AU2002236364A1 - An apparatus for separation of a liquid from a multiphase fluid flow - Google Patents

An apparatus for separation of a liquid from a multiphase fluid flow

Info

Publication number
AU2002236364A1
AU2002236364A1 AU2002236364A AU2002236364A AU2002236364A1 AU 2002236364 A1 AU2002236364 A1 AU 2002236364A1 AU 2002236364 A AU2002236364 A AU 2002236364A AU 2002236364 A AU2002236364 A AU 2002236364A AU 2002236364 A1 AU2002236364 A1 AU 2002236364A1
Authority
AU
Australia
Prior art keywords
liquid
container
gas
casing
downstream end
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
AU2002236364A
Other versions
AU2002236364B2 (en
Inventor
Trygve Haland
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Equinor Energy AS
Original Assignee
Statoil Petroleum ASA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from NO20006656A external-priority patent/NO318709B1/en
Application filed by Statoil Petroleum ASA filed Critical Statoil Petroleum ASA
Publication of AU2002236364A1 publication Critical patent/AU2002236364A1/en
Application granted granted Critical
Publication of AU2002236364B2 publication Critical patent/AU2002236364B2/en
Assigned to STATOIL PETROLEUM AS reassignment STATOIL PETROLEUM AS Request for Assignment Assignors: STATOIL ASA
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Description

81279-BF
An apparatus for separation of a liquid from a multiphase fluid flow
The invention relates to an apparatus for separation of a liquid from a multiphase fluid flow flowing through a pipeline, wherein the fluid flow is set in rotation so that it is separated into a central zone essentially containing gas, and an outer annular zone essentially containing liquid, and from which the gas and the liquid in the two zones are discharged via respective outlet means. In offshore recovery of hydrocarbons (oil and gas), the produced fluids are often transported in relatively long pipelines and risers up from the seabed to the relevant production platform. The produced fluids usually consist of liquid (oil and water) in which gas and vapour are dissolved. In this connection different types of separation equipment are used for bulk separation of liquid from a flowing gas/vapour phase. As mentioned in the introduction, it is known to separate a fluid flow into liquid and gas by the use of cyclone technique. The separation equipment used today is, however, relatively heavy and space-demanding, and is associated with relatively high building costs.
Thus it is an object of the invention to provide a separation apparatus of the relevant type wherein the apparatus has a compact construction at the same time as it is simple with respect to manufacture, installation and regulation.
For the achievement of the above-mentioned object there is provided an apparatus of the introductorily stated type which, according to the invention, is characterised in that it comprises an essentially tubular casing arranged to constitute a part of the actual pipeline, a spin element for rotation of the fluid flow being located at the upstream end of the casing, that the outlet means for the gas comprises an outlet element arranged at the downstream end of the casing and having a central, axially extending passage for the gas, and an outer surface which, together with the inner surface of the casing, forms an annulus for the inflow of liquid, a barrier for the liquid being formed at the downstream end of the element, and that the outlet means for the liquid comprises an upwards open container arranged at the downstream end of the casing and adapted to receive liquid which flows into the annulus and partly runs down into the container from the bottom area of the casing at the container opening, and partly falls into the container from the area at said barrier.
With the present invention there is provided an apparatus making use of "in-line" technology to separate a fluid flow in a pipeline. The apparatus is based on the cyclone principle and is provided with an axial spin element simplifying the "in-line" method in that the supplied fluid flow and the separated gas fraction can flow in the pipeline axially into and out of the tubular casing. In this manner the casing can be simply installed in a straight pipeline stretch without any substantial modification of the existing pipe geometry.
The apparatus according to the invention can be used as an inlet arrangement to scrubbers and separators in order to improve the performance of such equipment. Further, the apparatus can be used as a stand-alone unit in pipes and pipelines in oil/gas wells, in pipelines on shore or on the seabed, or in processing plants on the shore or offshore. In most cases the apparatus can be built with the same nominal diameter and specification as for the pipeline in which the separation is carried out. This will keep the costs down in application of the technology, and will considerably reduce the complexity of the relevant installations in relation to conventional separation technology. This will be the case with installations in new plants and pipelines, but the profit probably will be even larger when utilising the technology in existing plants and pipelines.
The advantages of an apparatus constructed in accordance with the invention can be summarised as follows:
1. Low weight in relation to conventional scrubbers and separators or slug catchers.
2. Low building costs in relation to the above-mentioned equipment.
3. The fact that one uses a pipeline as such for the separation apparatus, makes it possible to build the apparatus with very small dimensions.
4. The apparatus can be built according to the current pipe specification, so that protection equipment does not become necessary, as is the case for conventional pressure tanks in processing plants.
5. The actual separation of liquid from the gas/vapour phase takes place without the gas/vapour phase changing main direction. This results in that the pressure loss through the apparatus can be kept low at the same time as the separation of liquid takes place.
6. The apparatus can be installed horizontally as well as vertically with certain construction modifications. 7. The apparatus to a great extent is self-regulating, so that there is no need for complicated regulating means. Nevertheless, control of the apparatus with a regulating means may be appropriate in some applications.
The invention will be further described below in connection with an exemplary embodiment with reference to the drawing of which the only figure shows a schematic, axially sectioned side view of an apparatus according to the invention.
As appears from the drawing, the apparatus (hereinafter also called liquid separator) according to the invention comprises a cylindrical tubular casing 1 which is intended for connection into a pipeline (not shown), so that the casing constitutes a part (an "in-line" element) of the pipeline proper. The casing 1 has an inlet end 2 for the supply of a two-phase mixture of liquid and gas/vapour, and an outlet end 3 where the gas phase leaves the casing 1, in both cases in the axial direction of the casing.
In the inlet end there is arranged a spin element 4 which, with rotation of the element, sets the two-phase mixture in rotation, so that by centrifugal action one obtains separation of the two-phase mixture into a gas phase in a central zone 5 in the casing, and a liquid phase in an annular outer zone 6 at the inner surface of the casing.
The spin element normally has the same diameter as the inner diameter of the casing 1, as in the shown embodiment. However, this may be departed from up or down if it is found to be appropriate for a definite application.
The spin element 4 itself fits snugly to the inner surface of the casing, to avoid a direct passing of gas/vapour and liquid which would disturb the separation process proper downstream of the spin element. The spin element comprises guide vanes 7 changing the direction of the fluid, so that centrifugal forces arise flinging the liquid outwards towards the casing wall. The pitch angle and design of the vanes may vary, dependent on the application.
In order to further improve the inlet conditions in the liquid separator, a mixing element (not shown) of a commercially available type may be installed upstream of the spin element 4. As shown in the drawing, the spin element 4 at its downstream end is formed with an aerodynamic, concentric end part 8 which is tapered towards the downstream end. This end part is provided with a number of circumferentially extending, annular lips 9 which are to ensure that the cyclone flow downstream of the spin element 4 gets a pressure profile which is as optimal as possible. The lips serve as liquid stoppers preventing liquid from creeping along the root of the spin element into the "eye" of the cyclone where there are small or no centrifugal forces which can fling liquid in the direction towards the casing wall.
The outlet means for the gas in the central zone 5 comprises an outlet element 10 arranged at the downstream end of the casing 1 and having a central, axially extending passage 11 for the gas, and an outer surface which, together with the opposite inner surface of the casing, define an annulus 12 for the inflow of liquid in the outer zone 6. In the shown embodiment, the outlet element 10 is a tubular element having a cylindrical upstream portion 13 and a downstream portion 14 diverging from this portion and being sealingly connected to the casing 1, for the formation of a barrier 15 for the liquid at the downstream end of the annulus.
The design of the outlet element 10 can be adapted to the relevant application and to the liquid/gas/vapour ratio and the properties of the fluids, in order to obtain an optimum relation between separation efficiency and pressure drop through the liquid separator.
As shown, the outlet means for the liquid comprises an upwards open container 16 which is arranged at the downstream end of the casing 1 and is adapted to receive liquid which flows into the annulus 12 and partly runs down into the container 16 from the bottom area of the casing at the container opening, and partly falls into the container from the area at said barrier 15.
As appears from the drawing, an upper portion of the container 16 and a central portion of the upstream end of the spin element 4 are interconnected by means of a line 17 for recirculation of gas which is entrained by liquid running or falling into the container. The spin element is provided with a central cavity 18 communicating with the line 17, and further is provided with a number of openings 19 in the form of small holes or slots for the discharge of recirculated gas from the cavity 18. A valve 20 is connected in the recirculation line 17, for control of the quantity of recirculated gas.
As shown, the inlet opening of the conduit 17 from the container 16 is shielded by means of a partition 21 projecting a distance into the container from the inlet opening thereof, so that liquid is prevented from getting into the conduit.
The recirculation of gas is obtained by utilisation of the negative pressure arising at the centre of the cyclone. This recirculation will improve the liquid drainage out of the casing of the liquid separator. As mentioned, the quantity of recirculated gas can be controlled by means of the valve 20, in order to find the optimum operating condition for the relevant application. Because of the negative pressure arising at the inlet of the conduit 17, the recirculation gas will also contribute to drawing separated liquid into the container 16.
The gas which is guided out of the casing 1 via the outlet element 10, still has a rotating movement in the central passage 11. In order to repeal the rotating movement, the gas outlet may be provided with an antispin element if this is found to be appropriate for flow-technical reasons in some applications. In the illustrated embodiment such an element 22 is arranged at the downstream end of the outlet element 10.
In the illustrated embodiment the bottom 23 of the container is provided with a liquid outlet pipe 24 in which there is connected a valve 25 for control of the liquid quantity which is delivered from the container and which is conducted to a suitable place in the relevant processing plant or production system. The control valve 25 is arranged to be controlled by means of a level controlling unit 26 which is connected to a level gauge 27 for measuring the liquid level in the container. The level gauge may be of a suitable conventional type, e.g. a PD meter.
The container 16 for example may be a separator, a scrubber or a T-pipe element, dependent on the relevant application. The container possibly may be equipped with a more or less advanced drip catcher, for drying the recirculation gas to an appropriate level, dependent on the application. For achieving an optimum monitoring of the liquid separator, this may be equipped with pressure sensors (not shown) before the spin element 4, in the cyclone body, after the gas outlet element 10 and in the liquid container 16. These sensors may be of a conventional type and will provide valuable information as to how the liquid separator operates in a definite application and under varying operating conditions. The signals from the sensors may be used together with the level measurement in the liquid container to prepare an optimum automated control algorithm for a definite application.
In the simplest application of the liquid separator, as for example in the inlet of a separator or scrubber, there will on the whole not be any need for monitoring or control of the apparatus. In such applications one will only design the liquid separator in order to function in the best possible manner within a defined operating area and a defined set of operating conditions.

Claims (9)

Patent claims
1. An apparatus for separation of a liquid from a multiphase fluid flow flowing through a pipeline, wherein the fluid flow is set in rotation so that it is separated into a central zone (5) essentially containing gas, and an outer annular zone (6) essentially containing liquid, and from which the gas and the liquid in the two zones are discharged via respective outlet means (10, 16), characterised in that it comprises an essentially tubular casing (1) arranged to constitute a part of the actual pipeline, a spin element (4) for rotation of the fluid flow being located at the upstream end of the casing (1), that the outlet means for the gas comprises an outlet element (10) arranged at the downstream end of the casing (1) and having a central, axially extending passage (11) for the gas, and an outer surface which, together with the inner surface of the casing (1), forms an annulus (12) for the inflow of liquid, a barrier (15) for the liquid being formed at the downstream end of the element (10), and that the outlet means for the liquid comprises an upwards open container (16) arranged at the downstream end of the casing (1) and adapted to receive liquid which flows into the annulus (12) and partly runs down into the container (16) from the bottom area of the casing (1) at the container opening, and partly falls into container from the area at said barrier (15).
2. An apparatus according to claim 1, characterised in that the outlet element (10) is a tubular element having a cylindrical upstream portion (13) and a downstream portion (14) diverging from this portion and being sealingly connected to the casing (1), for the formation of said barrier (15).
3. An apparatus according to claim 1 or 2, characterised in that an antispin element (22) is arranged at the downstream end of the gas outlet element (10).
4. An apparatus according to one of the claims 1-3, characterised in that an upper portion of the container (16) and a central portion of the upstream end of the spin element (4) are interconnected by means of a line (17) for recirculation of gas entrained by liquid running or falling into the container (16), the spin element (4) having a central cavity (18) and being provided with a number of openings (19) for the discharge of recirculated gas from the cavity (18).
5. An apparatus according to claim 4, characterised in that a valve (20) for control of the quantity of recirculated gas is connected in the recirculation line (17).
6. An apparatus according to one of the preceding claims, characterised in that the spin element (4) at its downstream end is formed with an aerodynamic, concentric end part (8).
7. An apparatus according to claim 6, characterised in that the spin element (4) at its downstream end is provided with a number of circumferentially extending, annular lips (9) serving as liquid stoppers.
8. An apparatus according to one of the preceding claims, characterised in that the container (16) in its bottom area has a liquid outlet pipe (24) in which there is connected a control valve (25) for the control of delivered liquid quantity from the container.
9. An apparatus according to claim 8, characterised in that the control valve (25) is arranged to be controlled by means of a level controlling unit (26) connected to a level gauge (27) measuring the level of liquid in the container.
AU2002236364A 2000-12-22 2001-12-21 An apparatus for separation of a liquid from a multiphase fluid flow Ceased AU2002236364B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
NO20006656A NO318709B1 (en) 2000-12-22 2000-12-22 Device for separating a liquid from a multiphase fluid stream
NO20006656 2000-12-22
PCT/NO2001/000507 WO2002056999A1 (en) 2000-12-22 2001-12-21 An apparatus for separation of a liquid from a multiphase fluid flow

Publications (2)

Publication Number Publication Date
AU2002236364A1 true AU2002236364A1 (en) 2003-02-13
AU2002236364B2 AU2002236364B2 (en) 2006-12-21

Family

ID=19911953

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2002236364A Ceased AU2002236364B2 (en) 2000-12-22 2001-12-21 An apparatus for separation of a liquid from a multiphase fluid flow

Country Status (5)

Country Link
US (1) US6752845B2 (en)
EP (1) EP1353739A1 (en)
AU (1) AU2002236364B2 (en)
NO (1) NO318709B1 (en)
WO (1) WO2002056999A1 (en)

Families Citing this family (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO315188B1 (en) * 2001-11-07 2003-07-28 Consept As Demisting cyclones
NO321170B1 (en) * 2002-06-21 2006-03-27 Statoil Asa Assembly to separate liquid from a multiphase stream
NO319642B1 (en) * 2003-02-20 2005-09-05 Statoil Petroleum As Control system for liquid plug prevention, flow stabilization and gas separation from liquid from a pipeline which mainly conducts gas
NO319645B1 (en) * 2003-03-12 2005-09-05 Statoil Asa Control system and assembly for automated flow stabilization, gas separation from liquid and preventing gas flow for a fluid stream from a pipeline for which liquid is the dominant phase
NL1025086C2 (en) * 2003-12-19 2005-06-21 Flash Technologies N V Inlet and distribution device.
DE102004036568A1 (en) * 2004-07-28 2006-02-16 Liebherr-Aerospace Lindenberg Gmbh Water separator for air conditioners
GB2420299B (en) * 2004-11-20 2007-01-24 Schlumberger Holdings A System And Method For Flow Analysis
NL1029352C2 (en) 2005-06-28 2007-01-02 Fmc Technologies Cv Separator for separating a mixture of solid, liquid and / or gas.
US20070014708A1 (en) * 2005-07-15 2007-01-18 Barnett John O Method and apparatus for collecting and redirecting liquid separated from a gaseous stream
US7691185B2 (en) * 2006-12-14 2010-04-06 Honeywell International Inc. Recirculating Coanda water extractor
BE1017444A3 (en) * 2007-01-26 2008-09-02 Atlas Copco Airpower Nv WATER SEPARATOR FOR A WATER INJECTION COMPRESSOR AND A COMPRESSOR INSTALLATION FITTED WITH SUCH WATER SEPARATOR.
EP1974790A1 (en) * 2007-03-26 2008-10-01 Twister B.V. Cyclonic fluid separator
NO332062B1 (en) 2008-02-28 2012-06-11 Statoilhydro Asa Assembly for separating a multiphase stream
DE102008044148B4 (en) * 2008-11-28 2018-03-15 Ford Global Technologies, Llc Expansion tank for hydraulic power steering
EP2206542A1 (en) 2009-01-09 2010-07-14 Shell Internationale Research Maatschappij B.V. Method and apparatus for degassing a fluid mixture
NL2002714C2 (en) * 2009-04-03 2010-10-05 Advanced Tail End Oil Company N V DEVICE FOR SEPARATING IN FRACTIONS A SEVERAL FLUID CONTAINING FRACTIONS.
CA2761013C (en) 2009-05-12 2016-01-12 Advanced Tail-End Oil Company N.V. Separating device and method with a return flow of heavy fraction
EP2475447B1 (en) 2009-09-11 2018-11-14 Sulzer Chemtech AG Pre-separating vane diffuser and method for introducing a flow-mixture in a separator
CZ2010641A3 (en) * 2010-08-26 2012-03-07 ŠKODA AUTO a.s. Cyclone separator with horizontal axis of cyclone
GB2485251B (en) * 2010-11-04 2013-03-20 Aker Process Systems As Method for separating gas and liquid and cyclone separators therefore
UA101067C2 (en) * 2011-04-29 2013-02-25 Евгений Алексеевич Данилин External cyclone
US9764265B2 (en) * 2011-09-30 2017-09-19 Mueller Environmental Designs, Inc. Swirl helical elements for a viscous impingement particle collection and hydraulic removal system
CA2859847C (en) * 2011-12-22 2019-01-22 Statoil Petroleum As Method and system for fluid separation with an integrated control system
AU2013203259B2 (en) * 2012-05-08 2016-09-22 Release Energy Pty Ltd Inline Non-targeted Component Removal
BR112015008585B1 (en) 2012-10-19 2021-02-09 Fmc Separation Systems, Bv fluid flow separation apparatus and multiphase fluid flow separation method
US20140116255A1 (en) * 2012-10-31 2014-05-01 Intevep, S.A. Axial gas-liquid cyclone separator
WO2014117031A1 (en) 2013-01-24 2014-07-31 Lp Amina Llc Classifier
US9067163B2 (en) 2013-04-26 2015-06-30 Hamilton Sundstrand Corporation Particle separator
US9272293B2 (en) 2013-04-29 2016-03-01 Hamilton Sundstrand Corporation Particle separator
WO2015188850A1 (en) 2014-06-10 2015-12-17 Abb S.P.A. Subsea separator
CA2857668A1 (en) 2014-07-11 2016-01-11 Robert Mckenzie Phase separator using pressure differential
RU2579079C1 (en) * 2014-10-03 2016-03-27 Открытое акционерное общество "Генерация Финанс" Direct-flow centrifugal gas-liquid separator
JP6642564B2 (en) * 2015-03-05 2020-02-05 ブラザー工業株式会社 Gas-liquid separator in fuel cell system
RU2606427C2 (en) * 2015-05-21 2017-01-10 Илшат Минуллович Валиуллин Method of gas-dynamic separation
US10792604B2 (en) * 2015-06-25 2020-10-06 Tm Industrial Supply, Inc. Horizontal coalescing filter
NO341179B1 (en) * 2015-08-28 2017-09-04 Fjords Proc As Axial flow demister
WO2017104184A1 (en) * 2015-12-17 2017-06-22 臼井国際産業株式会社 Gas-liquid separation device
WO2017104183A1 (en) 2015-12-17 2017-06-22 臼井国際産業株式会社 Swirling flow generator for gas-liquid separation
US11167231B2 (en) * 2016-02-11 2021-11-09 Fmc Separation Systems, Bv Swirl generating pipe element and process for gas-liquid separation using the same
US9878282B2 (en) * 2016-02-16 2018-01-30 Leonard Lawrence Donahue Partial gas separation technique for oxygen and nitrogen enrichment of atmospheric air
EP3484769B1 (en) * 2016-07-12 2021-10-13 Sikorsky Aircraft Corporation Inline water separators
US10704425B2 (en) 2016-07-14 2020-07-07 General Electric Company Assembly for a gas turbine engine
US11097214B2 (en) 2016-08-09 2021-08-24 Rodney Allan Bratton In-line swirl vortex separator
BE1024631B9 (en) * 2016-10-11 2019-05-13 Atlas Copco Airpower Nv Liquid separator
US10821379B2 (en) * 2016-10-25 2020-11-03 Waters Technologies Corporation Gas liquid separator and associated methods
JP6934297B2 (en) * 2016-12-08 2021-09-15 臼井国際産業株式会社 Gas-liquid separator
GB201703110D0 (en) * 2017-02-27 2017-04-12 Gm Innovations Ltd An apparatus for seperating components of a fluid stream
US10744437B2 (en) * 2017-07-10 2020-08-18 Hamilton Sunstrand Corporation Vented dynamic pressure recovery module for aircraft ECS
DE102017213608B4 (en) * 2017-08-04 2020-06-18 Tayyar Bayrakci DC cyclone separator
EP3679227A1 (en) * 2017-09-06 2020-07-15 Siemens Energy, Inc. Dead leg debris extractor for continuous on-line operation
JP7094091B2 (en) * 2017-10-25 2022-07-01 臼井国際産業株式会社 Gas-liquid separator
GB2606484A (en) 2018-04-24 2022-11-09 Gm Innovations Ltd An apparatus for producing potable water
US11007542B2 (en) * 2019-04-08 2021-05-18 Fmc Technologies, Inc. Cyclone separator and methods of using same
NO346216B1 (en) * 2019-10-15 2022-04-25 Seabed Separation As Method and system for separating oil well substances
RU2718936C1 (en) * 2019-12-17 2020-04-15 Публичное акционерное общество «Татнефть» имени В.Д. Шашина Method for preliminary drying associated petroleum gas
CN112480958A (en) * 2020-11-05 2021-03-12 中国石油大学(华东) Axial-flow type oil-water separation device and method
US11684881B1 (en) * 2021-12-09 2023-06-27 Nifco America Corp. Vapor particle separator
EP4006347A1 (en) 2022-04-08 2022-06-01 Sulzer Management AG Pumping arrangement

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2186344A (en) * 1938-04-02 1940-01-09 Boeing Aircraft Co Oil-air separator
US2506298A (en) * 1947-08-09 1950-05-02 American Blower Corp Fluid stream directing means
FR1165606A (en) 1956-02-18 1958-10-28 Larderello Centrifugal cyclone separator
GB1146262A (en) 1966-05-23 1969-03-26 Gen Electric Apparatus for removing entrained particles from a vapor or a gas
US3885935A (en) * 1971-09-02 1975-05-27 Heat Fluid Engineering Corp Centrifugal apparatus for separating entrained liquids from a gaseous stream
US3793812A (en) * 1972-05-12 1974-02-26 R Willis In-line multitube centrifugal separator
US4008059A (en) * 1975-05-06 1977-02-15 The United States Of America As Represented By The Secretary Of The Army Centrifugal separator
US4261708A (en) * 1979-03-23 1981-04-14 Vibration And Noise Engineering Corporation Apparatus and method for separating impurities from geothermal steam and the like
WO1981001961A1 (en) * 1980-01-14 1981-07-23 M Geissmann Method and separator for isolating a liquid from a gas-liquid mixture
FR2553296B1 (en) * 1983-10-13 1988-10-07 Stein Industrie SEPARATOR OF A MIXTURE OF A VAPOR AND A LIQUID BY CENTRIFUGATION
US4908051A (en) * 1986-09-23 1990-03-13 Ukrainsky Nauchno-Issledovatelsky Institut Prirodnykh Gazov "Ukrniigaz" Axial swirl device for a contact and separation member
SU1494936A1 (en) * 1986-11-26 1989-07-23 Всесоюзный Научно-Исследовательский И Проектный Институт По Переработке Газа Method of separating gas-liquid mixture
ATE110985T1 (en) 1988-06-02 1994-09-15 Cyclofil Pty Ltd SPINAL TUBE SEPARATOR.
US4857197A (en) 1988-06-29 1989-08-15 Amoco Corporation Liquid separator with tangential drive fluid introduction
NL1003408C2 (en) * 1996-06-24 1998-01-07 Rombout Adriaan Swanborn Apparatus and method for treating a gas / liquid mixture.
JP3323781B2 (en) * 1996-09-05 2002-09-09 日揮株式会社 Gas transfer piping
EP1147799A1 (en) * 2000-04-17 2001-10-24 Fredéric Pierre Joseph Koene Device to remove liquid from a gas/liquid mixture
US6514322B2 (en) * 2001-06-13 2003-02-04 National Tank Company System for separating an entrained immiscible liquid component from a wet gas stream

Similar Documents

Publication Publication Date Title
US6752845B2 (en) Apparatus for separation of a liquid from a multiphase fluid flow
AU2002236364A1 (en) An apparatus for separation of a liquid from a multiphase fluid flow
EP0825896B1 (en) Separator systems for well production fluids
EP1206310B1 (en) An apparatus for separation of a fluid flow, especially into a gas phase and a liquid phase
US7288202B2 (en) Rotary separator and method
US7503950B2 (en) Assembly to separate liquid from a multiphase flow
US20170284182A1 (en) Separator and Method of Separation
US7241392B2 (en) Rotary separator and method
US8460438B2 (en) Choke assembly
US20090065431A1 (en) In-line separator
WO2009006672A1 (en) Fluid-fluid separator
US9751028B2 (en) Two stage in-line separator
WO2010070289A2 (en) Processing apparatus for multiphase hydrocarbon flows
CA2221191C (en) Separator systems for well production fluids