AT149196B - Process for the production of objects with special magnetic properties, in particular permanent magnets. - Google Patents
Process for the production of objects with special magnetic properties, in particular permanent magnets.Info
- Publication number
- AT149196B AT149196B AT149196DA AT149196B AT 149196 B AT149196 B AT 149196B AT 149196D A AT149196D A AT 149196DA AT 149196 B AT149196 B AT 149196B
- Authority
- AT
- Austria
- Prior art keywords
- magnetic properties
- permanent magnets
- objects
- production
- special magnetic
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 3
- 238000004519 manufacturing process Methods 0.000 title description 2
- 229910052720 vanadium Inorganic materials 0.000 claims description 4
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 claims description 4
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 2
- 229910052804 chromium Inorganic materials 0.000 claims description 2
- 239000011651 chromium Substances 0.000 claims description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims 1
- 229910052770 Uranium Inorganic materials 0.000 claims 1
- 238000007792 addition Methods 0.000 claims 1
- 229910052782 aluminium Inorganic materials 0.000 claims 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims 1
- 229910052790 beryllium Inorganic materials 0.000 claims 1
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 claims 1
- 229910052802 copper Inorganic materials 0.000 claims 1
- 239000010949 copper Substances 0.000 claims 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 claims 1
- 229910052751 metal Inorganic materials 0.000 claims 1
- 239000002184 metal Substances 0.000 claims 1
- 150000002739 metals Chemical class 0.000 claims 1
- 229910052759 nickel Inorganic materials 0.000 claims 1
- 229910052710 silicon Inorganic materials 0.000 claims 1
- 239000010703 silicon Substances 0.000 claims 1
- 229910052715 tantalum Inorganic materials 0.000 claims 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims 1
- 229910052719 titanium Inorganic materials 0.000 claims 1
- 239000010936 titanium Substances 0.000 claims 1
- JFALSRSLKYAFGM-UHFFFAOYSA-N uranium(0) Chemical compound [U] JFALSRSLKYAFGM-UHFFFAOYSA-N 0.000 claims 1
- 229910052845 zircon Inorganic materials 0.000 claims 1
- GFQYVLUOOAAOGM-UHFFFAOYSA-N zirconium(iv) silicate Chemical compound [Zr+4].[O-][Si]([O-])([O-])[O-] GFQYVLUOOAAOGM-UHFFFAOYSA-N 0.000 claims 1
- 229910052799 carbon Inorganic materials 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 5
- 229910000640 Fe alloy Inorganic materials 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 239000010941 cobalt Substances 0.000 description 4
- 229910017052 cobalt Inorganic materials 0.000 description 4
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 4
- 238000010791 quenching Methods 0.000 description 4
- 230000000171 quenching effect Effects 0.000 description 4
- 238000005496 tempering Methods 0.000 description 4
- 229910000831 Steel Inorganic materials 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 3
- 229910052721 tungsten Inorganic materials 0.000 description 3
- 239000010937 tungsten Substances 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 239000011733 molybdenum Substances 0.000 description 2
- 230000032683 aging Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000005261 decarburization Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910000734 martensite Inorganic materials 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
Landscapes
- Hard Magnetic Materials (AREA)
Description
<Desc/Clms Page number 1>
Verfahren zur Herstellung von Gegenständen mit besonderen magnetischen Eigenschaften, ins- besondere Dauermagneten.
EMI1.1
<Desc/Clms Page number 2>
Für die Wärmebehandlung der Legierungen ist es ferner sehr günstig, dass sie praktisch kohlenstoffrei sind und infolgedessen bei der Wärmebehandlung keine Entkohlungserscheinungen zeigen können, die die Kohlenstoffmagnetstähle sehr schädigen können.
Weitere Vorteile der vorliegenden Legierungen sind in ihren magnetischen Eigenschaften begründet. Die Art der Wärmebehandlung schliesst eine Gefügeänderung während der Lagerung oder schwachen Erwärmung vollkommen aus. Infolgedessen sind diese Magnete durchaus alterungsfrei. Demgegenüber ist das martensitisehe Gefüge der gewöhnlichen Magnetstähle nicht beständig. Schon durch ein Anlassen auf mässige Temperaturen wird ihre Koerzitivkraft stark erniedrigt. Die vorliegenden Legierungen können dagegen bis zur Rotglut erhitzt werden, ohne dass ihre magnetischen Werte, bei Zimmertemperatur gemessen, beeinträchtigt werden.
Daraus folgt weiter, dass beim Erhitzen und Wiederabkühlen derartiger Magnete sich bei jeder Temperatur derselbe Wert einstellt, während bei den früheren Magnetstählen bei der Abkühlung niedrigere Werte als bei der Erhitzung erhalten werden.
Folgende Beispiele mögen obige Angaben erläutern :
1. Eine Eisenlegierung mit 0'04% Kohlenstoff, 9'8% Kobalt, 18-2% Wolfram und 1-4% Vanadin ergab nach dem Abschrecken von 12750 C eine Koerzitivkraft von 4 Gauss, eine Remanenz von 4200 Gauss und eine Brinellhärte von 320. Nach einhalbstündigem Anlassen auf 750 C betrug die Koerzitivkraft 108 Gauss, die Remanenz 11.750 Gauss und die Härte 550.
2. Eine Eisenlegierung mit 0-03% Kohlenstoff, 15% Kobalt, 18-6% Wolfram, 1-2% Vanadin und 2% Chrom ergab nach dem Abschrecken von 12500 C und einhalbstündigem Anlassen auf 7500 C eine Koerzitivkraft von 153 Gauss und eine Remanenz von 11.200 Gauss.
3. Eine Eisenlegierung mit 0-04% Kohlenstoff, 5-2% Kobalt, 15-6% Molybdän und 0-6% Vanadin ergab nach dem Abschrecken von 1100 C und einhalbstündigem Anlassen auf 700 C eine Koerzitivkraft von 116 Gauss und eine Remanenz von 11. 500 Gauss.
PATENT-ANSPRÜCHE :
EMI2.1
insbesondere Dauermagneten, aus ausscheidungshärtefähigen kohlenstoffreien oder-armen (unter 0-25% Kohlenstoff) Eisenlegierungen mit mindestens 50% Eisen, dadurch gekennzeichnet, dass die Legierungen 7-30% Wolfram, das ganz oder teilweise durch Molybdän ersetzt werden kann, und 0-5-20% Kobalt enthalten und zur Erreichung ihrer guten magnetischen Eigenschaften von Temperaturen, bei denen erhöhte Mischkristallbildung eingetreten ist, abgeschreckt und anschliessend sich selbst überlassen oder bei einer unter der Absehrecktemperatur liegenden Temperatur angelassen werden.
<Desc / Clms Page number 1>
Process for the production of objects with special magnetic properties, especially permanent magnets.
EMI1.1
<Desc / Clms Page number 2>
For the heat treatment of the alloys, it is also very favorable that they are practically carbon-free and consequently cannot show any signs of decarburization during the heat treatment, which can seriously damage the carbon magnetic steels.
Further advantages of the present alloys are based on their magnetic properties. The type of heat treatment completely rules out a structural change during storage or slight warming. As a result, these magnets are absolutely non-aging. In contrast, the martensitic structure of common magnetic steels is not stable. Even tempering them at moderate temperatures greatly reduces their coercive force. The present alloys, on the other hand, can be heated to red heat without their magnetic values, measured at room temperature, being impaired.
It also follows from this that when such magnets are heated and cooled again, the same value is established at every temperature, while lower values are obtained in the case of the earlier magnetic steels when they are cooled than when they are heated.
The following examples may explain the above information:
1. An iron alloy with 0.04% carbon, 9.8% cobalt, 18-2% tungsten and 1-4% vanadium gave a coercive force of 4 Gauss, a remanence of 4200 Gauss and a Brinell hardness of after quenching at 12750 C 320. After tempering for half an hour at 750 C, the coercive force was 108 Gauss, the remanence 11,750 Gauss and the hardness 550.
2. An iron alloy containing 0-03% carbon, 15% cobalt, 18-6% tungsten, 1-2% vanadium, and 2% chromium gave a coercive force of 153 gauss and one after quenching at 12500 C and tempering at 7500 C for one half hour Remanence of 11,200 Gauss.
3. An iron alloy with 0-04% carbon, 5-2% cobalt, 15-6% molybdenum and 0-6% vanadium gave a coercive force of 116 gauss and a remanence of after quenching at 1100 ° C. and tempering at 700 ° C. for one half hour 11. 500 gauss.
PATENT CLAIMS:
EMI2.1
In particular permanent magnets, made of precipitation-hardenable carbon-free or low-carbon (below 0-25% carbon) iron alloys with at least 50% iron, characterized in that the alloys 7-30% tungsten, which can be replaced completely or partially by molybdenum, and 0-5 Contain -20% cobalt and, in order to achieve their good magnetic properties, are quenched at temperatures at which increased mixed crystal formation has occurred and then left to themselves or tempered at a temperature below the quenching temperature.
Claims (1)
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| DE149196X | 1931-07-25 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| AT149196B true AT149196B (en) | 1937-04-10 |
Family
ID=29260933
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| AT149196D AT149196B (en) | 1931-07-25 | 1932-07-13 | Process for the production of objects with special magnetic properties, in particular permanent magnets. |
Country Status (1)
| Country | Link |
|---|---|
| AT (1) | AT149196B (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE1298291B (en) * | 1965-05-20 | 1969-06-26 | Int Nickel Ltd | Use of a martensite-hardenable nickel-cobalt-molybdenum steel alloy for objects with a minimum tensile strength of 265 kg / mm |
-
1932
- 1932-07-13 AT AT149196D patent/AT149196B/en active
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE1298291B (en) * | 1965-05-20 | 1969-06-26 | Int Nickel Ltd | Use of a martensite-hardenable nickel-cobalt-molybdenum steel alloy for objects with a minimum tensile strength of 265 kg / mm |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| DE2813799A1 (en) | MAGNETIC ALLOY AND METHOD FOR MANUFACTURING IT | |
| EP1255873B1 (en) | Maraging type spring steel | |
| AT149196B (en) | Process for the production of objects with special magnetic properties, in particular permanent magnets. | |
| DE1297873B (en) | Use of a red-free predominantly martensitic steel alloy for cutting tools | |
| US2196824A (en) | Permanent magnet consisting of iron, nickel, and copper | |
| US2624670A (en) | Chromium steels | |
| AT139430B (en) | Aluminum-iron alloys with or without cobalt for permanent magnets. | |
| EP0634759A2 (en) | Semi-hard and deformable iron based permanent magnet alloy | |
| DE739698C (en) | Use of carbon-free or low-carbon alloys as a material for permanent magnets | |
| AT129734B (en) | Copper-beryllium alloy. | |
| CH165210A (en) | Permanent magnet. | |
| DE689070C (en) | Alloy which can be hardened by precipitation | |
| AT235327B (en) | Hardened nickel steel for objects that have a high strength and at the same time also have to be corrosion-resistant | |
| AT249721B (en) | Age-hardenable, austenitic chromium-manganese-nickel-steel alloy for the production of objects of high hardness and strength as well as good toughness at room and elevated temperatures | |
| AT147773B (en) | Highly permeable ferromagnetic alloy based on iron-nickel-copper. | |
| AT277300B (en) | Steel that can be hardened in the martensitic state | |
| GB512524A (en) | Improvements in corrosion-resistant austenitic non-magnetic steel alloys | |
| AT159615B (en) | Permanent magnet steel. | |
| AT159580B (en) | Chromium-cobalt magnetic steel. | |
| DE669057C (en) | Objects made of ferromagnetic alloys, which must have an increased coercive force and remanence in use | |
| DE826977C (en) | Use of cobalt-chromium-iron alloys for springs | |
| AT218258B (en) | Nickel-chromium alloy | |
| CH194508A (en) | Process for the production of machine parts which produce high induction values with a low number of ampere turns. | |
| AT147145B (en) | Permanent magnet alloys. | |
| AT146179B (en) | Process for the production of dies from manganese-chromium steels. |