AU2002228640A1 - Compounds having fungicidal activity and processes to make and use same - Google Patents

Compounds having fungicidal activity and processes to make and use same

Info

Publication number
AU2002228640A1
AU2002228640A1 AU2002228640A AU2002228640A AU2002228640A1 AU 2002228640 A1 AU2002228640 A1 AU 2002228640A1 AU 2002228640 A AU2002228640 A AU 2002228640A AU 2002228640 A AU2002228640 A AU 2002228640A AU 2002228640 A1 AU2002228640 A1 AU 2002228640A1
Authority
AU
Australia
Prior art keywords
group
aryl
heteroaryl
substituted
alkyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
AU2002228640A
Other versions
AU2002228640B2 (en
Inventor
Ann Marie Buysse
Jeannie Rachel Phillips Cetusic
Marilene Tenguan Iamauti
Carla Jean Rasmussen Klittich
William Chi-Leung Lo
John Todd Mathieson
Irene Mae Morrison
Monica Britt Olson
Michael John Ricks
Brent Rieder Rieder
Michael Thomas Sullenberger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Corteva Agriscience LLC
Original Assignee
Dow AgroSciences LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dow AgroSciences LLC filed Critical Dow AgroSciences LLC
Priority claimed from PCT/US2001/044032 external-priority patent/WO2002040431A2/en
Publication of AU2002228640A1 publication Critical patent/AU2002228640A1/en
Application granted granted Critical
Publication of AU2002228640B2 publication Critical patent/AU2002228640B2/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Description

COMPOUNDS HAVING FUNGICIDAL ACTIVITY AND PROCESSES TO MAKE AND USE SAME
PRIORITY This application claims priority from U.S. provisional application 60/249,653 which was filed on November 17, 2000.
FIELD OF THE INVENTION This invention is related to the field of compounds having fungicidal activity and processes to make and use such compounds.
BACKGROUND OF THE INVENTION Our history is riddled with outbreaks of fungal diseases that have caused widespread human suffering. One need look no further than the Irish potato famine, which occurred from 1845 to 1860, where an estimated 1 ,000,000 people died, and an estimated 1 ,500,000 people emigrated, to see the effects of a fungal disease. Fungicides are compounds, of natural or synthetic origin, which act to protect plants against damage caused by fungi. Current methods of agriculture rely heavily on the use of fungicides. In fact, some crops cannot be grown usefully without the use of fungicides. Using fungicides allows a grower to increase the yield and the quality of the crop and consequently, increase the value of the crop. In most situations, the increase in value of the crop is worth at least three times the cost of the use of the fungicide. However, no one fungicide is useful in all situations. Consequently, research is being conducted to produce fungicides that are safer, that have better performance, that are easier to use, and that cost less. In light of the above, the inventors provide this invention. SUMMARY OF THE INVENTION It is an object of this invention to provide compounds that have fungicidal activity. It is an object of this jnvention to provide processes that produce compounds that have fungicidal activity. It is an object of this invention to provide processes that use compounds that have fungicidal activity. In accordance with this invention, processes to make and processes to use compounds having a general formula according to formula one, and said compounds are provided. While all the compounds of this invention have fungicidal activity, certain classes of compounds may be preferred for reasons such as, for example, greater efficacy or ease of synthesis.
Throughout this document, all temperatures are given in degrees Celsius and all percentages are weight percentages, except for percent yields which are mole percentages, unless otherwise stated. The term "alkyl", "alkenyl", or "alkynyl" refers to an unbranched, or branched, chain carbon group. The term "alkoxy" refers to an unbranched, or branched, chain alkoxy group. The term "haloalkyl" refers to an unbranched, or branched, alkyl group substituted with one or more halo atoms, defined as F, Cl, Br, and I. The term "haloalkoxy" refers to an unbranched, or branched, chain alkoxy group substituted with one or more halo atoms. The term "alkoxylalkyl" refers to an unbranched, or branched, chain alkyl group substituted with one or more alkoxy groups. The term "alkoxyalkoxy" refers to an unbranched, or branched, chain alkoxy group substituted with one or more alkoxy groups. The term "aryl" refers to a phenyl or naphthyl group. The term "Me" refers to a methyl group. The term "Et" refers to an ethyl group. The term "Pr" refers to a propyl group. The term "Bu" refers to a butyl group. The term "EtOAc" refers to ethyl acetate. The term "ppm" refers to parts per million. The term, "psi" refers to pounds per square inch. Heteroaryl is defined by the following Formula Two
Formula Two
2B
wherein 2A represents a 5- or 6-membered ring and 2B represents a 9- or 10-membered fused bicyclic ring in which each of XrX5 is independently a bond, O, S, NR7, N, or CR, where R is selected from the group consisting of halo, Cι-4 alkyl, C2-4 alkenyl, C2-4 alkynyl, Cι-4 alkoxy, C^ haloalkyl, C1-4 haloalkoxy, Cι-4 alkoxyalkyl, C1-4 alkoxyalkoxy, CN, NO2, OH, SCN, C(=O)R6, C(=NR6)R6, S(On)R6 where n = 0, 1 or 2, aryl, aryloxy, heteroaryl, and heteroaryloxy, and where no more than one of X X5 is O, S, or NR7, no more than one of X X5 is a bond, when any one of X1-X5 is S, O or NR7, one of the adjacent X1-X5 must represent a bond; and at least one of X1-X5 must be O, S, NR7 or N.
Examples of such heteroaryls are pyridinyl, pyridazinyl, pyrimidinyl, pyrazinyl, pyrrolyl, pyrazolyl, imidazolyl, quinolinyl, isoquinolinyl, phthalazinyl, quinazolinyl, quinoxalinyl, cinnolinyl, indolyl, isoindolyl, indazolyl, thienyl, benzothienyl, furanyl, benzofuranyl, thiazolyl, benzothiazolyl, isothiazolyl, benzoisothiazolyls, oxazolyl, benzoxazolyl, isoxazolyl, and benzoisoxazolyl. DETAILED DESCRIPTION OF THE INVENTION The compounds of this invention have a formula according to formula one.
Formula One
In formula one:
R1 is selected from the group consisting of F, Cl, Br, CN, C - alkyl, C2. 4 alkenyl, C2-4 alkynyl, C haloalkyl, Cι-4 alkoxyalkyl, C3-C6 cycloalkyl, C3-C6 cycloalkenyl, CH2(C=O)R5, and CH2CN;
R2 and R3 are selected from the group consisting of H, CH3, F, and Cl;
R is selected from the group consisting of Cι-6 alkyl, C2-β alkenyl, C2-β alkynyl, C3.6 cycloalkyl, C3.6 cycloalkenyl, aryl, and heteroaryl, where said alkyl, alkenyl, alkynyl, cycloalkyl, and cycloalkenyl, can be substituted with one or more substituents selected from the group consisting of halo, Cι-4 alkoxy, C3.6 cycloalkyl, aryl and heteroaryl, and where said aryl and heteroaryl can be substituted with one or more substituents selected from the group consisting of halo, C1-4 alkyl, C2-4 alkenyl, C2. alkynyl, Cι- alkoxy, Cι- haloalkyl,
C1-4 haloalkoxy, Cι-4 alkoxyalkyl, Cι-4 alkoxyalkoxy, CN, NO2, OH, SCN, C(=O)R6, C(=NR6)R6, S(On)R6 where n = 0, 1 or 2, aryl, aryloxy, heteroaryl, and heteroaryloxy;
R5 is selected from the group consisting of H, OR7, and Cι-4 alkyl; R is selected from the group consisting of H, CM alkyl, C2-4 alkenyl, C2.4 alkynyl, C haloalkyl, aryl, heteroaryl, OR7, N(R7)2, and SR7 where said aryl or heteroaryl can be substituted with one or more substituents selected from the group consisting of halo, C alkyl, C2-4 alkenyl, C2.4 alkynyl, CM alkoxy, CM haloalkyl, CM haloalkoxy, CM alkoxyalkyl, CN, and NO2;
R7 is selected from the group consisting of H, CM alkyl, C2.4 alkenyl, and C2-4 alkynyl, CM haloalkyl, aryl, and heteroaryl, where said aryl or heteroaryl can be substituted with one or more substituents selected from the group consisting of halo, CM alkyl, C2-4 alkenyl, C2-4 alkynyl, CM alkoxy, C haloalkyl, CM haloalkoxy, CM alkoxyalkyl, CN, and NO2;
A is selected from the group consisting of aryl or heteroaryl, where said aryl and heteroaryl can be substituted with one or more substituents selected from the group consisting of halo, CM alkyl, C2. alkenyl, C2.4 alkynyl, CM alkoxy, CM haloalkyl, CM haloalkoxy, CM alkoxyalkyl, CM alkoxyalkoxy, CN, NO2, OH, SCN, C(=O)R6, C(=NR6)R6, S(On)R6 where n = 0, 1 or 2, aryl, aryloxy, substituted aryloxy, heteroaryl, and heteroaryloxy; and
Z is selected from the group consisting of C(=O)R6, C(=S)R6, P(=O)(R6)2, and P(=S)(R6)2.
The compounds of Formula One have two chiral centers and can thus exist as mixtures of enantiomers and diastereomers. Where the stereochemistry is known, it is designated in the structure. This invention claims the pure enantiomers and diastereomers as well as the mixtures. In general, these compounds can be used in a variety of ways. These compounds are preferably applied in the form of a formulation comprising one or more of the compounds with a phytologically acceptable carrier. Concentrated formulations can be dispersed in water, or another liquid, for application, or formulations can be dust-like or granular, which can then be applied without further treatment. The formulations are prepared according to procedures which are conventional in the agricultural chemical art, but which are novel and important because of the presence therein of one or more of the compounds.
The formulations that are applied most often are aqueous suspensions or emulsions. Either such water-soluble, water suspendable, or emulsifiable formulations are solids, usually known as wettable powders, or liquids, usually known as emulsifiable concentrates, aqueous suspensions, or suspension concentrates. The present invention contemplates all vehicles by which one or more of the compounds can be formulated for delivery and use as a fungicide.
As will be readily appreciated, any material to which these compounds can be added may be used, provided they yield the desired utility without significant interference with the activity of these compounds as antifungal agents.
Wettable powders, which may be compacted to form water dispersible granules, comprise an intimate mixture of one or more of the compounds, an inert carrier and surfactants. The concentration of the compound in the wettable powder is usually from about 10% to about 90% w/w, more preferably about 25% to about 75% w/w. In the preparation of wettable powder formulations, the compounds can be compounded with any of the finely divided solids, such as prophyllite, talc, chalk, gypsum, Fuller's earth, bentonite, attapulgite, starch, casein, gluten, montmorillonite clays, diatomaceous earths, purified silicates or the like. In such operations, the finely divided carrier is ground or mixed with the compounds in a volatile organic solvent. Effective surfactants, comprising from about 0.5% to about 10% of the wettable powder, include sulfonated lignins, naphthalenesulfonates, alkylbenzenesulfonates, alkyl sulfates, and nonionic surfactants, such as ethylene oxide adducts of alkyl phenols.
Emulsifiable concentrates of the compounds comprise a convenient concentration, such as from about 10% to about 50% w/w, in a suitable liquid. The compounds are dissolved in an inert carrier, which is either a water miscible solvent or a mixture of water-immiscible organic solvents, and emulsifiers. The concentrates may be diluted with water and oil to form spray mixtures in the form of oil-in-water emulsions. Useful organic solvents include aromatics, especially the high-boiling naphthalenic and olefinic portions of petroleum such as heavy aromatic naphtha. Other organic solvents may also be used, such as, for example, terpenic solvents, including rosin derivatives, aliphatic ketones, such as cyclohexanone, and complex alcohols, such as 2-ethoxyethanol.
Emulsifiers which can be advantageously employed herein can be readily determined by those skilled in the art and include various nonionic, anionic, cationic and amphoteric emulsifiers, or a blend of two or more emulsifiers. Examples of nonionic emulsifiers useful in preparing the emulsifiable concentrates include the polyalkylene glycol ethers and condensation products of alkyl and aryl phenols, aliphatic alcohols, aliphatic amines or fatty acids with ethylene oxide, propylene oxides such as the ethoxylated alkyl phenols and carboxylic esters solubilized with the polyol or polyoxyalkylene. Cationic emulsifiers include quaternary ammonium compounds and fatty amine salts. Anionic emulsifiers include the oil-soluble salts (e.g., calcium) of alkylaryl sulphonic acids, oil soluble salts or sulphated polyglycol ethers and appropriate salts of phosphated polyglycol ether.
Representative organic liquids which can be employed in preparing the emulsifiable concentrates of the present invention are the aromatic liquids such as xylene, propyl benzene fractions; or mixed naphthalene fractions, mineral oils, substituted aromatic organic liquids such as dioctyl phthalate; kerosene; dialkyl amides of various fatty acids, particularly the dimethyl amides of fatty glycols and glycol derivatives such as the n-butyl ether, ethyl ether or methyl ether of diethylene glycol, and the methyl ether of triethylene glycol. Mixtures of two or more organic liquids are also often suitably employed in the preparation of the emulsifiable concentrate. The preferred organic liquids are xylene, and propyl benzene fractions, with xylene being most preferred. The surface-active dispersing agents are usually employed in liquid formulations and in the amount of from 0.1 to 20 percent by weight of the combined weight of the dispersing agent with one or more of the compounds. The formulations can also contain other compatible additives, for example, plant growth regulators and other biologically active compounds used in agriculture.
Aqueous suspensions comprise suspensions of one or more water- insoluble compounds, dispersed in an aqueous vehicle at a concentration in the range from about 5% to about 50% w/w. Suspensions are prepared by finely grinding one or more of the compounds, and vigorously mixing the ground material into a vehicle comprised of water and surfactants chosen from the same types discussed above. Other ingredients, such as inorganic salts and synthetic or natural gums, may also be added to increase the density and viscosity of the aqueous vehicle. It is often most effective to grind and mix at the same time by preparing the aqueous mixture and homogenizing it in an implement such as a sand mill, ball mill, or piston-type homogenizer.
The compounds may also be applied as granular formulations, which are particularly useful for applications to the soil. Granular formulations usually contain from about 0.5% to about 10% w/w of the compounds, dispersed in an inert carrier which consists entirely or in large part of coarsely divided attapulgite, bentonite, diatomite, clay or a similar inexpensive substance. Such formulations are usually prepared by dissolving the compounds in a suitable solvent and applying it to a granular carrier which has been preformed to the appropriate particle size, in the range of from about 0.5 to about 3 mm. Such formulations may also be prepared by making a dough or paste of the carrier and the compound, and crushing and drying to obtain the desired granular particle.
Dusts containing the compounds are prepared simply by intimately mixing one or more of the compounds in powdered form with a suitable dusty agricultural carrier, such as, for example, kaolin clay, ground volcanic rock, and the like. Dusts can suitably contain from about 1% to about 10% w/w of the compounds.
The formulations may contain adjuvant surfactants to enhance deposition, wetting and penetration of the compounds onto the target crop and organism. These adjuvant surfactants may optionally be employed as a component of the formulation or as a tank mix. The amount of adjuvant surfactant will vary from 0.01 percent to 1.0 percent v/v based on a spray-volume of water, preferably 0.05 to 0.5 %. Suitable adjuvant surfactants include ethoxylated nonyl phenols, ethoxylated synthetic or natural alcohols, salts of the esters or sulphosuccinic acids, ethoxylated organosilicones, ethoxylated fatty amines and blends of surfactants with mineral or vegetable oils.
The formulations may optionally include combinations that can comprise at least 1% of one or more of the compounds with another pesticidal compound. Such additional pesticidal compounds may be fungicides, insecticides, nematocides, miticides, arthropodicides, bactericides or combinations thereof that are compatible with the compounds of the present invention in the medium selected for application, and not antagonistic to the activity of the present compounds. Accordingly, in such embodiments the other pesticidal compound is employed as a supplemental toxicant for the same or for a different pesticidal use. The compounds and the pesticidal compound in the combination can generally be present in a weight ratio of from 1 :100 to 100:1
The present invention includes within its scope methods for the control or prevention of fungal attack. These methods comprise applying to the locus of the fungus, or to a locus in which the infestation is to be prevented (for example applying to cereal or grape plants), a fungicidal amount of one or more of the compounds. The compounds are suitable for treatment of various plants at fungicidal levels, while exhibiting low phytotoxicity. The compounds are useful in a protectant or eradicant fashion. The compounds are applied by any of a variety of known techniques, either as the compounds or as formulations comprising the compounds. For example, the compounds may be applied to the roots, seeds or foliage of plants for the control of various fungi, without damaging the commercial value of the plants. The materials are applied in the form of any of the generally used formulation types, for example, as solutions, dusts, wettable powders, flowable concentrates, or emulsifiable concentrates. These materials are conveniently applied in various known fashions.
The compounds have been found to have significant fungicidal effect particularly for agricultural use. Many of the compounds are particularly effective for use with agricultural crops and horticultural plants, or with wood, paint, leather or carpet backing.
In particular, the compounds effectively control a variety of undesirable fungi that infect useful plant crops. Activity has been demonstrated for a variety of fungi, including for example the following representative fungi species: Downy Mildew of Grape {Plasmopara viticola - PLASVI); Late Blight of Tomato and Potato (Phytophthora infestans - PHYTIN); Brown Rust of Wheat {Puccinia recondita - PUCCRT); Powdery Mildew of Wheat {Erysiphe graminis - ERYSGT); Leaf Blotch of Wheat {Septoria tritici - SEPTTR); Sheath Blight of Rice {Rhizoctonia solani - RHIZSO); and Glume Blotch of Wheat {Septoria nodorum - LEPTNO). It will be understood by those in the art that the efficacy of the compound for the foregoing fungi establishes the general utility of the compounds as fungicides.
The compounds have broad ranges of efficacy as fungicides. The exact amount of the active material to be applied is dependent not only on the specific active material being applied, but also on the particular action desired, the fungal species to be controlled, and the stage of growth thereof, as well as the part of the plant or other product to be contacted with the compound. Thus, all the compounds, and formulations containing the same, may not be equally effective at similar concentrations or against the same fungal species.
The compounds are effective in use with plants in a disease inhibiting and phytologically acceptable amount. The term "disease inhibiting and phytologically acceptable amount" refers to an amount of a compound that kills or inhibits the plant disease for which control is desired, but is not significantly toxic to the plant. This amount will generally be from about 1 to about 1000 ppm, with 10 to 500 ppm being preferred. The exact concentration of compound required varies with the fungal disease to be controlled, the type of formulation employed, the method of application, the particular plant species, climate conditions, and the like. A suitable application rate is typically in the range from about 0.10 to about 4 pounds/acre (about 0.1 to 0.45 grams per square meter g/m2).
EXAMPLES These examples are provided to further illustrate the invention. They are not meant to be construed as limiting the invention.
Preparation of the Inventive Compounds The claimed materials have been prepared by several methods that are described below. In general, the desired final product is prepared by the coupling of an electrophile with a sulfur nucleophile, followed by oxidation of the sulfur to the sulfone. The sulfur may be on either the amine half of the molecule or on the arylalkyl half, as shown in Figure 1 below. The electrophilic and nucleophiiic reactants may be prepared as shown in Figure 1 by conventional methods well known to those skilled in the art. (a. Carlson, R. M.; Lee, S. Y. Tetrahedron Lett. 1969, 4001. b. Rosenthal, D. et al. J. Org. Chem. 1965, 30, 3689. c. Mezo, G.; Mihala, N.; Koczan, B.; Hudecz, F. Tetrahedron 1998 , 54, 6757. d. Boerner, A.; Voss, G. Synthesis 1990, 573.)
"Thlol nucleophile"
"Phenyl electrophile"
-or-
"Thiol nucleophile" isopropyl chloroformate Tosyl chloride NaOH pyridine
"Tosylate electrophile"
Figure 1
These two halves are coupled, the amine is acylated if necessary, and the sulfur is oxidized as is shown in Figure 2.
-or-
"Thiol nucleophile" ^ Li t.0Bu, DMF/THF - ^ / - / Br
+ 2.i-propyl chloroformate
"Phenyl electrophile" 3. MCPBA Λ lγC
Figure 2
Preparation of Compound 21 by the use of Thiol Nucleophile and Phenyl Electrophile
A solution of 1.55 g of (S)-2-valinethiol nucleophile in 10 mL dry DMF was purged with nitrogen for 10 minutes. To this was added 20 mL of 1M potassium t-butoxide in THF, followed immediately by 2.20 g of the 1-(4- bromophenyl)chloroethane electrophile. The mixture was allowed to stir for 20 minutes, and then partitioned between water and ether/hexanes (1 :1). The aqueous phase was extracted twice more and the organic phases washed with brine, dried, and solvent removed on the rotovap to give a pale oil. This could be purified by evaporative distillation, but was normally used as is. A solution of 1.21 g of the above crude product in 30 mL of dichloromethane was cooled in an ice bath and then a 20 mol% excess of 3-butyn-1-yl chloroformate (prepared by the action of 3 equivalents of phosgene as a 20% solution in toluene on the alcohol for 3-4 hours, followed by evaporation to remove toluene) was added, followed by 10 mL of saturated aqueous sodium bicarbonate solution. The two-phase mixture was vigorously stirred for 30 minutes, then the phases were separated, organic phase dried and diluted to 40 mL volume with dichloromethane. This was cooled in an ice bath, then 1.73 g m- chloroperbenzoic acid was added in portions with stirring, and the mixture stirred for 4-5 hours below 5°C. Sufficient 1.5M sodium thiosulfate solution was added to quench excess oxidant and then the mixture basicified with 2N sodium hydroxide. The phases were separated, and the organic phase dried, rotovapped, and the crude product purified by chromatography to give sulfone 21 as 1.42 g of white foam, 96% pure by GLC.
Preparation of Compound 4 by use of Thiol Nucleophile and Tosylate Electrophile A solution of 354 mg of 1-(4-trifluoromethoxyphenyl)ethanethiol was added to a nitrogen purged suspension of 1 equivalent of sodium hydride in 20 mL of dry tetrahydrofuran (THF) and stirred to give a clear solution. To this was added 500 mg of (S)-isopropoxycarbonylvalinol tosylate, and the mixture was stirred overnight at room temperature. The reaction was worked up and oxidized in the same manner as the method used for compound 21 above, purified by chromatography to give 269 mg white solid. MP 50-60 °C.
By the above two methods, one can prepare most compounds of the type claimed, including compounds 1 - 43, except for compounds 11 , 12, and 15 which were prepared from compound 1 by methods to be described below, and compound 22 whose preparation is also described below. The first described method is in general most useful.
The phenyl electrophiles used can be prepared as shown in Figure 3.
Ar is aryl or heteroaryl as described above for A
Figure 3
The reduction of acetophenones to alcohols and the conversion of these alcohols by either the use of concentrated hydrochloric acid neat or thionyl chloride in methylene chloride are well known by those practiced in the art. (Larock, R. C. Comprehensive Organic Transformations: a Guide to Functional Group Preparations] VCH Publishers, Inc.: New York, New York, 1989; p. 529, 354-355.) The electrophiles used to prepare compounds 1-43, (except for compounds 8, 10-12, 15, and 26) were prepared by this method.
The radical bromination of arylethanes using N-bromosuccinimide and UV light to make 1-bromo-1 -arylethanes is also well known, (Djerassi, C; Chem. Rev. 1948, 43, 271) and this method was used to prepare electrophiles for compounds 8 and 10.
The phenyl electrophiles discussed above could be transformed into thiol nucleophiles by the well described use of xanthate salts as shown in Figure 4. (Degani, I.; Fochi, R. Synthesis 1978, 365) These nucleophiles can be used with the tosylate electrophile to prepare many of the inventive materials.
Phenyl electrophiles
Figure 4 Compound 1 was converted into compound 11, and this material was used to prepare compounds 15 and 12 as shown in Figure 5. All of the steps shown in Figure 5 are well known to those in the art. (Morris, J.; Wishka, D. G. J. Org. Chem. 1991, 56, 3549.)
12
Figure 5 Compound 22 was prepared as shown in Figure 6, and described in the preparation below.
Figure 6
Preparation of isooropyl 1-((rchloro(4-chlorophenyl)methyllsulfonyl) methvπ-2-methylpropylcarbamate (compound 22)
To 88 mg of 60% sodium hydride in dry THF:DMF (4:1) under nitrogen atmosphere was added 350 mg of 4-chlorobenzylthiol, and the mixture stirred to give a clear solution. To this was added 686 mg of the tosylate electrophile, and the reaction was stirred for 3 hours at room temperature.
The reaction was partitioned between 0.1 N HCI and ether, aqueous extracted twice with ether, and the combined organic phases washed twice with brine. The ether phase was dried and evaporated, and the crude product purified by flash chromatography. To 385 mg of this material in 10 mL of dry THF at -78 °C was added 500 μL of 2.5M n- butyllithium in hexanes over 5 minutes, followed after 5 minutes by 281 mg of di-t-butyl dicarbonate in 2 mL of THF. The reaction was allowed to warm to room temperature and stirred for 4 hours, then worked up as above and the crude sulfide product purified by flash chromatography to give 245 mg of nearly colorless, viscous oil, pure by TLC and 1H NMR. To a solution of the above sulfide in 10 mL of methylene chloride, cooled in an ice-bath, was added a solution of 83 mg of N-chlorosuccinimide in 3 mL of methylene chloride over 5 minutes. The solution was stirred for 4 hours as it warmed to room temperature. To this solution was added 300 mg of MCPBA, and the reaction was stirred an additional 2 hours. The excess oxidant was quenched with sodium thiosulfate solution, then basified with 2N sodium hydroxide. The phases were separated, the organic phase was dried, and solvent removed on the rotovap. The residue was dissolved in 5 mL of methylene chloride and cooled to 10 °C, and then 2 mL of TFA was added, followed by stirring overnight. The solvents were removed on the rotovap and the residue purified by flash chromatography to give 80 mg of a white solid.
Compound 26 was prepared using selective alkylation conditions on the sulfone shown in Figure 7. (Wada, A.; Tode, C; Hiraishi, S.; Tanaka, Y.; Ohfusa, T.; Ito, M. Synthesis 1995, 1107.) The BOC group was removed and replaced with an aromatic carbamate using procedures previously described.
Figure 7 Compounds 32-34 were prepared by reaction of an isocyanate with the appropriate aromatic alcohol as shown in Figure 8. (Blahak, J. Ann. Chem. 1978, 1353.)
32: X = N, R1 =H, R2 = 4-OEt 33: X = C, R1. R2 = 3,4-di e 34: X = C, R1 = H, R2 = 2-Br
Figure 8
Compound 37 was likewise generated from the amine salt and an appropriately substituted phenyl isocyanate as shown in Figure 9. (Gaudry, R. Can J. Chem. 1951 , 29, 544)
Figure 9
Compound 44 was prepared in 8 steps from valine methyl ester utilizing amino acid chemistry (a. Overhand, M.; Hecht, S. M. J. Org. Chem. 1994, 59, 4721. B. Son, Y. C; Park, C. H.; Koh, J. S.; Choy, N. Y.; Lee, C. S.; Choi, H.; Kim, S. C; Yoon, H. S. Tetrahedron Lett. 1994, 35, 3745. C. Nacci, V.; Campiani, G.; Garofalo, A. Synth. Commun. 1990, 20, 3019.) combined with coupling and oxidation chemistry described above.
l.isopropyl chloroformate NaHC03 CH,C12 l.MeMgBr.E
2. INNaOH 2.NaBH4,Me0H 3. MeONMe-HCl, DCC, Et3N, CH-C1- 3. DIAD, PPh3, HSAc.THF
44
Figure 10
In Table 1 , "EA" stands for elemental analysis.
Biological Testing The compounds were formulated at 100 ppm in 10 vol% acetone plus 90 vol% Triton X water (deionized water 99.99 wt% + 0.01 wt% Triton X100). The compounds were tested for ability to control plant diseases at the whole plant level in a 1-day protectant test (1DP). Chemicals were sprayed on a turn table sprayer fitted with two opposing air atomization nozzles which delivered approximately 1500 L/ha of spray volume. Plants were inoculated with spores of the fungus the next day, then incubated in an environment conducive to disease development. Disease severity was evaluated 4 to 19 days later, depending on the speed of disease development.
The following experiments were performed in the laboratory to determine the fungicidal efficacy of the compounds of the invention.
Late Blight of Tomatoes (Phvtophthora infestans-P YT\ ): Tomatoes {cultivar Rutgers) were grown from seed in a soilless peat-based potting mixture (Metromix) until the seedlings were 1-2 leaf (BBCH 12). These plants were then sprayed to run off with the formulated test compound at a rate of 100ppm. After 24 hours the test plants were inoculated with an aqueous spore suspension of Phytophthora infestans and incubated overnight in a dew chamber. The plants were then transferred to the greenhouse until disease developed on the untreated control plants.
Downy Mildew of Grapes (Plasmooara viticola - PLASVI): Grape plants (variety 'Carignane') were grown from seed in a greenhouse for six weeks in a soil-less potting mix until the seedlings were at a 2 to 3-leaf stage. These plants were sprayed to runoff with the formulated test compound at a rate of 100 ppm. After 24 hours the undersides of the leaves were inoculated with an aqueous spore suspension of Plasmopara viticola and the plants were kept in high humidity overnight. The plants were then transferred to a greenhouse until disease developed on untreated control plants.
Leaf Blotch of Wheat (Septoria tritici - SEPTTR): Wheat plants (variety Monon) were grown from seed in a greenhouse in 50% pasteurized soil/50% soil-less mix until the first true leaf was fully expanded, with 6-8 seedlings per pot. These plants were sprayed to runoff with the formulated test compound at a rate of 100 ppm. After 24 hours the leaves were inoculated with an aqueous spore suspension of Septoria tritici and the plants were kept in high humidity overnight. The plants were then transferred to a greenhouse until disease developed on untreated control plants.
The following table presents the activity of typical compounds of the present invention when evaluated in these experiments. The effectiveness of the test compounds in controlling disease was rated by giving the percent control of the plant disease compared with untreated, inoculated plants.

Claims (1)

  1. WE CLAIM:
    1. A compound according to formula one
    Formula One
    wherein:
    R1 is selected from the group consisting of F, Cl, Br, CN, Cι- alkyl, C2-4 alkenyl, C2-4 alkynyl, Cι- haloalkyl, Cι-4 alkoxyalkyl, C3-C6 cycloalkyl, C3-C6 cycloalkenyl, CH2(C=O)R5, and CH2CN;
    R2 and R3 are selected from the group consisting of H, CH3, F, and Cl;
    R4 is selected from the group consisting of Cι-6 alkyl, C2-6 alkenyl, C2-6 alkynyl, C3-6 cycloalkyl, C3.6 cycloalkenyl, aryl, and heteroaryl, where said alkyl, alkenyl, alkynyl, cycloalkyl, and cycloalkenyl, can be substituted with one or more substituents selected from the group consisting of halo, Cι-4 alkoxy, C3-6 cycloalkyl, aryl and heteroaryl, and where said aryl and heteroaryl can be substituted with one or more substituents selected from the group consisting of halo, Cι- alkyl, C2-4 alkenyl, C2-4 alkynyl, C-i-4 alkoxy, Cι- haloalkyl, C-i-
    4 haloalkoxy, Cι-4 alkoxyalkyl, C alkoxyalkoxy, CN, NO2,
    OH, SCN, C(=O)R6, C(=NR6)R6, S(On)R6 where n = 0, 1 or 2, aryl, aryloxy, heteroaryl, and heteroaryloxy; R5 is selected from the group consisting of H, OR7, and CM alkyl;
    R6 is selected from the group consisting of H, CM alkyl, C2-4 alkenyl, C2-4 alkynyl, C alkoxy, CM haloalkyl, aryl, heteroaryl, OR7, N(R7)2, and SR7 where said aryl or heteroaryl can be substituted with one or more substituents selected from the group consisting of halo, C alkyl, C2-4 alkenyl, C2-4 alkynyl, CM alkoxy, C haloalkyl, C haloalkoxy, CM alkoxyalkyl, CN, and NO2;
    R7 is selected from the group consisting of H, CM alkyl, C2-4 alkenyl, C2-4 alkynyl, CM haloalkyl, aryl and heteroaryl, where said aryl or heteroaryl can be substituted with one or more substituents selected from the group consisting of halo, CM alkyl, C2.4 alkenyl, C2.4 alkynyl, CM alkoxy, CM haloalkyl, C haloalkoxy, CM alkoxyalkyl, CN, and NO2;
    A is selected from the group consisting of aryl or heteroaryl, where said aryl and heteroaryl can be substituted with one or more substituents selected from the group consisting of halo, CM alkyl, C2.4 alkenyl, C2-4 alkynyl, CM alkoxy, CM haloalkyl, Ci-4 haloalkoxy, CM alkoxyalkyl, C alkoxyalkoxy, CN, NO2, OH, SCN, C(=O)R6, C(=NR6)R6, S(On)R6 where n = 0, 1 or 2, aryl, aryloxy, substituted aryloxy, heteroaryl, and heteroaryloxy; and
    is selected from the group consisting of C(=O)R6, C(=S)R6, P(=O)(R6)2, and P(=S)(R6)2. A compound according to claim 1 wherein :
    R1 is selected from the group consisting of Cl, CM alkyl, and C2-4 alkenyl;
    R2 and R3 are selected from the group consisting of H and CHj
    R4 is a C-ι-6 alkyl where said alkyl, can be substituted with one or more CM alkoxy substituents;
    R£ is H;
    R is selected from the group consisting of H, CM alkoxy, OR7 N(R7)2, and SR7;
    R7 is selected from the group consisting of H, CM alkyl, C2.4 alkenyl, C2. alkynyl, CM haloalkyl, aryl, and heteroaryl, where said aryl or heteroaryl can be substituted with one or more substituents selected from the group consisting of halo, CN, CM alkyl, and CM alkoxy;
    A is selected from the group consisting of aryl or heteroaryl, where said aryl and heteroaryl can be substituted with one or more substituents selected from the group consisting of halo, CN, CM alkoxy, CM haloalkoxy, aryl, substituted aryloxy, C2.4 alkenyl, C(=NR6)R6, NO2, and C(=O)R6; and
    Z is selected from the group consisting of C(=O)R6 and C(=S)R6.
    3. A compound according to claim 2 wherein:
    A is selected from the group consisting of aryl or heteroaryl, where said aryl and heteroaryl is substituted with one substituent selected from the group consisting of Br and CN; and
    Z is selected from the group consisting of isopropyl and C(=O)R6, where said R6 is OR7, and where said R7 is selected from the group consisting of aryl and heteroaryl, where said aryl or heteroaryl is substituted with one substituent selected from the group consisting of halo and methyl.
    4. A compound according to claim 3 wherein the substituent on A is in the para position and wherein Z is C(=O)R6, where said R6 is OR7, and where said R7 is selected from the group consisting of aryl and heteroaryl, where said aryl or heteroaryl is substituted with one substituent selected from the group consisting of halo and methyl, which is in the para position.
    5. A compound according to claim 1 wherein :
    R1 is selected from the group consisting of Cl and methyl;
    R2 and Hό is H;
    R4 is a Ci-e alkyl;
    R£ is H; R is selected from the group consisting of H, methoxy, and
    OR'
    R7 is selected from the group consisting of CM alkyl, C2.4 alkynyl, aryl where said aryl can be substituted with one or more substituents selected from the group consisting of halo and methyl;
    A is selected from the group consisting of aryl or heteroaryl, where said aryl and heteroaryl can be substituted with one or more substituents selected from the group consisting of halo, CN, CM alkoxy, CM haloalkoxy, aryl, substituted aryloxy, C2.4 alkynyl, C(=NR6)R6, NO2, and C(=O)R6; and
    Z is C(=O)R6 where said R6 is OR7.
    6. A compound according to claim 5 wherein:
    A is selected from the group consisting of aryl or heteroaryl, where said aryl and heteroaryl is substituted with one substituent selected from the group consisting of Br and CN; and
    Z is selected from the group consisting of isopropyl and C(=O)R6 where said R6 is OR7, and where said R7 is selected from the group consisting of aryl and heteroaryl, where said aryl or heteroaryl is substituted with one substituent selected from the group consisting of halo and methyl.
    7. A compound according to claim 6 wherein the substituent on A is in the para position and wherein Z is C(=O)R6, where said R6 is OR7, and where said R7 is selected from the group consisting of aryl and heteroaryl, where said aryl or heteroaryl is substituted with one substituent selected from the group consisting of halo and methyl, which is in the para position.
    8. A process to control or prevent a fungal attack said process comprising applying to a locus a fungicidal amount of one or more of the compounds according to claim 1.
    9. A process to control or prevent a fungal attack said process comprising applying to a locus a fungicidal amount of one or more of the compounds according to claim 2.
    10. A process to control or prevent a fungal attack said process comprising applying to a locus a fungicidal amount of one or more of the compounds according to claim 3.
    11. A process to control or prevent a fungal attack said process comprising applying to a locus a fungicidal amount of one or more of the compounds according to claim 4.
    12. A process to control or prevent a fungal attack said process comprising applying to a locus a fungicidal amount of one or more of the compounds according to claim 5.
    13. A process to control or prevent a fungal attack said process comprising applying to a locus a fungicidal amount of one or more of the compounds according to claim 6.
    14. A process to control or prevent a fungal attack said process comprising applying to a locus a fungicidal amount of one or more of the compounds according to claim 7.
    15. A composition comprising a disease inhibiting and phytologically acceptable amount of a compound according to claim 1 and at least one additional pesticidal compound selected from the group consisting of fungicides, insecticides, nematocides, miticides, arthropodicides, and bactericides.
    16. A composition comprising a disease inhibiting and phytologically acceptable amount of a compound according to claim 2 and at least one additional pesticidal compound selected from the group consisting of fungicides, insecticides, nematocides, miticides, arthropodicides, and bactericides.
    17. A composition comprising a disease inhibiting and phytologically acceptable amount of a compound according to claim 3 and at least one additional pesticidal compound selected from the group consisting of fungicides, insecticides, nematocides, miticides, arthropodicides, and bactericides.
    18. A composition comprising a disease inhibiting and phytologically acceptable amount of a compound according to claim 4 and at least one additional pesticidal compound selected from the group consisting of fungicides, insecticides, nematocides, miticides, arthropodicides, and bactericides.
    19. A composition comprising a disease inhibiting and phytologically acceptable amount of a compound according to claim 5 and at least one additional pesticidal compound selected from the group consisting of fungicides, insecticides, nematocides, miticides, arthropodicides, and bactericides.
    20. A composition comprising a disease inhibiting and phytologically acceptable amount of a compound according to claim 6 and at least one additional pesticidal compound selected from the group consisting of fungicides, insecticides, nematocides, miticides, arthropodicides, and bactericides.
    21. A composition comprising a disease inhibiting and phytologically acceptable amount of a compound according to claim 7 and at least one additional pesticidal compound selected from the group consisting of fungicides, insecticides, nematocides, miticides, arthropodicides, and bactericides.
    22. A process comprising reacting the appropriate electrophile with the appropriate sulfur nucleophile to produce a compound according to claim 1.
    23. A process comprising reacting the appropriate electrophile with the appropriate sulfur nucleophile to produce a compound according to claim 2.
    24. A process comprising reacting the appropriate electrophile with the appropriate sulfur nucleophile to produce a compound according to claim 3.
    25. A process comprising reacting the appropriate electrophile with the appropriate sulfur nucleophile to produce a compound according to claim 4.
    26. A process comprising reacting the appropriate electrophile with the appropriate sulfur nucleophile to produce a compound according to claim 5.
    27. A process comprising reacting the appropriate electrophile with the appropriate sulfur nucleophile to produce a compound according to claim 6.
    28. A process comprising reacting the appropriate electrophile with the appropriate sulfur nucleophile to produce a compound according to claim 7.
AU2002228640A 2000-11-17 2001-11-16 Compounds having fungicidal activity and processes to make and use same Ceased AU2002228640B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US24965300P 2000-11-17 2000-11-17
US60/249,653 2000-11-17
PCT/US2001/044032 WO2002040431A2 (en) 2000-11-17 2001-11-16 Compounds having fungicidal activity and processes to make and use same

Publications (2)

Publication Number Publication Date
AU2002228640A1 true AU2002228640A1 (en) 2002-08-01
AU2002228640B2 AU2002228640B2 (en) 2005-11-10

Family

ID=22944424

Family Applications (2)

Application Number Title Priority Date Filing Date
AU2002228640A Ceased AU2002228640B2 (en) 2000-11-17 2001-11-16 Compounds having fungicidal activity and processes to make and use same
AU2864002A Pending AU2864002A (en) 2000-11-17 2001-11-16 Compounds having fungicidal activity and processes to make and use same

Family Applications After (1)

Application Number Title Priority Date Filing Date
AU2864002A Pending AU2864002A (en) 2000-11-17 2001-11-16 Compounds having fungicidal activity and processes to make and use same

Country Status (19)

Country Link
US (1) US6815556B2 (en)
EP (1) EP1341534B1 (en)
JP (1) JP4280495B2 (en)
KR (1) KR100796182B1 (en)
CN (1) CN100438865C (en)
AT (1) ATE462429T1 (en)
AU (2) AU2002228640B2 (en)
BR (1) BR0115452A (en)
CA (1) CA2428733A1 (en)
CZ (1) CZ20031300A3 (en)
DE (1) DE60141706D1 (en)
ES (1) ES2339532T3 (en)
HU (1) HUP0303859A3 (en)
MX (1) MXPA03004357A (en)
NZ (1) NZ525744A (en)
PL (1) PL362137A1 (en)
PT (1) PT1341534E (en)
WO (1) WO2002040431A2 (en)
ZA (1) ZA200303819B (en)

Families Citing this family (354)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PT1569518E (en) * 2002-12-06 2008-09-16 Dow Agrosciences Llc Synergistic compositions
US20050215433A1 (en) * 2004-03-26 2005-09-29 Benitez Francisco M Aromatic fluid as agricultural solvent
US7449481B2 (en) * 2004-04-13 2008-11-11 Cephalon, Inc. Thio-substituted biaryl-methanesulfinyl derivatives
CN101312944B (en) * 2005-11-22 2013-03-06 住友化学株式会社 Organic sulfur compounds and use thereof as arthropodicides
JP2009001551A (en) 2007-05-18 2009-01-08 Sumitomo Chemical Co Ltd Organic sulfur compound and its use for controlling harmful arthropod
JP5298631B2 (en) 2007-05-18 2013-09-25 住友化学株式会社 Organic sulfur compounds and their use for controlling harmful arthropods
TW200904329A (en) 2007-05-18 2009-02-01 Sumitomo Chemical Co Organic sulfur compound and its use for controlling harmful arthropod
WO2010103065A1 (en) 2009-03-11 2010-09-16 Basf Se Fungicidal compositions and their use
MX340484B (en) 2009-04-02 2016-07-08 Basf Se Method for reducing sunburn damage in plants.
EP2440535A1 (en) 2009-06-12 2012-04-18 Basf Se Antifungal 1,2,4-triazolyl derivatives having a 5- sulfur substituent
WO2010146032A2 (en) 2009-06-16 2010-12-23 Basf Se Fungicidal mixtures
EP2443098A1 (en) 2009-06-18 2012-04-25 Basf Se Antifungal 1, 2, 4-triazolyl derivatives
WO2010146116A1 (en) 2009-06-18 2010-12-23 Basf Se Triazole compounds carrying a sulfur substituent
KR20120046175A (en) 2009-06-18 2012-05-09 바스프 에스이 Fungicidal mixtures
WO2010146115A1 (en) 2009-06-18 2010-12-23 Basf Se Triazole compounds carrying a sulfur substituent
KR20120062679A (en) 2009-06-18 2012-06-14 바스프 에스이 Triazole compounds carrying a sulfur substituent
BRPI1009597A2 (en) 2009-06-18 2016-03-08 Basf Se triazole compounds of formulas ie ii compounds of formulas ie ii, compounds of formula iv, agricultural composition, use of a compound of formula i, ii and / or iv, method for controlling harmful fungi, seed, pharmaceutical composition and method for treating cancer or virus infections or to control or to combat zoopathogenic or humanopathogenic fungi
CN102803232A (en) 2009-06-18 2012-11-28 巴斯夫欧洲公司 Antifungal 1, 2, 4-triazolyl Derivatives Having A 5- Sulfur Substituent
WO2010149758A1 (en) 2009-06-25 2010-12-29 Basf Se Antifungal 1, 2, 4-triazolyl derivatives
BR112012001001A2 (en) 2009-07-14 2016-11-16 Basf Se azole compounds of formulas i and ii, compounds of formulas i and i, compounds of formula ix, agricultural composition, use of a pharmaceutical compound, method for treating cancer or virus infections to combat zoopathogenic or humanopathogenic fungi
UA108206C2 (en) 2009-07-28 2015-04-10 PESTICIDAL SUSPOPULATION COMPOSITIONS
WO2011026796A1 (en) 2009-09-01 2011-03-10 Basf Se Synergistic fungicidal mixtures comprising lactylates and method for combating phytopathogenic fungi
WO2011069912A1 (en) 2009-12-07 2011-06-16 Basf Se Triazole compounds, use thereof and agents containing said compounds
WO2011069894A1 (en) 2009-12-08 2011-06-16 Basf Se Triazole compounds, use thereof, and agents containing same
WO2011069916A1 (en) 2009-12-08 2011-06-16 Basf Se Triazole compounds, use thereof as a fungicide, and agents comprising same
WO2011110583A2 (en) 2010-03-10 2011-09-15 Basf Se Fungicidal mixtures comprising triazole derivatives
EP2547209B1 (en) 2010-03-18 2021-05-12 Basf Se Fungicidal compositions comprising a phosphate solubilizing microorganism and a fungicidally active compound
EP2366289A1 (en) 2010-03-18 2011-09-21 Basf Se Synergistic fungicidal mixtures
DE102011017541A1 (en) 2010-04-29 2011-11-10 Basf Se Composition useful for controlling phytopathogenic harmful fungi, and protecting a plant propagation material, comprises2',4'-dimethoxy-4-cyclopropyl-1,2,3-thiadiazole-5-carboxanilide and silthiofam
DE102011017670A1 (en) 2010-04-29 2011-11-03 Basf Se Composition, useful e.g. for combating phytopathogenic harmful fungi, e.g. soil-borne pathogens, from classes of Plasmodiophoromycetes, comprises 2',4'-dimethoxy-4-cyclopropyl-1,2,3-thiadiazol-5-carboxanilide and fluxapyroxad
DE102011017669A1 (en) 2010-04-29 2011-11-03 Basf Se Composition, useful e.g. for combating phytopathogenic harmful fungi, e.g. soil-borne pathogens, from classes of Plasmodiophoromycetes, comprises 2',4'-dimethoxy-4-cyclopropyl-1,2,3-thiadiazol-5-carboxanilide and fludioxonil
DE102011017716A1 (en) 2010-04-29 2011-11-03 Basf Se Composition, useful e.g. for combating phytopathogenic harmful fungi, e.g. soil-borne pathogens, from classes of Plasmodiophoromycetes, comprises 2',4'-dimethoxy-4-cyclopropyl-1,2,3-thiadiazol-5-carboxanilide and triticonazole
DE102011017715A1 (en) 2010-04-29 2012-03-08 Basf Se Composition useful for controlling phytopathogenic harmful fungi, and protecting plant propagation materials, comprises 2',4'-dimethoxy-4-cyclopropyl-1,2,3-thiadiazol-5-carboxanilide and pyrimethanil as active ingredients
EP2402343A1 (en) 2010-06-29 2012-01-04 Basf Se Pyrazole-fused bicyclic compounds
EP2402344A1 (en) 2010-06-29 2012-01-04 Basf Se Pyrazole fused bicyclic compounds
EP2401915A1 (en) 2010-06-29 2012-01-04 Basf Se Pyrazolopyridine compounds
EP2402339A1 (en) 2010-06-29 2012-01-04 Basf Se Pyrazolopyridine compounds
EP2402336A1 (en) 2010-06-29 2012-01-04 Basf Se Pyrazolopyridine compounds
EP2402345A1 (en) 2010-06-29 2012-01-04 Basf Se Pyrazole fused bicyclic compounds
EP2402337A1 (en) 2010-06-29 2012-01-04 Basf Se Pyrazolopyridine compounds
EP2402335A1 (en) 2010-06-29 2012-01-04 Basf Se Pyrazolopyridine compounds
EP2402338A1 (en) 2010-06-29 2012-01-04 Basf Se Pyrazolopyridine compounds
EP2402340A1 (en) 2010-06-29 2012-01-04 Basf Se Pyrazolopyridine compounds
MX2013001161A (en) 2010-08-03 2013-03-22 Basf Se Fungicidal compositions.
EP2447262A1 (en) 2010-10-29 2012-05-02 Basf Se Pyrrole, furane and thiophene derivatives and their use as fungicides
EP2447261A1 (en) 2010-10-29 2012-05-02 Basf Se Pyrrole, furane and thiophene derivatives and their use as fungicides
EP2465350A1 (en) 2010-12-15 2012-06-20 Basf Se Pesticidal mixtures
EP2481284A3 (en) 2011-01-27 2012-10-17 Basf Se Pesticidal mixtures
EP3378313A1 (en) 2011-03-23 2018-09-26 Basf Se Compositions containing polymeric, ionic compounds comprising imidazolium groups
US9137997B2 (en) 2011-04-15 2015-09-22 Basf Se Use of substituted dithiine-dicarboximides for combating phytopathogenic fungi
US9253980B2 (en) 2011-04-15 2016-02-09 Basf Se Use of substituted dithiine-tetracarboximides for combating phytopathogenic fungi
US20140045689A1 (en) 2011-04-21 2014-02-13 Richard Riggs 3,4-disubstituted pyrrole 2,5-diones and their use as fungicides
WO2012172061A1 (en) 2011-06-17 2012-12-20 Basf Se Compositions comprising fungicidal substituted dithiines and further actives
PE20140826A1 (en) 2011-07-13 2014-07-09 Basf Se 2- [2-HALOGENALKYL-4- (PHENOXY) -PHENYL] -1- [1,2,4] TRIAZOL-1-IL-ETHANOL SUBSTITUTE COMPOUNDS
BR112014000538A2 (en) 2011-07-15 2016-08-23 Basf Se compounds, process for preparing the compounds, agrochemical compositions, use of the compounds and seed coated
EP2731936A1 (en) 2011-07-15 2014-05-21 Basf Se Fungicidal phenylalkyl-substituted 2-[2-chloro-4-(4-chloro-phenoxy)-phenyl]-1-[1,2,4]triazol-1-yl-ethanol compounds
AU2012285981A1 (en) 2011-07-15 2014-01-30 Basf Se Fungicidal alkyl-substituted 2-[2-chloro-4-(4-chloro-phenoxy)-phenyl]-1-[1,2,4]triazol-1-yl-ethanol compounds
CN103732581B (en) 2011-08-15 2016-05-18 巴斯夫欧洲公司 1-{2-[2-halo-4-(4-halogenated phenoxy) phenyl of antifungal replacement]-2-alkynyloxy group ethyl }-1H-[1,2,4] triazole compounds
EP2559688A1 (en) 2011-08-15 2013-02-20 Basf Se Fungicidal substituted 1-{2-[2-halo-4-(4-halogen-phenoxy)-phenyl]-2-butoxy-ethyl}-1h [1,2,4]triazole compounds
US20140187423A1 (en) 2011-08-15 2014-07-03 Basf Se Fungicidal substituted 1--1H-[1,2,4]triazole compounds
AU2012296887A1 (en) 2011-08-15 2014-01-30 Basf Se Fungicidal substituted 1-{2-[2-halo-4-(4-halogen-phenoxy)-phenyl]-2-alkoxy-3-methyl-butyl}-1H-[1,2,4]triazole compounds
UY34258A (en) 2011-08-15 2013-02-28 Basf Se FUNGICIDE COMPOUNDS OF 1- {2- [2-HALO-4- (4-HALOGEN-Phenoxy) -Phenyl] -2-ALCOXI-2-ALQUINIL / ALQUENIL-ETIL} -1H- [1,2,4] SUBSTITUTED TRIAZOL
EA201400232A1 (en) 2011-08-15 2014-07-30 Басф Се FUNGICIDAL SUBSTITUTED 1- {2- [2-HALOGEN-4- (4-HALOGENPHENOXY) PHENYL] -2-ALKOXI-2-CYCLYLETHYL} -1H- [1,2,4] TRIASOLE COMPOUNDS
AR087535A1 (en) 2011-08-15 2014-04-03 Basf Se FUNGICIDE COMPOUNDS OF 1- {2- [2-HALO-4- (4-HALOGEN-Phenoxy) -Phenyl] -2-ETOXI-ETIL} -1H- [1,2,4] SUBSTITUTED TRIAZOL
CN103717577B (en) 2011-08-15 2016-06-15 巴斯夫欧洲公司 1-{2-ring base oxygen base-2-[2-halogen generation-4-(4-halogenated phenoxy) phenyl] ethyl of the replacement of fungicidal }-1H-[1,2,4] triazole compounds
KR102060290B1 (en) 2011-11-11 2019-12-27 길리어드 아폴로, 엘엘씨 Acc inhibitors and uses thereof
HUE030004T2 (en) 2011-12-21 2017-04-28 Basf Se Use of strobilurin type compounds for combating phytopathogenic fungi resistant to qo inhibitors
WO2013113719A1 (en) 2012-02-03 2013-08-08 Basf Se Fungicidal pyrimidine compounds ii
WO2013113782A1 (en) 2012-02-03 2013-08-08 Basf Se Fungicidal pyrimidine compounds
JP2015508752A (en) 2012-02-03 2015-03-23 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Bactericidal pyrimidine compounds
WO2013113776A1 (en) 2012-02-03 2013-08-08 Basf Se Fungicidal pyrimidine compounds
WO2013113720A1 (en) 2012-02-03 2013-08-08 Basf Se Fungicidal pyrimidine compounds
WO2013113778A1 (en) 2012-02-03 2013-08-08 Basf Se Fungicidal pyrimidine compounds
WO2013113773A1 (en) 2012-02-03 2013-08-08 Basf Se Fungicidal pyrimidine compounds
WO2013113787A1 (en) 2012-02-03 2013-08-08 Basf Se Fungicidal pyrimidine compounds
WO2013113716A1 (en) 2012-02-03 2013-08-08 Basf Se Fungicidal pyrimidine compounds
AU2013214137A1 (en) 2012-02-03 2014-08-21 Basf Se Fungicidal pyrimidine compounds
WO2013113781A1 (en) 2012-02-03 2013-08-08 Basf Se Fungicidal pyrimidine compounds i
WO2013124250A2 (en) 2012-02-20 2013-08-29 Basf Se Fungicidal substituted thiophenes
WO2013135672A1 (en) 2012-03-13 2013-09-19 Basf Se Fungicidal pyrimidine compounds
EP2825533B1 (en) 2012-03-13 2016-10-19 Basf Se Fungicidal pyrimidine compounds
WO2013144213A1 (en) 2012-03-30 2013-10-03 Basf Se N-substituted pyridinylidene compounds and derivatives for combating animal pests
WO2013144223A1 (en) 2012-03-30 2013-10-03 Basf Se N-substituted pyrimidinylidene compounds and derivatives for combating animal pests
WO2013149940A1 (en) 2012-04-02 2013-10-10 Basf Se Acrylamide compounds for combating invertebrate pests
MX2014011995A (en) 2012-04-03 2015-09-04 Basf Se N- substituted hetero - bicyclic furanone derivatives for combating animal.
WO2013150115A1 (en) 2012-04-05 2013-10-10 Basf Se N- substituted hetero - bicyclic compounds and derivatives for combating animal pests
EP2844651A1 (en) 2012-05-04 2015-03-11 Basf Se Substituted pyrazole-containing compounds and their use as pesticides
MX2014014341A (en) 2012-05-24 2015-07-06 Basf Se N-thio-anthranilamide compounds and their use as pesticides.
WO2013186089A2 (en) 2012-06-14 2013-12-19 Basf Se Pesticidal methods using substituted 3-pyridyl thiazole compounds and derivatives for combating animal pests
WO2014009293A1 (en) 2012-07-13 2014-01-16 Basf Se New substituted thiadiazoles and their use as fungicides
EP2871960A1 (en) 2012-07-13 2015-05-20 Basf Se Substituted thiadiazoles and their use as fungicides
CN104768378A (en) 2012-10-01 2015-07-08 巴斯夫欧洲公司 Use of N-thio-anthranilamide compounds on cultivated plants
EP2903439A1 (en) 2012-10-01 2015-08-12 Basf Se Method of controlling ryanodine-modulator insecticide resistant insects
WO2014053401A2 (en) 2012-10-01 2014-04-10 Basf Se Method of improving plant health
EP2903438A1 (en) 2012-10-01 2015-08-12 Basf Se Pesticidally active mixtures comprising anthranilamide compounds
WO2014053403A1 (en) 2012-10-01 2014-04-10 Basf Se Method of controlling insecticide resistant insects
WO2014053405A1 (en) 2012-10-01 2014-04-10 Basf Se Pesticidally active mixtures comprising anthranilamide compounds
WO2014053407A1 (en) 2012-10-01 2014-04-10 Basf Se N-thio-anthranilamide compounds and their use as pesticides
US20150257383A1 (en) 2012-10-12 2015-09-17 Basf Se Method for combating phytopathogenic harmful microbes on cultivated plants or plant propagation material
WO2014079820A1 (en) 2012-11-22 2014-05-30 Basf Se Use of anthranilamide compounds for reducing insect-vectored viral infections
WO2014082881A1 (en) 2012-11-27 2014-06-05 Basf Se Substituted 2-[phenoxy-phenyl]-1-[1,2,4]triazol-1-yl-ethanol compounds and their use as fungicides
WO2014082879A1 (en) 2012-11-27 2014-06-05 Basf Se Substituted [1,2,4]triazole compounds
CN104955813A (en) 2012-11-27 2015-09-30 巴斯夫欧洲公司 Substituted [1, 2, 4] triazole compounds
US20150307459A1 (en) 2012-11-27 2015-10-29 Basf Se Substituted 2-[phenoxy-phenyl]-1-[1,2,4]triazol-1-yl-ethanol Compounds and Their Use as Fungicides
WO2014086856A1 (en) 2012-12-04 2014-06-12 Basf Agro B.V., Arnhem (Nl) Compositions comprising a quillay extract and a biopesticide
WO2014086850A1 (en) 2012-12-04 2014-06-12 Basf Agro B.V., Arnhem (Nl) Compositions comprising a quillay extract and a fungicidal inhibitor of respiratory complex ii
EP2928897A1 (en) 2012-12-04 2015-10-14 Basf Se New substituted 1,4-dithiine derivatives and their use as fungicides
WO2014086854A1 (en) 2012-12-04 2014-06-12 Basf Agro B.V., Arnhem (Nl) Compositions comprising a quillay extract and a plant growth regulator
WO2014095534A1 (en) 2012-12-19 2014-06-26 Basf Se New substituted triazoles and imidazoles and their use as fungicides
EP2746274A1 (en) 2012-12-19 2014-06-25 Basf Se Substituted [1,2,4]triazole compounds
EP2935224A1 (en) 2012-12-19 2015-10-28 Basf Se New substituted triazoles and imidazoles and their use as fungicides
EP2746255A1 (en) 2012-12-19 2014-06-25 Basf Se Substituted [1,2,4]triazole and imidazole compounds
US20150329501A1 (en) 2012-12-19 2015-11-19 Basf Se Substituted [1,2,4]triazole compounds and their use as fungicides
EP2746256A1 (en) 2012-12-19 2014-06-25 Basf Se Fungicidal imidazolyl and triazolyl compounds
EP2746263A1 (en) 2012-12-19 2014-06-25 Basf Se Alpha-substituted triazoles and imidazoles
EP2746279A1 (en) 2012-12-19 2014-06-25 Basf Se Fungicidal imidazolyl and triazolyl compounds
EP2746266A1 (en) 2012-12-19 2014-06-25 Basf Se New substituted triazoles and imidazoles and their use as fungicides
EP2746264A1 (en) 2012-12-19 2014-06-25 Basf Se Substituted [1,2,4]triazole and imidazole compounds
EP2746275A1 (en) 2012-12-19 2014-06-25 Basf Se New substituted triazoles and imidazoles and their use as fungicides
EP3173406A1 (en) 2012-12-19 2017-05-31 Basf Se Substituted [1,2,4]triazole compounds and their use as fungicides
EP2746277A1 (en) 2012-12-19 2014-06-25 Basf Se Fungicidal imidazolyl and triazolyl compounds
EP2746276A1 (en) 2012-12-19 2014-06-25 Basf Se New substituted triazoles and imidazoles and their use as fungicides
WO2014095381A1 (en) 2012-12-19 2014-06-26 Basf Se Fungicidal imidazolyl and triazolyl compounds
EP2746262A1 (en) 2012-12-19 2014-06-25 Basf Se Substituted [1,2,4]triazole and imidazole compounds for combating phytopathogenic fungi
WO2014095555A1 (en) 2012-12-19 2014-06-26 Basf Se New substituted triazoles and imidazoles and their use as fungicides
EP2745691A1 (en) 2012-12-19 2014-06-25 Basf Se Substituted imidazole compounds and their use as fungicides
EP2746278A1 (en) 2012-12-19 2014-06-25 Basf Se Substituted [1,2,4]triazole and imidazole compounds
CN105050406B (en) 2012-12-20 2017-09-15 巴斯夫农业公司 Composition comprising triazole compounds
EP2746259A1 (en) 2012-12-21 2014-06-25 Basf Se Substituted [1,2,4]triazole and imidazole compounds
EP2746260A1 (en) 2012-12-21 2014-06-25 Basf Se Substituted [1,2,4]triazole and imidazole compounds
EP2746257A1 (en) 2012-12-21 2014-06-25 Basf Se Substituted [1,2,4]triazole and imidazole compounds
EP2746258A1 (en) 2012-12-21 2014-06-25 Basf Se Substituted [1,2,4]triazole and imidazole compounds
EP2938611A1 (en) 2012-12-27 2015-11-04 Basf Se 2-(pyridin-3-yl)-5-hetaryl-thiazole compounds carrying an imine or imine-derived substituent for combating invertebrate pests
WO2014118099A1 (en) 2013-01-30 2014-08-07 Basf Se Fungicidal naphthoquinones and derivatives
WO2014124850A1 (en) 2013-02-14 2014-08-21 Basf Se Substituted [1,2,4]triazole and imidazole compounds
CA2898583C (en) 2013-03-20 2023-09-26 Basf Corporation Synergistic compositions comprising a bacillus subtilis strain and a biopesticide
UA119233C2 (en) 2013-03-20 2019-05-27 Басф Корпорейшн Synergistic compositions comprising a bacillus subtilis strain and a pesticide
EP2783569A1 (en) 2013-03-28 2014-10-01 Basf Se Compositions comprising a triazole compound
BR112015026357A2 (en) 2013-04-19 2017-07-25 Basf Se compost, agricultural or veterinary composition, methods for the control or control of pests, the protection of plants, the protection of propagating material and the treatment of animals and the use of a compost
JP6434498B2 (en) 2013-05-10 2018-12-05 ギリアド アポロ, エルエルシー ACC inhibitors and uses thereof
CA2911818A1 (en) 2013-05-10 2014-11-13 Nimbus Apollo, Inc. Acc inhibitors and uses thereof
EP2813499A1 (en) 2013-06-12 2014-12-17 Basf Se Substituted [1,2,4]triazole and imidazole compounds
EP2815647A1 (en) 2013-06-18 2014-12-24 Basf Se Novel strobilurin-type compounds for combating phytopathogenic fungi
EP2815649A1 (en) 2013-06-18 2014-12-24 Basf Se Fungicidal mixtures II comprising strobilurin-type fungicides
BR112015031439A2 (en) 2013-06-21 2017-07-25 Basf Se methods for pest control or control, for the treatment, prevention and protection of soybean crops, for the control and protection of soybean propagating material, for the control or control of pests and the use of a compound of formula I
KR20160030565A (en) 2013-07-15 2016-03-18 바스프 에스이 Pesticide compounds
WO2015011615A1 (en) 2013-07-22 2015-01-29 Basf Corporation Mixtures comprising a trichoderma strain and a pesticide
EP2835052A1 (en) 2013-08-07 2015-02-11 Basf Se Fungicidal mixtures comprising pyrimidine fungicides
EP2839745A1 (en) 2013-08-21 2015-02-25 Basf Se Agrochemical formulations comprising a 2-ethyl-hexanol alkoxylate
WO2015036059A1 (en) 2013-09-16 2015-03-19 Basf Se Fungicidal pyrimidine compounds
WO2015036058A1 (en) 2013-09-16 2015-03-19 Basf Se Fungicidal pyrimidine compounds
AU2014323072B2 (en) 2013-09-19 2018-01-18 Basf Se N-acylimino heterocyclic compounds
JP6644681B2 (en) 2013-10-18 2020-02-12 ビーエーエスエフ アグロケミカル プロダクツ ビー.ブイ. Use of pesticidally active carboxamide derivatives in soil and seed applications and methods of treatment
WO2015086462A1 (en) 2013-12-12 2015-06-18 Basf Se Substituted [1,2,4]triazole and imidazole compounds
JP2017502022A (en) 2013-12-18 2017-01-19 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se N-substituted imino heterocyclic compounds
CN105829296A (en) 2013-12-18 2016-08-03 巴斯夫欧洲公司 Azole compounds carrying an imine-derived substituent
WO2015104422A1 (en) 2014-01-13 2015-07-16 Basf Se Dihydrothiophene compounds for controlling invertebrate pests
US9815798B2 (en) 2014-03-26 2017-11-14 Basf Se Substituted [1,2,4]triazole and imidazole compounds as fungicides
EP2924027A1 (en) 2014-03-28 2015-09-30 Basf Se Substituted [1,2,4]triazole and imidazole fungicidal compounds
EP2949649A1 (en) 2014-05-30 2015-12-02 Basf Se Fungicide substituted [1,2,4]triazole and imidazole compounds
EP2949216A1 (en) 2014-05-30 2015-12-02 Basf Se Fungicidal substituted alkynyl [1,2,4]triazole and imidazole compounds
US10118906B2 (en) 2014-06-06 2018-11-06 Basf Se Use of substituted oxadiazoles for combating phytopathogenic fungi
EP2952512A1 (en) 2014-06-06 2015-12-09 Basf Se Substituted [1,2,4]triazole compounds
EP2952507A1 (en) 2014-06-06 2015-12-09 Basf Se Substituted [1,2,4]triazole compounds
EP2952506A1 (en) 2014-06-06 2015-12-09 Basf Se Substituted [1,2,4]triazole and imidazole compounds
AR100743A1 (en) 2014-06-06 2016-10-26 Basf Se COMPOUNDS OF [1,2,4] SUBSTITUTED TRIAZOL
EP2979549A1 (en) 2014-07-31 2016-02-03 Basf Se Method for improving the health of a plant
BR112017005140A2 (en) 2014-10-06 2018-01-23 Basf Se compounding, mixing, composition, crop protection methods and control or control of invertebrate pests, non-therapeutic method for the treatment of parasite and seed-infested animals
ES2774793T3 (en) 2014-10-24 2020-07-22 Basf Se Organic pesticide particles
BR112017009513A2 (en) 2014-11-06 2018-02-06 Basf Se use of a heterobicyclic compound, use of compounds i, compounds, agricultural or veterinary composition, method for pest control or control, method for crop and seed protection
EP3028573A1 (en) 2014-12-05 2016-06-08 Basf Se Use of a triazole fungicide on transgenic plants
WO2016124769A1 (en) 2015-02-06 2016-08-11 Basf Se Pyrazole compounds as nitrification inhibitors
WO2016128240A1 (en) 2015-02-11 2016-08-18 Basf Se Pesticidal mixture comprising a pyrazole compound and two fungicides
BR112017015061B1 (en) 2015-02-11 2022-09-27 Basf Se PESTICIDE MIXTURE COMPRISING AN ACTIVE COMPOUND OF FORMULA IA AND BROFLANILIDE
US11064696B2 (en) 2015-04-07 2021-07-20 Basf Agrochemical Products B.V. Use of an insecticidal carboxamide compound against pests on cultivated plants
CA2983964A1 (en) 2015-05-12 2016-11-17 Basf Se Thioether compounds as nitrification inhibitors
WO2016198613A1 (en) 2015-06-11 2016-12-15 Basf Se N-(thio)acylimino compounds
WO2016198611A1 (en) 2015-06-11 2016-12-15 Basf Se N-(thio)acylimino heterocyclic compounds
WO2017016883A1 (en) 2015-07-24 2017-02-02 Basf Se Process for preparation of cyclopentene compounds
AU2016333498A1 (en) 2015-10-02 2018-04-05 Basf Se Imino compounds with a 2-chloropyrimidin-5-yl substituent as pest-control agents
EP3359530A1 (en) 2015-10-05 2018-08-15 Basf Se Pyridine derivatives for combating phytopathogenic fungi
WO2017076757A1 (en) 2015-11-02 2017-05-11 Basf Se Substituted oxadiazoles for combating phytopathogenic fungi
EP3165094A1 (en) 2015-11-03 2017-05-10 Basf Se Substituted oxadiazoles for combating phytopathogenic fungi
EP3370525A1 (en) 2015-11-04 2018-09-12 Basf Se Substituted oxadiazoles for combating phytopathogenic fungi
EP3165093A1 (en) 2015-11-05 2017-05-10 Basf Se Substituted oxadiazoles for combating phytopathogenic fungi
EP3167716A1 (en) 2015-11-10 2017-05-17 Basf Se Substituted oxadiazoles for combating phytopathogenic fungi
WO2017081310A1 (en) 2015-11-13 2017-05-18 Basf Se Substituted oxadiazoles for combating phytopathogenic fungi
BR112018009579A2 (en) 2015-11-13 2018-11-06 Basf Se compound of formula i, mixture, agrochemical composition, compound use and fungal control method
KR20180083419A (en) 2015-11-19 2018-07-20 바스프 에스이 Substituted oxadiazoles for combating phytopathogenic fungi
EA201891153A1 (en) 2015-11-19 2018-11-30 Басф Се SUBSTITUTED OXADIAZOLES FOR FIGHT AGAINST PHYTOPATHOGEN MUSHROOMS
CN108290902B (en) 2015-11-25 2021-08-31 吉利德阿波罗公司 Ester ACC inhibitors and uses thereof
PT3380479T (en) 2015-11-25 2023-03-13 Gilead Apollo Llc Triazole acc inhibitors and uses thereof
CN108349995B (en) 2015-11-25 2021-08-03 吉利德阿波罗公司 Pyrazole ACC inhibitors and uses thereof
WO2017093163A1 (en) 2015-11-30 2017-06-08 Basf Se Mixtures of cis-jasmone and bacillus amyloliquefaciens
US10696634B2 (en) 2015-12-01 2020-06-30 Basf Se Pyridine compounds as fungicides
BR112018010316A2 (en) 2015-12-01 2018-12-04 Basf Se compounds of formula, composition, use of a compound of formula, method for combating phytopathogenic fungi and seed
EP3205208A1 (en) 2016-02-09 2017-08-16 Basf Se Mixtures and compositions comprising paenibacillus strains or fusaricidins and chemical pesticides
EP3426660A1 (en) 2016-03-09 2019-01-16 Basf Se Spirocyclic derivatives
US20190098899A1 (en) 2016-03-10 2019-04-04 Basf Se Fungicidal mixtures iii comprising strobilurin-type fungicides
BR112018068042A2 (en) 2016-03-11 2019-01-08 Basf Se methods for controlling plant pests, plant propagating material and use of one or more compounds of formula i
KR102411744B1 (en) 2016-04-01 2022-06-21 바스프 에스이 bicyclic compounds
CA3020532A1 (en) 2016-04-11 2017-10-19 Basf Se Substituted oxadiazoles for combating phytopathogenic fungi
WO2017198588A1 (en) 2016-05-18 2017-11-23 Basf Se Capsules comprising benzylpropargylethers for use as nitrification inhibitors
EP3512337A1 (en) 2016-09-13 2019-07-24 Basf Se Fungicidal mixtures i comprising quinoline fungicides
WO2018054711A1 (en) 2016-09-26 2018-03-29 Basf Se Pyridine compounds for controlling phytopathogenic harmful fungi
WO2018054721A1 (en) 2016-09-26 2018-03-29 Basf Se Pyridine compounds for controlling phytopathogenic harmful fungi
WO2018054723A1 (en) 2016-09-26 2018-03-29 Basf Se Pyridine compounds for controlling phytopathogenic harmful fungi
WO2018065182A1 (en) 2016-10-04 2018-04-12 Basf Se Reduced quinoline compounds as antifuni agents
WO2018073110A1 (en) 2016-10-20 2018-04-26 Basf Se Quinoline compounds as fungicides
WO2018108671A1 (en) 2016-12-16 2018-06-21 Basf Se Pesticidal compounds
EP3555056A1 (en) 2016-12-19 2019-10-23 Basf Se Substituted oxadiazoles for combating phytopathogenic fungi
EP3339297A1 (en) 2016-12-20 2018-06-27 Basf Se Substituted oxadiazoles for combating phytopathogenic fungi
EP3338552A1 (en) 2016-12-21 2018-06-27 Basf Se Use of a tetrazolinone fungicide on transgenic plants
BR112019014061A2 (en) 2017-01-23 2020-02-04 Basf Se compounds of formula i, intermediates b, intermediates c, intermediates ii and intermediates d, composition, use, method to combat phytopathogenic fungi, seed and process for the synthesis of the compounds of formula i
WO2018149754A1 (en) 2017-02-16 2018-08-23 Basf Se Pyridine compounds
EP3585773B1 (en) 2017-02-21 2021-04-07 Basf Se Substituted oxadiazoles for combating phytopathogenic fungi
WO2018162312A1 (en) 2017-03-10 2018-09-13 Basf Se Spirocyclic derivatives
WO2018166855A1 (en) 2017-03-16 2018-09-20 Basf Se Heterobicyclic substituted dihydroisoxazoles
MX2019011626A (en) 2017-03-28 2019-12-05 Basf Se Pesticidal compounds.
CN110461854A (en) 2017-03-31 2019-11-15 巴斯夫欧洲公司 The method for preparing chirality 2,3- thiazoline simultaneously [3,2-A] pyrimidine -4- compound
EP3606914A1 (en) 2017-04-06 2020-02-12 Basf Se Pyridine compounds
EP3606912A1 (en) 2017-04-07 2020-02-12 Basf Se Substituted oxadiazoles for combating phytopathogenic fungi
WO2018188962A1 (en) 2017-04-11 2018-10-18 Basf Se Substituted oxadiazoles for combating phytopathogenic fungi
RU2019136993A (en) 2017-04-20 2021-05-20 Пи Индастриз Лтд. NEW PHENYLAMINE COMPOUNDS
WO2018192793A1 (en) 2017-04-20 2018-10-25 Basf Se Substituted rhodanine derivatives
CN110582492A (en) 2017-04-26 2019-12-17 巴斯夫欧洲公司 Substituted succinimide derivatives as pesticides
EP3618629A1 (en) 2017-05-02 2020-03-11 Basf Se Fungicidal mixture comprising substituted 3-phenyl-5-(trifluoromethyl)-1,2,4-oxadiazoles
WO2018202491A1 (en) 2017-05-04 2018-11-08 Basf Se Substituted trifluoromethyloxadiazoles for combating phytopathogenic fungi
US20210084900A1 (en) 2017-05-04 2021-03-25 Basf Se Substituted 5-(haloalkyl)-5-hydroxy-isoxazoles for Combating Phytopathogenic Fungi
EP3618628A1 (en) 2017-05-05 2020-03-11 Basf Se Fungicidal mixtures comprising triazole compounds
AU2018266990B2 (en) 2017-05-10 2022-01-27 Basf Se Bicyclic pesticidal compounds
WO2018210658A1 (en) 2017-05-15 2018-11-22 Basf Se Heteroaryl compounds as agrochemical fungicides
WO2018210659A1 (en) 2017-05-15 2018-11-22 Basf Se Heteroaryl compounds as agrochemical fungicides
WO2018210661A1 (en) 2017-05-15 2018-11-22 Basf Se Heteroaryl compounds as agrochemical fungicides
WO2018210660A1 (en) 2017-05-15 2018-11-22 Basf Se Heteroaryl compounds as agrochemical fungicides
US20200148635A1 (en) 2017-05-18 2020-05-14 Pi Industries Ltd. Formimidamidine compounds useful against phytopathogenic microorganisms
US11737463B2 (en) 2017-05-30 2023-08-29 Basf Se Pyridine and pyrazine compounds
WO2018219797A1 (en) 2017-06-02 2018-12-06 Basf Se Substituted oxadiazoles for combating phytopathogenic fungi
WO2018224455A1 (en) 2017-06-07 2018-12-13 Basf Se Substituted cyclopropyl derivatives
CN110770235A (en) 2017-06-16 2020-02-07 巴斯夫欧洲公司 Mesoionic imidazolium compounds and derivatives for combating animal pests
EP3642187A1 (en) 2017-06-19 2020-04-29 Basf Se 2-[[5-(trifluoromethyl)-1,2,4-oxadiazol-3-yl]aryloxy](thio)acetamides for combating phytopathogenic fungi
US11542280B2 (en) 2017-06-19 2023-01-03 Basf Se Substituted pyrimidinium compounds and derivatives for combating animal pests
WO2018234488A1 (en) 2017-06-23 2018-12-27 Basf Se Substituted cyclopropyl derivatives
WO2019002158A1 (en) 2017-06-30 2019-01-03 Basf Se Substituted trifluoromethyloxadiazoles for combating phytopathogenic fungi
WO2019025250A1 (en) 2017-08-04 2019-02-07 Basf Se Substituted trifluoromethyloxadiazoles for combating phytopathogenic fungi
WO2019038042A1 (en) 2017-08-21 2019-02-28 Basf Se Substituted trifluoromethyloxadiazoles for combating phytopathogenic fungi
WO2019042800A1 (en) 2017-08-29 2019-03-07 Basf Se Pesticidal mixtures
WO2019042932A1 (en) 2017-08-31 2019-03-07 Basf Se Method of controlling rice pests in rice
EP3453706A1 (en) 2017-09-08 2019-03-13 Basf Se Pesticidal imidazole compounds
EP3684761A1 (en) 2017-09-18 2020-07-29 Basf Se Substituted trifluoromethyloxadiazoles for combating phytopathogenic fungi
WO2019057660A1 (en) 2017-09-25 2019-03-28 Basf Se Indole and azaindole compounds with substituted 6-membered aryl and heteroaryl rings as agrochemical fungicides
WO2019072906A1 (en) 2017-10-13 2019-04-18 Basf Se Imidazolidine pyrimidinium compounds for combating animal pests
EP3713936B1 (en) 2017-11-23 2021-10-20 Basf Se Substituted trifluoromethyloxadiazoles for combating phytopathogenic fungi
WO2019115511A1 (en) 2017-12-14 2019-06-20 Basf Se Fungicidal mixture comprising substituted 3-phenyl-5-(trifluoromethyl)-1,2,4-oxadiazoles
EP3723485A1 (en) 2017-12-15 2020-10-21 Basf Se Fungicidal mixture comprising substituted pyridines
WO2019121143A1 (en) 2017-12-20 2019-06-27 Basf Se Substituted cyclopropyl derivatives
KR20200112816A (en) 2017-12-20 2020-10-05 피아이 인더스트리스 엘티디. Preparation and use of fluorine alkyl compounds
JP7285844B2 (en) 2017-12-21 2023-06-02 ビーエーエスエフ ソシエタス・ヨーロピア biocide compound
WO2019145140A1 (en) 2018-01-09 2019-08-01 Basf Se Silylethynyl hetaryl compounds as nitrification inhibitors
WO2019137995A1 (en) 2018-01-11 2019-07-18 Basf Se Novel pyridazine compounds for controlling invertebrate pests
KR20200130812A (en) 2018-01-30 2020-11-20 피아이 인더스트리스 엘티디. Oxadiazole for use in controlling plant pathogenic fungi
WO2019150311A1 (en) 2018-02-02 2019-08-08 Pi Industries Ltd. 1-3 dithiol compounds and their use for the protection of crops from phytopathogenic microorganisms
WO2019154665A1 (en) 2018-02-07 2019-08-15 Basf Se New pyridine carboxamides
WO2019154663A1 (en) 2018-02-07 2019-08-15 Basf Se New pyridine carboxamides
EP3530118A1 (en) 2018-02-26 2019-08-28 Basf Se Fungicidal mixtures
EP3530116A1 (en) 2018-02-27 2019-08-28 Basf Se Fungicidal mixtures comprising xemium
WO2019166252A1 (en) 2018-02-28 2019-09-06 Basf Se Fungicidal mixtures comprising fenpropidin
EP3758491A1 (en) 2018-02-28 2021-01-06 Basf Se Use of pyrazole propargyl ethers as nitrification inhibitors
WO2019166560A1 (en) 2018-02-28 2019-09-06 Basf Se Use of n-functionalized alkoxy pyrazole compounds as nitrification inhibitors
IL297413B1 (en) 2018-02-28 2024-03-01 Basf Se Use of alkoxypyrazoles as nitrification inhibitors
WO2019166257A1 (en) 2018-03-01 2019-09-06 BASF Agro B.V. Fungicidal compositions of mefentrifluconazole
EP3533333A1 (en) 2018-03-02 2019-09-04 Basf Se Fungicidal mixtures comprising pydiflumetofen
EP3533331A1 (en) 2018-03-02 2019-09-04 Basf Se Fungicidal mixtures comprising pydiflumetofen
EP3536150A1 (en) 2018-03-06 2019-09-11 Basf Se Fungicidal mixtures comprising fluxapyroxad
EP3762367A1 (en) 2018-03-09 2021-01-13 PI Industries Ltd. Heterocyclic compounds as fungicides
WO2019175712A1 (en) 2018-03-14 2019-09-19 Basf Corporation New uses for catechol molecules as inhibitors to glutathione s-transferase metabolic pathways
WO2019175713A1 (en) 2018-03-14 2019-09-19 Basf Corporation New catechol molecules and their use as inhibitors to p450 related metabolic pathways
WO2019185413A1 (en) 2018-03-27 2019-10-03 Basf Se Pesticidal substituted cyclopropyl derivatives
WO2019202459A1 (en) 2018-04-16 2019-10-24 Pi Industries Ltd. Use of 4-substituted phenylamidine compounds for controlling disease rust diseases in plants
JP7433244B2 (en) 2018-05-15 2024-02-19 ビーエーエスエフ ソシエタス・ヨーロピア Mixtures containing benzpyrimoxane and oxazosulfil and methods of use and application thereof
WO2019219464A1 (en) 2018-05-15 2019-11-21 Basf Se Substituted trifluoromethyloxadiazoles for combating phytopathogenic fungi
WO2019224092A1 (en) 2018-05-22 2019-11-28 Basf Se Pesticidally active c15-derivatives of ginkgolides
WO2020002472A1 (en) 2018-06-28 2020-01-02 Basf Se Use of alkynylthiophenes as nitrification inhibitors
DK3826982T3 (en) 2018-07-23 2024-01-22 Basf Se USE OF A SUBSTITUTED THIAZOLIDE COMPOUND AS A NITRIFICATION INHIBITOR
WO2020020777A1 (en) 2018-07-23 2020-01-30 Basf Se Use of substituted 2-thiazolines as nitrification inhibitors
WO2020035826A1 (en) 2018-08-17 2020-02-20 Pi Industries Ltd. 1,2-dithiolone compounds and use thereof
EP3613736A1 (en) 2018-08-22 2020-02-26 Basf Se Substituted glutarimide derivatives
CA3112042A1 (en) 2018-09-28 2020-04-02 Basf Se Method of controlling pests by seed treatment application of a mesoionic compound or mixture thereof
EP3628156A1 (en) 2018-09-28 2020-04-01 Basf Se Method for controlling pests of sugarcane, citrus, rapeseed, and potato plants
EP3628157A1 (en) 2018-09-28 2020-04-01 Basf Se Method of controlling insecticide resistant insects and virus transmission to plants
EP3628158A1 (en) 2018-09-28 2020-04-01 Basf Se Pesticidal mixture comprising a mesoionic compound and a biopesticide
KR20210098946A (en) 2018-10-01 2021-08-11 피아이 인더스트리스 엘티디. Oxadiazole as a fungicide
JP2022501410A (en) 2018-10-01 2022-01-06 ピーアイ インダストリーズ リミテッドPi Industries Ltd New oxadiazole
EP3643705A1 (en) 2018-10-24 2020-04-29 Basf Se Pesticidal compounds
WO2020095161A1 (en) 2018-11-05 2020-05-14 Pi Industries Ltd. Nitrone compounds and use thereof
BR112021008491A2 (en) 2018-11-28 2021-08-03 Basf Se compound of formula I, composition, method of combating or controlling invertebrate pests, method of protecting growing plants, seed, use of compound of formula I and method of treating or protecting animals
EP3670501A1 (en) 2018-12-17 2020-06-24 Basf Se Substituted [1,2,4]triazole compounds as fungicides
EP3898623A1 (en) 2018-12-18 2021-10-27 Basf Se Substituted pyrimidinium compounds for combating animal pests
EP3696177A1 (en) 2019-02-12 2020-08-19 Basf Se Heterocyclic compounds for the control of invertebrate pests
AU2020272217A1 (en) 2019-04-08 2021-10-07 Pi Industries Limited Novel oxadiazole compounds for controlling or preventing phytopathogenic fungi
MX2021012324A (en) 2019-04-08 2021-11-12 Pi Industries Ltd Novel oxadiazole compounds for controlling or preventing phytopathogenic fungi.
CN114026077A (en) 2019-04-08 2022-02-08 Pi工业有限公司 Novel oxadiazole compounds for controlling or preventing phytopathogenic fungi
EP3730489A1 (en) 2019-04-25 2020-10-28 Basf Se Heteroaryl compounds as agrochemical fungicides
EP3769623A1 (en) 2019-07-22 2021-01-27 Basf Se Mesoionic imidazolium compounds and derivatives for combating animal pests
EP3975718A1 (en) 2019-05-29 2022-04-06 Basf Se Mesoionic imidazolium compounds and derivatives for combating animal pests
WO2020244970A1 (en) 2019-06-06 2020-12-10 Basf Se New carbocyclic pyridine carboxamides
WO2020244968A1 (en) 2019-06-06 2020-12-10 Basf Se Fungicidal n-(pyrid-3-yl)carboxamides
WO2020244969A1 (en) 2019-06-06 2020-12-10 Basf Se Pyridine derivatives and their use as fungicides
EP3766879A1 (en) 2019-07-19 2021-01-20 Basf Se Pesticidal pyrazole derivatives
AR119774A1 (en) 2019-08-19 2022-01-12 Pi Industries Ltd OXADIAZOLE COMPOUNDS CONTAINING A 5-MEMBER HETEROAROMATIC RING TO CONTROL OR PREVENT PHYTOPATHOGENIC FUNGI
WO2021063735A1 (en) 2019-10-02 2021-04-08 Basf Se New bicyclic pyridine derivatives
WO2021063736A1 (en) 2019-10-02 2021-04-08 Basf Se Bicyclic pyridine derivatives
AR120374A1 (en) 2019-11-08 2022-02-09 Pi Industries Ltd OXADIAZOLE COMPOUNDS CONTAINING FUSED HETEROCYCYL RINGS TO CONTROL OR PREVENT PHYTOPATHOGENIC FUNGI
CA3162521A1 (en) 2019-12-23 2021-07-01 Basf Se Enzyme enhanced root uptake of agrochemical active compound
WO2021170463A1 (en) 2020-02-28 2021-09-02 BASF Agro B.V. Methods and uses of a mixture comprising alpha-cypermethrin and dinotefuran for controlling invertebrate pests in turf
EP4114185A1 (en) 2020-03-04 2023-01-11 Basf Se Use of substituted 1,2,4-oxadiazoles for combating phytopathogenic fungi
WO2021209360A1 (en) 2020-04-14 2021-10-21 Basf Se Fungicidal mixtures comprising substituted 3-phenyl-5-(trifluoromethyl)-1,2,4-oxadiazoles
EP3903584A1 (en) 2020-04-28 2021-11-03 Basf Se Use of strobilurin type compounds for combating phytopathogenic fungi containing an amino acid substitution f129l in the mitochondrial cytochrome b protein conferring resistance to qo inhibitors iv
WO2021219513A1 (en) 2020-04-28 2021-11-04 Basf Se Pesticidal compounds
EP3903583A1 (en) 2020-04-28 2021-11-03 Basf Se Use of strobilurin type compounds for combating phytopathogenic fungi containing an amino acid substitution f129l in the mitochondrial cytochrome b protein conferring resistance to qo inhibitors iii
EP3903582A1 (en) 2020-04-28 2021-11-03 Basf Se Use of strobilurin type compounds for combating phytopathogenic fungi containing an amino acid substitution f129l in the mitochondrial cytochrome b protein conferring resistance to qo inhibitors ii
EP3903581A1 (en) 2020-04-28 2021-11-03 Basf Se Use of strobilurin type compounds for combating phytopathogenic fungi containing an amino acid substitution f129l in the mitochondrial cytochrome b protein conferring resistance to qo inhibitors i
EP3909950A1 (en) 2020-05-13 2021-11-17 Basf Se Heterocyclic compounds for the control of invertebrate pests
EP3945089A1 (en) 2020-07-31 2022-02-02 Basf Se Use of strobilurin type compounds for combating phytopathogenic fungi containing an amino acid substitution f129l in the mitochondrial cytochrome b protein conferring resistance to qo inhibitors v
WO2021249800A1 (en) 2020-06-10 2021-12-16 Basf Se Substituted [1,2,4]triazole compounds as fungicides
EP3939961A1 (en) 2020-07-16 2022-01-19 Basf Se Strobilurin type compounds and their use for combating phytopathogenic fungi
WO2022017836A1 (en) 2020-07-20 2022-01-27 BASF Agro B.V. Fungicidal compositions comprising (r)-2-[4-(4-chlorophenoxy)-2-(trifluoromethyl)phenyl]-1- (1,2,4-triazol-1-yl)propan-2-ol
EP3970494A1 (en) 2020-09-21 2022-03-23 Basf Se Use of strobilurin type compounds for combating phytopathogenic fungi containing an amino acid substitution f129l in the mitochondrial cytochrome b protein conferring resistance to qo inhibitors viii
AR123264A1 (en) 2020-08-18 2022-11-16 Pi Industries Ltd NEW HETEROCYCLIC COMPOUNDS TO COMBAT PHYTOPATHOGENIC FUNGI
WO2022058878A1 (en) 2020-09-15 2022-03-24 Pi Industries Limited Novel picolinamide compounds for combating phytopathogenic fungi
AR123501A1 (en) 2020-09-15 2022-12-07 Pi Industries Ltd NEW PICOLINAMIDE COMPOUNDS TO COMBAT PHYTOPATHOGENIC FUNGI
AR123594A1 (en) 2020-09-26 2022-12-21 Pi Industries Ltd NEMATICIDAL COMPOUNDS AND THEIR USE
CN116209355A (en) 2020-10-27 2023-06-02 巴斯夫农业公司 Composition containing haloxyfop-methyl
EP4018830A1 (en) 2020-12-23 2022-06-29 Basf Se Pesticidal mixtures
EP4043444A1 (en) 2021-02-11 2022-08-17 Basf Se Substituted isoxazoline derivatives
BR112023022854A2 (en) 2021-05-05 2024-01-23 Pi Industries Ltd INNOVATIVE FUSED HETEROCYCLIC COMPOUNDS TO COMBAT PHYTOPATHOGENIC FUNGI
WO2022238157A1 (en) 2021-05-11 2022-11-17 Basf Se Fungicidal mixtures comprising substituted 3-phenyl-5-(trifluoromethyl)-1,2,4-oxadiazoles
KR20240008857A (en) 2021-05-18 2024-01-19 바스프 에스이 Novel substituted pyridines as fungicides
EP4341257A1 (en) 2021-05-18 2024-03-27 Basf Se New substituted quinolines as fungicides
AR125925A1 (en) 2021-05-26 2023-08-23 Pi Industries Ltd FUNGICIDAL COMPOSITION CONTAINING OXADIAZOLE COMPOUNDS
EP4094579A1 (en) 2021-05-28 2022-11-30 Basf Se Pesticidal mixtures comprising metyltetraprole
EP4119547A1 (en) 2021-07-12 2023-01-18 Basf Se Triazole compounds for the control of invertebrate pests
CN117794907A (en) 2021-08-02 2024-03-29 巴斯夫欧洲公司 (3-pyridinyl) -quinazolines
EP4140986A1 (en) 2021-08-23 2023-03-01 Basf Se Pyrazine compounds for the control of invertebrate pests
EP4140995A1 (en) 2021-08-27 2023-03-01 Basf Se Pyrazine compounds for the control of invertebrate pests
EP4151631A1 (en) 2021-09-20 2023-03-22 Basf Se Heterocyclic compounds for the control of invertebrate pests
WO2023072671A1 (en) 2021-10-28 2023-05-04 Basf Se Use of strobilurin type compounds for combating phytopathogenic fungi containing an amino acid substitution f129l in the mitochondrial cytochrome b protein conferring resistance to qo inhibitors ix
WO2023072670A1 (en) 2021-10-28 2023-05-04 Basf Se Use of strobilurin type compounds for combating phytopathogenic fungi containing an amino acid substitution f129l in the mitochondrial cytochrome b protein conferring resistance to qo inhibitors x
EP4194453A1 (en) 2021-12-08 2023-06-14 Basf Se Pyrazine compounds for the control of invertebrate pests
EP4198023A1 (en) 2021-12-16 2023-06-21 Basf Se Pesticidally active thiosemicarbazone compounds
AR127972A1 (en) 2021-12-17 2024-03-13 Pi Industries Ltd NOVEL FUSED SUBSTITUTED BICYCLIC CARBOXAMIDE PYRIDINE COMPOUNDS TO COMBAT PHYTOPATHOGENIC FUNGI
EP4238971A1 (en) 2022-03-02 2023-09-06 Basf Se Substituted isoxazoline derivatives
WO2023203066A1 (en) 2022-04-21 2023-10-26 Basf Se Synergistic action as nitrification inhibitors of dcd oligomers with alkoxypyrazole and its oligomers
WO2024028243A1 (en) 2022-08-02 2024-02-08 Basf Se Pyrazolo pesticidal compounds

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5346907A (en) * 1988-04-05 1994-09-13 Abbott Laboratories Amino acid analog CCK antagonists
MY114302A (en) * 1995-04-19 2002-09-30 Ihara Chemical Ind Co Benzylsulfide derivative, process for its production and pesticide

Similar Documents

Publication Publication Date Title
US6815556B2 (en) Compounds having fungicidal activity and processes to make and use same
AU2002228640A1 (en) Compounds having fungicidal activity and processes to make and use same
JP2858756B2 (en) PROPENIC ACID DERIVATIVES, PROCESS FOR PRODUCING THEM, AND BACTERICIDAL COMPOSITION CONTAINING THEM
EP4050000A1 (en) Aryl sulfide containing benzylamine structure, synthesis method therefor and application thereof
US6432951B1 (en) 2-methoxyimino-2-(pyridinyloxymethyl)phenyl acetamides with (derivatized) hydroxyalkyl derivatives on the pyridine ring
US3760085A (en) Method of combating fungi using n-substituted phthalimides
EP0406700B1 (en) 3-Anilino-benzisothiazoles and fungicides containing them
US6333432B1 (en) Fungicidal compositions and methods, and compounds and methods for the preparation thereof
US6559170B1 (en) Pyridine derivatives having fungicidal activity and processes to produce and use same
JPH0625168A (en) Fungicidal benzylpyridines
TWI296504B (en) Compounds having fungicidal activity and processes to make and use same
US6734143B2 (en) 2-methoxyimino-2(pyridinyloxymethyl)phenyl acetamides useful as fungicides
JPH08277277A (en) Isothiazolecarboxylic acid derivative and rice neck rotcontrolling agent with the same as active ingredient
JP2553335B2 (en) Optically active cyclopropanecarboxamides, enantiomeric pairs of the active and enantiomers thereof, and agricultural fungicides
JPH0656780A (en) Fungicidal alpha-substituted benzylpyridines
JPS6327482A (en) Herbicidal composition
JPS5815965A (en) Benzoisothiazole derivative and its hydrochloride, their preparation, and agricultural fungicide
JPH0881444A (en) Pyrazole-5-carboxamide-4-carboxylic acid derivative, its production, and agricultural/horticltural germicide
JPS5929637A (en) Carboxylic acid iodopropalgyl esters
JPS59193866A (en) Fungicidal composition and repulsion of fumgi
JPS63258847A (en) Alpha-methylsulfonylbenzaldoxime carbamate, its production and use thereof as harmful organism control agent
JPH0641037A (en) Fungicidal cyclopropanecarboxylic acid amides
JPH05306274A (en) Alkylaminosulfonamide derivative, its production and herbicide