EP0634759A2 - Semi-hard and deformable iron based permanent magnet alloy - Google Patents
Semi-hard and deformable iron based permanent magnet alloy Download PDFInfo
- Publication number
- EP0634759A2 EP0634759A2 EP94110507A EP94110507A EP0634759A2 EP 0634759 A2 EP0634759 A2 EP 0634759A2 EP 94110507 A EP94110507 A EP 94110507A EP 94110507 A EP94110507 A EP 94110507A EP 0634759 A2 EP0634759 A2 EP 0634759A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- permanent magnet
- hard
- semi
- alloy
- magnet alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B13/00—Burglar, theft or intruder alarms
- G08B13/22—Electrical actuation
- G08B13/24—Electrical actuation by interference with electromagnetic field distribution
- G08B13/2402—Electronic Article Surveillance [EAS], i.e. systems using tags for detecting removal of a tagged item from a secure area, e.g. tags for detecting shoplifting
- G08B13/2405—Electronic Article Surveillance [EAS], i.e. systems using tags for detecting removal of a tagged item from a secure area, e.g. tags for detecting shoplifting characterised by the tag technology used
- G08B13/2408—Electronic Article Surveillance [EAS], i.e. systems using tags for detecting removal of a tagged item from a secure area, e.g. tags for detecting shoplifting characterised by the tag technology used using ferromagnetic tags
- G08B13/2411—Tag deactivation
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
- C21D8/1244—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
- C21D8/1261—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest following hot rolling
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B13/00—Burglar, theft or intruder alarms
- G08B13/22—Electrical actuation
- G08B13/24—Electrical actuation by interference with electromagnetic field distribution
- G08B13/2402—Electronic Article Surveillance [EAS], i.e. systems using tags for detecting removal of a tagged item from a secure area, e.g. tags for detecting shoplifting
- G08B13/2428—Tag details
- G08B13/2437—Tag layered structure, processes for making layered tags
- G08B13/2442—Tag materials and material properties thereof, e.g. magnetic material details
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/0302—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity characterised by unspecified or heterogeneous hardness or specially adapted for magnetic hardness transitions
- H01F1/0306—Metals or alloys, e.g. LAVES phase alloys of the MgCu2-type
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/047—Alloys characterised by their composition
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/147—Alloys characterised by their composition
Definitions
- the invention relates to a semi-hard, deformable permanent magnet alloy, which essentially contains iron, additions of over 5% nickel and / or manganese together and at least one additional element for increasing the transformation temperature into austenite (As) in such amounts that a metastable austenitic alloy results, which contains a mixed structure of an alpha phase (martensite) and a gamma phase (austenite) by cold working and subsequent heat treatment.
- As austenite
- Alloys with 68 to 77 wt .-% iron, 9 to 20 wt .-% chromium and 13 to 23 wt .-% nickel are from G. Rassmann and O. Henkel (NACHRICHTENTECHNIK, 11 (1961), pp. 307-313 ) have been examined. After homogenization, these alloys are austenitic and unstable to deformation, i. H. Cold forming can convert measurable amounts of austenite into ferrite. The alpha phase (ferrite, martensite) generated by cold working can then be converted back to austenite by heat treatment. This thermomechanical treatment enables a coercive field strength in the range from 50 to 900 A / cm to be set with a remanent induction Br between 0.06 and 0.3 T.
- the object of the present invention is to create a semi-hard deformable permanent magnet alloy which has a coercive field strength Hc in the range from more than 40 to 100 A / cm and a remanent induction Br above 0.8 T.
- An alloy with such magnetic properties is particularly useful when used as an anti-theft strip needed.
- the alloy together with the actual soft magnetic security strip, it serves to validate it at the cash register by magnetization, so that it can then no longer trigger an alarm.
- the alloy is also suitable for other applications in which the requirements for coercive field strength and a minimum residual induction of over 0.8 T have to be met.
- the magnetic properties can be adjusted by this spinodal separation.
- a disadvantage of the properties of an alloy intended here is the heat treatment, which is difficult to adjust the coercive field strength, in particular in the case of large batches, it not always being possible to ensure that the same temperature actually exists in every part of a furnace filling.
- an alloy with 67Fe-14Cr-7Ni-5Mo-10Co was hot-rolled at 1100 ° C. to 5 mm, then annealed at 1100 ° C for 1 h and quenched in water. In this state, the alloy is paramagnetic and austenitic. This alloy was then rolled to 0.5 mm, corresponding to 90% cold working. In this state, the alloy is ferromagnetic by converting the gamma to the alpha phase.
- Table 1 shows alloys containing iron, Ni, Cr, Mo, Mn and partly Co and Ti. It can be seen that the magnetic values Br for the remanence induction and Hc for the coercive force are in the required range, provided the Co content is above 4.5% and the other additives are selected so that a metastable austenitic alloy results after the homogenization annealing . It can also be seen that particularly advantageous magnet values result if the degree of cold deformation is at least 90%.
- Table 2 The same is shown in Table 2, in which the temperature of the final annealing was increased to 520 ° C., while Table 3 has the same alloys as in Table 2 for the test object and shows the influence of the temperature of the heat treatment.
- the examples further show that a particularly advantageous composition is obtained if the cobalt content is greater than 4.5 and at most 12% and if a cold working of over 80% is carried out.
- metastable austenitic alloys are characterized by the fact that the austenite can be converted to martensite either by cold working or by cooling below the transformation temperature of the austenite to martensite with the alpha phase, the conversion to martensite cannot be achieved by cold working or by cooling , if the proportions of Ni and Mn and the proportions of the other additives become too large. You then have to deal with stable austenitic alloys.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Electromagnetism (AREA)
- Power Engineering (AREA)
- Automation & Control Theory (AREA)
- General Physics & Mathematics (AREA)
- Computer Security & Cryptography (AREA)
- Crystallography & Structural Chemistry (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Dispersion Chemistry (AREA)
- Hard Magnetic Materials (AREA)
Abstract
Description
Die Erfindung betrifft eine halbharte, verformbare Dauermagnetlegierung, die im wesentlichen Eisen, Zusätze von zusammen über 5 % Nickel und/oder Mangan sowie mindestens ein weiteres Zusatzelement zur Erhöhung der Umwandlungstemperatur in Austenit (As) in solchen Mengen enthält, daß sich eine metastabile austenitische Legierung ergibt, die durch Kaltverformung und anschließende Wärmebehandlung ein Mischgefüge aus einer alpha-Phase (Martensit) und einer gamma-Phase (Austenit) enthält.The invention relates to a semi-hard, deformable permanent magnet alloy, which essentially contains iron, additions of over 5% nickel and / or manganese together and at least one additional element for increasing the transformation temperature into austenite (As) in such amounts that a metastable austenitic alloy results, which contains a mixed structure of an alpha phase (martensite) and a gamma phase (austenite) by cold working and subsequent heat treatment.
Legierungen mit 68 bis 77 Gew.-% Eisen, 9 bis 20 Gew.-% Chrom und 13 bis 23 Gew.-% Nickel sind von G. Rassmann und O. Henkel (NACHRICHTENTECHNIK, 11 (1961), S. 307 - 313) untersucht worden. Diese Legierungen sind nach der Homogenisierung austenitisch und verformungsinstabil, d. h. durch Kaltverformung lassen sich meßbare Mengen Austenit in Ferrit umwandeln. Anschließend kann durch eine Wärmebehandlung die durch die Kaltverformung erzeugte alpha-Phase (Ferrit, Martensit) wieder in Austenit umgewandelt werden. Durch diese thermomechanische Behandlung läßt sich eine Koerzitivfeldstärke im Bereich 50 bis 900 A/cm bei einer Remanenzinduktion Br zwischen 0,06 und 0,3 T einstellen.Alloys with 68 to 77 wt .-% iron, 9 to 20 wt .-% chromium and 13 to 23 wt .-% nickel are from G. Rassmann and O. Henkel (NACHRICHTENTECHNIK, 11 (1961), pp. 307-313 ) have been examined. After homogenization, these alloys are austenitic and unstable to deformation, i. H. Cold forming can convert measurable amounts of austenite into ferrite. The alpha phase (ferrite, martensite) generated by cold working can then be converted back to austenite by heat treatment. This thermomechanical treatment enables a coercive field strength in the range from 50 to 900 A / cm to be set with a remanent induction Br between 0.06 and 0.3 T.
Aufgabe der vorliegenden Erfindung ist es, eine halbharte verformbare Dauermagnetlegierung zu schaffen, die eine Koerzitivfeldstärke Hc im Bereich von mehr als 40 bis 100 A/cm und eine Remanenzinduktion Br über 0,8 T aufweist. Eine Legierung mit derartigen magnetischen Eigenschaften wird insbesondere bei der Verwendung als Diebstahlsicherungsstreifen benötigt. Sie dient hier zusammen mit dem eigentlichen weichmagnetischen Sicherungsstreifen dazu, diesen an der Kasse durch Aufmagnetisierung zu entwerten, so daß dieser dann keinen Alarm mehr auslösen kann. Die Legierung ist allerdings auch für andere Anwendungen geeignet, bei denen die Forderungen nach Koerzitivfeldstärke und einer Mindestremanenzinduktion von über 0,8 T zu erfüllen sind.The object of the present invention is to create a semi-hard deformable permanent magnet alloy which has a coercive field strength Hc in the range from more than 40 to 100 A / cm and a remanent induction Br above 0.8 T. An alloy with such magnetic properties is particularly useful when used as an anti-theft strip needed. Here, together with the actual soft magnetic security strip, it serves to validate it at the cash register by magnetization, so that it can then no longer trigger an alarm. However, the alloy is also suitable for other applications in which the requirements for coercive field strength and a minimum residual induction of over 0.8 T have to be met.
Neben den obengenannten bekannten Legierungen, mit denen höchstens etwa 0,3 T an Remanenzinduktion zu erzielen sind, sind andere halbharte verformbare Dauermagnetlegierungen bekannt. So läßt sich beispielsweise aus CONCISE ENCYCLOPEDIA OF MAGNETIC & SUPERCONDUCTING MATERIALS von J. Evetts (1992), Seiten 197 - 200, eine Legierung mit 40 bis 78 % Fe, 2 bis 25 % Co und 20 bis 35 % Cr entnehmen, die zur Einstellung der magnetischen Eigenschaften durch Abschrecken aus hoher Temperatur von über 1200°C als Ferrit vorliegt, die dann bei langsamen Abkühlgeschwindigkeiten von etwa 0,1 °C/h eine spinodale Entmischung in eine Eisen-reiche und eine Chrom-reiche Phase erfährt. Durch diese spinodale Entmischung können die magnetischen Eigenschaften eingestellt werden. Nachteilig für die hier beabsichtigten Eigenschaften einer Legierung ist die zur Einstellung der Koerzitivfeldstärke schwierige Wärmebehandlung insbesondere bei großen Chargen, wobei nicht immer sichergestellt werden kann, daß in jedem Teil einer Ofenfüllung tatsächlich die gleiche Temperatur herrscht.In addition to the known alloys mentioned above, with which at most about 0.3 T of residual induction can be achieved, other semi-hard deformable permanent magnet alloys are known. For example, from CONCISE ENCYCLOPEDIA OF MAGNETIC & SUPERCONDUCTING MATERIALS by J. Evetts (1992), pages 197 - 200, an alloy with 40 to 78% Fe, 2 to 25% Co and 20 to 35% Cr can be found for adjustment the magnetic properties by quenching from a high temperature of over 1200 ° C is present as ferrite, which then undergoes spinodal segregation into an iron-rich and a chromium-rich phase at slow cooling rates of about 0.1 ° C / h. The magnetic properties can be adjusted by this spinodal separation. A disadvantage of the properties of an alloy intended here is the heat treatment, which is difficult to adjust the coercive field strength, in particular in the case of large batches, it not always being possible to ensure that the same temperature actually exists in every part of a furnace filling.
Weiterhin ist es aus CONCISE ENCYCLOPEDIA OF MAGNETIC & SUPERCONDUCTING MATERIALS von J. Evetts (1992), Seiten 211 bis 213 bekannt, eine Fe-Co-V-Legierung mit etwa 50 % Kobalt und 6 bis 16 % Vanadium vorzusehen. Auch diese Legierung ist bei bestimmten Zusammensetzungen austenitisch metastabil, wie die eingangs genannte bekannte Fe-Cr-Ni-Legierung und kann durch Kaltverformung mit anschließender Wärmebehandlung magnetisch gehärtet werden. Der Nachteil dieser Legierungen ist allerdings der hohe Kobaltgehalt, der hier Voraussetzung für die magnetische Härtbarkeit ist und wegen des hohen Preises für Kobalt zu einer relativ teuren Legierung führt, die beispielsweise für den Anwendungszweck der Diebstahlsicherungen unwirtschaftlicher ist als die hier beanspruchte Legierung.Furthermore, it is known from CONCISE ENCYCLOPEDIA OF MAGNETIC & SUPERCONDUCTING MATERIALS by J. Evetts (1992), pages 211 to 213 to provide an Fe-Co-V alloy with approximately 50% cobalt and 6 to 16% vanadium. This alloy is also austenitic metastable in certain compositions, such as the known one mentioned above Fe-Cr-Ni alloy and can be magnetically hardened by cold working with subsequent heat treatment. The disadvantage of these alloys, however, is the high cobalt content, which is a prerequisite for magnetic hardenability and, because of the high price for cobalt, leads to a relatively expensive alloy that is less economical than the alloy claimed here, for example for the purpose of the anti-theft devices.
Aus CONCISE ENCYCLOPEDIA OF MAGNETIC & SUPERCONDUCTING MATERIALS von J. Evetts, (1992) Seiten 475 - 478 sind ebenfalls, wie Tab. 1 auf Seite 477 zeigt, Legierungen bekannt, die Nickel und/oder Mangan mit weiteren Zusätzen zur Erhöhung der Umwandlungstemperatur in Austenit enthalten. Diese Legierungen sind aber ebenfalls unwirtschaftlich wegen des hohen Kobaltgehaltes und erfüllen auch nicht die Voraussetzung einer Koerzitivfeldstärke im Bereich von 50 bis 100 A/cm, wie sie für die hier beabsichtigten Anwendungszwecke erforderlich ist.Alloys are known from CONCISE ENCYCLOPEDIA OF MAGNETIC & SUPERCONDUCTING MATERIALS by J. Evetts, (1992) pages 475 - 478, as Table 1 shows on page 477, which contain nickel and / or manganese with other additives to increase the transformation temperature into austenite contain. However, these alloys are also uneconomical because of the high cobalt content and also do not meet the requirement of a coercive field strength in the range from 50 to 100 A / cm, as is required for the intended purposes here.
Die Wirkungen der Zusatzelemente zur Erhöhung der Umwandlungstemperatur in Austenit sind aus TRANSACTIONS OF THE METALLURGICAL SOCIETY OF AIME, Vol. 227 (1963), Seiten 884 - 890 bekannt, so daß der Fachmann die Menge und die Zusammensetzung dieser Zusätze wählen kann, um einerseits eine metastabile austenitische Phase zu erhalten, bei der die Umwandlungstemperatur von Austenit in Martensit (Ms) unterhalb der Raumtemperatur liegt und gleichzeitig eine genügend hohe Temperatur für die Umwandlung des Martensits (alpha-Phase) in Austenit (gamma-Phase) eingestellt werden kann (As).The effects of the additional elements for increasing the transformation temperature into austenite are known from TRANSACTIONS OF THE METALLURGICAL SOCIETY OF AIME, Vol. 227 (1963), pages 884-890, so that the person skilled in the art can choose the amount and the composition of these additives, to obtain a metastable austenitic phase in which the transformation temperature from austenite to martensite (Ms) is below room temperature and at the same time a sufficiently high temperature can be set for the transformation of martensite (alpha phase) to austenite (gamma phase) (As) .
Als Ausführungsbeispiel wurde eine Legierung mit 67Fe-14Cr-7Ni-5Mo-10Co bei 1100 °C auf 5 mm warmgewalzt, dann 1 h bei 1100 °C geglüht und in Wasser abgeschreckt. In diesem Zustand ist die Legierung paramagnetisch und austenitisch. Anschließend wurde diese Legierung auf 0,5 mm gewalzt, entsprechend 90 % Kaltverformung. In diesem Zustand ist die Legierung durch Umwandlung der gamma- in die alpha-Phase ferromagnetisch. Die Magnetwerte betragen für die Remanenzinduktion Br = 0,4 T und für die Koerzitivfeldstärke Hc = 25 A/cm. Durch Anlassen im Temperaturbereich von 400 bis 600 °C während 1 min bis 24 h können Br und Hc beträchtlich gesteigert werden. Nach einer Wärmebehandlung von 3 h bei 500 °C ergab sich eine Koerzitivfeldstärke Hc = 70 A/cm und eine Remanenzinduktion Br = 1,1 T. Weitere Zusammensetzungen mit einer Kaltverformung von 86 % bzw. 90 % und einer Glühung bei unterschiedlichen Temperaturen sind in den Tabellen 1, 2 und 3 dargestellt.As an exemplary embodiment, an alloy with 67Fe-14Cr-7Ni-5Mo-10Co was hot-rolled at 1100 ° C. to 5 mm, then annealed at 1100 ° C for 1 h and quenched in water. In this state, the alloy is paramagnetic and austenitic. This alloy was then rolled to 0.5 mm, corresponding to 90% cold working. In this state, the alloy is ferromagnetic by converting the gamma to the alpha phase. The magnetic values are Br = 0.4 T for the remanent induction and Hc = 25 A / cm for the coercive field strength. By tempering in the temperature range of 400 to 600 ° C for 1 min to 24 h, Br and Hc can be increased considerably. After a heat treatment of 3 h at 500 ° C there was a coercive field strength Hc = 70 A / cm and a remanent induction Br = 1.1 T. Further compositions with a cold deformation of 86% or 90% and an annealing at different temperatures are shown in tables 1, 2 and 3.
Tabelle 1 zeigt Legierungen, die neben Eisen Ni, Cr, Mo, Mn und teilweise Co und Ti enthalten. Man sieht, daß die Magnetwerte Br für die Remanenzinduktion und Hc für die Koerzitivfeldstärke in dem geforderten Bereich liegen, soweit der Co-Gehalt über 4,5 % liegt und die anderen Zusätze so gewählt werden, daß sich eine metastabile austenitische Legierung nach der Homogenisierungsglühung ergibt. Außerdem ist zu erkennen, daß sich besonders vorteilhafte Magnetwerte ergeben, wenn der Kaltverformungsgrad mindestens 90 % beträgt.Table 1 shows alloys containing iron, Ni, Cr, Mo, Mn and partly Co and Ti. It can be seen that the magnetic values Br for the remanence induction and Hc for the coercive force are in the required range, provided the Co content is above 4.5% and the other additives are selected so that a metastable austenitic alloy results after the homogenization annealing . It can also be seen that particularly advantageous magnet values result if the degree of cold deformation is at least 90%.
Das Gleiche zeigt Tabelle 2, bei der die Temperatur der Schlußglühung auf 520 °C erhöht wurde, während Tabelle 3 die gleichen Legierungen wie in Tabelle 2 zum Untersuchungsgegenstand hat und dort der Einfluß der Temperatur der Wärmebehandlung gezeigt wird.The same is shown in Table 2, in which the temperature of the final annealing was increased to 520 ° C., while Table 3 has the same alloys as in Table 2 for the test object and shows the influence of the temperature of the heat treatment.
Die Beispiele lassen weiter erkennen, daß eine besonders vorteilhafte Zusammensetzung dann gegeben ist, wenn der Kobaltgehalt größer als 4,5 und höchstens 12 % ist und wenn eine Kaltverformung von über 80 % vorgenommen wird.The examples further show that a particularly advantageous composition is obtained if the cobalt content is greater than 4.5 and at most 12% and if a cold working of over 80% is carried out.
Da sich metastabile austenitische Legierungen dadurch auszeichnen, daß eine Umwandlung des Austenits in Martensit entweder durch Kaltverformung oder durch Abkühlung unter die Umwandlungstemperatur des Austenits in Martensit mit der alpha-Phase vorgenommen werden kann, läßt sich die Umwandlung in Martensit weder durch Kaltverformung noch durch Abkühlung erreichen, wenn die Anteile an Ni und Mn sowie die Anteile der weiteren Zusätze zu groß werden. Man hat es dann mit stabilen austenitischen Legierungen zu tun.
Claims (4)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE4323497 | 1993-07-14 | ||
DE4323497 | 1993-07-14 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0634759A2 true EP0634759A2 (en) | 1995-01-18 |
EP0634759A3 EP0634759A3 (en) | 1995-02-22 |
Family
ID=6492736
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP94110507A Withdrawn EP0634759A3 (en) | 1993-07-14 | 1994-07-06 | Semi-hard and deformable iron based permanent magnet alloy. |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP0634759A3 (en) |
JP (1) | JPH0754107A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999014718A1 (en) * | 1997-09-17 | 1999-03-25 | Vacuumschmelze Gmbh | Display element for use in a magnetic anti-theft system |
US6157301A (en) * | 1996-12-13 | 2000-12-05 | Vacuumschmelze Gmbh | Marker for use in a magnetic electronic article surveillance system |
WO2002031844A2 (en) * | 2000-10-10 | 2002-04-18 | Crs Holdings, Inc. | Co-mn-fe soft magnetic alloys |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6868174B2 (en) * | 2019-10-10 | 2021-05-12 | マグネデザイン株式会社 | Stainless magnet |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1282444A (en) * | 1960-03-04 | 1962-01-19 | Beteiligungs & Patentverw Gmbh | Advanced magnetic alloy with rectangular magnetization characteristic, its production process and its use |
FR2282736A1 (en) * | 1974-08-21 | 1976-03-19 | Hitachi Ltd | Steel alloy rotor for fast hysteresis motor - has steel alloy of specified composition to give desired properties |
US4007073A (en) * | 1974-10-15 | 1977-02-08 | Felix Lvovich Levin | Method of producing articles having alternating magnetic and non-magnetic portions from continuous metal blanks |
EP0239838A1 (en) * | 1986-04-04 | 1987-10-07 | Vacuumschmelze GmbH | Application of a fast quenched alloy to an iron-chrome-cobalt base |
JPH04254303A (en) * | 1991-02-06 | 1992-09-09 | Toshiba Corp | Parmanent magnet |
-
1994
- 1994-07-06 JP JP6177622A patent/JPH0754107A/en active Pending
- 1994-07-06 EP EP94110507A patent/EP0634759A3/en not_active Withdrawn
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1282444A (en) * | 1960-03-04 | 1962-01-19 | Beteiligungs & Patentverw Gmbh | Advanced magnetic alloy with rectangular magnetization characteristic, its production process and its use |
FR2282736A1 (en) * | 1974-08-21 | 1976-03-19 | Hitachi Ltd | Steel alloy rotor for fast hysteresis motor - has steel alloy of specified composition to give desired properties |
US4007073A (en) * | 1974-10-15 | 1977-02-08 | Felix Lvovich Levin | Method of producing articles having alternating magnetic and non-magnetic portions from continuous metal blanks |
EP0239838A1 (en) * | 1986-04-04 | 1987-10-07 | Vacuumschmelze GmbH | Application of a fast quenched alloy to an iron-chrome-cobalt base |
JPH04254303A (en) * | 1991-02-06 | 1992-09-09 | Toshiba Corp | Parmanent magnet |
Non-Patent Citations (1)
Title |
---|
PATENT ABSTRACTS OF JAPAN vol. 17, no. 32 (E-1309) 21. Januar 1993 & JP-A-04 254 303 (TOSHIBA K.K.) * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6157301A (en) * | 1996-12-13 | 2000-12-05 | Vacuumschmelze Gmbh | Marker for use in a magnetic electronic article surveillance system |
WO1999014718A1 (en) * | 1997-09-17 | 1999-03-25 | Vacuumschmelze Gmbh | Display element for use in a magnetic anti-theft system |
US6166636A (en) * | 1997-09-17 | 2000-12-26 | Vacuumschmelze Gmbh | Marker for use in a magnetic anti-theft security system and method for making same |
WO2002031844A2 (en) * | 2000-10-10 | 2002-04-18 | Crs Holdings, Inc. | Co-mn-fe soft magnetic alloys |
WO2002031844A3 (en) * | 2000-10-10 | 2002-11-21 | Crs Holdings Inc | Co-mn-fe soft magnetic alloys |
Also Published As
Publication number | Publication date |
---|---|
EP0634759A3 (en) | 1995-02-22 |
JPH0754107A (en) | 1995-02-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69706083T2 (en) | Iron-nickel alloy and cold-rolled strip with a cubic texture | |
DE2813799A1 (en) | MAGNETIC ALLOY AND METHOD FOR MANUFACTURING IT | |
EP0929883B1 (en) | Display element for use in a magnetic anti-theft system | |
DE2307464A1 (en) | IRON ALLOYS AND METHOD OF MANUFACTURING THEREOF | |
EP0944910B1 (en) | Display unit for use in a magnetic anti-theft system | |
DE68913544T2 (en) | SOFT MAGNETIC STEEL MATERIAL WITH IRON BASE. | |
EP1255873B1 (en) | Maraging type spring steel | |
DE1297873B (en) | Use of a red-free predominantly martensitic steel alloy for cutting tools | |
EP0634759A2 (en) | Semi-hard and deformable iron based permanent magnet alloy | |
DE69703090T2 (en) | METHOD FOR PRODUCING A MAGNETIC OBJECT FROM A FERROMAGNETIC DUPLEX ALLOY | |
DE2913071C2 (en) | Magnetic alloy based on iron-chromium-cobalt with spinodal decomposition | |
DE1558818B2 (en) | PROCESS FOR PRODUCING A NICKEL-IRON MOLYBDEN ALLOY WITH AN INDUCTION STROKE OF 5000 TO 12500 GAUSS AND LARGE IMPULSE PERMEABILITY | |
DE112021003213T5 (en) | Soft magnetic material, method of manufacturing a soft magnetic material and electric motor | |
DE1180954B (en) | Process for improving the magnetic properties of iron-cobalt alloys | |
DE2209085A1 (en) | Age hardened martensitic nickel steel | |
DE1608167A1 (en) | Magnetic alloy | |
EP0557689B1 (en) | Method for manufacturing a magnetic pulse generator | |
EP0740313A1 (en) | Use of a magnetically soft nickel-iron alloy with high saturation induction and Vickers-hardness for relay components | |
DE2513921C2 (en) | Semi-hard magnetic alloy and its manufacture | |
DE1222271B (en) | Process for the production of highly permeable nickel-iron alloys with a rectangular hysteresis loop | |
AT277300B (en) | Steel that can be hardened in the martensitic state | |
AT149196B (en) | Process for the production of objects with special magnetic properties, in particular permanent magnets. | |
DE3239268C2 (en) | Process for the production of a material from a ferritic iron-based alloy with good damping properties and high strength | |
AT235588B (en) | Nickel-chromium alloys | |
AT249721B (en) | Age-hardenable, austenitic chromium-manganese-nickel-steel alloy for the production of objects of high hardness and strength as well as good toughness at room and elevated temperatures |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): BE DE DK FR GB IT SE |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): BE DE DK FR GB IT SE |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN |
|
18W | Application withdrawn |
Withdrawal date: 19950307 |
|
R18W | Application withdrawn (corrected) |
Effective date: 19950307 |