85.1> 

  
présente un groupe phényle substitué par un ou plusieurs groupes attracteurs d'électrons et hal représente un atome d'halogène] dans un solvant comme par exemple le benzène ou le chlorure de méthylène ;
- par double réaction d'un ester d'acide vanadique <EMI ID=86.1> 

  
[dans laquelle KW" représente un radical phényle substitué par un ou plusieurs groupes attracteurs d'électrons] par exemple l'orthovanadate de tripropyle, avec de l'acétate de triphényl-silyle sous élimination d'acétate de propyle, avantageusement dans un solvant tel que le n-heptane, dans lequel l'ester résultant forme un azéotrope séparable du mélange réactionnel.

  
Parmi les'silanols de formule générale IVb, les silanols de formule générale 
 <EMI ID=87.1> 
 <EMI ID=88.1> 

  
ci-dessus,

  
sont préférés.

  
Comme exemples on peut entre autres citer :

  
le triphénylsilanol et

  
le tricyclohexylsilanol.

  
Parmi les silanols de formule générale IVa, les silanols de formule générale

  

 <EMI ID=89.1> 


  
dans laquelle KW" a la même signification que ci-dessus,

  
sont préférés.

  
Comme exemples, on peut entre autres citer :

  
le tri-(p-fluorophényl)-silanol,

  
le tri-(p-chlorophényl)-silanol,

  
le tri-(p-bromophényl)-silanol,  <EMI ID=90.1> 

  
L'isomérisation catalytique selon l'invention d'acétylènecarbinols de formule générale II en composés'oxo a,&#65533;-nonsaturés de formule générale I est mise en oeuvre avantageusement par long chauffage du carbinol correspondant avec

  
le catalyseur de formule générale III après addition d'un silanol de formule générale IV. On utilise environ 0,1

  
à 5 moles/% [de préférence d'environ 1,5 à 2 moles %]

  
de catalyseur de formule générale III par rapport au substrat.

  
Le silanol de formule générale IV est ajouté au mélange réactionnel à raison d'environ 0,01 mole % jusqu'à une quantité à laquelle il prend fonction de solvant. Une quantité de silanol comprise entre 1 et 85 moles %, spécialement 5 et 65 moles

  
est préférée. La quantité de silanol employée est basée sur

  
le poids de substrat.

  
Par contre, si la quantité de silanol de formule générale IV employée est calculée par rapport à la quantité de catalyseur de formule générale III présent dans le mélange réactionnel, l'addition de silanol représente environ 0,05 à 85000 fois

  
la quantité molaire du catalyseur employé. On emploie en

  
général environ 5000 à 65000 fois la quantité molaire de silanol, spécialement 5000 à 8500 fois ou 2500 à 8500 fois la quantité molaire de silanol.

  
Lors de l'isomérisation, on peut soit traiter le substrat de formule générale II avec le système catalytique (composé du catalyseur de formule générale III et d'un silanol de formule générale IV] soit procéder inversement.

  
L'isomérisation peut être effectuée dans un solvant

  
inerte et en présence ou en l'absence d'air.

  
Comme solvants appropriés, on peut par exemple citer

  
les hydrocarbures aliphatiques tels que l'heptane, le cyclo-

J 

  
 <EMI ID=91.1>  le benzène, le nitrobenzène, le toluène ,ou le xylène ; les hydrocarbures halogénés tels que le chlorobenzène ; les éthers tels que l'anisol ou le dioxane, ou également les amines telles que la N-méthylaniline. On peut en outre citer les solvants polymères à teneur de silicium tels que les huiles de silicone contenant des radicaux aliphatiques ou aromatiques, par exemple les méthyl-phényl-polysiloxanes.

  
Comme il a déjà été dit, le mélange réactionnel peut aussi être traité avec un excès de silanol de formule générale IV. Dans ce cas, le silanol fait fonction de solvant.

  
La température réactionnelle à respecter peut être comprise entre environ la température ambiante et 150[deg.], avantageusement entre environ 40 et 110[deg.].

  
Si nécessaire, l'isomérisation peut aussi être mise

  
en oeuvre sous pression, par exemple jusqu'à environ 50 at.

  
La durée de réaction peut varier dans de larges limites. Elle dure en générale d'environ 2 à 20 heures.

  
Le catalyseur utilisé garde presque toute son

  
activité pendant l'isomérisation. Il peut par conséquent

  
être utilisé pour plusieurs isomérisations ultérieures [environ 100-200] avant d'être remplacé.

  
Le produit réactionnel est séparé de manière habituelle, par exemple par rectification des parties du carbinol utilisé n'ayant pas réagi. Les parties de carbinol n'ayant pas réagi peuvent être réutilisées dans la charge suivante. Selon ce procédé, on obtient en général des ren-

  
 <EMI ID=92.1> 

  
la substance de départ utilisée. 

  
 <EMI ID=93.1> 

  
 <EMI ID=94.1> 

  
15,2 g de déhydrolinalol, l,l.g d'oxyde de tris-(triphényl-siloxy)-vanadium, 6,5 g de tri-(p-fluorophényl)silanol et 100 ml d'huile de paraffine à haut point d'ébul-

  
 <EMI ID=95.1> 

  
à 115[deg.] sous azote. Le mélange réactionnel est ensuite refroidi à 70[deg.] et soumis,à cette température,d'abord à une simple distillation, puis à une distillation sous vide

  
(0,1 Torr.). Au cours des dernières 30 minutes de distillation, la température est à nouveau portée à 140[deg.] de sorte que toutes les parties volatiles redistillent. Le mélange résiduel catalyseur/huile de paraffine peut,comme décrit ci-dessus, être à nouveau utilisé pour l'isomérisation de charges de 15,2 g de déhydrolinalol. Les résultats de

  
10 isomérisations effectuées avec le même catalyseur sont les suivants :
- Taux de conversion de déhydrolinalol utilisé : 93%
- Rendement de citral par rapport au déhydrolinalol converti : 96%.

Exemple 2

  
15,2 g de déhydrolinalol, 1,4 g d'oxyde de tris-(tri-

  
 <EMI ID=96.1> 

  
et 180 ml d'huile de paraffine à haut point d'ébullition

  
 <EMI ID=97.1> 

  
 <EMI ID=98.1> 

  
Rendement de citral par rapport au déhydrolinalol converti : 93%

  
Le même catalyseur peut être utilisé pour de nombreuses autres isomérisations. 

  
 <EMI ID=99.1> 

  
15,2 g de déhydrolinalol, 2,1 g d'oxyde de tris-(triphényl-siloxy)-vanadium, 4,5 g de tri-(p-bromophényl)-silanol et 200 ml d'huile de paraffine à haut point d'ébullition

  
 <EMI ID=100.1> 

  
- Rendement de citral par rapport au déhydrolinalol converti : 88%.

Exemple 4

  
 <EMI ID=101.1> 

  
de triphénylsilanol et 31,3 g de déhydrolinalol sont mélangés sous agitation et chauffés à 110[deg.] sous atmosphère d'air ou

  
de gaz inerte. La solution limpide légèrement jaunâtre résultant après addition de 5,6 g d'oxyde de tris-(tri-
(a,a,a-trifluoro-m-tolyl)-siloxy]-vanadium est agitée pendant 6 heures à 105-110[deg.]. Le mélange réactionnel est ensuite refroidi à environ 80[deg.] et distillé sous pression réduite,
(0,1-0,5 Torr.). Le citral qui se transforme à 50-60[deg.]/1 Torr., est complètement distillé. Vers la fin de la distillation,

  
la température est portée à environ 140[deg.] pendant environ

  
15 minutes.

  
Après élimination du citral, on peut effectuer immédiatement une nouvelle isomérisation par traitement, comme décrit ci-dessus, du mélange résiduel huile de paraffine/catalyseur,à nouveau à 110[deg.] avec 31,3 g de déhydrolinalol.

  
- Rendement moyen de citral par rapport au déhydrolinalol converti, sur 50 isomérisations : 88,6%.'

  
 <EMI ID=102.1> 

  
vanadium utilisé comme catalyseur à l'exemple 4 peut par exemple être préparé comme suit : 

  
 <EMI ID=103.1> 

  
 <EMI ID=104.1> 

  
la solution est traitée avec 0,115 g d'oxyde de tris-(triméthyl-siloxy)-vanadium. Le mélange est porté à ébullition

  
sous reflux pendant 1 heure. On distille d'abord 20 ml de benzène avec le triméthylsilanol résultant, à la pression nornale, puis distille à nouveau 20 ml de mélange benzène-toluène à la pression normale, après addition de 20 ml de toluène.

  
La solution de toluène est concentrée sous pression réduite

  
à 50[deg.]. On obtient l'oxyde de tris-[tri-(a,a,a-trifluoro-mtolyl)-siloxy]-vanadium [pic molaire : 1504].

  
D'une manière analogue on peut préparer :

  
à partir d'oxyde de tris-(triméthylsiloxy)-vanadium

  
et de tris-(a,a,a-trifluoro-p-tolyl)-silanol

  
1' oxyde de tris-[tri-(a,a,a-trifluoro-p-tolyl)-siloxy]-

  
vanadium [pic molaire = 1504];

  
à'-partir d'oxyde de tris-(triméthylsiloxy)-vanadium,

  
de tris-(p-fluorophényl)-silanol

  
et de triphénylsilanol dans un rapport molaire de 1:1:2

  
1' oxyde de(tri-p-fluorophényl)-siloxy-bis-(tri-

  
phénylsiloxy)-vanadium ; point de fusion 2030 ;

  
à partir d'oxyde de tris-(triméthylsiloxy)-vanadium,

  
de tris-(p-fluorophényl)-silanol

  
et de triphénylsilanol dans un rapport molaire de 1:2:1

  
 <EMI ID=105.1> 

  
triphénylsiloxy-vanadium, [pic molaire = 1000] ;

  
à partir d'oxyde de tris-(triméthylsiloxy)-vanadium,

  
de tris-(p-bromophényl)-silanol

  
et de cyclohexanol dans un rapport molaire de 1:2:1 1' oxyde de bis-[tri-(p-bromophényl)-siloxy]-

  
cyclohexyloxy-vanadium [pic correspondant à la

  
 <EMI ID=106.1> 

A 

  
 <EMI ID=107.1> 

  
1' oxyde de tris-[bis-(3-nitro-4-bromophényl)-

  
(4-bromophényl)-siloxy]-vanadium [pic correspondant à la masse moléculaire = 1873 mesuré sur la base de 79Br].

Exemple 5

  
10 g de 3-méthyl-but-l-yn-3-ol et 8 g de triphénylsilanol

  
 <EMI ID=108.1> 

  
 <EMI ID=109.1> 

  
avec 7,5 g d'oxyde de tris-[bis-(3-nitro-4-bromophényl)-
(4-bromophényl)-siloxy]-vanadium. Le mélange réactionnel

  
est refroidi à environ 78[deg.] et distillé sous pression réduite,abaissée à 5 Torr., vers la fin de la distillation. On obtient ainsi le Prénal [3-méthyl-but-2-én-l-al], p.éb. 132-133[deg.]/730 Torr.

  
Le mélange résiduel composé de l'huile de paraffine employée,de l'oxyde de tris-[bis-(3-nitro-4-bromophényl)-(4bromophényl)-siloxy]-vanadium et de triphénylsilanol peut

  
à nouveau être utilisé pour l'isomérisation de charges de

  
120 g de 3-méthyl-but-l-yn-3-ol.

  
- Rendement moyen en Prénal sur 20 isomérisations par rapport au 3-méthyl-but-l-yn-3-ol ayant réagi : 93,4%

Exemple 6

  
D'une manière analogue à celle de l'exemple 3, on peut isomériser :

  
le 3-méthyl-pent-l-yn-3-ol

  
en 3-méthyl-pent-2-én-l-al

  
point-d'ébullition 60[deg.]/35 Torr. Rendement : 85%

  
1.. 

  
 <EMI ID=110.1> 

  
point d'ébullition : 72[deg.]/0,4 Torr. Rendement : 78,6%

  
le 3-[4(ou 3)-méthyl-cyclohex-3-én-l-yl]-but-l-yn-3-ol en 3-[4(ou 3)-méthyl-cyclohex-3-én-l-yl]-but-2-én-l-al

  
point d'ébullition : 60[deg.]/0,3 Torr. Rendement : 88,5%

  
le 3,7-diméthyl-7-méthoxy-oct-l-yn-3-ol

  
en 3,7-diméthyl-7-méthoxy-oct-2-én-l-al

  
point d'ébullition : 66[deg.]/0,1 Torr. Rendement : 84,2%

  
le 2,6-diméthyl-oct-7-yne-2,6-diol

  
[7-hydroxydéhydrolinalol]

  
 <EMI ID=111.1> 

  
[7-hydroxycitral]

  
point d'ébullition : 98[deg.]/0,3 Torr. Rendement : 64,5%

  
le 1-éthynyl-cyclohexanol

  
en a) cyclohexylidène-acétaldéhyde

  
point d'ébullition : 48[deg.]/1,3 Torr. Rendement : 46,5%

  
et en b) cyclohex-1-én-1-yl-acétaldéhyde

  
point d'ébullition 48[deg.]/1,3 Torr. Rendement : 14%

  
le l-éthynyl-2,6,6-triméthylcyclohexanol

  
en a) 2,2,6-triméthyl-cyclohexylidène-acétaldéhyde

  
point d'ébullition : 59[deg.]/0,6 Torr. Rendement 12,5%

  
eten b) 2,2,6-triméthyl-cyclohex-l-én-l-yl-acétaldéhyde

  
point d'ébullition : 500/0,1 Torr. Rendement : 74,5%

  
le 1-éthynyl-cyclopentanol

  
en cyclopentylidène-acétaldéhyde  <EMI ID=112.1> 

  
 <EMI ID=113.1> 

  
en non-2-én-l-al

  
point d'ébullition : 34[deg.]/0,25 Torr. -Rendement : 38%

  
le 2,5-diméthyl-hex-3-yn-2,5-diol

  
en 2,5-diméthyl-hex-2-én-5-ol-4-one

  
point d'ébullition : 35[deg.]/0,2 Torr. Rendement : 79,2%

  
 <EMI ID=114.1> 

  
[déhydronérolidol] 

  
en 3,7,11-triméthyl-dodéca-2,6,10-trién-1-al

  
[farnésal]

  
point d'ébullition : 86[deg.]/0,2 Torr. Rendement : 91,6%

  
 <EMI ID=115.1> 

  
[déhydrogéranyllinalol] 

  
en 3,7,11,15-tétraméthyl-hexadéca-2,6,10,14-tétraén-1-al

  
[géranylcitralJ 

  
point d'ébullition : 135[deg.]/0,2 Torr. Rendement : 71,5%

  
le 3,7,11,15-tétraméthyl-hexadéc-l-yn-3-ol

  
 <EMI ID=116.1> 

  
[phytal]

  
point d'ébullition : 150[deg.]/0,3 Torr. Rendement 75,8%.

Exemple 7

  
Un mélange de 15,2 g de 3-hydroxy-3,7-diméthyl-octa6-én-l-yne (déhydrolinalol),0,52 g d'oxyde de tris-[tri-(pbromophényl)-siloxy]-vanadium, 5,5 g de triphénylsilanol et
200 g de paraffine liquide [point d'ébullition 170[deg.]/0,1 Torr.] sont chauffés à 100[deg.] pendant 15 heures sous gaz inerte. Le citral formé est séparé par rectification du déhydrolinalol non converti.

  
 <EMI ID=117.1> 

  
 <EMI ID=118.1> 

  
Avec le même catalyseur, on peut effectuer 40 cycles d'isomérisation de déhydrolinalol en citral avec un rendement analogue.

Exemple 8

  
15,2 g de déhydrolinalol, 0,8 g d'oxyde de tris-[tri-

  
 <EMI ID=119.1> 

  
silanol sont chauffés à 120[deg.] pendant 5 heures dans 300 ml

  
d'huile de silicone. Le rendement en citral par rapport au déhydrolinalol converti est de 92,5%.

  
Après distillation des parties volatiles, l'isomérisation en citral peut être renouvelée plusieurs fois après

  
une nouvelle addition de déhydrolinalol.

Exemple 9

  
15,2 g de déhydrolinalol, 1,4 g d'oxyde de tris-[tri-(a,a,atrifluoro-p-tolyl)-siloxy]-vanadium, 4,8 g de tri-(p-tolyl)-silanol et 180 ml d'huile de paraffine à haut point d'ébullition

  
 <EMI ID=120.1> 

  
5 heures.

  
Le rendement en citral par rapport au déhydrolinalol converti est de 94,2%.

  
Le même catalyseur peut être utilisé pour de nombreuses isomérisations. 

  
 <EMI ID=121.1> 

  
15,2 g de déhydrolinalol, 2,1 g d'oxyde de tris-[tri-
(4-biphénylyl)-siloxy]-vanadium, 4,5 g de tris-(m-tolyl)-sllanol et 200 ml d'huile de paraffine à haut point d'ébullition

  
 <EMI ID=122.1> 

  
Le rendement en citral par rapport au déhydrolinalol

  
 <EMI ID=123.1> 

Exemple 11

  
15,2 g de déhydrolinalol, 2,45 g d'oxyde de tris-(pfluorophényl)-siloxy-vanadium, 1,8 g de dicyclohexyl-méthylsilanol et 90 ml d'huile de paraffine à haut point d'ébul-

  
 <EMI ID=124.1> 

  
dans des conditions anhydres.

  
Le rendement en citral par rapport au déhydrolinalol non converti est de 86,4%.

Exemple 12

  
13,2 g de 3-hydroxy-3-phényl-prop-1-yne, 3,2 g d'oxyde de bis-[tri-(p-fluorophényl)-siloxy]-[triphényl-siloxy]vanadium, 4,51 g de triphénylsilanol et 100 ml d'huile de silicone sont chauffés pendant 8 heures à 115[deg.] dans des conditions anhydres.

  
Le rendement en aldéhyde cinnamique est de 87,6%.

Exemple 13

  
1,04 g de 3-méthoxy-19-nor-prégna-1,3,5(10)-trién-20-yn- <EMI ID=125.1> 

  
20 ml de xylène sont chauffés pendant 6:heures à 120[deg.]. Après refroidissement, la solution réactionnelle est diluée avec de l'hexane, filtrée et concentrée. Le 3-méthoxy-19-nor-

  
 <EMI ID=126.1> 

  
à 141-155[deg.] (0,746 g) après redistillation dans l'hexane et recristallisation dans l'isopropanol.

Exemple 14

  
15,2 g de déhydrolinalol, 1,2 g d'oxyde de tris-[tri-
(p-fluorophényl)-siloxy]-vanadium, 6,5 g de tri-(p-fluorophényl)silanol et 100 ml d'huile de paraffine à haut point d'ébul-

  
 <EMI ID=127.1> 

  
sous azote. Le mélange est ensuite refroidi à 70[deg.] et soumis d'abord, à cette température à une simple distillation puis

  
à une distillation sous vide (pression : 0,1 Torr.). Dans

  
les 30 dernières minutes du processus de distillation, on

  
laisse la température remonter à 140[deg.] afin de distiller toutes les parties volatiles. Le mélange catalyseur/huile de paraffine résiduel peut être à nouveau utilisé pour d'autres isomérisations.

  
- Rendement moyen en citral sur 10 isomérisations : 96%.

  
L'oxyde de tris-[tri-(p-fluorophényl)-siloxy]-vanadium utilisé à l'exemple 14 peut par exemple être préparé comme suit :

  
1 g de tris-(p-fluorophényl)-silanol est dissous dans

  
30 ml de benzène absolu. La solution est traitée dans des

  
 <EMI ID=128.1> 

  
d'oxyde de trichlorovanadium. Le mélange est d'abord agité

  
pendant 8 heures à la température ambiante puis porté à la température de reflux pendant 2 heures. Le chlorhydrate de pyridinium qui précipite après refroidissement à 10[deg.] est

  
séparé par filtration. Le filtrat est concentré sous pression 

A 

  
 <EMI ID=129.1> 

  
le n-heptane. 

  
D'une manière analogue,on peut préparer :

  
à partir d' oxyde de trichloro-vanadium

  
et de tris-(p-chlorophényl)-silanol (p.f. 127-128[deg.])

  
 <EMI ID=130.1> 

  
vanadium ; point de fusion 181[deg.] ;

  
à partir d'oxyde de trichloro-vanadium

  
et de tris-(p-bromophényl)-silanol (p.f. 120-121[deg.]) 1' oxyde de tris-[tri-(p-bromophényl)-siloxy]-

  
vanadium ; point de fusion 175[deg.] ;

  
à partir d' oxyde de trichloro-vanadium

  
et de tris-4-biphénylyl-silanol (p.f. 199-200[deg.])

  
1' oxyde de tris-[tri-(4-biphénylyl)-siloxy]-

  
vanadium.

Claims (1)

  1. <EMI ID=131.1>
    1. Procédé pour la préparation de composés oxo de formule générale
    <EMI ID=132.1>
    <EMI ID=133.1>
    <EMI ID=134.1>
    alcoyle ou alcényle pouvant être lié avec un radical cycloalcoyle, cycloalcényle ou phényle, ou un radical
    <EMI ID=135.1>
    peuvent former un radical cycloalcoyle ou cycloalcényle, lequel peut être de son côté condensé avec un.ou plusieurs radicaux cycloalcoyle ou cycloalcényle ;
    et R3 représente un atome d'hydrogène ou un radical alcoyle ou alcényle pouvant être lié avec un radical cycloalcoyle, cycloalcényle ou phényle, ou un radical cycloalcoyle, cycloalcényle ou phényle ; les radicaux alcoyle, alcényle, cycloalcoyle, cycloalcényle et phényle cités étant éventuellement substitués par des groupes alcoyle inférieur, alcoxy inférieur, hydroxy, alcanoyle inférieur, aroyle, alcanoyloxy inférieur ou aroyloxy, ou [à l'exception du groupe phényle] par un groupe oxo ou oxo cétalisé,
    par isomérisation catalytique d'un carbinol tertiaire de formule générale <EMI ID=136.1> <EMI ID=137.1>
    <EMI ID=138.1>
    <EMI ID=139.1>
    caractérisé en ce qu'on effectue l'isomérisation avec un catalyseur de formule générale
    <EMI ID=140.1>
    <EMI ID=141.1>
    de la série des alcoyle inférieur, cycloalcoyle, phényle ou phényl-alcoyle inférieur, le radical phényle pouvant être substitué par un ou plusieurs groupes attracteurs d'électrons, R représente un
    <EMI ID=142.1>
    n = 0, 1 ou 2, et m + n = 3,
    et un silanol de formule générale
    <EMI ID=143.1>
    <EMI ID=144.1>
    que ci-dessus,
    le catalyseur de formule générale III et/ou le silanol de formule générale IV possédant au moins un radical phényle contenant un ou plusieurs groupes attracteurs d'électrons.
    2. Procédé selon la revendication 1, caractérisé en ce qu'on effectue l'isomérisation avec un catalyseur de formule générale <EMI ID=145.1> dans laquelle m et n ont la même signification que
    <EMI ID=146.1>
    de la série des alcoyle inférieur, cycloalcoyle, phényle ou phényl-alcoyle inférieur, R' représente
    <EMI ID=147.1>
    et un silanol de formule générale
    <EMI ID=148.1>
    dans laquelle m et n ont la même signification que
    <EMI ID=149.1>
    titué par un ou plusieurs groupes attracteurs
    <EMI ID=150.1>
    3. Procédé selon la revendication 1, caractérisé en ce qu'on effectue l'isomérisation avec un catalyseur de formule générale
    <EMI ID=151.1>
    <EMI ID=152.1>
    tion que ci-dessus,
    avec un silanol de formule générale <EMI ID=153.1> dans laquelle m, n et YW, ont la même signification que ci-dessus.
    4. Procédé selon la revendication 1, caractérisé en ce qu'on effectue l'isomérisation avec un catalyseur de formule générale
    <EMI ID=154.1>
    dans laquelle m, n, KW" et R" ont la même signification que ci-dessus,
    et un silanol de formule générale
    <EMI ID=155.1>
    Il
    <EMI ID=156.1>
    cation que ci-dessus.
    5. Procédé selon la revendication 2, caractérisé en
    ce qu'on utilise l'oxyde de tris-(triphényl-siloxy)vanadium comme catalyseur et le tri-(p-fluoro[ou p-chloro ou p-bromo]phényl)-silanol comme silanol.
    6. Procédé selon la revendication 3, caractérisé en <EMI ID=157.1>
    <EMI ID=158.1>
    triphénylsilanol comme silanol.
    7. Procédé selon la revendication 4, caractérisé en ce qu'on utilise l'oxyde de tris-[tri-(p-fluoro[ou p-chloro ou p-bromo]-phényl)-siloxy]-vanadium comme catalyseur et le tri-(p-fluoro[ou p-chloro ou p-bromo]-phényl)-silanol comme silanol.
    8. Procédé selon l'une des revendications 1 à 7, caractérisé en ce qu'on effectue l'isomérisation dans un solvant.
    9. Procédé selon la revendication 8, caractérisé en ce qu'on effectue l'isomérisation dans un hydrocarbure, notamment 1!huile de paraffine.
    10. Procédé selon la revendication 8, caractérisé en ce qu'on effectue l'isomérisation dans une huile de silicone, notamment le méthyl-phényl-polysiloxane.
    11. Procédé selon l'une des revendications 1 à 10, caractérisé en ce qu'on effectue l'isomérisation dans un intervalle de température compris entre la température ambiante et le point d'ébullition du mélange réactionnel.
    12. Procédé selon l'une des revendications 1 à 11, caractérisé en ce qu'on utilise un carbinol de formule générale
    <EMI ID=159.1>
    dans laquelle R"2 représente un radical cycloalcoyle, cycloalcényle ou phényle pouvant être substitué
    par des groupes alcoyle inférieur, alcoxy inférieur, <EMI ID=160.1>
    comme composé de départ.
    13. Procédé selon la revendication 12, caractérisé en ce qu'on utilise le 3-hydroxy-3-phényl-prop-l-yne comme substance de départ.
    14. Procédé selon l'une des revendications 1 à 11, caractérisé en ce qu'on utilise comme composé de départ un carbinol de formule générale
    <EMI ID=161.1>
    <EMI ID=162.1>
    un groupe alcoyle inférieur, et a = 1, b = 1, c = 1
    <EMI ID=163.1>
    a = 0, b = 0, c = 0, les membres a, b, c étant éventuellement substitués par un groupe hydroxy et/ou alcoxy inférieur, et les liaisons en pointillés représentent une liaison C-C éventuelle.
    15. Procédé selon la revendication 14, caractérisé en
    ce qu'on utilise le 3-hydroxy-3-méthyl-but-l-yne comme composé de départ.
    16. Procédé selon la revendication 14, caractérisé en
    ce qu'on utilise le 3-hydroxy-3,7-diméthyl-octa-6-én-l-yne comme composé de départ.
    17. Procédé selon la revendication 14, caractérisé en
    ce qu'on utilise le 3-hydroxY-3,7,11-triméthyl-dodéca-6,10-dién- <EMI ID=164.1>
    <EMI ID=165.1>
    6,10,14-trién-1-yne comme composé de départ.-
    <EMI ID=166.1>
    caractérisé en ce qu'on utilise comme composé de départ un carbinol de formule générale
    <EMI ID=167.1>
    dans laquelle le cycle A peut être entièrement ou partiellement non-saturé, le cycle B partiellement non-saturé, et X représente un groupe alcoyle inférieur, Y un atome d'hydrogène ou un groupe alcoyle inférieur et Z un groupe hydroxy, oxo, alcoxy ou acyloxy.
    20. Procédé selon la revendication 19, caractérisé en ce qu'on utilise le 3-méthoxy-19-nor-prégna-1,3,5(10)trién-20-yn-17-ol comme composé de départ.
BE155754A 1974-04-26 1975-04-25 Procede pour la preparation de composes oxo BE828372A (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB1834474A GB1457025A (en) 1974-04-26 1974-04-26 Process for the manufacture of oxo compounds

Publications (1)

Publication Number Publication Date
BE828372A true BE828372A (fr) 1975-10-27

Family

ID=10110860

Family Applications (1)

Application Number Title Priority Date Filing Date
BE155754A BE828372A (fr) 1974-04-26 1975-04-25 Procede pour la preparation de composes oxo

Country Status (1)

Country Link
BE (1) BE828372A (fr)

Similar Documents

Publication Publication Date Title
EP0283364B1 (fr) Procédé de préparation de monoesters ou diesters de l&#39;acide endoéthano-9,10 dihydro-9,10 anthracène dicarboxylique-11,11, nouveaux monoesters ou diesters ainsi préparés et utilisation de ceux-ci pour la préparation de méthylidène-malonates symétriques ou asymétriques
EP0358584B1 (fr) Diorganopolysiloxane à fonction benzalmalonate
JP3651572B2 (ja) 部分付加環状オルガノハイドロジェンシロキサンの製造方法
FR2596755A1 (fr) Procede de preparation de composes carbonyles ethyleniques
EP0378825B1 (fr) Esters alicycliques et leur utilisation à titre d&#39;ingrédients parfumants
CH616077A5 (fr)
BE828372A (fr) Procede pour la preparation de composes oxo
CH637359A5 (fr) Derives de 8-exo-hydroxymethyl-endo-tricyclo(5.2.1.o(2,6))-decane.
EP0171307B1 (fr) Procédé de fabrication de composés silylmétallocènes et composés obtenus par ce procédé
EP0320339A1 (fr) Procédé de préparation d&#39;alcools insaturés
EP0127536B1 (fr) Procédé de préparation de composés carbonyles alpha-delta-diéthyléniques
CH617167A5 (en) Process for the preparation of alkoxylated aliphatic aldehydes and ketones
EP0069010B1 (fr) Procédé de préparation de composés carbonyles delta-éthyléniques
EP0237438B1 (fr) Procédé de préparation d&#39;aldéhydes polyéniques
EP0146439B1 (fr) Procédé de préparation de dérivés acétyléniques, nouveaux dérivés obtenus et leur emploi
WO2003066562A2 (fr) PROCEDE DE PREPARATION DE COMPOSES ω-BROMOALKYLCARBOXYLIQUES
CH629468A5 (fr) Composes alicycliques insatures, leur utilisation a titre d&#39;ingredients parfumants et procede pour leur preparation.
EP0060767B1 (fr) Procédé de préparation de composés carbonylés delta-éthyléniques
CH639931A5 (fr) Cetones ethyleniques et leur preparation.
CH651287A5 (en) Process for the preparation of compounds of the damascone and damascenone class
EP0579991A2 (fr) Procédé pour la préparation d&#39;une cétone bicyclique décalinique
CH629467A5 (en) Process for the preparation of an oxygenated alicyclic compound
BE840103A (fr) Procede de cyclisation des alcools gamma-delta, delta epsilon insatures et produits obtenus par ce procede
CH541530A (fr) Procédé pour la préparation de dérivés carbonylés y, -insaturés
EP0593917A1 (fr) Procédé pour la préparation d&#39;esters et thioesters optiquement actifs

Legal Events

Date Code Title Description
RE Patent lapsed

Owner name: F. HOFFMANN-LA ROCHE A.G.

Effective date: 19910430