BE540316A - - Google Patents

Info

Publication number
BE540316A
BE540316A BE540316DA BE540316A BE 540316 A BE540316 A BE 540316A BE 540316D A BE540316D A BE 540316DA BE 540316 A BE540316 A BE 540316A
Authority
BE
Belgium
Prior art keywords
polyethylene
small pieces
heating
products
porous
Prior art date
Application number
Other languages
French (fr)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Publication date
Publication of BE540316A publication Critical patent/BE540316A/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/24Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by surface fusion and bonding of particles to form voids, e.g. sintering

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Description

       

   <Desc/Clms Page number 1> 
 



   Il a déjà été proposé d'obtenir des produits poreux en polyéthy- lène en chauffant du polyéthylène en petits morceaux, de poids moléculaire supérieur à 75.000, avec ou sans mise en oeuvre d'une pression mécanique, à des températures comprises entre 120 C et la température à laquelle, en tenant compte de la pression à laquelle on opère, il ne se produit encore aucune décomposition ni gélification du polyéthylène. 



   Avec cette méthode il y a pendant la solidification une diminution plus ou moins importante de volume par contraction. 



   La demanderesse a trouvé que dans le procédé d'obtention de pro- duits en polyéthylène poreux par chauffage de polyéthylène en petits morceaux en particulier de polyéthylène pulvérulent, avec ou sans pression mécanique à des températures comprises entre 100 C et la température à laquelle, en tenant compte de la pression, il ne se produit encore aucune décomposition ni gélification du polyéthylène, on pouvait éviter la contraction en trans- formant par pression mécanique, avant le chauffage le polyéthylène   macromo-   léculaire en petits morceaux, en produits formés de forme stable. 



   L'avantage de cette méthode est qu'aucun récipient de forme sta- ble n'est plus nécessaire au cours du traitement à chaud. Une pression mé- canique est presque toujours également superflue pendant le chauffage et ne peut être d'une certaine importance que dans des cas particuliers. 



   On a reconnu que pour la fabrication de produits aussi poreux et aussi légers.que possible, des pressions déjà relativement faibles é- taient suffisantes pour obtenir à partir de polyéthylène pulvérulent des produits de forme stable, pouvant être soumis sans être brisés au traitement thermique après avoir été manipulés avec précaution. La limite inférieure de pression est d'environ 3   Kg/cm2.   En augmentant la pression les objets formés d'abord préparés par pressage à froid deviennent d'autant plus durs et plus faciles à manipuler. On obtient par exemple par pressage à froid de polyéthylène en poudre, sous des pressions de 100 à 300   Kg/cm2,   des objets formés durs qui reproduisent exactement la forme sous laquelle on les a pres- sés.

   Ils sont sans doute encore fragiles, mais cependant suffisamment soli- des pour pouvoir être maniés commodément. 



   Afin de transformer ces pièces obtenues par pressahe à froid en produits poreux recherchés, on les chauffe entre 100 C et environ 400 C. 



  La température et la durée du chauffage dépendent du degré de frittage que l'on veut obtenir. Si l'on désire des produits aussi poreux et aussi légers que possible, tels par exemple des produits utilisables comme calorifuges, on les met en forme sous une faible pression et on effectue le traitement à chaud à une température basse, par exemple de 150 ou 175 C. Si l'on fritte par contre des pièces au préalable fortement pressées à des températures de 250 à 300 C par exemple on obtient des produits relativement durs, tenaces et qui ne sont plus que légèrement poreux. 



   Afin d'éviter l'oxydation par une atmosphère oxygénée au cours du traitement à la chaleur, il est bon d'effectuer ce traitement au sein d'un gaz inerte exempt   d'oxygène ,   comme par exemple l'azote, le gaz car- bonique, un hydrocarbure à bas poids moléculaire domme le méthane, etc... 



   Comme matière de départ, convient spécialement du polyéthylène macromoléculaire en petits morceaux, de toutes dimensions de moléculaires, par exemple d'un poids moléculaire à partir de 50.000. On utilise convenable- ment le polyéthylène à l'état despoudres, de grains,de fibres, ou de petite morceaux d'une autre forme. 



   Les produits poreux obtenus présentent une grande importance indus- trielle. Ils sont aisés à travailler mécaniquement des façons les plus di- verses et on peut les employer dans de nombreuses applications. 

 <Desc/Clms Page number 2> 

 



     EXEMPLE   1 
Dans un moule cylindrique lisse on presse à 6   Kg/cm2   du polyéthy- lène en poudre d'un poids moléculaire d'environ 300.000, On retire la pièce formées et on la chauffe pendant deux heures à 175 C dans une atmosphère d'azote sans oxygène. On obtient un cylindre très solide offrant une grande porosité. 



     EXEMPLE   2. 



   Dans une presse hydraulique on presse du polyéthylène pulvérulent en plaques de 10 mm d'épaisseur sous une pression de 300 Kg/cm2, puis on chauffe 1   heurs .   250 C les plaques obtenues dans   del'azote   exempt d'oxy- gène. On obtient ainsi des plaques poreuses d'une grande dureté et d'une grande ténacité, que l'on peut aisément travailler au tour, à la foreuse, à l'aléseuse, etc...



   <Desc / Clms Page number 1>
 



   It has already been proposed to obtain porous polyethylene products by heating polyethylene in small pieces, with a molecular weight greater than 75,000, with or without the use of mechanical pressure, at temperatures between 120 C and the temperature at which, taking into account the pressure at which the operation is carried out, no decomposition or gelation of the polyethylene still takes place.



   With this method there is during solidification a more or less significant decrease in volume by contraction.



   The Applicant has found that in the process for obtaining porous polyethylene products by heating polyethylene in small pieces, in particular pulverulent polyethylene, with or without mechanical pressure at temperatures between 100 ° C. and the temperature at which, in taking into account the pressure, no decomposition or gelation of the polyethylene yet takes place, the contraction could be avoided by transforming by mechanical pressure, before heating, the macromolecular polyethylene into small pieces, into formed products of stable form.



   The advantage of this method is that no stably shaped container is required during the heat treatment. Mechanical pressure is almost always also superfluous during heating and can only be of some importance in special cases.



   It has been recognized that for the manufacture of products as porous and as light as possible, already relatively low pressures are sufficient to obtain from powdered polyethylene products of stable form which can be subjected without breaking to the heat treatment afterwards. have been handled with care. The lower pressure limit is approximately 3 Kg / cm2. By increasing the pressure, shaped articles first prepared by cold pressing become all the harder and easier to handle. For example, by cold pressing of powdered polyethylene, under pressures of 100 to 300 kg / cm 2, hard shaped objects are obtained which exactly reproduce the form in which they were pressed.

   They are undoubtedly still fragile, but nevertheless strong enough to be able to be handled conveniently.



   In order to transform these parts obtained by cold pressing into desired porous products, they are heated between 100 C and about 400 C.



  The temperature and the duration of the heating depend on the degree of sintering that is to be obtained. If one wishes products which are as porous and as light as possible, such as for example products which can be used as heat insulators, they are shaped under a low pressure and the hot treatment is carried out at a low temperature, for example 150 or more. 175 C. If, on the other hand, parts which have been strongly pressed beforehand at temperatures of 250 to 300 C, for example, are sintered, relatively hard, tenacious products are obtained which are only slightly porous.



   In order to avoid oxidation by an oxygenated atmosphere during the heat treatment, it is advisable to carry out this treatment within an inert gas free of oxygen, such as for example nitrogen, carbon gas. bonique, a low molecular weight hydrocarbon dominates methane, etc.



   As the starting material especially suitable is small-piece macromolecular polyethylene of any molecular size, for example with a molecular weight from 50,000. Polyethylene is suitably used in the form of powders, grains, fibers, or small pieces of another form.



   The porous products obtained are of great industrial importance. They are easy to work mechanically in a variety of ways and can be used in many applications.

 <Desc / Clms Page number 2>

 



     EXAMPLE 1
Powdered polyethylene with a molecular weight of about 300,000 is pressed at 6 kg / cm2 in a smooth cylindrical mold. The formed part is removed and heated for two hours at 175 ° C. in a nitrogen atmosphere without oxygen. A very solid cylinder is obtained offering great porosity.



     EXAMPLE 2.



   In a hydraulic press, powdery polyethylene is pressed into 10 mm thick plates under a pressure of 300 kg / cm 2, then heated for 1 hour. 250 C the plates obtained in nitrogen free of oxygen. We thus obtain porous plates of great hardness and great tenacity, which can easily be worked with a lathe, a drill, a boring machine, etc.


    

Claims (1)

RESUME La présente invention concerne un procédé de fabrication de pro- duits en polyéthylène :-poreux par chauffage de polyéthylène en petis mor- ceaux, en particulier de polyéthylène pulvérulent, avec ou sans mise en oeuvre d'une pression mécanique, à des températuees comprises entre 100 C et la température à laquelle il ne @eproduit encore aucune décomposition et/ ou gélification du polyéthylène, procédé caractérisé par les points suivants considérés isolément ou en combinaison : 1 ) on presse mécaniquement avant chauffage du polyéthylène macromoléculaire en petits morceaux de façon à obtenir des objets formés de forme stable; 2 ) On effectue le chauffage qui suit dans une atmosphère exempte d'oxygène; ABSTRACT The present invention relates to a process for the manufacture of polyethylene products: porous by heating polyethylene in small pieces, in particular pulverulent polyethylene, with or without the use of mechanical pressure, at temperatures between 100 C and the temperature at which it does not yet produce any decomposition and / or gelation of polyethylene, a process characterized by the following points considered individually or in combination: 1) before heating, macromolecular polyethylene is mechanically pressed into small pieces so as to obtain formed objects of stable form; 2) The following heating is carried out in an oxygen-free atmosphere; 3 ) On utilise comme matière de départ du polyéthylène de toutes dimensions moléculaires, de préférence d'un poids moléculaire à partir de 50. 000 envi- ron, à l'état deepoudres, de grains, de fibres ou de petits morceaux d'une autre forme. 3) Polyethylene of any molecular size, preferably with a molecular weight of from about 50,000, in the form of deep powders, grains, fibers or small pieces of a solid state, is used as the starting material. other form.
BE540316D 1954-08-14 BE540316A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE1128228X 1954-08-14
DE777187X 1954-08-14
DER14850A DE1156554B (en) 1954-08-14 1954-08-14 Process for the production of porous plastic bodies

Publications (1)

Publication Number Publication Date
BE540316A true BE540316A (en) 1900-01-01

Family

ID=63798685

Family Applications (1)

Application Number Title Priority Date Filing Date
BE540316D BE540316A (en) 1954-08-14

Country Status (4)

Country Link
BE (1) BE540316A (en)
DE (1) DE1156554B (en)
FR (1) FR1128228A (en)
GB (1) GB777187A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1154934B (en) * 1957-09-04 1963-09-26 Franz Zwick Process for the production of gas- or liquid-permeable porous molded bodies from non-inflatable cores of a thermoplastic material
US2981979A (en) * 1959-09-17 1961-05-02 Phillips Petroleum Co Fabrication of porous articles from polyethylene
NL259851A (en) * 1960-01-29 1900-01-01
US3051993A (en) * 1960-08-16 1962-09-04 Allied Chem Process for producing porous polyethylene articles
GB936742A (en) * 1961-08-29 1963-09-11 Glacier Co Ltd Method of making plain bearings and bearing material for such bearings

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE458829A (en) * 1942-12-04
GB679549A (en) * 1948-07-30 1952-09-17 British United Shoe Machinery Improvements in or relating to synthetic resinous materials
US2573639A (en) * 1949-12-02 1951-10-30 Myron A Coler Manufacture of porous articles from trifluorochloroethylene polymer

Also Published As

Publication number Publication date
DE1156554B (en) 1963-10-31
FR1128228A (en) 1957-01-03
GB777187A (en) 1957-06-19

Similar Documents

Publication Publication Date Title
US5942455A (en) Synthesis of 312 phases and composites thereof
FR2715929A1 (en) Polycrystalline cubic boron nitride sintered compact mfr
FR2500439A1 (en) HIGH DENSITY SINTERED BORON CARBIDE
CN109293376B (en) Silicon nitride titanium nitride combined silicon carbide refractory material and preparation method thereof
JPH03503663A (en) Composite material manufacturing method
FR2475034A1 (en) B-SIC LAMELLE, PREPARATION METHOD, CERAMIC AND REFRACTORY CONTAINING SAME
BE540316A (en)
JPH03503882A (en) Fire-resistant porous material, products obtained from this material and method of manufacturing this product
ES2170505T3 (en) PROCEDURE FOR THE MANUFACTURE OF A METAL PART OF SINTERED POWDER.
KR20030066313A (en) Materials for and production of highly pure wearing inserts
JP4730338B2 (en) COMPOSITE MATERIAL FOR INJECTION MOLDING COMPRISING CERAMIC DISPERSED MAGNESIUM COMPOSITE MATERIAL AND ITS MANUFACTURING METHOD
RU2733524C1 (en) Method of producing ceramic-metal composite materials
FR2602504A1 (en) PROCESS FOR THE PRODUCTION OF OPEN-POROSITY SILICON NITRIDE MATERIALS AND APPLICATION TO POROUS MOLDS
FR2853562A1 (en) Production of semiconductor granules for supplying a molten bath for semiconductor manufacture comprises fritting and/or fusing semiconductor powder
JP5584397B2 (en) Method for producing a massive mixture of aluminum nitride and aluminum
KR101221060B1 (en) Carbon-based aluminium composite and method for fabricating the same which silicon carbide is formed at the interface of compacted or sintered carbon bulk and aluminium
RU2607393C1 (en) Method of producing composite diamond-containing matrix with increased diamond holding based on hard-alloy powder mixes
Lee et al. Simultaneous synthesis and densification of NiAl and Ni 3 Al by pressure-assisted combustion
Dickerson et al. The fabrication of dense, w-rich, W/ZrC composites by the prima-DCP process at 1300 DGC.
EP0277450B1 (en) Process for preparing metal-ceramic composite materials by using surface-active metals at the ceramic-metal interfaces
FR2864915A1 (en) Fabrication of a segment set with diamonds for a cutting tool by high pressure forging and sintering of a metal powder, notably for hard concrete and asphalt
RU2792027C1 (en) Method for manufacturing electrodes for electrospark alloying and electric arc surfacing
RU2410198C1 (en) Method of producing composite articles by gas-static processing
KR101525095B1 (en) Injection molding method using powder
JP3570640B2 (en) High density aluminum fluoride sintered body and method for producing the same