AU776969B2 - Concrete containing aqueous slurry of ground calcium carbonate - Google Patents
Concrete containing aqueous slurry of ground calcium carbonate Download PDFInfo
- Publication number
- AU776969B2 AU776969B2 AU52781/02A AU5278102A AU776969B2 AU 776969 B2 AU776969 B2 AU 776969B2 AU 52781/02 A AU52781/02 A AU 52781/02A AU 5278102 A AU5278102 A AU 5278102A AU 776969 B2 AU776969 B2 AU 776969B2
- Authority
- AU
- Australia
- Prior art keywords
- calcium carbonate
- ground calcium
- concrete
- cement
- water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Landscapes
- Curing Cements, Concrete, And Artificial Stone (AREA)
Description
P/00/011 Regulation 3.2
AUSTRALIA
Patents Act 1990
ORIGINAL
COMPLETE SPECIFICATION STANDARD PATENT Invention Title: Concrete containing aqueous slurry of ground calcium carbonate The following statement is a full description of this invention, including the best method of performing it known to us: Freehills Carter Smith Beadle Melboume\004094 143 Printed 4 July 2002 (12:46) page 2 Freehills Carter Smith Beadle Melboume\004094143 Printed 4 July 2002 (12:46) page 2 TITLE OF THE INVENTION Concrete Containing Aqueous Slurry of Ground Calcium Carbonate BACKGROUND OF THE INVENTION Field of the Invention S The present invention relates to concrete improved to have raised workability.
Description of the Related Art Generally, in order to obtain concrete having high strength, water-cement ratio should be as small as possible (Hereinafter "water-cement ratio" and "water-powder ratio" which is used in case of mixing an admixture such as blast furnace slag fine powder, limestone fine powder, or silica fume, etc. in addition to cement, have the same meaning.). On the other hand, it is important that fresh concrete shows sufficient fluidity from a construction side in order to secure suitable workability.
However, in case that cement is a single component used as a fine particle material which constitutes concrete, if the water cement ratio becomes about 35% or is less, the fluidity of concrete becomes very poor and it is difficult to secure satisfactory workability. Especially, the super high strength concrete having a design strength of 600kgf/cm 2 class established in connection with high rising of a building, in other words, in case that water-cement ratio becomes about 25%, it has been a big problem to ensure the workability.
In order to solve the above problem, recently, a method of mixing comparatively large amount of blast furnace slag fine powder or limestone fine powder having a mean particle diameter of 1-3 micrometers, or silica fume having the mean particle diameter of 0.1-0.3 micrometers with cement is adopted. This method is based on an idea of filling up gaps among cement particles usually having the mean particle diameter of about 15 micrometers by supplying particles having the mean particle diameter of about 1-3 micrometers or particles having the mean particle diameter of about 0.1-0.3 micrometers, thereby simultaneously reducing frictional resistance among cement particles and frictional resistance between fine particles and aggregate, and, as a result, raising the fluidity of concrete and securing workability.
-i According to this method, the blast furnace slag fine powder, limestone fine powder, and silica fume which consist of a very fine particle compared with a cement particle are mixed, while remaining as fine particle, with other compounding ingredients at the time of kneading concrete. However, such fine particles having the mean particle diameter of 1-3 micrometers or less which consist of fine powder easily cause secondary aggregation in a powder state to form coarse powder, namely, have a tendency to form coarse particles. Accordingly, these particles, even though each particle is fine, cause secondary aggregation to form coarse powder which cannot sufficiently fill up gaps among cement particles when they are mixed with cement. As a result, there is a defect that an improvement in fluidity is not sufficient. This is one of the reasons to use comparatively large amount of such fine powder.
Moreover, since the particle diameter of the blast furnace slag particle or the Ko limestone particle obtained in a usual dry type pulverization process using the ball mill or roll mill is around 15 micrometers, it is necessary to use a special pulverizer for producing the blast furnace slag fine powder or the limestone fine powder having the mean particle diameter of 1-3 micrometers or to employ complicate milling process. To obtain such fine power is not only troublesome but causes a problem of producing expensive material because of high production cost. Because of the above problem, when such fine powder is used so much as admixitures of concrete, it becomes disadvantageous in respect of cost, and it is difficult to put such a method to practical use. Further, silica fume has a similar problem because expensive product imported from overseas is used.
SUMMARY OF THE INVENTION Therefore, a method which can increase the fluidity of concrete more effectively than the conventional method using the above mentioned blast furnace slug fine powder or limestone fine powder in dried condition, and simultaneously, produce easily such powder is expected. The object of the present invention is to increase the fluidity of concrete more effectively by using limestone powder and to provide improved concrete having solved the above problem by supplying limestone powder used in concrete comparatively simple method.
As a result of research to solve the above problems, the inventors have found; without using a special pulverizer or complicate pulverizing process, but employing Zo wet milling method which can mill limestone into fine powder, the particles of ground calcium carbonate obtained from the limestone and having the mean particle diameter of 0.5-3 micrometers exist in such condition that each particle is dispersed without causing the above- mentioned secondary aggregation in an aqueous slurry thereof. Therefore, by using only comparatively small amount of this slurry as an admixture or a powder material of the concrete, each particle fills easily VVUUq11 I OJ into gaps among cement particles and gaps among particles of cement and aggregate. As a result of ground calcium carbonate particles filling up sufficiently these gaps, frictional resistance between cement particles and that of cement particle and aggregate are remarkably reduced and the fluidity of the concrete is increased, and when silica fume consisting of silica particles having the mean particle diameter of 0.1-0.3 micrometer is used in addition to the aqueous slurry of above-mentioned ground calcium carbonate, since this silica particle is more fine than ground calcium carbonate particle, it further goes into gaps among cement particles, gaps between cement particle and aggregate, gaps among cement particle, ground calcium carbonate particle and aggregate thereby further being able to fill up these gaps. As a result, frictional resistance between cement particles and that of cement particle and aggregate and the frictional resistance among cement particle, ground calcium carbonate and aggregate are remarkably reduced and the fluidity of the concrete is increased.
The present invention was achieved based on the above finding and relates to: 1. Concrete comprising cement, water, aggregate and an aqueous slurry of ground calcium carbonate which has a mean particle diameter of 0.5-3 micrometers .oe..i produced by wet pulverization of limestone.
S" 2. Concrete comprising cement, water, aggregate, an aqueous slurry of ground calcium carbonate which has a mean particle diameter of 0.5-3 micrometers produced by wet pulverization of limestone, and silica fume which comprises silica particles having a mean particle diameter of 0.1-0.3 micrometers.
Concrete according to claim 1 or 2, wherein the content of the ground calcium :0 carbonate particle having a particle size of 2 micrometers or less in the aqueous coo• 25 slurry is 60% or more based on the total weight of the ground calcium carbonate particles.
0 BRIEF DESCRIPTION OF DRAWING Figure 1 is a perspective view showing a measuring jig for conducting L flow test wherein the numerals therein mean: I: measuring jig for conducting L flow test 2: vertical box part 3: divider Ut411) Il q 4: opening horizontal box part DESCRIPTION OF THE INVENTION The aqueous slurry of ground calcium carbonate having the mean particle diameter of 0.5-3 micrometers used in the present invention can generally be prepared by any type of wet pulverization, however it is preferable to prepare it, for example, by the method invented and filed by the applicant (JP-A-9-150072). According to this method, the aqueous slurry of ground calcium carbonate having the mean particle ee diameter of 0.5-3 micrometers is prepared by coarsely pulverizing massive limestone having a particle size of 45mm or less by using upright roll mill until the mean particle diameter thereof becomes 50 micrometers or less, adding 25-100 weight parts of water and 0.1-10 weight parts of dispersant to 100 weight parts of the limestone powder thus S obtained and applying wet medium stirring pulverizing method to this mixture. As the dispersant, polycarboxylic acid type-, naphthalene type-, melamine type-, and amino sulfonic acid type-dispersant and etc. are used preferably in this method.
In the present invention, the mean particle diameter of ground calcium carbonate is defined as the particle size at 50 weight of the particle size distribution curve obtained by measuring the particle size of ground calcium carbonate in the aqueous slurry thereof, which is measured by using laser diffraction type particle size distribution measurement equipment (for example, Microtrac X100 made by Nikkiso Co., Ltd.). Since ground calcium carbonate particles used in the present invention and dispersed in the aqueous slurry have the mean particle diameter of 0.5-3 micrometers, which is more fine than the cement particles having the mean particle diameter of about 15 micrometers, these particles go into the gaps among cement particles and reduce the frictional resistance between cement particles and thereby increase the fluidity of the concrete.
When the mean particle diameter of ground calcium carbonate exceeds 3 micrometers, sedimentation of particles in the aqueous slurry occurs remarkably and troublesome problem arises in storage and transportation of aqueous slurry. On the other hand, when the mean particle diameter becomes smaller than 0.5 micrometers, it takes too much time for pulverization accompanying the increase in amount of energy consumption. Therefore, the mean particle diameter of ground calcium carbonate in aqueous slurry was determined as 0.5-3 micrometers.
When the more the mean particle diameter of ground calcium carbonate becomes smaller within the above range, generally the more, particles easily suspend in water and sedimentation of particles is reduced and as a result it is easy to handle.
Accordingly, it is desirable that ground calcium carbonate particle having particle size of 2 micrometers or less amounts to 60 or more based the total weight of the particle.
In the aqueous slurry used in the present invention, when the ratio of water to ground calcium carbonate becomes 1 or more, viscosity of the slurry is lowered, sedimentation is accelerated and troublesome problem arises in storage and transportation of the aqueous slurry. On the other hand, when the above ratio 2 becomes 0.25 or less, the viscosity of the slurry is increased and it is difficult to handle.
Generally, the ratio of water to ground calcium carbonate is preferably 0.25-1, more preferably 0.3-0.4.
The amount of ground calcium carbonate to be added to lm' of concrete can be varied suitably according to mix proportion of the concrete or water-powder ratio to be aimed, however, when the amount exceeds 150kg/m 3 not only the amount of ground calcium carbonate which do not contribute to improve a packing density increases G because excessive amount of ground calcium carbonate is added, but also it causes to lower strength of the cured concrete when it is used to substitute cement. On the other hand, when the above amount is less than 5 kg/m, sufficient packing density is not achieved, and the sufficient effect in fluidity is not exhibited. Generally, the amount of ground calcium carbonate to be added is preferably 5-150 kg/m 8 and more preferably 1C 10-100 kg/m 3 The present invention is favorably applied to the high strength concrete or the super high strength concrete in which the water-cement ratio is 20 35%. Here, water called in this "water-cement ratio" means all water contained in concrete, water in the above-mentioned water slurry and water usually called blending water or kneading water.
When the silica fume comprising the silica particles having the mean particle diameter of 0.1-0.3 micrometer is blended with concrete which is blended the abovementioned aqueous slurry of ground calcium carbonate, concrete having increased fluidity is obtained and such concrete is also included in the present invention. In such concrete, since the particle size distribution in the whole particles becomes smooth by presence of silica fume having the mean particle diameter of 0.1-0.3 micrometer, ground calcium carbonate having the mean particle diameter of 0.5-3 micrometers and cement having the mean particle diameter of about 15 micrometers, the packing density of the whole powder is increased, gaps among particles are reduced, frictional resistance 2L between the particles is further lowered and thereby the fluidity is much more increased.
In such concrete containing silica fume, although the weight ratio of the silica fume to ground calcium carbonate can be suitably varied according to mix proportion or the water-powder ratio to be aimed, when it exceeds 9 or more, the amount of ground calcium carbonate having the mean particle diameter of 0.5-3 micrometers is insufficient and a gap grade arises in the particle size distribution covering the whole particles thereby lowering the effect in improving the fluidity by the ground calcium carbonate. On the other hand, when it becomes smaller than 0.1, the same result is caused. Generally, this weight ratio is preferably 0.1-9, and more preferably 0.2-4.
3 The aqueous slurry of ground calcium carbonate can be used so that ground calcium carbonate replaces a part of powder binding materials, such as cement, namely, so that it becomes inner ratio to cement and etc., or replace a part of fine aggregate (sand), namely, so that it becomes outer ratio to cement as powder binding materials.
The present invention can be applied to any type of conventional concrete or concrete having different kind of mix proportion and is preferably applied to the high strength or the super high strength concrete having the water-powder ratio of 20-35 A typical example of the mix proportion of concrete to which the present invention is applied is shown below.
Case 1 In case that only ground calcium carbonate is added as the powder ingredient.
Cement 400 700 kg/m 3 Fine aggregate 600 950 kg/m 3 o1 Coarse aggregate 750 1050 kg/m 3 Ground calcium carbonate 5 100 kg/m 3 Water 140-175 kg/m 3 The following mix proportion is chosen as more preferable composition range.
Cement 450 650 kg/m' Fine aggregate 650 850 kg/m' Coarse aggregate 850 950 kg/m' Ground calcium carbonate 10 50 kg/m 3 Water 150-170 kg/m3 Case 2 In case that both ground calcium carbonate and silica fume are added as the powder ingredient.
Cement 500-800kg/m' Fine aggregate 550 900 kg/m' Coarse aggregate 750 1050 kg/m 3 Ground calcium carbonate 5 100 kg/m 3 Silica fume 20 120 kg/m 3 Water 140-175 kg/m 3 The following mix proportion is chosen as more preferable composition range.
Cement 550 750 kg/m s Fine aggregate 600 800 kg/m 3 Coarse aggregate 850 950 kg/m 3 Ground calcium carbonate 10 50 kg/m' Silica fume 25 100 kg/m 3 Water 150-170 kg/m 3
I
In any of above cases, ground calcium carbonate implies the amount of solid contents. Further, water implies the amount of sum of the water in the aqueous slurry of ground calcium carbonate and the water separately added to blend the mixture.
The amount of water and powder containing cement is chosen so that water-powder S ratio becomes 20 The above-mentioned example is applicable to not only the high strength concrete or the super high strength concrete whose water cement ratio is small, but also any kinds of concrete whose water cement ratio reaches to 65% in order to improves workability.
Among the above-mentioned concrete, the present invention is preferably applied to concrete for spraying tunnel. The following is the mix proportion for this concrete.
Case 3 In case that only ground calcium carbonate is added as the powder ingredient.
Cement 300 500 kg/m 3 Fine aggregate 800 1100 kg/m' Coarse aggregate 500 800 kg/m3 Ground calcium carbonate 30 150 kg/m 3 Water 160 230 kg/m 3 Accelerating agent 10-45 kg/m 3 The following mix proportion is chosen as more preferable composition range.
!C
0 Cement 360-400 kg/m 3 Fine aggregate 900 1050 kg/m 3 Coarse aggregate 600 750 kg/m' Ground calcium carbonate 50 100 kg/m 3 Water 180 220 kg/m 3 2.S Accelerating agent 15-30 kg/m 3 Case 4 In case that both ground calcium carbonate and silica fume are added as the powder ingredient.
Cement 300-500 kg/m 3 Fine aggregate 800-1100 kg/m' 3 Coarse aggregate 500 800 kg/m 3 Ground calcium carbonate 30-150kg/m' Silica fume 10-75kg/m 3 Water 160 230 kg/m 3 Accelerating agent 10-45 kg/m 3 The following mix proportion is chosen as more preferable composition range.
Cement 330-450 kg/m 3 Fine aggregate 900-1050 kg/m 3 Coarse aggregate 600 750 kg/m 3 Ground calcium carbonate 50 100 kg/m 3 Silica fume 15 50 kg/m 3 Water 180 220 kg/m 3 Accelerating agent 15-30 kg/m 3 Admixtures commonly used in producing concrete, such as an air entraining agent, a water reducing agent, an air entraining water reducing agent, a superplasticizer, an air entraining and high-range water reducing agent, a viscosity improver and an accelerating agent can be optionally added to the concrete of the present invention if necessary.
The concrete of the present invention can generally be prepared by mixing and
I
c S kneading the blending component described above in any way, for example, by feeding cement, the aqueous slurry of ground calcium carbonate, the fine aggregate, water, the admixture, and further silica fume according to the mix proportion, into a mixer and pre-kneading the mixture of mortar, adding the coarse aggregate to the mortar and then kneading the mixture; or by feeding cement, the fine aggregate, the coarse aggregate, 1.O and further silica fume according to the mix proportion, into the mixer, dry kneading the mixture, adding water, the aqueous slurry of ground calcium carbonate and admixtures and kneading the mixture; or by feeding the above components other than the aqueous slurry of ground calcium carbonate into the mixer to prepare concrete and then adding the aqueous slurry of ground calcium carbonate into the mixer or agitator car and kneading the mixture.
EXAMPLES
Now the present invention will be described in detail in connection with the following examples, but it is not intended to restrict the present invention by these examples.
Example 1 Materials shown in the Table 1 are used as blending components in each concrete of this example.
Table 1 Materials Used Blending Abbr. Kind of Materials Used Component Cement OPC Normal portland cement, specific gravity 3.16 (Chichibu Onoda Co., Ltd..) HFC High belite type cement, specific gravity 3.20 (Chichibu Onoda Co., Ltd..) Fine Aggregate S1 Fine sand from Ichihara(30%), specific gravity 2.54, FM 1.40 S2 Coarse sand from the Sagami River(70%), specific gravity 2.57, FM 3.20 Coarse Aggregate G Crushed stone from Shiroyama, Tsukui-gun, specific gravity 2.66, percentage of absolute volume 57.2% Admixture FMT Aqueous slurry of ground calcium carbonate obtained by wet milling Admixture SP Polycarboxylic acid type air entraining and high-range water reducing agent FM means fineness modulus.
According to the method described in the above-mentioned JP-A 9-150072, the massive limestone having a particle size of 45 mm or less was coarsely pulverized to obtain limestone powder having the mean particle diameter of 10 micrometers by using a vertical roller mill, 35 weight parts of water and 0.5-1.0 weight part of polycarboxylic acid type dispersant, respectively per 100 weight parts of limestone powder, were added to thus obtained limestone powder and the mixture was subjected to wet medium mixing pulverization to produce aqueous slurry of ground calcium carbonate having the IO mean particle diameter of 1.402 micrometers. This aqueous slurry contained 75.60 weight of ground calcium carbonate.
Table 2 Mix proportion of concrete Sample Unit (Kg/m3) SP W C FMT S1 S2 G (P x Comparative Sample 1 640 0 205 480 1.40 Invention Sample 1 25 160 633.6 6.4 205 479 907 1.35 Invention Sample 2 620.8 19.2 204 478 1.30 Invention Sample 3 608 32.0 203 477 1.30 Comparative Sample 2 550 0 223 521 1.20 Invention Sample 4 30 165 544.5 5.5 223 520 907 1.05 Invention Sample 5 533.5 16.5 223 519 1.00 Invention Sample 6 522.5 27.5 222 519 0.90 Comparative Sample 3 486 0 233 544 1.00 Invention Sample 7 35 170 481 5.0 233 544 907 1.00 Invention Sample 8 471.2 14.6 233 543 0.95 Invention Sample 9 461.7 24.3 232 542 0.95 W/P: water-powder ratio, P=C+FMT 30% is high belite type cement is normal portland cement Amount of Ingredient is shown as solid basis.
Based on the mix proportion shown in Table 2, the invention samples 1-9, and the comparative samples 1-3 were prepared respectively according to the following procedure using the above ingredients.
Cement, the fine aggregate, and the coarse aggregate were fed into a mixer and were subjected to dry kneading for 30 seconds, then the air entraining and high-range water reducing agent, the aqueous slurry of ground calcium carbonate and water were added thereto and the mixture was kneaded for 120 seconds (in cases of the water powder ratio being 35% and 30%) or for 180 seconds (in case of the water powder ratio being 25%) to produce concrete samples. In this example, the aqueous slurry of ground calcium carbonate was added after mixed with a part of water to be added.
Samples thus prepared were subjected to slump flow test using the slump flow measuring machine and the measuring method therefor and L flow test using the L flow measuring machine shown in Fig. 1 and the measuring method therefor.
Slump flow test: Concrete is filled in a slump corn having a height of 30 cm, an inside diameter of the lower end of 20 cm and an inside diameter of the upper end ofl 0 cm, separately in three times, in each time filling 1/3 volume portion thereof, pushing a set number of times with a standard stick. After filling the total amount of the 0.* concrete, the corn is pulled up vertically and the concrete spreads on the flat plate while getting out of shape according to its softness. After the movement of the concrete stops, the lengths of both lengthwise and crosswise of the spread portion is measured and find the mean value. This value shown in unit of cm is defined as the slump flow value.
L flow test After concrete is filled in vertical box part 2 of measuring machine shown in Fig. 1 having a height of 40 cm, a width of 8 cm and a length of 20 cm and a divider 3 is pulled up, the concrete in the box part flows toward an oblong box part through an opening 4 provided in one lower side of the box part 2 having a height of 16 cm and length of 20 cm. The flowing time required to reach each flow distance of d0 concrete is measured.
In the slump flow test, the slump flow value and 50 cm-flow time, the time required for the slump flow value of the concrete reaches to 50 cm after the slump corn was pulled up were measured. In the L flow test, the time required for flow distance of flowing concrete reaches to 30 cm, 40 cm and 50 cm respectively, after the divider was pulled up, 30 cm-, 40 cm- and 50 cm-flow time were measured.
The Uncured concrete test by air volume pressure (air-chamber pressure method)" according to JIS A 1128 was also carried out to each sample and air volume thereof was measured. Further, the compressive strength of age 28 days of each cured concrete obtained from these samples was measured. The results are shown in Table 3.
0 Table 3 Sample W/P FMT Slump Flow 50cm Flow L Flow Time Air Volume Compressive Time (sec.) Strength of 28 days (Kg/m3) (cm) (sec.) 30cm 40cm 50cm (N/mm3) Comparative Sample 1 0 66.0 11.4 11.5 19.0 33.3 2.7 89.8 Invention Sample 1 25 6.4 68.5 7.2 8.1 12.6 19.7 2.6 92.3 Invention Sample 2 19.2 67.5 7.2 6.2 10.4 16.1 3.2 90.0 Invention Sample 3 32.0 66.0 8.1 6.0 9.7 15.6 3.3 89.7 Comparative Sample 2 0 63.0 7.5 5.2 9.3 18.6 4.0 76.0 Invention Sample 4 30 5.5 58.0 6.9 4.6 7.5 12.7 3.8 74.3 Invention Sample 5 16.5 62.0 6.1 3.3 6.0 11.0 3.7 74.8 Invention Sample 6 27.5 62.5 5.5 3.8 6.8 15.2 3.7 75.8 Comparative Sample 3 0 54.0 9.2 3.7 6.1 15.3 3.5 66.3 Invention Sample 7 35 5.0 55.0 8.4 3.2 5.9 12.4 2.8 73.4 Invention Sample 8 14.6 54.0 8.1 3.0 4.8 12.2 2.4 72.6 Invention Sample 9 24.3 57.0 6.1 2.3 4.2 8.9 3.0 69.7 From the results shown in Table 3, it is clear that the invention samples 1-3 and the comparative sample 1, the water-powder ratio thereof being 25%, show almost the same slump flow value, but 50 cm-flow time and L flow time of the invention samples 1-3 which are blended the aqueous slurry of ground calcium carbonate are shorter than those of the comparative sample 1 which is not blended the aqueous slurry. This means that flow speed of the invention samples 1-3 having short flow time is faster than thatofthe comparative sample 1 and fludity is. increased In the super high strength concrete, the water powder ratio thereof reaching to the fluidity of the concrete falls because the ratio of cement increases, and problems that the workability, such as compressor efficiency, compaction workability, finishing workability and etc., falls. However, even when the amount of ground calcium carbonate used as aqueous slurry is comparatively small, it is found that it can effectively solve the above problems in the concrete which has the water-powder ratio of such as the high strength concrete. Further, it turns out that the compressive IS strength of cured concrete of the invention samples 1-3 is found to be equal to that of the comparative sample 1. That is, even ground calcium carbonate having no binding ability, which is inherent in cement, is used in stead of a part of cement, it is understood that the compressive strength does not fall because the amount to be used is small.
In addition, from the result shown in Table 3, in the concrete which has the 0 water-powder ratio of 30% and 35%, that is, the invention samples 4-9 and comparative samples 2 and 3 containing more water than the invention samples 1-3 and the comparative sample 1, it is found that, like the result obtained in samples having the water-powder ratio of 25%, slump flow value of invention samples 4-6 or the invention samples 7-9 is almost the same compared with that of comparative sample 2 or Scomparative sample 3, but 50 cm-flow time and L flow time of the former are shorter than those of the latter. This means the fluidity of concrete is improved and as to the compressive strength of cured concrete, they are the almost the same level.
As shown in the result obtained in the invention samples 1, 4 and 7, it is found that even if the amount of ground calcium carbonate as aqueous slurry is very small, 190 such as 10kg per lm S or less, the workability of super high concrete, the water powder ratio thereof reaching to 25%, is improved, and this fact is a remarkable advantageous characteristics of the present invention which distinguish the present invention from the conventional concrete which needs comparatively large amount of the blast furnace slag fine powder or silica fume corresponding to the ground calcium carbonate in the 6 present invention.
Example 2 In this example, the silica fume was also added as a fine. particles ingredient (admixture) beside ground calcium carbonate added as aqueous slurry, and ingredients shown in Table 4 were used as a blending component. The mean particle diameter of the silica fume measured by the same method for measuring the mean particle diameter of ground calcium carbonate was 0.26 micrometers.
Table 4 Materials Used Blending Abbr. Kind of Materials Used component Cement OPC High belite type cement, specific gravity 3.20 (Chichibu- Onoda Co.Ltd.) Fine Aggregate S1 Fine sand from Ichihara(30%), specific gravity 2.54, FM 1.40 S2 Coarse sand from the Sagami River(70%), specific gravity 2.57, FM 3.20 Coarse Aggregate G Crushed stone from Shiroyama, Tsukui-gun, specific gravity 2.66, percentage of absolute volume 57.2% Admixture FMT Aqueous slurry of ground calcium carbonate obtained by wetmilling SF Silica Fume Admixture SP Polycarboxylic acid type air entraining and high-range water reducing agent The same aqueous slurry of ground calcium carbonate used in example 1 was used.
Table 5 Mix Proportion of Concrete Sample W/P Unit (Kg/m3) SP W C FMT SF S1 S2 G Comparative Sample 4 705 0 0 194 452 1.6 Comparative Sample 5 635 0 70 186 435 Invention Sample 10 22 155 635 21 49 186 435 907 Invention Sample 11 635 35 35 188 440 Invention Sample 12 670 35 0 192 449 W/P: water-powder ratio, P=C+FMT+SF Amount of Ingredient is shown as solid basis.
Based on the mix proportion shown in Table 5 using the ingredients shown in Table 4, the invention samples 10-12 and the comparative samples 4 and 5 were prepared respectively according to the following procedure.
Cement, the silica fume, the fine aggregate, and the coarse aggregate were fed into a mixer and were subjected to dry kneading for 30 seconds, then the air entraining and high-range water reducing agent, the aqueous slurry of ground calcium carbonate and water were added thereto, and the mixture was kneaded for 240 seconds. In this example, the aqueous ground calcium carbonate slurry was added after mixed with a part of water to be blended.
The slump flow test and L flow test were conducted to fresh concrete of the samples thus obtained and air content was also measured. Further, the compressive strength of age 28 days and 91 days of cured concrete of the samples was measured.
The results are shown are shown in Table 6.
Table 6 Sample W/P FMT SF Slump L Flow Time Air Compressive Strength Flow (sec.) Volume (N/mm3) (Kg/m3) (Kg/m3) (cm) 30cm 40cm 50cm 28days 91days Comparative Sample 4 0 0 73.5 16.0 23.6 34.9 2.1 93.0 98.0 Comparative Sample 5 0 70 66.0 4.2 7.8 13.6 3.3 84.1 103.1 Invention Sample 10 22 21 49 59.0 2.7 5.6 11.1 3.0 95.4 103.3 Invention Sample 11 35 35 63.0 4.2 7.1 12.0 3.2 95.6 111.5 Invention Sample 12 35 0 66.5 8.9 13.8 20.9 2.2 82.1 96.7 From the result shown in Table 6, it is found that L flow time of the invention IS sample 10 which contains both ground calcium carbonate and silica fume at a ratio of 3% and respectively based on the weight of cement including these admixture (hereinafter this ratio is called inner ratio) is shorter than that of not only comparative sample 4 which does not contain these admixture but also comparative sample 5 which contains only silica fume at the inner ratio of 10%. That is, the fluidity of the invention Z0 sample 10 containing both ground calcium carbonate and silica fume is improved compared with not only the comparative sample 5, which contains only silica fume, but also the comparative sample 4, which contains neither of these admixtures. Further, when the ground calcium carbonate and the silica fume are used together, the workability even in the super high strength concrete having the water-powder ratio of 22% is improved.
In addition, the L flow time of the invention sample 11, which contains both ground calcium carbonate and silica fume at the inner ratio of respectively, is greatly shortened compared with the comparative sample 4, which contains neither of UUQ.3I them and almost the same with that of the comparative sample 5 which contains silica fume at the inner ratio of 10%. That is, from comparison of the invention sample 11 with the comparative sample 5, it is possible to reduce the amount of silica fume to half by using the aqueous slurry of ground calcium carbonate in order to obtain almost the same L flow time. In other words, it is possible to achieve the desired workability in the conventional concrete which uses only silica fume as the admixture even if the amount of expensive silica fume to be added was reduced by half.
Furthermore, from comparison of the invention sample 12, which contains ground calcium carbonate but no silica fume with the comparative sample 4, which contains neither of these admixtures, the L flow time of the former was shortened to about half of that of the latter, while it took long time compared with the comparative sample which contains silica fume at the inner ratio of 10%. Therefore, it is more advantageous to use the ground calcium carbonate together with silica fume as admixture in order to improve workability of the super high strength concrete having the water-powder ratio of about It is clear from the above explanation, according to the present invention, when aqueous slurry of ground calcium carbonate having the mean particle diameter of 3 micrometers is added to concrete, for example, high strength or super high strength concrete which has low water-powder ratio, the fluidity of the concrete is increased and the workability is improved.
blending aqueous slurry of ground calcium carbonate, the fluidity of the conventional concrete which is added the blast furnace slag fine powder and silica fume is effectively improved. The workability improving effect is attained by using smaller amount of admixture than the amount of admixture used in the conventional concrete.
25 Further, ground calcium carbonate can be obtained much easier from the technical viewpoint than blast furnace slag fine powder which has nearly the same particle size as the ground calcium carbonate. In addition, advantageous effect such that it is unnecessary to use expensive silica fume or it is possible to reduce the amount of silica is attained.
As used herein, the term "comprise" and variations of the term, such as "comprising", "comprises" and "comprised", are not intended to exclude other additives, components, integers or steps.
VV9.J I I U-It Reference to any prior art in the specification is not, and should not be taken as, an acknowledgment or any form of suggestion that this prior art forms part of the common general knowledge in Australia or any other jurisdiction.
S
1*
Claims (4)
1. Concrete comprising cement, water, aggregate and an aqueous slurry of ground calcium carbonate which has a mean particle diameter of 0.5-3 micrometers produced by wet pulverization of limestone.
2. Concrete comprising cement, water, aggregate, an aqueous slurry of ground calcium carbonate which has a mean particle diameter of 0.5-3 micrometers produced by wet pulverization of limestone, and silica fume which comprises silica particles having a mean particle diameter of 0.1-0.3 micrometers.
3. Concrete according to claim 1 or 2, wherein the content of the ground calcium carbonate particle having a particle size of 2 micrometers or less in the aqueous slurry is or more based on the total weight of the ground calcium carbonate particles.
4. Concrete according to any one of claims 1 to 3 substantially as hereinbefore described with reference to the examples. Fimatec Ltd By its Registered Patent Attorneys Freehills Carter Smith Beadle 13 July 2004 *O O
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU30144/00A AU3014400A (en) | 2000-04-27 | 2000-04-27 | Concrete containing aqueous slurry of ground clacium carbonate |
AU30144/00 | 2000-04-27 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU30144/00A Division AU3014400A (en) | 2000-04-27 | 2000-04-27 | Concrete containing aqueous slurry of ground clacium carbonate |
Publications (2)
Publication Number | Publication Date |
---|---|
AU5278102A AU5278102A (en) | 2002-08-15 |
AU776969B2 true AU776969B2 (en) | 2004-09-30 |
Family
ID=3718087
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU30144/00A Abandoned AU3014400A (en) | 2000-04-27 | 2000-04-27 | Concrete containing aqueous slurry of ground clacium carbonate |
AU52781/02A Ceased AU776969B2 (en) | 2000-04-27 | 2002-07-04 | Concrete containing aqueous slurry of ground calcium carbonate |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU30144/00A Abandoned AU3014400A (en) | 2000-04-27 | 2000-04-27 | Concrete containing aqueous slurry of ground clacium carbonate |
Country Status (1)
Country | Link |
---|---|
AU (2) | AU3014400A (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4999056A (en) * | 1986-07-15 | 1991-03-12 | Densit A/S Rordalsuej | Method and a composition for preparing a shaped article |
US5584926A (en) * | 1992-04-13 | 1996-12-17 | Aalborg Portland A/S | Cement compostion |
-
2000
- 2000-04-27 AU AU30144/00A patent/AU3014400A/en not_active Abandoned
-
2002
- 2002-07-04 AU AU52781/02A patent/AU776969B2/en not_active Ceased
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4999056A (en) * | 1986-07-15 | 1991-03-12 | Densit A/S Rordalsuej | Method and a composition for preparing a shaped article |
US5584926A (en) * | 1992-04-13 | 1996-12-17 | Aalborg Portland A/S | Cement compostion |
Also Published As
Publication number | Publication date |
---|---|
AU3014400A (en) | 2001-11-01 |
AU5278102A (en) | 2002-08-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6402831B1 (en) | Concrete containing aqueous slurry of ground calcium carbonate | |
JP4861931B2 (en) | Ultra high strength high fluidity concrete and ultra high strength high fluidity fresh concrete | |
KR101917513B1 (en) | Ferronickel slag grinding aid, concrete composition for reducing heat of hydration comprising ferronickel slag and method for preparing the same | |
JP3230390B2 (en) | Method for producing cement composition | |
JP2008214147A (en) | Cement composition for highly flowable concrete and highly flowable concrete composition | |
US10118312B2 (en) | Apparatus and method for manufacturing high performance concrete capable of manufacturing high performance concrete through processes of inserting air into normal concrete and dissipating air | |
JP4253355B1 (en) | Heavy aggregate and heavy concrete | |
JP2004203733A (en) | Method of producing mortar/concrete, and cement used for producing mortar/concrete | |
US5908502A (en) | Limestone filled Portland cements | |
JP4775058B2 (en) | Centrifugal force forming concrete composition and method for producing the same | |
JP5493259B2 (en) | High strength centrifugal molding concrete composition and method for producing the same | |
AU776969B2 (en) | Concrete containing aqueous slurry of ground calcium carbonate | |
JP2009073698A (en) | High-strength concrete composition for centrifugal force molding and its manufacturing method | |
JP4797973B2 (en) | High strength centrifugal molding concrete composition and method for producing the same | |
JP7315496B2 (en) | Method for producing blast furnace cement | |
JPH0687635A (en) | Hydraulic cement | |
JPH08239249A (en) | Cement composition | |
JPH06219809A (en) | Production of self-packing concrete | |
JP5061664B2 (en) | High strength centrifugal molding concrete composition and method for producing the same | |
JP4994080B2 (en) | Cement composition and method for producing the same | |
WO2004080912A1 (en) | A method for producing structural lightweight aggregate concrete | |
JP5009228B2 (en) | Premix weight aggregate | |
JP4932348B2 (en) | Hydraulic composition for centrifugal molded cured body | |
JP2007076944A (en) | Method for producing self-compactable concrete | |
JP7399606B2 (en) | cement composition |