AT509624A1 - Getriebe für eine windkraftanlage - Google Patents

Getriebe für eine windkraftanlage Download PDF

Info

Publication number
AT509624A1
AT509624A1 AT0059810A AT5982010A AT509624A1 AT 509624 A1 AT509624 A1 AT 509624A1 AT 0059810 A AT0059810 A AT 0059810A AT 5982010 A AT5982010 A AT 5982010A AT 509624 A1 AT509624 A1 AT 509624A1
Authority
AT
Austria
Prior art keywords
layer
bearing
transmission
sliding
axis
Prior art date
Application number
AT0059810A
Other languages
English (en)
Other versions
AT509624B1 (de
Original Assignee
Miba Gleitlager Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miba Gleitlager Gmbh filed Critical Miba Gleitlager Gmbh
Priority to ATA598/2010A priority Critical patent/AT509624B1/de
Priority to KR1020127027787A priority patent/KR101817696B1/ko
Priority to PCT/AT2011/000181 priority patent/WO2011127509A1/de
Priority to CN201180018621.7A priority patent/CN102834630B/zh
Priority to DE112011101294T priority patent/DE112011101294A5/de
Priority to US13/639,625 priority patent/US8840521B2/en
Publication of AT509624A1 publication Critical patent/AT509624A1/de
Application granted granted Critical
Publication of AT509624B1 publication Critical patent/AT509624B1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • F16H57/041Coatings or solid lubricants, e.g. antiseize layers or pastes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C41/00Other accessories, e.g. devices integrated in the bearing not relating to the bearing function as such
    • F16C41/008Identification means, e.g. markings, RFID-tags; Data transfer means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • F16C33/1025Construction relative to lubrication with liquid, e.g. oil, as lubricant
    • F16C33/1045Details of supply of the liquid to the bearing
    • F16C33/1055Details of supply of the liquid to the bearing from radial inside, e.g. via a passage through the shaft and/or inner sleeve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/20Sliding surface consisting mainly of plastics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/20Sliding surface consisting mainly of plastics
    • F16C33/201Composition of the plastic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/20Sliding surface consisting mainly of plastics
    • F16C33/203Multilayer structures, e.g. sleeves comprising a plastic lining
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/40Transmission of power
    • F05B2260/403Transmission of power through the shape of the drive components
    • F05B2260/4031Transmission of power through the shape of the drive components as in toothed gearing
    • F05B2260/40311Transmission of power through the shape of the drive components as in toothed gearing of the epicyclic, planetary or differential type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2202/00Solid materials defined by their properties
    • F16C2202/02Mechanical properties
    • F16C2202/04Hardness
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2202/00Solid materials defined by their properties
    • F16C2202/50Lubricating properties
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2204/00Metallic materials; Alloys
    • F16C2204/02Noble metals
    • F16C2204/04Noble metals based on silver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2204/00Metallic materials; Alloys
    • F16C2204/20Alloys based on aluminium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2204/00Metallic materials; Alloys
    • F16C2204/30Alloys based on one of tin, lead, antimony, bismuth, indium, e.g. materials for providing sliding surfaces
    • F16C2204/36Alloys based on bismuth
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2206/00Materials with ceramics, cermets, hard carbon or similar non-metallic hard materials as main constituents
    • F16C2206/02Carbon based material
    • F16C2206/04Diamond like carbon [DLC]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2208/00Plastics; Synthetic resins, e.g. rubbers
    • F16C2208/02Plastics; Synthetic resins, e.g. rubbers comprising fillers, fibres
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2208/00Plastics; Synthetic resins, e.g. rubbers
    • F16C2208/20Thermoplastic resins
    • F16C2208/40Imides, e.g. polyimide [PI], polyetherimide [PEI]
    • F16C2208/42Polyamideimide [PAI]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2223/00Surface treatments; Hardening; Coating
    • F16C2223/30Coating surfaces
    • F16C2223/60Coating surfaces by vapour deposition, e.g. PVD, CVD
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/31Wind motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2361/00Apparatus or articles in engineering in general
    • F16C2361/61Toothed gear systems, e.g. support of pinion shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/08General details of gearing of gearings with members having orbital motion
    • F16H2057/085Bearings for orbital gears
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • F16H57/0467Elements of gearings to be lubricated, cooled or heated
    • F16H57/0479Gears or bearings on planet carriers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Details Of Gearings (AREA)
  • Sliding-Contact Bearings (AREA)

Description

-1 -
Die Erfindung betrifft ein Getriebe, insbesondere ein Planetengetriebe, für eine Windkraftanlage mit mehreren Getrieberädern, insbesondere Planetenrädern, die jeweils überein Lagerelement auf einer Achse gelagert sind, sowie eine Windkraftanlage mit einem Rotor und einem Generator, wobei zwischen dem Rotor und dem Generator ein Getriebe, insbesondere ein Planetengetriebe, angeordnet ist, das in Wirkverbindung mit dem Rotor und dem Generator steht.
Planetengetriebe für Windkraftanlagen, wie sie zum Beispiel aus der DE 102 60 132 A1 bekannt sind, werden dazu verwendet, um die relativ geringe Drehzahl des Rotors der Windkraftanlage in eine höhere Drehzahl des Generatorrotors zu übersetzten. Üblicherweise werden in derartigen Planetengetrieben, wie dies ebenfalls in der DE 102 60 132 A1 beschrieben ist, Wälzlager als Lagerelemente für die Planetenräder verwendet.
Die EP 1 544 504 A2 beschreibt allerdings bereits eine Gleitlageranwendung im Bereich von Planetengetrieben für Windkraftanlagen. Der rotierende Teil des Planetengetriebes ist dabei mit einem Rotor verbunden und zusammen mit diesem in einem Großlager gelagert, das auf dem Außenumfang des Hohlrades angeordnet ist. Das Gnoßlager ist als Gleitlager ausgebildet, dessen eine Lagerfläche durch die radial äußere Umfangsfläche des Hohlrades gebildet ist. Es wird damit ermöglicht, das Planetengetriebe einfacher und kostengünstiger zu gestalten. Zwischen den Lagerflächen und den Lagergegenflächen besteht ein Schmierspait und sind hydrostatische Schmiertaschen in die Lagerfläche auf der Umfangsfläche des Hohlrades und in der der Stirnseite des Hohlrades gegenüberliegenden Lagergegenfläche des Gehäuses eingearbeitet. Des Weiteren beschreibt die EP 1 544 504 A2, dass bei großen Abmessungen des an den Rotor der Windkraftanlage angeschlossenen Planetengetriebes und der sich daraus ergebenden auf das Gleitlager wirkenden Kräfte und Momente der Ölpumpenkreislauf nur einen verhältnismäßig geringen, statischen Öldruck aufbringen muss, um eine Trennung der Lagerflächen und der Lagergegenflächen voneinander zu erreichen. ,
NACHGEF.EI3HT N2009/31400 » ·
-2-
Obwohl also die prinzipielle Verwendung von Gleitlagern im Stand der Technik für Windkraftanlagen beschrieben worden ist, existieren in der Fachwelt noch Vorbehalte gegen diese Gleitlageranwendungen. So wird im Stand der Technik die Ansicht vertreten, dass ein hydrostatisches System notwendig ist, zumindest in der Anlaufphase, um damit die Ölversorgung der Lagerflächen sowohl hinsichtlich der Menge als auch des Öldrucks zu erreichen, da hohe spezifische Lasten in Verbindung mit geringen Gleitgeschwindigkeiten ein rein hydrodynamisches System nicht zulassen. Insbesondere wird davon ausgegangen, dass es im Bereich der Mischreibung zu lokalen Temperaturerhöhungen und erhöhtem Verschleiß kommt, sodass rein hydrodynamisch ausgelegte Gleitlager in einem Planetengetriebe für Windkraftanlagen kaum realisierbar sind.
Es ist die Aufgabe vorliegender Erfindung, ein Planetengetriebe zu schaffen, welches verbesserte Betriebseigenschaften aufweist.
Diese Aufgabe wird bei dem Eingangs genannten Getriebe dadurch gelöst, dass das Lagerelement ein Mehrschichtgleitlagerist, sowie durch die Windkraftanlage, welches diese Getriebe umfasst und unabhängig hiervon auch durch die Verwendung eines Mehrschichtgleitlagers in Getriebe, insbesondere einem Planetengetriebe, einer Windkraftanlage.
Der Vorteil der mehrschichtigen Ausführung des Gleitlagers ist darin zu sehen, dass dieses damit auf rein hydrodynamische Bedingungen auch während der Anfahrphase eingestellt werden kann. Es wird damit der konstruktive Aufbau des Getriebes, insbesondere des Planetengetriebes, an sich vereinfacht bzw. in weiterer Folge der Windkraftanlage, da Anlagen zur Aufrechterhaltung eines Mindestöldrucks für diese Lager nicht mehr erforderlich sind. Das Gleitlager selbst kann durch die Mehrschichtigkeit auch mit entsprechenden Notlaufeigenschaften ausgestattet werden. Das Lager selbst bedarf kaum einer Wartung und ist auch wenig anfällig für Defekte.
Vorzugsweise ist das Mehrschichtgleitlager als Lagerbüchse ausgebildet, wodurch sich deren Anordnung auf der (Planeten)Achse bzw. im Getrieberad vereinfachen lässt, im Vergleich zu Gleitlagerhalbschalen, insbesondere auch keine Einstellarbeiten bezüglich der Ausrichtung des Gleitlagers erforderlich sind. Insbesondere ist dies von Vorteil bei Wartungsarbeiten, sollte der Fall auftreten, dass ein Gleitlager getauscht werden muss, da sich damit die Stillstandszeiten der Windkraftanlage reduzieren lassen und somit die Wirtschaftlichkeit derartiger Windkraftanlagen deutlich verbessert werden kann. Nach wie vor bilden nämlich Lagerausfälle in Windkraftanlagen, insbesondere wenn diese als Wälz-
NACHGEREICHT N2009/31400 I » * »· · » » -3-lager ausgeführt sind, einen bedeutenden Kostenfaktor im Vergleich zu anderen Betriebsaufällen der Windkraftanlage, bedingt durch lange Stillstandszeiten der Windkraftanlage. Es können also mit dieser Ausbildung nicht zuletzt wegen der längeren Lebensdauer die Betriebskosten deutlich reduziert werden.
Das Mehrschichtgleitlager kann aus zumindest einer Stützschicht und zumindest einer Gleitschicht bestehen bzw. diese aufweisen, wobei die Gleitschicht eine Härte nach Vickers von zumindest 75 HV (0,001), insbesondere zumindest 110 HV (0,001), zumindest im Oberflächenbereich einer Lauffläche aulweist. Andererseits besteht gemäß einer anderen Ausführungsvariante die Möglichkeit, dass an einer inneren Oberfläche der die Achse aufnehmenden Bohrung des Getrieberades und/oder an einer äußeren Oberfläche der Achse eine Gleitschicht aufgebracht ist, gegebenenfalls unter Anordnung von zumindest einer Zwischenschicht, wobei diese Gleitschicht eine Härte nach Vickers von zumindest 75 HV (0,001), insbesondere zumindest 110 HV (0,001), zumindest im Oberflächenbereich einer Lauffläche aufweist. Durch die Ausbildung der Gleitschicht mit einer bestimmten Mindesthärte, zumindest im Oberflächenbereich, kann der Verschleiß als die Lebensdauer limitierender Faktor des Gleitlagers verringert werden. Anders als bei herkömmlichen Gleitlagersystemen für Windkraftanlagen, bei denen davon ausgegangen wird, dass ein weicher Lagerwerkstoff eingesetzt werden muss, um mit der Mischreibung und der elastischen Verformung während des Betriebes der Windkraftanlage zurecht zu kommen, was zu entsprechenden großen Dimensionen und hydrodynamischen Verlusten führt, hat sich gezeigt, dass für die erfindungsgemäße Anwendung eines Mehrschichtgleitlagers es von Vorteil ist, wenn entsprechend harte Oberflächenwerkstoffe verwendet werden. Ein weiterer Vorteil der damit erreicht wird ist, dass das Gleitlager einem höheren, relativen Druck ausgesetzt werden kann, sodass die Lagerfläche in der Folge verkleinert werden kann und somit das gesamte Getriebe mit einer geringeren, rotierenden Masse versehen werden kann, wodurch Verlustleistungen weiter reduziert werden können. Andererseits sind damit aber auch kleinere Baugrößen der Getriebe verwirklichbar. Durch die Direktbeschichtung der Achse oder der Oberfläche der Bohrung mit dem Gleitwerkstoff wird zudem ein einfacherer Aufbau des Gleitlagers erreicht, wodurch ebenfalls Kosten eingespart werden können, und ist damit eine nochmalige Reduzierung der rotierenden Massen und der Baugröße des Getriebes verwirklichbar.
Vorzugsweise besteht die Gleitschicht aus einem Werkstoff der ausgewählt ist aus einer Gruppe umfassend Aluminiumbasislegierungen, Bismutbasislegierungen, Silberbasislegierungen, Gleitlacke. Insbesondere diese verschleißresistenten und tribologisch beson-
NACHGEREICHT N2009/31400 • · · « ♦ * * • *·4 · · ΨΨ Μ • * ♦ • « · « * · -4-ders wirksamen Werkstoffe haben sich in kompakten Planetengetrieben mit hoher Leistungsdichte und ohne den Einsatz von Lastausgleichstechnologien, wie zum Beispiel die so genannte „Flexible Pin Lösung“, als besonders vorteilhaft herausgestellt Überraschenderweise sind auch Gleitlacke als Gleitschicht einsetzbar, obwohl diese eine Härte nach Vickers von ca. 25 HV (0,001) bis 60 HV (0,001) aufweisen, also deutlich weicher sind, als voranstehend beschriebene Gleitschichten, wobei hier eine Steigerung der Härte durch Zugabe von entsprechenden Hartpartikeln möglich ist.
Es besteht weiters die Möglichkeit, dass auf der Gleitschicht eine polymerbasierte Einlaufschicht angeordnet ist, um damit eine bessere Anpassungsfähigkeit der Gleitiagerlauf-fläche an die Gegenlauffläche während des Einlaufens des Gleitlagers zu erreichen, wobei dabei von Vorteil Ist, dass diese Einlaufschicht ebenfalls die Tribologie des Gleitlagers an sich verbessert und zudem, für den Fall, dass diese Einlaufschicht abgerieben wird, diese aufgrund der kleinen Partikel des daraus entstehenden Abriebs nicht störend an der Gleitlageroberfläche bzw. im Schmieröl wirkt, insbesondere wenn diese polymerbasierte Einlaufschicht eine geringere Härte aufweist als die Gleitschicht selbst.
In der durch das Getrieberad geführten Achse können zur Zuführung und zur Abführung eines Schmiermittels für das Lagerelement zumindest ein Kanal und oder zumindest eine Bohrung angeordnet sein. Durch die gezielte Ölführung mit Frischölzufuhr direkt in den Schmierspalt in den Bereich der Hauptlastzone und durch die gezielte Ableitung wird ein geringerer Temperaturanstieg während des Betriebes des Getriebes trotz hoher Belastung und Mischreibanteil besser vermieden. Durch die Optimierung des Schmieröldurchsatzes auf ein Minimum - es sei nochmals erwähnt, dass es sich um ein hydrodynamisch betriebenes Gleitlager ohne hydrostatische Unterstützung handelt - können Zuführdrücke und Zuführmengen an Schmieröl sowie die Verlustleistung an jene von Wälzlagerlösungen, die normalerweise hinsichtlich der Verlustleistung deutliche Vorteile gegenüber Gleitlagerlösungen bieten, angeglichen werden.
Es ist weiters von Vorteil, wenn das Lagerelement zumindest zwei in axialem Abstand voneinander angeordnete Mehrschichtgleitlager aufweist, da damit einerseits die Lagerung des Getrieberades präziser erfolgen kann und andererseits möglicherweise auftretende Kippmomente besser abgefangen werden können.
Zum besseren Verständnis der Erfindung wird diese anhand der nachfolgenden Figuren näher erläutert.
NACHGEREICHT N2009/31400 + + t* + ·· ···· #1 • · · * « · t » · · ♦ · · · · « t » * · · * ·« ·»··*· * · · • · · · # · « · « · -5-
Es zeigen jeweils in stark schematisch vereinfachter Darstellung:
Fig. 1 ein Getriebe in Form eines Planetengetriebes in Seitenansicht geschnitten:
Fig. 2 einen Ausschnitt aus einem Planetengetriebe im Bereich eines Planetenrades.
Einführend sei festgehalten, dass in den unterschiedlich beschriebenen Ausführungsformen gleiche Teile mit gleichen Bezugszeichen bzw. gleichen Bauteilbezeichnungen versehen werden, wobei die in der gesamten Beschreibung enthaltenen Offenbarungen sinngemäß auf gleiche Teile mit gleichen Bezugszeichen bzw. gleichen Bauteilbezeichnungen übertragen werden können. Auch sind die in der Beschreibung gewählten Lageangaben, wie z.B. oben, unten, seitlich usw. auf die unmittelbar beschriebene sowie dargestellte Figur bezogen und sind bei einer Lageänderung sinngemäß auf die neue Lage zu übertragen. Weiters können auch Einzelmerkmale oder Merkmalskombinationen aus den gezeigten und beschriebenen unterschiedlichen Ausführungsbeispielen für sich eigenständige, erfindungsgemäße Lösungen darstellen.
Fig. 1 zeigt ein Getriebe 1 in Form eines einfachen Planetengetriebes für eine Windkraftanlage in Seitenansicht geschnitten.
Bekanntlich umfassen Windkraftanlagen einen Turm an dessen oberen Ende eine Gondel angeordnet ist, in der der Rotor mit den Rotorblättem gelagert ist. Dieser Rotor ist über ein Getriebe mit einem Generator, der sich ebenfalls in der Gondel befindet, wirkungsverbunden, wobei über das Getriebe die niedrige Drehzahl des Rotors in eine höhere Drehzahl des Generatorrotors übersetzt wird. Da derartige Ausführungen von Windkraftanlagen zum Stand der Technik gehören, sei an dieser Steile an die einschlägige Literatur hierzu verwiesen.
Das Getriebe 1 weist ein Sonnenrad 2 auf, das mit einer Welle 3, die zum Generatorrotor führt, drehfest verbunden ist. Das Sonnenrad 2 ist von mehreren Planetenrädern 3, beispielsweise zwei, vorzugsweise drei oder vier, umgeben. Sowohl das Sonnenrad 2 als auch die Planetenräder 4 weisen Stirnverzahnungen 5,6 auf, die in kämmenden Eingriff miteinander stehen, wobei diese Stimverzahnungen 5,6 in Fig. 1 mit einem Kreuz angedeutet sind. Die Planetenräder 4 sind über Mehrschichtgleitlager 7 auf einer durch einen Planetenbolzen gebildeten Achse 8, der so genannten Planetenachse gelagert. Diese Achsen 8 können entweder einstückig mit zumindest einem Teil eines Planetenträgers 9 ausgebildet sein oder sie sind als gesonderte Bauteile in Bohrungen des Planetenträgers fNACHGEREICHT | ** ' -»N2009/31400 9· ·«·* ·* 9· ·«·* ·* • ♦ : m ft I * « · · · •ft * ft » · ·· • ft··· · « · -6-9 eingesetzt Über den Planetenrädem 4 ist ein Hohlrad 10 angeordnet, das an einer inneren Oberfläche ebenfalls zumindest teilweise eine Verzahnung 11 aufweist, die in kämmenden Eingriff mit der Stimverzahnung 6 der Planetenräder 4 steht. Das Hohlrad 10 ist drehfest mit einer Rotorwelle 12 des Rotors der Windkraftanlage verbunden. Die Stim-verzahnungen 5,6 bzw. die Verzahnung 11 können als Geradverzahnung oder Schrägverzahnung ausgeführt sein.
Da derartige Planetengetriebe ebenfalls bereits aus dem Stand der Technik bekannt sind, beispielsweise aus den voranstehend zitierten Dokumenten zum Stand der Technik, erübrigt sich eine weitere Erörterung an dieser Stelle. Es sei jedoch darauf hingewiesen, dass nicht nur einstufige Ausführungen von Planetengetrieben im Rahmen der Erfindung möglich sind, sondern auch mehrstufige, beispielsweise zwei- oder dreistufige, wozu in zumindest einem Planeten weitere Stimradstufen integriert sein können.
Des Weiteren sei angemerkt, dass, obwohl bevorzugt, die Erfindung nicht nur in Planetengetrieben von Windkraftanlagen Anwendung findet, sondern generell in Getrieben für Windkraftanlagen verwendet werden kann, insbesondere zur Übersetzung der langsamen Drehzahl des Rotors einer Windkraftanlage in eine höhere Drehzahl.
Die Mehrschichtgleitlager 7 können prinzipiell in Form von Gieitlagerhalbschalen ausgeführt sein. Bevorzugt sind diese jedoch als Lagerbüchsen 13, d.h. Planetenlagerbuchsen, ausgebildet. Die Lagerbüchse 13 eines Planetenrads 4 Ist dabei mit diesem drehfest verbunden, beispielsweise über einen Presssitz oder über eine andere, geeignete Methode.
Ein erfindungsgemäßes Mehrschichtgleitlager 7 besteht aus zumindest einer Stützschicht 14 und zumindest einer Gleitschicht 15, die auf der Stützschicht aufgebracht Ist. Die Gleit-schicht 15 bildet dabei eine Lauffläche 16 für die Achse 8, also den Planetenbolzen.
Die Mehrschichtigkeit des Mehrschichtgleitlagers 7 kann aber auch dadurch erreicht werden, dass der Planetenbolzen im Bereich der Lagerung des Planetenrades 4 und/oder das Planetenrad 4 selbst im Bereich der den Planetenbolzen aufnehmenden Bohrung mit einem Werkstoff für eine Gleitschicht beschichtet ist. In diesem Fall wird die Stützschicht des Mehrschichtgleitlagers 7 durch das Material des Planetenrades 4, beispielsweise Stahl und/oder den Werkstoff des Planetenbolzens, das heißt der Achse 8, beispielsweise Stahl, gebildet. NACHGEF.EC;; N2009/31400 ·· ·· · «· 4##t ·· »··*· t * · · ♦ • *· « « · 9 · ♦ ♦* » * * ····*· · • «· * | · · · · # · -7-
Neben dieser zweischichtigen Ausführung des Mehrschichtgieitlagers 7 besteht im Rahmen der Erfindung auch die Möglichkeit, dass Zwischenschichten zwischen der Gleitschicht 15 und der Stützschicht 14 angeordnet sind, beispielsweise eine Lagermetallschicht und/oder zumindest eine Bindeschicht und/oder eine Diffusionssperrschicht.
Beispiele für Lagermetallschichten sind:
Lagermetalle auf Aluminiumbasis, insbesondere: AISnÖCuNi, AISn20Cu, AISi4Cd, AICd3CuNi, AISi11Cu, Ai$n6Cu, AISn40, AISn25CuMn, AISi11CuMgNi;
Lagermetalle auf Kupferbasis, insbesondere:
CuSnIO, CuAI10Fe5Ni5, CuZn31Si1, CuPb24Sn2, CuSn8Bi10;
Lagermetalle auf Zinnbasis, insbesondere:
SnSb8Cu4, SnSb12Cu6Pb.
Es können auch andere als die genannten Lagermetalle auf Basis von Nickel-, Silber-, Eisen- oder Chromlegierungen verwendet werden.
Eine Bindeschicht oder eine Diffusionssperrschicht kann beispielsweise durch eine Aluminiumschicht, Zinnschicht, Kupferschicht, Nickelschicht, Silbersicht oder deren Legierungen, insbesondere binäre Legierungen, gebildet werden.
Die Stützschicht 14 selbst ist bevorzugt aus einem harten und homogenen Lagergrundwerkstoff, vorzugsweise ausgewählt aus einer Gruppe umfassend Cu-Zn-Legierungen, beispielsweise CuZn31Si, CuSnZn, durch eine AlZn- odereine CuAI-Legierung, Stahl, gebildet, wobei diese Legierungen weitere Elemente wie Si, Mg, Mn, Ni, Zr, Ti, Fe, Cr,
Mo, in einem Gesamtanteil von maximal 10 Gew.-% aufweisen können.
Die Gleitschicht 15 besteht bevorzugt aus einem Werkstoff ausgewählt aus einer Gruppe umfassend Legierungen auf AI-, AlZn-, AlSi-, AlSnSi-, CuAI-, CuSn-, CuZn-, CuSnZn-, CuZnSn-, CuBi-, Bi-, Ag-, AIBi-Basis, Gleitlacke.
Beispiele für bevorzugte Legierungen für die Gleitschicht sind AISn20Cu, AIZn4Si3, AlZn-Si4,5.
Als Gleitlacke können zum Beispiel verwendet werden Polytetrafluorethylen, fluorhältige Harze, wie z.B. Perfluoralkoxy-Copolymere, Polyfluoralkoxy-Polytetrafluorethylen- N2009/31400
NACHGEREICHT • » ♦ ·· ♦··· % » *♦ • · ♦ * ♦··· · · · · • · » · ι « »· · · · -8-
Copolymere, Ethylen-tetrafluorethylen, Polychlortrifluorethylen, fluorierte Ethylen-Propylen Copolymere, Polyvinylfluorid, Polyvinylidenfluorid, alternierende Copolymere, statistische Copolymere, wie z.B. Perfluorethylenpropylen, Polyesterimide, Bismaleimide, Polyimidharze, wie z.B. Carboranimide, aromatische Polyimidharze, wasserstofffreie Polyimidharze, Poly-triazo-Pyromellithimide, Polyamidimide, insbesondere aromatische, Polyarylethe-rimide, gegebenenfalls modifiziert mit Isocyanaten, Polyetherimide, gegebenenfalls modifiziert mit isocyanaten,Epoxyharze, Epoxyharzester, Phenolharze, Polyamid 6, Polyamid 66, Polyoxymethylen, Silikone, Polyarylether, Polyarylketone, Polyaryletherketone, Polya-rylether-etherketone, Polyetheretherketone, Polyetherketone, Polyvinylidendiflouride, Polyethylensulfide, Allylensulfid, Poly-triazo-Pyromellithimide, Polyesterimide, Polyarylsulfide, Polyvinylensulfide, Polyphenylensulfide, Polysulfone, Polyethersulfone, Polyarylsul-fone, Polyaryloxide, Polyarylsulfide, sowie Copolymere daraus.
Bevorzugt wird ein Gleitlack der in trockenem Zustand aus 40 Gew.-% bis 45 Gew.-% MoS2, 20 Gew.-% bis 25 Gew.-% Graphit und 30 Gew.-% bis 40 Gew.-% Polyamidimid besteht, wobei gegebenenfalls noch Hartpartikel, wie z.B. Oxide, Nitride oder Carbide, im dem Gleitlack in einem Anteil von in Summe maximal 20 Gew.-% enthalten sein können, die einen Anteil der Festschmierstoffe ersetzen.
Bevorzugt weist die Gleitschicht 15 zumindest im Bereich der Lauffläche 16 eine Härte nach Vickers von zumindest 75 HV (0,001) auf bzw. zwischen 25 HV (0,001) bis 60 HV (0,001), wenn die Gleitschicht 15 durch einen Gleitlack gebildet ist. Es ist dabei auch möglich, dass in der Gleitschicht 15 in Richtung auf die Lauffläche 16 ein Härtegradient ausgebildet wird, insbesondere mit zunehmender Härte von der Stützschicht 14 in Richtung auf die Lauffläche 16.
Es besteht weiters die Möglichkeit, dass auf der Gleitschicht eine polymerbasierte Einlaufschicht, wie zum Beispiel ein Gleitlack der in trockenem Zustand aus 40 Gew.-% bis 45 Gew.-% MoS2, 20 Gew.-% bis 25 Gew.-% Graphit und 30 Gew.-% bis 40 Gew.-% Polyamidimid besteht, angeordnet ist. Andererseits besteht die Möglichkeit, dass auf der Gleitschicht zusätzlich noch eine Hartschicht aufgetragen ist, beispielsweise eine so genannte DLC-Schicht, beispielsweise SiC, oder C.
Eine bevorzugte Ausführung der Erfindung verwendet als Stützschicht 14 eine bleifrei Cu-Legierung, insbesondere CuZn31Si, und als Gleitschicht 15 AISn20Cu.
NACHGEREICHT N2009/31400 ·« »· · ·· ··«* ·· • ·« « « ♦ · · e · · · · · · * ** • · φ « *··* « · · · • t · * * · · · * * * -9-
Weiters wird in der bevorzugten Ausführung die Gleitschicht 15 nach einem PVD-Verfahren auf der Stützschicht 14 oder einer Zwischenschicht abgeschieden, insbesondere nach einem Sputterverfahren.
Es ist weiters möglich, dass die Lauffläche 16 mit einer definierten Oberflächenrauhigkeit abgeschieden wird, um damit insbesondere in der Einlaufphase eine geringere Anlagefläche der Lagergegenfläche an die Lauffläche 16 bereitzustellen. Insbesondere kann diese Lauffläche 16 einen arithmetischen Mittenrauwert Ra nach DIN EN ISO 4287 aufweisen, ausgewählt aus einem Bereich mit einer unteren Grenze von 0,5 pm und einer oberen Grenze von 1,5 pm. Durch diese Topografie der Gleitschicht 15 wird weiters die Ausbildung des Schmierspaltes verbessert.
In Fig. 2 ist eine Ausführungsvariante der Erfindung dargestellt, wobei in Seitenansicht geschnitten der Bereich eines Planetenrades 4 dargestellt ist. Bei dieser Ausführungsvariante sind zwei in axialem Abstand zueinander angeordnete Mehrschichtgleitlager 7, vorzugsweise wiederum ais Lagerbüchsen, zwischen dem Planetenrad 4 und der Achse 8, das heißt dem Planetenbolzen, angeordnet. In axialem Verlauf Jeweils neben einem Mehrschichtgleitlager 7 ist eine Anlaufscheibe 17 zwischen dem Mehrschichtgleitlager 7 und dem Planetenträger 9 vorgesehen. Die Gleitschicht 15 der Mehrschichtgleitlager 7 ist dabei bis in die Stirnfläche zu der Anlaufscheibe 17 hochgezogen, sodass also das Mehrschichtgleitlager 7 neben der radialen Lagerfunktion auch eine axiale Lagerfunktion erfüllt. Durch entsprechende Ausbildung des Mehrschichtgleitlagers 7 der voranstehend beschriebenen Ausführungsvariante ist ebenfalls eine Axialführung möglich, selbst wenn keine Anlaufscheiben angeordnet werden.
Zudem weist das Planetenrad 4 jeweils an den Stirnseiten - in axialer Richtung betrachtet - umlaufende Ringnuten 18 auf, in denen die Mehrschichtgleitlager 7 angeordnet sind.
Fig. 2 zeigt weiters eine Ölversorgung der Laufflächen 16 der Mehrschichtgleitlager 7. Dazu wird über eine Bohrung 19 bzw. kanalförmige Ausnehmung im Planetenträger 9, die einen Öleinlass 20 bildet, der mit einem nicht dargestellten Ölreservoir In Verbindung steht, Öl zu einem Kanal 21 in der Achse 8 gemäß Pfeil 22 in einen Zwischenraum 23 zwischen den beiden Mehrschichtgleitlagern 7, der zudem noch durch das Planetenrad 4 und die Achse 8 begrenzt ist, zugeführt. Die Achse 8, das heißt der Planetenbolzen, kann im Zuführbereich des Öls ebenfalls eine Ausnehmung 24, das heißt eine Absetzung im Bereich der Oberfläche, aufweisen, um damit die Ölverteilung bis in die Laufflächen 16 der Mehrschichtgleitlager 7 zu unterstützen. Es ist aber auch möglich, dass die Ölzufüh-
NACHGEREICHT N2009/31400
-10-rung ausschließlich über die Achse 8 erfolgt, also der Planetenträger 9 keine Bohrung 19 bzw. kanalförmige Ausnehmung hierfür aufweist.
Alternativ dazu besteht natürlich die Möglichkeit, dass die Öizuführung derart erfolgt, dass der Kanal 21 Ölauslässe direkt unterhalb der Laufflächen 16 der Mehrschichtgleitlager 7 aufweist, sodass also der Kanal bei der dargestellten Ausführungsvariante in zwei Ölauslässen im Bereich der Laufflächen 16 der beiden Mehrschichtgleitlager 7 enden würde. Für die Abführung des Schmieröls sind an der der Zuführung gegenüberliegenden Seite, das heißt im oberen Bereich des Mehrschichtgleitlagers 7, im Planetenbolzen, das heißt der Achse 8, jeweils unterhalb der Mehrschichtgleitlager 7 Bohrungen 25 bzw. generell kanalförmige Ausnehmungen vorgesehen, die vom Bereich der Lauffläche 16 beginnend in eine zumindest annähernd zentrisch angeordnete Ausnehmung 26, insbesondere eine Zentrumsbohrung, des Planetenbolzens, das heißt der Achse 8, enden, wobei über diese Zentrumsbohrung bzw. die Ausnehmung 26 das Öl wiederum zum Ölreservoir zurückgeführt wird. Die Ölabfuhr im oberen Bereich des Mehrschichtgleitlagers 7 unterscheidet sich von der Zuführung auch insofern, als eine Ausnehmung 27 in der Oberfläche des Planetenbolzens im Bereich unterhalb jeweils eines Mehrschichtgleitlagers 7 als Ringnut ausgeführt ist, sodass das Mehrschichtgleitlager 7 in diesem Bereich über zwei seitliche Stege 27, 28 im Stillstand auf der Achse 8 aufliegt.
Es sind mit der erfindungsgemäßen Ausführung des Getriebes 1 keinerlei Ölpumpen oder dergleichen für die Schmierölzuführung und zur Aufrechterhaltung eines hydrostatischen Druckes erforderlich. Das Öl wird bei dieser rein hydrodynamischen Lösung auf der unbelasteten Lagerseite zugeführt und durch die Drehbewegung des Planetenrades 4 in das Lager selbst, das heißt das Mehrschichtgleitlager 7, hineingezogen. Zwar entsteht in der Anlaufphase des Getriebes 1 zuerst eine Mischreibung, allerdings wird die an und für sich schädliche Mischreibung durch den mehrschichtigen Aufbau des Mehrschichtgleitlagers 7 aufgefangen. Es können damit kostengünstige Getriebe 1, insbesondere Lagerelemente, für Planetengetriebe zur Verfügung gestellt werden.
Da bei der erfindungsgemäßen Ausführung des Getriebes 1 dieses ohne Lastausgleich arbeitet, ist eine radiale Verschiebbarkeit der Mehrschichtgleitlager 7 möglich, sodass auch Kantenträger ausgebildet werden können. Dies wird durch die harte Gleitschicht 15 und gegebenenfalls die Einiaufschicht ausgeglichen bzw. abgefangen. Es konnte in der Erprobung des erfindungsgemäßen Getriebes 1 beobachtet werden, dass ein Verschleiß nicht mehr punktförmig auftritt, sondern über den gesamten Umfang der Mehrschichtgleit- N2009/31400
ACHGEREICHT ·· ««ft ·· ** · » · · * · · * # ♦ · · · » * · · 4 · t · * * -11 -lager 7 verteilt, sodass ein derartig auftretender Verschleiß zu keiner wesentlichen bzw. keiner Funktionsbeeinträchtigung des Mehrschichtgleitlagers 7 führt.
Die Ausführungsbeispiele zeigen mögliche Ausführungsvarianten des Getriebes 1 bzw. des Mehrschichtgleitlagers 7, wobei an dieser Stelle bemerkt sei, dass die Erfindung nicht auf die speziell dargestellten Ausführungsvarianten derselben eingeschränkt ist, sondern vielmehr auch diverse Kombinationen der einzelnen Ausführungsvarianten untereinander möglich sind und diese Variationsmöglichkeit aufgrund der Lehre zum technischen Handeln durch gegenständliche Erfindung im Können des auf diesem technischen Gebiet tätigen Fachmannes liegt.
Der Ordnung halber sei abschließend darauf hingewiesen, dass zum besseren Verständnis des Aufbaus des Getriebes 1 bzw. des Mehrschichtgleitlagers 7 diese bzw. deren Bestandteile teilweise unmaßstäblich und/oder vergrößert und/oder verkleinert dargestellt wurden.
NACHGEREICHT N20Q9/31400 #· ·· » · · • * * ·» ·**♦ • t * * • ·* 1
Bezugszeichenaufstellung 1 Getriebe 2 Sonnenrad 3 Welle 4 Planetenrad 5 Stirnverzahnung 6 Stirnverzahnung 7 Mehrschichtgieittager 8 Achse 9 Planetenträger 10 Hohlrad 11 Verzahnung 12 Rotonjvelle 13 Lagerbüchse 14 Stützschicht 15 Gleitschicht 16 Lauffläche 17 Anlaufscheibe 18 Ringnut 19 Bohrung 20 Öleinlass 21 Kanal 22 Pfeil 23 Zwischenraum 24 Ausnehmung 25 Bohrung 26 Ausnehmung 27 Steg 28 Steg
NACHGEREICHT N2009/31400

Claims (10)

  1. 99 ·· · ·· ···· ·♦ ·♦··· * * # · · • ·· · * · · » · 99 9 9 9 9 999 9 m 9 9 9 9 9 9 9 9 9 9 9 9 9 9 -1 - Patentansprüche 1. Getriebe (1), insbesondere Planetengetriebe, für eine Windkraftanlage mit mehreren Getrieberädern, insbesondere Planetenrädem (4), die jeweils über ein Lagerelement auf einer Achse (8) gelagert sind, dadurch gekennzeichnet, dass das Lagerelement ein Mehrschichtgleitlager (7) ist.
  2. 2. Getriebe (1) nach Anspruch 1, dadurch gekennzeichnet, dass Mehrschichtgleitlager (7) als Lagerbüchse (13) ausgebildet ist.
  3. 3. Getriebe (1) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Mehrschichtgleitlager (7) zumindest eine Stützschicht (14) und zumindest eine Gleitschicht (15) aufweist, wobei die Gleitschicht (15) eine Härte nach Vickers von zumindest 75 HV(0,001) oder zwischen 25 HV (0,001) und 60 HV (0,001), wenn diese als Gleitlack ausgeführt ist, zumindest im Oberflächenbereich einer Lauffläche (16) aufweist.
  4. 4. Getriebe (1) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass an einer inneren Oberfläche der die Achse (8) aufnehmenden Bohrung des Getrieberades und oder an einer äußeren Oberfläche der Achse (8) eine Gleitschicht (15) aufgebracht ist, gegebenenfalls unter Anordnung von zumindest einer Zwischenschicht, wobei die Gleitschicht (15) eine Härte nach Vickers von zumindest 75 HV(0,001) oder zwischen 25 HV (0,001) und 60 HV (0,001), wenn diese als Gleitlack ausgeführt ist, zumindest im Oberflächenbereich einer Lauffläche (16) aufweist.
  5. 5. Getriebe (1) nach Anspruch 3 oder 4, dadurch gekennzeichnet, dass Gleitschicht (15) aus einem Werkstoff besteht oder diesen umfasst, der ausgewählt ist aus einer Gruppe umfassend Aluminiumbasislegierungen, Bismutbasisiegierungen, Silberba-sislegierungen, Gleitlacke. I NACHGEREICI IT | N2009/31400 ·· ·· · *· ···* ·« • · · # · ·* · · · • »· · · · « * * *· • I · #···« · · » # · · ♦ « · ·· · # · -2-
  6. 6. Getriebe (1) nach Anspruch 3 oder 5, dadurch gekennzeichnet, dass auf der Gleitschicht (15) eine polymerbasierte Einlaufschicht angeordnet ist.
  7. 7. Getriebe (1) nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass in der Achse (8) zur Zuführung und zur Abführung eines Schmiermittels für das Lagerelement zumindest ein Kanal (21) und/oder zumindest ein Bohrung (25) angeordnet sind.
  8. 8. Getriebe (1) nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass das Lagerelement zumindest zwei in axialem Abstand voneinander angeordnete Mehrschichtgieitlager (7) aufweist.
  9. 9. Windkraftanlage mit einem Rotor und einem Generator, wobei zwischen dem Rotor und dem Generator ein Getriebe (1), insbesondere ein Planetengetriebe, angeordnet ist, das in Wirkverbindung mit dem Rotor und dem Generator steht, dadurch gekennzeichnet, dass das Getriebe (1) entsprechend einem der Ansprüche 1 bis 8 ausgebildet ist.
  10. 10. Verwendung eines Mehrschichtgleitlagers (7) in einem Getriebe (1), insbesondere einem Planetengetriebe, einer Windkraftanlage. Miba Gleitlager GmbH durch
    Anwälte Burger & Partner Rechtsanwalt GmbH NACHGEREICHT M2009/31400
ATA598/2010A 2010-04-14 2010-04-14 Windkraftanlage AT509624B1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
ATA598/2010A AT509624B1 (de) 2010-04-14 2010-04-14 Windkraftanlage
KR1020127027787A KR101817696B1 (ko) 2010-04-14 2011-04-14 풍력 터빈용 기어 트레인
PCT/AT2011/000181 WO2011127509A1 (de) 2010-04-14 2011-04-14 Getriebe für eine windkraftanlage
CN201180018621.7A CN102834630B (zh) 2010-04-14 2011-04-14 风力发电设备的传动装置
DE112011101294T DE112011101294A5 (de) 2010-04-14 2011-04-14 Getriebe für eine Windkraftanlage
US13/639,625 US8840521B2 (en) 2010-04-14 2011-04-14 Gear train for a wind turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
ATA598/2010A AT509624B1 (de) 2010-04-14 2010-04-14 Windkraftanlage

Publications (2)

Publication Number Publication Date
AT509624A1 true AT509624A1 (de) 2011-10-15
AT509624B1 AT509624B1 (de) 2012-04-15

Family

ID=44246594

Family Applications (1)

Application Number Title Priority Date Filing Date
ATA598/2010A AT509624B1 (de) 2010-04-14 2010-04-14 Windkraftanlage

Country Status (6)

Country Link
US (1) US8840521B2 (de)
KR (1) KR101817696B1 (de)
CN (1) CN102834630B (de)
AT (1) AT509624B1 (de)
DE (1) DE112011101294A5 (de)
WO (1) WO2011127509A1 (de)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013106879A1 (de) 2012-01-16 2013-07-25 Miba Gleitlager Gmbh Windkraftanlage
WO2013106878A1 (de) 2012-01-16 2013-07-25 Miba Gleitlager Gmbh Windkraftanlage
US9683602B2 (en) 2013-01-30 2017-06-20 Miba Gleitlager Austria Gmbh Slide bearing set
US9784245B2 (en) 2013-01-30 2017-10-10 Miba Gleitlager Austria Gmbh Wind turbine gearbox
US10047792B2 (en) 2013-10-21 2018-08-14 Schaeffler Technologies AG & Co. KG Planetary gear bearing arrangement
US10294926B2 (en) 2013-01-30 2019-05-21 Miba Gleitlager Austria Gmbh Wind power plant gear mechanism
WO2019178630A1 (de) 2018-03-23 2019-09-26 Miba Gleitlager Austria Gmbh Windkraftanlagengetriebe und verfahren zum herstellen eines windkraftanlagengetriebes
DE102018002509A1 (de) 2018-03-27 2019-10-02 Miba Gleitlager Austria Gmbh Verfahren zur Bestimmung des Verschleißes eines in einem Windkraftanlagengetriebe angeordneten Gleitlagers, sowie Windkraftanlagengetriebe
DE102018206905A1 (de) * 2018-05-04 2019-11-07 Zf Friedrichshafen Ag Schmierstoffversorgung eines Radialgleitlagers
US20200158090A1 (en) * 2017-05-23 2020-05-21 Miba Gleitlager Austria Gmbh Wind turbine transmission
DE102019212264A1 (de) * 2019-08-15 2021-02-18 Zf Friedrichshafen Ag Ölversorgung eines Planetengleitlagers
DE102019214502A1 (de) * 2019-09-23 2021-03-25 Zf Friedrichshafen Ag Verpresste Anlaufscheibe
DE102021000484A1 (de) 2021-02-01 2022-08-04 Daimler Truck AG Fahrzeuggetriebe für ein elektrisch antreibbares Fahrzeug

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8536726B2 (en) * 2010-09-17 2013-09-17 Vestas Wind Systems A/S Electrical machines, wind turbines, and methods for operating an electrical machine
JP5622716B2 (ja) * 2011-12-28 2014-11-12 三菱重工業株式会社 遊星歯車装置および風力発電装置
EP2662598A1 (de) * 2012-05-08 2013-11-13 ZF Wind Power Antwerpen NV Planetengetriebestufe mit Gleitlagern als Planetenlager
CN105518348A (zh) * 2013-06-28 2016-04-20 通用电气公司 用于周转变速箱的轻量齿轮组件
DE102013218434B4 (de) * 2013-08-08 2021-03-04 Magna powertrain gmbh & co kg Lagerung
EP2933483A1 (de) * 2014-04-15 2015-10-21 Siemens Aktiengesellschaft Antriebssystem einer Windkraftanlage
DE102015201248B3 (de) * 2015-01-26 2016-06-02 Schaeffler Technologies AG & Co. KG Gleitlageranordnung eines Drehelements auf einem Lagerbolzen, insbesondere eines Planetenrades auf einem Planetenradbolzen eines Planetenradgetriebes
JP2017053461A (ja) * 2015-09-10 2017-03-16 株式会社ハーモニック・ドライブ・システムズ 遊星歯車装置
DE102016209206A1 (de) * 2016-05-27 2017-12-14 Wobben Properties Gmbh Windenergieanlage
DE102016210039A1 (de) 2016-06-07 2017-12-07 Wobben Properties Gmbh Windenergieanlagen-Drehverbindung, Rotorblatt und Windenergieanlage mit selbiger
EP3306142B1 (de) * 2016-10-05 2021-01-27 Flender GmbH Lagerung für ein planetenrad eines planetengetriebes
EP3351830B2 (de) 2017-01-23 2023-03-15 Flender GmbH Planetengetriebe mit verbesserter planetenträgerlagerung
ES2823286T3 (es) * 2017-05-24 2021-05-06 Flender Gmbh Disposición de rueda cilíndrica, engranaje e instalación de energía eólica
PT3480495T (pt) 2017-11-07 2020-06-01 Moventas Gears Oy Montagem de roda planetária para engrenagem planetária
JP6841213B2 (ja) * 2017-11-24 2021-03-10 トヨタ自動車株式会社 動力伝達機構の製造方法
DE102017222901A1 (de) * 2017-12-15 2019-06-19 Zf Friedrichshafen Ag Planetengetriebestufe mit einer Gleitlageranordnung, insbesondere für eine Planetenradlagerung in einem Windkraftgetriebe
KR20190132020A (ko) * 2018-05-18 2019-11-27 현대자동차주식회사 내측링을 구비한 오일펌프
US10683773B2 (en) * 2018-05-25 2020-06-16 Pratt & Whitney Canada Corp. Planetary gearbox having compliant journal bearings
JP7092636B2 (ja) * 2018-10-22 2022-06-28 大同メタル工業株式会社 摺動部材及びこれを用いる軸受装置
AT521882B1 (de) 2018-12-13 2021-05-15 Miba Gleitlager Austria Gmbh Gleitlager, insbesondere für ein Getriebe einer Windkraftanlage
AT521776B1 (de) 2018-12-13 2020-06-15 Miba Gleitlager Austria Gmbh Planetengetriebe für eine Windkraftanlage
AT521884B1 (de) * 2018-12-13 2020-10-15 Miba Gleitlager Austria Gmbh Verfahren zum Wechseln eines Gleitlagerelementes einer Rotorlagerung einer Windkraftanlage, sowie Gondel für eine Windkraftanlage
AT521885B1 (de) 2018-12-13 2020-09-15 Miba Gleitlager Austria Gmbh Gondel für eine Windkraftanlage
DE102018009737A1 (de) 2018-12-13 2020-06-18 Miba Gleitlager Austria Gmbh Windkraftanlagengetriebe mit zumindest einem Gleitlager
AT521775B1 (de) 2018-12-13 2020-06-15 Miba Gleitlager Austria Gmbh Planetengetriebe für eine Windkraftanlage
AT522477B1 (de) 2019-06-06 2020-11-15 Miba Gleitlager Austria Gmbh Gleitlager mit einer Freistellung
EP3910206A1 (de) 2020-05-12 2021-11-17 Flender GmbH Gleitlager, gleitlageranordnung, getriebe und antriebsstrang für windkraftanlage
EP4239225A1 (de) * 2022-03-02 2023-09-06 Flender GmbH Planetengetriebeanordnung mit im/am planetenträger gelagerter sonnenwelle, entsprechendes industriegetriebe sowie verfahren und verwendung

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4325589A (en) * 1977-01-21 1982-04-20 Carl Hurth Maschinen- Und Zahnradfabrik Gmbh & Co. Support of a machine part which rotates on a bolt or the like
US4394091A (en) * 1981-10-09 1983-07-19 General Motors Corporation Air bearing and antifriction bearing assembly
US5685797A (en) * 1995-05-17 1997-11-11 United Technologies Corporation Coated planet gear journal bearing and process of making same
JP3715512B2 (ja) * 2000-06-01 2005-11-09 大同メタル工業株式会社 複層摺動材料
ES2228292T3 (es) * 2000-08-15 2013-02-12 Zf Wind Power Antwerpen Nv Conjunto de accionamiento para turbinas de viento o eólicas
JP2002276646A (ja) 2001-03-16 2002-09-25 Hitachi Ltd ラジアル軸受及びこれを用いた変速機
US6929402B1 (en) * 2002-04-11 2005-08-16 Morgan Construction Company Journal bearing and thrust pad assembly
JP2004025760A (ja) * 2002-06-28 2004-01-29 Mitsuboshi Belting Ltd 金属と樹脂の積層体及びその製造方法
DE10260132A1 (de) 2002-12-19 2004-07-01 Winergy Ag Planetengetriebe für eine Windkraftanlage
DE10318945B3 (de) * 2003-04-26 2004-10-28 Aerodyn Gmbh Getriebeanordnung für Windenergieanlagen
DE10360693A1 (de) 2003-12-19 2005-07-14 Winergy Ag Planetengetriebe, insbesondere für Windkraftanlagen
US7252615B2 (en) * 2004-03-22 2007-08-07 General Motors Corporation Lubrication system and method for hybrid electro-mechanical planetary transmission components
JP2006022896A (ja) * 2004-07-08 2006-01-26 Daido Metal Co Ltd 複層軸受材料およびその製造方法
JP4541954B2 (ja) * 2005-04-01 2010-09-08 大豊工業株式会社 すべり軸受
AT502546B1 (de) 2005-09-16 2007-10-15 Miba Gleitlager Gmbh Lagerelement
KR101288336B1 (ko) * 2005-12-09 2013-07-22 페더럴-모걸 코오포레이숀 매설된 경질 입자층 및 오버레이를 가지는 베어링 및 제조방법
AT503397B1 (de) * 2006-03-30 2011-10-15 Miba Gleitlager Gmbh Gleitelement
AT504220B1 (de) * 2006-12-13 2008-04-15 Miba Gleitlager Gmbh Gleitlager
CN101903650A (zh) * 2007-12-20 2010-12-01 维斯塔斯风力系统集团公司 用于风轮机齿轮箱的行星齿轮级、风轮机齿轮箱与风轮机
CN101581284B (zh) * 2009-06-23 2012-02-15 吴小杰 兆瓦级滑动轴承风电增速箱
WO2012029129A1 (ja) * 2010-08-31 2012-03-08 三菱重工業株式会社 遊星歯車機構、風力発電装置、及び遊星歯車機構のキャリアの製造方法
US8075190B1 (en) * 2010-09-16 2011-12-13 Vestas Wind Systems A/S Spherical plain bearing pocket arrangement and wind turbine having such a spherical plain bearing
US8172531B2 (en) * 2011-01-10 2012-05-08 Vestas Wind Systems A/S Plain bearing for a wind turbine blade and method of operating a wind turbine having such a plain bearing
US8287423B2 (en) * 2011-08-16 2012-10-16 General Electric Company Planetary gear system
US8414448B2 (en) * 2011-08-31 2013-04-09 General Electric Company Gear system for wind turbine
US8425361B1 (en) * 2012-01-18 2013-04-23 GM Global Technology Operations LLC Lubrication system for a planetary gear set

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013106878A1 (de) 2012-01-16 2013-07-25 Miba Gleitlager Gmbh Windkraftanlage
US9419495B2 (en) 2012-01-16 2016-08-16 Miba Gleitlager Gmbh Wind turbine
WO2013106879A1 (de) 2012-01-16 2013-07-25 Miba Gleitlager Gmbh Windkraftanlage
US10294926B2 (en) 2013-01-30 2019-05-21 Miba Gleitlager Austria Gmbh Wind power plant gear mechanism
US9683602B2 (en) 2013-01-30 2017-06-20 Miba Gleitlager Austria Gmbh Slide bearing set
US9784245B2 (en) 2013-01-30 2017-10-10 Miba Gleitlager Austria Gmbh Wind turbine gearbox
EP3087281B1 (de) 2013-10-21 2019-10-09 Schaeffler Technologies AG & Co. KG Planetenradlageranordnung
US10047792B2 (en) 2013-10-21 2018-08-14 Schaeffler Technologies AG & Co. KG Planetary gear bearing arrangement
EP3631203B1 (de) 2017-05-23 2022-03-09 Miba Gleitlager Austria GmbH Windkraftanlagengetriebe und verfahren zur herstellung einer achse für ein windkraftanlagengetriebe
US20200158090A1 (en) * 2017-05-23 2020-05-21 Miba Gleitlager Austria Gmbh Wind turbine transmission
US11952978B2 (en) 2017-05-23 2024-04-09 Miba Gleitlager Austria Gmbh Wind turbine transmission
EP3768983B1 (de) 2018-03-23 2022-01-19 Miba Gleitlager Austria GmbH Windkraftanlagengetriebe und verfahren zum herstellen eines windkraftanlagengetriebes
WO2019178630A1 (de) 2018-03-23 2019-09-26 Miba Gleitlager Austria Gmbh Windkraftanlagengetriebe und verfahren zum herstellen eines windkraftanlagengetriebes
US11644012B2 (en) 2018-03-23 2023-05-09 Miba Gleitlager Austria Gmbh Wind turbine gearbox and method for producing a wind turbine gearbox
WO2019183654A1 (de) 2018-03-27 2019-10-03 Miba Gleitlager Austria Gmbh VERFAHREN ZUR BESTIMMUNG DES VERSCHLEIßES EINES IN EINEM WINDKRAFTANLAGENGETRIEBE ANGEORDNETEN GLEITLAGERS, SOWIE WINDKRAFTANLAGENGETRIEBE
DE102018002509A1 (de) 2018-03-27 2019-10-02 Miba Gleitlager Austria Gmbh Verfahren zur Bestimmung des Verschleißes eines in einem Windkraftanlagengetriebe angeordneten Gleitlagers, sowie Windkraftanlagengetriebe
DE102018206905A1 (de) * 2018-05-04 2019-11-07 Zf Friedrichshafen Ag Schmierstoffversorgung eines Radialgleitlagers
DE102018206905B4 (de) 2018-05-04 2022-11-10 Zf Friedrichshafen Ag Schmierstoffversorgung eines Radialgleitlagers
DE102019212264A1 (de) * 2019-08-15 2021-02-18 Zf Friedrichshafen Ag Ölversorgung eines Planetengleitlagers
DE102019214502A1 (de) * 2019-09-23 2021-03-25 Zf Friedrichshafen Ag Verpresste Anlaufscheibe
DE102021000484A1 (de) 2021-02-01 2022-08-04 Daimler Truck AG Fahrzeuggetriebe für ein elektrisch antreibbares Fahrzeug

Also Published As

Publication number Publication date
US8840521B2 (en) 2014-09-23
US20130053210A1 (en) 2013-02-28
CN102834630A (zh) 2012-12-19
AT509624B1 (de) 2012-04-15
KR20130091633A (ko) 2013-08-19
WO2011127509A1 (de) 2011-10-20
DE112011101294A5 (de) 2013-01-24
CN102834630B (zh) 2015-11-25
KR101817696B1 (ko) 2018-01-11

Similar Documents

Publication Publication Date Title
AT509624B1 (de) Windkraftanlage
EP2558718B1 (de) Lagerelement
AT512436B1 (de) Windkraftanlage
EP3396187B1 (de) Verfahren zur herstellung einer gleitlagerbüchse
EP2805047B1 (de) Windkraftanlage
EP3631203B1 (de) Windkraftanlagengetriebe und verfahren zur herstellung einer achse für ein windkraftanlagengetriebe
AT513507B1 (de) Gleitlagerpaket
EP2951467B1 (de) Windkraftanlagengetriebe
EP3001071B1 (de) Öldurchbohrung Planetensteg
EP2383480A1 (de) Planetengetriebe für eine Windkraftanlage
AT511434B1 (de) Gleitlager
AT510190B1 (de) Verfahren zum herstellen eines mehrschichtigen gleitlagers
EP3894716B1 (de) Gondel für eine windkraftanlage
EP3434917A1 (de) Lageranordnung zum lagern einer welle eines getriebes
EP3894715B1 (de) Gondel für eine windkraftanlage
WO2017009223A1 (de) Gleitlager eines windkraftanlage-getriebes
AT17656U1 (de) Gleitlagerelement

Legal Events

Date Code Title Description
PC Change of the owner

Owner name: MIBA GLEITLAGER AUSTRIA GMBH, AT

Effective date: 20151116

MM01 Lapse because of not paying annual fees

Effective date: 20200414