AT412010B - Windkraftanlage mit vertikaler achse und tragflächenprofilen - Google Patents

Windkraftanlage mit vertikaler achse und tragflächenprofilen Download PDF

Info

Publication number
AT412010B
AT412010B AT0193399A AT193399A AT412010B AT 412010 B AT412010 B AT 412010B AT 0193399 A AT0193399 A AT 0193399A AT 193399 A AT193399 A AT 193399A AT 412010 B AT412010 B AT 412010B
Authority
AT
Austria
Prior art keywords
wing
power plant
support arms
wings
wind power
Prior art date
Application number
AT0193399A
Other languages
English (en)
Other versions
ATA193399A (de
Inventor
Josef Dipl Ing Brosowitsch
Original Assignee
Josef Dipl Ing Brosowitsch
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Josef Dipl Ing Brosowitsch filed Critical Josef Dipl Ing Brosowitsch
Priority to AT0193399A priority Critical patent/AT412010B/de
Priority to DE10054700A priority patent/DE10054700A1/de
Publication of ATA193399A publication Critical patent/ATA193399A/de
Application granted granted Critical
Publication of AT412010B publication Critical patent/AT412010B/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/06Controlling wind motors  the wind motors having rotation axis substantially perpendicular to the air flow entering the rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/06Rotors
    • F03D3/062Rotors characterised by their construction elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/30Wind power
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Wind Motors (AREA)

Description


   <Desc/Clms Page number 1> 
 



   Die Erfindung betrifft eine Windkraftanlage mit vertikaler Achse und um diese kreisende, parallel oder in einem Winkel zur vertikalen Achse stehende Tragflügel mit Tragflächenprofilen, wobei die Tragflügel mittels Tragarmen mit der Rotornabe verbunden sind und mit oder ohne Zwischengetriebe ein Generator zur Netzeinspeisung oder eine Pumpe usw. angetrieben wird und sich die ganze Anlage auf einem Turm befindet, welcher wahlweise auch ein Restaurant, Aussichtsturm od. dgl. aufweist. 



   Bereits in der DE 298 08 047 U (BROSOWITSCH) wird darauf hingewiesen, dass Vertikalachsenwindkraftwerke mit steuerbaren, aerodynamischen Tragflügelprofilen einen höheren Leistungsfaktor aufweisen, als herkömmliche Propeller- bzw. Repellerwindkraftwerke. Auch in der GB 2 008 202 A, sowie in der EP 0 021 790 A1 wird eine Windkraftanlage mit vertikaler Achse und schwenkbaren Tragflächen beschrieben.

   Nachteilig bei all diesen Ausführungen ist allerdings, dass es schwierig ist, immer den gesamten Flügel zu schwenken, weshalb erfindungsgemäss vorgeschlagen wird, dass die senkrecht oder geneigt stehenden Tragflügel in Bezug auf die Tragarme einen starren Flügelanteil und einen jeweils daran anschliessenden, um eine zur Flügellängsachse parallel oder in dieser liegenden Achse schwenkbaren Flügelanteil aufweist (wobei das Verhältnis h1:(h-h1) vom starren zum schwenkbaren Flügelanteil beliebig ist) und die Tragflügel in Bezug auf die waagrechten Tragarme nach oben oder nach unten zeigen, oder vom starren Flügelanteil nach oben und unten um ihre Längsachse schwenkbare Tragflügel vorgesehen sind. 



   Es bleiben somit die Vorteile des Systems nach der DE 298 08 047 U erhalten, insbesondere betreffend Drehzahlregelung, Anlaufverhalten usw., die Konstruktion wird jedoch einfacher, da z.B. nur die Hälfte oder ein Drittel der Flügellänge schwenkbar ist. Auch sind in diesem Zusammenhang die auftretenden Kräfte leichter beherrschbar. 



   Nach einer weiteren Ausgestaltung der Erfindung wird darauf Bedacht genommen, dass möglichst geringe Biegebelastungen im Flügel auftreten, was dadurch erreicht wird, dass die Flügel z. B. mit ihrem oberen Ende mit den Tragarmen verbunden sind, z. B. auch pendelnd oder schräg angeordnet und im unteren Bereich nur eine Stützkonstruktion aufweisen. Weiters wird vorgeschlagen pro Flügel nur einen einzigen radialen Tragarm vorzusehen, welcher ebenfalls aus einem Tragflügelprofil besteht. Somit wird die Konstruktion einfacher und billiger. 



   Anhand von Zeichnungen soll nun die Erfindung näher erläutert werden :
Fig. 1-Fig. 3 zeigen Skizzen für die Berechnung der optimalen Flügelaufteilung. 



   Fig. 4 zeigt eine zweiflügelige   Windkraftanlage   in Seitenansicht. 



   Fig. 5 den Schnitt A-B von Fig. 4. 



   Fig. 6 den Schnitt C-D durch die Tragfläche von Fig. 4. 



   Fig. 7 zeigt eine Seitenansicht einer Windturbine mit Versteifungsbügel. 



   Fig. 8 und Fig. 9 zeigen einen Mechanismus für die Flügelverstellung. 



   Fig. 10 und Fig. 11 eine Tragflügelkonstruktion. 



   Fig. 12 eine Windturbine mit geneigten Tragflächenprofilen. 



   Fig. 13 und Fig. 14 zeigen Klappmechanismen für die Sturmstellung. 



   Fig. 15 und Fig. 16 zeigen einen weiteren Flügelverdrehmechanismus. 



   Fig. 17 zeigt eine Schrägansicht von oben einer dreiflügeligen Windturbine. 



   Fig. 18 zeigt eine zweiflügelige Windturbine mit Seilverstrebungen. 



   Fig. 19 stellt eine Windturbine mit gekrümmten Tragarmen und schräg gestellten Flügeln dar. 



   Fig. 20 zeigt eine Windkraftanlage mit Fachwerksarmen und verstellbaren Flügeln oberhalb und unterhalb des Fachwerkes. 



   Fig. 21 stellt eine weitere Variante mit nach oben gestellten Windflügeln und einen trapezförmigen Turm. 



   In Fig. 1 sind die Masse R (Tragarm) und h (Flügellänge) einer Vertikalachsen-Windturbine dargestellt. Geht man davon aus, dass Tragarme und Flügel ein etwa gleichaufwendiges (in der Herstellung) Tragflächenprofil besitzen, so kann man die optimale Flügelaufteilung dadurch errechnen, dass die Fläche A* = R. h, bei gegebener Profillänge Lges=R + h, ein Maximum sein soll. Laut Differentialgleichung ist dies dann der Fall wenn R=h. Selbstverständlich bleibt die angeströmte Fläche die gleiche, wenn - wie in Fig. 2 dargestellt - der Flügel mit der Höhe h nach oben verschoben wird. In Fig. 3 ist eine weitere Optimierung in Bezug auf die Erhöhung der Anströmfläche (als Mass für die Leistung des Windrades) dargestellt, wenn die Flügel schräg um den Winkel a an den Tragarmen angeordnet werden.

   Bei ansonsten gleichen Tragflächenlängen R+h ergibt sich die 

 <Desc/Clms Page number 2> 

 grösstmögliche Anströmfläche nach Bildung einer Differentialgleichung, wenn der Winkel a = 12,9 , wenn R=h. Fig. 4 zeigt eine Ausführung mit U-förmigem Rotor-45a-, bei welchem die Tragflügel -4,5- senkrecht nach unten stehen. Dabei sind an zwei Tragarmen-2,3- starre Tragflügel -4,5vorgesehen und an diesen um eine vertikale Achse-8- bzw.-9- schwenkbare Tragflügel -6,7angeordnet. Der Rotor-45a- ist an einem Lager-10- drehbar gelagert und betreibt einen sog. Ringgenerator-11-, welcher kein Getriebe benötigt, dafür aber einen umso grösseren Durchmesser aufweisen muss, um eine gewisse Relativgeschwindigkeit zwischen dem stehenden und dem rotierenden Teil des Generators -11- zu erzielen.

   Der Vorteil des Ringgenerators -11- liegt darin, dass er lärmarm ist, da er kein Getriebe benötigt. Insbesondere dann wenn ein Restaurant-12-, einer Aussichtwarte od. dgl. vorgesehen ist, wie in Fig. 4 dargestellt, bietet sich ein Ringgenerator -11- an. Die Windkraftanlage ruht auf einer Säule -1-, z.B. als Beton- oder Stahlrohr ausgebildet, wobei -1a- das Fundament darstellt. Das Verhältnis des schwenkbaren Flügelanteiles -6,7- zum starren Flügelanteil -4,5- beträgt h1:(h-h1) und ist beliebig wählbar. Fig. 5 zeigt einen Schnitt A-B mit der Darstellung der Flügelposition und der Geschwindigkeiten an den Flügeln -4,5,6,7-. Die Windgeschwindigkeit w vor dem Windrad addiert sich geometrisch mit der Umfangsgeschwindigkeit u zur resultierenden Anströmgeschwindigkeit vr. Dadurch entsteht der Auftrieb A.

   An der rückwärtigen Seite der Windkraftanlage wird dem Wind nochmals Energie entzogen, wobei dort die geringere Windgeschwindigkeit w' auftritt, welche sich ebenfalls mit der Umfangsgeschwindigkeit u der Resultierenden vr' geometrisch addiert und den Auftrieb A' erzeugt. Die Steuerung der Schwenkbewegung der Flügel -6,7- erfolgt demnach so, dass an jedem Punkt des Umlaufes ein positives Drehmoment erzeugt wird, ausgenommen an den Tangenten des Umlaufkreises bezüglich der Windrichtung. Die starren Flügelanteile -4,5- stehen mit ihrer Profilsehne stets tangential zum Rotorkreis, oder in einem kleinem positiven Anstellwinkel, da im vorderen Bereich (Halbkreis) dem Wind mehr Energie entzogen wird als im hinteren - in Windrichtung betrachtet - Halbkreis.

   Die Steuerung erfolgt hydraulisch, mechanisch oder elektrisch, bzw. in Kombination mehrerer Steuerungsarten, wobei ein Computerprogramm abhängig von der Windgeschwindigkeit, Windrichtung, Drehzahl usw. den augenblicklich erforderlichen Schwenkwinkel &num; ständig ermittelt. Fig. 6 zeigt einen Schnitt durch die Tragarme-2,3-, wobei hervorgeht, dass diese ebenfalls als aerodynamische Profile ausgebildet sind. Die Tragarme-2,3- können auch wahlweise gesteuerte Schwenkklappen -2a, 3a- am Umfang aufweisen, um die Tragarme-2,3- zusätzlich zu entlasten. 



   Fig. 7 stellt eine Ausführung dar, bei welcher die starren Tragflügel -4,5- und die Tragarme -2,3- durch einen Bügel -15- abgestützt werden. Der Ringgenerator-11- ist dabei oberhalb des Drehlagers -10- angeordnet. Fig. 8 und Fig. 9 beschreiben eine beispielsweise Ausführung des Verstellmechanismus der Flügel -6,7-, mittels eines Hydraulikzylinders-19-, welcher über einen Hebel -18- eine Welle bzw. Rohr-9- verschwenkt, welches mit dem verstellbaren Flügelanteil -7bzw.-6- fest verbunden ist. Das Rohr-9- ist mittels der Lager-16,17- schwenkbar gelagert und muss gleichzeitig so stabil ausgeführt sein, dass es die gesamten am Flügel -7- angreifenden Kräfte aufnehmen kann. Der Hydraulikzylinder-19- weist eine Wegmesseinrichtung auf. 



   Fig. 10 und Fig. 11 zeigen Flügelkonstruktionen. Z. B. können die waagrecht liegenden Tragarme-2,3- nach Fig. 10 ausgebildet sein. Ein trapezförmig oder wellenförmig gefaltetes Blech -20tränt die Aussenhaut -22- aufgenietet oder verschweisst oder verschraubt -23-, wobei als Profilnase ein Rohr -21- verwendet wird. Dadurch entsteht ein sehr stabiles Profil bei geringstem Gewicht. Als Material kann Stahl, Aluminium oder Kunststoff dienen. Da die Profile nicht verwunden sind (wie beim Propellerwindrad) sind diese wirtschaftlich herstellbar. Fig. 11zeigt einen Schnitt durch einen starren bzw. schwenkbaren Tragflügel -5,7-. Dabei werden Formrohre-24- verschiedener Dimension aneinander geschweisst und darauf die Profilhaut -25- gebogen und vernietet ein Torsionsrohr -26- nimmt die Drehmomente auf und dient gleichzeitig zur Verstärkung.

   Die Welle -9- befindet sich im Rohr-26- und ist in diesem drehbar gelagert (starrer   Flügel -5-)   bzw. fest verbunden (schwenkbarer Flügel -7-). Fig. 12 zeigt eine zweiflügelige Windkraftanlage mit schräg gestellten Flügeln -8,9-, wobei an den starren Flügelanteil -8,9- oben und unten schwenkbare Flügel -6,6a, 7,7aanschliessen. Der Bügel -27- ist durch die Stützen-26- verlängert und kann eine Kreisbogenform, Parabelform usw. aufweisen. Dieser Bügel -27- ist ebenfalls als aerodynamisches Profil ausgebildet und wird durch die Stütze-28- verstärkt. Ebenfalls eingezeichnet sind das Restaurant-12- und der Ringgenerator -11-. 



   Fig. 12 und Fig. 13 zeigen hydraulische Verstellmechanismen, wobei die Flügel -5,7- mittels 

 <Desc/Clms Page number 3> 

 Hydraulikzylinder-30- in Sturmstellung gebracht werden können -5',7'-. Der Flügel -5- ist dabei über die Gelenke-29- bzw.-32- um 90  schwenkbar, sodass dem Wind keine Angriffsfläche mehr geboten wird. Fig. 15 und Fig. 16 zeigt einen weiteren hydraulischen Verstellmechanismus, wobei mittels eines Torsionsmotors mit Getriebe-35- eine Welle -33-, welche mit dem Flügel -7- fest verbunden ist, verschwenkt wird. Die Welle -33- ist dabei in den Lagern-34,35- gelagert, sodass die ganze Anordnung platzsparend direkt in den Flügeln -4,5- untergebracht werden kann. Fig. 17 stellt eine Windkraftanlage in Vogelperspektive dar, wobei drei nach unten gebogene Tragarme-2,3,3ain ihrer Verlängerung die schwenkbaren Flügel -6,7,7a- aufweisen.

   Man sieht deutlich, dass die Tragarme-2,3,-3a- das gleiche z. B. symmetrische Profil aufweisen die Tragflügel -4,5,5a, 6,7,7a-. 



  Fig. 18 zeigt ein zweiflügeliges Windrad in Vogelperspektive, wobei die schwenkbaren Flügelanteile -6,7- nach unten verjüngt ausgebildet sind. Seile -36-,37- mit den Stützen-38,39- übemehmen einen Teil der Fliehkräfte und des Drehmomentes. Die Tragarme-2,3- wechseln in der Windradmitte die Profilrichtung, ebenso wie auch bei den anderen Darstellungen. Eine Windfahne und ein Windgeschwindigkeitsmessgerät -14- überträgt laufend die aktuellen Daten in die Prozessorsteuerung. Fig. 19 zeigt eine Windkraftanlage mit gekrümmten Tragarmen-2,3- und Seilverspannung -36,37-. In Fig. 20 ist eine Anlage mit Fachwerksträgern-42,43- als Tragarme dargestellt, welche an einer Nabe-44- befestigt sind. Der starre Flügelanteil -40,41- ist ebenfalls fix mit den Fachwerksträgern-42,43- verbunden.

   Oberhalb und unterhalb der starren Flügel -40,41- befinden sich die beweglichen Flügelabschnitte -6,6b, 7,7b-. Diese Konstruktion kann z. B. zwei-, drei- oder mehrflügelig ausgeführt werden. 



   Fig. 21 zeigt eine völlig andere Konstruktion betreffend Turmkonstruktion und Flügelanordnung. 



  An einem trapezförmigen Turm -1b- befindet sich der U-förmige, zweiflügelige (oder dreiflügelige) Rotor mit nach oben zeigenden Flügelprofilen -47,48,49,50-, welche an die Tragarme-45,46anschliessen. Die beweglichen Flügelanteile -49,50- sind dabei nach oben verjüngend ausgebildet. Verstrebungen-52,53- in Form von Seilen oder ovalen Rohren versteifen das System. Die Tragarme-45,46- sind mit einem Mittelteil -54- fest verbunden, welcher das Drehlager trägt, sowie unterhalb ebenfalls beispielsweise einen Ringgenerator-11-. Das Restaurant-12a- wird durch einen Aufzug-51- erreicht. Diese Bauweise bietet sich an auch für verschiedene Freizeitaktivitäten zu dienen. Z.B.   Bungee-jumping   bei arretiertem Rotor. Oder wall-surfing mit Leinensicherung, sowie Frei-Fall-Simulationen an einem gleitenden Gerät an einer der steilen Seitenwände. 



   Damit sind nur einige Beispiele des Erfindungsgegenstandes beschrieben, wobei noch viele weitere Konstruktionen im Rahmen des Erfindungsgedankens vorstellbar wären. Z. B. könnten auch zwei Rotoren-45a-, ein kleinerer und ein grösserer auf derselben Achse gegensinnig kreisen um so die Energieausbeute bzw. die Relativdrehzahl zu erhöhen. Oder zwei U-Rotoren-45a- auf derselben Achse in spiegelbildlicher Anordnung. Die Anzahl der Flügel kann beliebig gewählt werden, wobei den zwei- und dreiflügeligen Rotoren-45a- der Vorzug zu geben ist. Das Profil kann symmetrisch oder asymmetrisch ausgebildet sein. Bei zweiflügeligen Rotoren werden die Flügel -4,5,47,48- einfach in Windrichtung gestellt und gebremst. Bei dreiflügeligen Rotoren kann es sinnvoll sein die Flügel -4,5,5a- radial einzuklappen.

   Beim Start wird der Flügelausschlag &num; entsprechend grösser sein und passt sich dann automatisch den Gegebenheiten an. Der starre Flügelanteil -4,5,5a, 47,48- wird zu Beginn der Drehung keinen optimalen Drehmomentbeitrag leisten, der jedoch mit zunehmender Drehzahl steigt. Selbstverständlich können anstelle von Ringgeneratoren auch Asynchron - oder Synchrongeneratoren mit Getriebe vorgesehen werden. 

**WARNUNG** Ende DESC Feld kannt Anfang CLMS uberlappen**.

Claims (13)

  1. PATENTANSPRÜCHE: 1. Windkraftanlage mit vertikaler Achse und um diese kreisende, parallel oder in einem Win- kel zur vertikalen Achse stehende Tragflügel mit Tragflächenprofilen, wobei die Tragflügel um ihre vertikale Längsachse hydraulisch od. mechanisch schwenkbar sind und mittels Tragarmen mit der Rotornabe verbunden sind und mit oder ohne Zwischengetriebe einen Generator oder eine Pumpe usw. antreiben und sich die ganze Anlage auf einem Turm be- findet, welcher wahlweise auch ein Restaurant, Aussichtsturm od. dgl.
    aufweist, dadurch gekennzeichnet, dass die senkrecht oder geneigt stehenden Tragflügel in Bezug auf die Tragarme (2,3,3a, 45,46) einen starren Flügelanteil (4,5,5a, 47,48) und einen jeweils daran <Desc/Clms Page number 4> anschliessenden, um eine zur Flügellängsachse parallel oder in dieser liegenden Achse (8,9), schwenkbaren Flügelanteil (6,7,7a, 49,50) aufweisen und die Tragflügel (4,5,5a, 47,48;6,7,7a,49,50) in Bezug auf die waagrechten Tragarme (2,3,3a, 45,46) nach oben und/oder nach unten zeigen.
  2. 2. Windkraftanlage nach Anspruch 1, dadurch gekennzeichnet, dass die Tragflügel (4,5,5a,47,48;6,7,7a,49,50) - wie an sich bekannt - um eine waagrechte Achse (29,32) mit- tels eines Hydraulikzylinders (30) für die Einnahme der Sturmstellung radial nach innen schwenkbar ausgebildet sind.
  3. 3. Windkraftanlage nach Anspruch 1, dadurch gekennzeichnet, dass vorzugsweise zwei oder drei Tragflügel (4,5,5a, 47,48;6,7,7a,49,50) vorgesehen sind, welche - wie an sich be- kannt - ein symmetrisches oder asymmetrisches Tragflügelprofil aufweisen.
  4. 4. Windkraftanlage nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass ein an sich bekannter Ringgenerator (11 ) Verwendung findet.
  5. 5. Windkraftanlage nach Anspruch 1, dadurch gekennzeichnet, dass die starren Flügelan- teile (4,5,5a, 47,48) - wie an sich bekannt - mittels Spannseilen (36,37), Verstrebungen (52,53) oder Bügeln (15,27) mit den Tragarmen (2,3,3a, 45,46) verbunden sind.
  6. 6. Windkraftanlage nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Tragarme (2,3,3a, 45,46) aus einem Stück mit den starren Flügelanteilen (4,5,5a, 47,48) bestehen und das gleiche Tragflügelprofil aufweisen.
  7. 7. Windkraftanlage nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass der Windradturm (1,1b) - wie an sich bekannt - aus einem zylindrischen Turm aus Beton oder Stahl besteht, welcher knapp unterhalb des Rotors (45a) ein Restaurant od. dgl. aufweist, oder aus einer bügelförmigen Konstruktion mit schräg stehenden, trapezförmigen Seiten- flächen, welche auch die Stützarme für ein Restaurant (12a) bilden.
  8. 8. Windkraftanlage nach Anspruch 1, dadurch gekennzeichnet, dass die Längen (R) der Tragarme (2,3,45,46) und die Tragflügellängen (h) ungefähr gleich gross sind.
  9. 9. Windkraftanlage nach Anspruch 1, dadurch gekennzeichnet, dass die Tragflügel (4,5,5a, 47,48;6,7,7a,49,50) um einen Winkel von ca. 10-20 Grad, gemessen zur Vertika- len, nach aussen hin geneigt sind.
  10. 10. Windkraftanlage nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die Verstellung der schwenkbaren Tragflügelanteile (6,7,7a, 49,50) - wie an sich bekannt - me- chanisch (mittels Exzenter und Windfahne), elektrisch oder hydraulisch mittels eines Hyd- raulikzylinders (19) oder Torsionsmotors mit Getriebe (35) erfolgt, wobei bei einer elektri- schen od. elektrohydraulischen Steuerung ein Mikroprozessor ständig den erforderlichen Anstellwinkel (&num;) errechnet.
  11. 11. Windkraftanlage nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass die Tragflügel (4,5,5a, 47,48;6,7,7a,49,50) aus einem wellen- oder trapezförmig gefalteten Blech (20,24) mit darüber gebogener Aussenhaut (22,25) bestehen.
  12. 12. Windkraftanlage nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass an einer Achse zwel gegensinnig laufende U-Rotoren (45a), deren Flügel jeweils nach oben bzw. unten ragen vorgesehen sind, oder ineinander verschachtelt laufen.
  13. 13. Windkraftanlage nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass die starren Flügelanteile (4,5,5a, 47,48) mit ihrer Profilsehne, in Drehachsrichtung gesehen, stets tangential zum Rotorkreis angeordnet sind oder einen kleinen positiven Anstellwinkel zur Windrichtung aufweisen.
    HIEZU 13 BLATT ZEICHNUNGEN
AT0193399A 1999-11-16 1999-11-16 Windkraftanlage mit vertikaler achse und tragflächenprofilen AT412010B (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AT0193399A AT412010B (de) 1999-11-16 1999-11-16 Windkraftanlage mit vertikaler achse und tragflächenprofilen
DE10054700A DE10054700A1 (de) 1999-11-16 2000-11-04 Windkraftanlage mit vertikaler Achse und Tragflächenprofilen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
AT0193399A AT412010B (de) 1999-11-16 1999-11-16 Windkraftanlage mit vertikaler achse und tragflächenprofilen

Publications (2)

Publication Number Publication Date
ATA193399A ATA193399A (de) 2004-01-15
AT412010B true AT412010B (de) 2004-08-26

Family

ID=3524165

Family Applications (1)

Application Number Title Priority Date Filing Date
AT0193399A AT412010B (de) 1999-11-16 1999-11-16 Windkraftanlage mit vertikaler achse und tragflächenprofilen

Country Status (2)

Country Link
AT (1) AT412010B (de)
DE (1) DE10054700A1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003285245A1 (en) 2002-12-02 2004-06-23 Hans-Armin Ohlmann Vertical axis wind turbine
FR2872552B1 (fr) * 2004-07-02 2009-02-20 Vimak Soc Civ Ile Eolienne a axe vertical
DE102012000135A1 (de) * 2012-01-06 2013-07-11 Roland Mahler Windkraftanlage
DE102013008919B4 (de) 2013-05-24 2017-12-07 Magdeburger Windkraftanlagen GmbH Rotorsystem für die Energiewandlung von kinetischer Energie in Fluiden und Massenströmen
FR3008742B1 (fr) * 2013-07-19 2018-11-16 Mathieu Etienne Andre Boda Hydrolienne a pales mobiles

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2008202A (en) * 1977-10-12 1979-05-31 Herter E Herter G Wind Turbine
EP0021790A1 (de) * 1979-06-19 1981-01-07 Frederick Charles Evans Windkraftmaschinen und Turbinen mit vertikaler Achse
US4274809A (en) * 1978-10-11 1981-06-23 P.I. Specialist Engineers Limited Vertical axis wind turbines
EP0046122A2 (de) * 1980-08-13 1982-02-17 Michel Edouard Raymond Bourriaud Windkraftwerk mit senkrechten Windrädern
DE3308388A1 (de) * 1983-03-09 1983-11-17 Hans-Peter 8205 Kiefersfelden Abraham Windkraftwerk
US4421458A (en) * 1980-10-07 1983-12-20 Sir Robert Mcalpine & Sons (Trade Investments) Limited Wind powered turbine
WO1997039340A1 (en) * 1996-04-16 1997-10-23 Northrop Grumman Corporation Multiple station gamma ray absorption contraband detection system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2008202A (en) * 1977-10-12 1979-05-31 Herter E Herter G Wind Turbine
US4274809A (en) * 1978-10-11 1981-06-23 P.I. Specialist Engineers Limited Vertical axis wind turbines
EP0021790A1 (de) * 1979-06-19 1981-01-07 Frederick Charles Evans Windkraftmaschinen und Turbinen mit vertikaler Achse
EP0046122A2 (de) * 1980-08-13 1982-02-17 Michel Edouard Raymond Bourriaud Windkraftwerk mit senkrechten Windrädern
US4421458A (en) * 1980-10-07 1983-12-20 Sir Robert Mcalpine & Sons (Trade Investments) Limited Wind powered turbine
DE3308388A1 (de) * 1983-03-09 1983-11-17 Hans-Peter 8205 Kiefersfelden Abraham Windkraftwerk
WO1997039340A1 (en) * 1996-04-16 1997-10-23 Northrop Grumman Corporation Multiple station gamma ray absorption contraband detection system

Also Published As

Publication number Publication date
DE10054700A1 (de) 2001-05-17
ATA193399A (de) 2004-01-15

Similar Documents

Publication Publication Date Title
DE2632697C2 (de) Windkraftmaschine mit vertikaler Achse
EP3330530B1 (de) Rotorblatt einer windenergieanlage
DE102004019620B4 (de) Strömungsgesteuertes Windrad
EP0801711A1 (de) Windkraftanlage mit h-rotor
DE3825241A1 (de) Windturbine
DE102011056980A1 (de) Windkraftanlage
DE3003270C2 (de) Windkraftmaschine mit einem um eine senkrechte Achse drehbaren Windrotor
AT412010B (de) Windkraftanlage mit vertikaler achse und tragflächenprofilen
DE102008057212A1 (de) Rotor mit mindestens einem ringförmigen Rotorblatt
EP1387954B1 (de) Vertikalachs-windturbine
EP2435691A2 (de) Energiewandlungseinrichtung zur umwandlung von wellenenergie
EP2707597B1 (de) Strömungskraftwerk und verfahren für dessen betrieb
DE10123544A1 (de) Vertikale Wasser- und Wind-Flügelturbine
EP2425124B1 (de) Unterwasserkraftwerk mit einer bidirektional anströmbaren, gleichsinnig umlaufenden wasserturbine
DE102009051117B4 (de) Horizontalläufer-Turbine mit passiver Gierwinkel-Einstellvorrichtung
WO2003103113A2 (de) Vertikaler rotor mit lenkbaren flügel
EP0235149B1 (de) Gekapselte windkraftmaschine mit aussermittiger rotorachse
DE202008014838U1 (de) Freitragender Vertikalachs-H-Durchström-Auftriebs-Rotor
AT14629U1 (de) Windkraftanlage mit senkrechter Drehachse
DE19841517A1 (de) Windenergie-Gewinnungs-Anlage
DE10340112A1 (de) Windkraftanlage
DE202008005724U1 (de) Axial durchströmte Windturbine
WO2011117276A2 (de) Rotorblatt für h-rotor
CH700422B1 (de) Axial durchströmte Windturbine.
DE202007005916U1 (de) Windleitbleche

Legal Events

Date Code Title Description
MM01 Lapse because of not paying annual fees

Effective date: 20170115