WO2023132158A1 - Resin composition for forming temporary fixative, temporary fixative, support tape for substrate conveyance, and method for producing electronic device - Google Patents

Resin composition for forming temporary fixative, temporary fixative, support tape for substrate conveyance, and method for producing electronic device Download PDF

Info

Publication number
WO2023132158A1
WO2023132158A1 PCT/JP2022/043976 JP2022043976W WO2023132158A1 WO 2023132158 A1 WO2023132158 A1 WO 2023132158A1 JP 2022043976 W JP2022043976 W JP 2022043976W WO 2023132158 A1 WO2023132158 A1 WO 2023132158A1
Authority
WO
WIPO (PCT)
Prior art keywords
temporary fixing
fixing material
film
substrate
resin composition
Prior art date
Application number
PCT/JP2022/043976
Other languages
French (fr)
Japanese (ja)
Inventor
紗瑛子 小川
省吾 祖父江
Original Assignee
株式会社レゾナック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社レゾナック filed Critical 株式会社レゾナック
Publication of WO2023132158A1 publication Critical patent/WO2023132158A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/56Amines together with other curing agents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering

Definitions

  • the present disclosure relates to a method for manufacturing a resin composition for forming a temporary fixing material, a temporary fixing material, a substrate transport support tape, and an electronic device.
  • Patent Document 1 discloses that after forming a solder resist layer on a multilayer wiring board, the wiring of the wiring board and the semiconductor chip are connected with a solder material by reflow. A method is disclosed.
  • the present inventors adhered a support to a substrate via a temporary fixing material to form a laminate to ensure rigidity and improve handling during the manufacturing process of electronic components. I am considering how to do this.
  • processing such as solder resist formation and reflow including heat treatment is performed in the state of the laminate, so during processing between the support and the substrate (between the support and the temporary fixing material, or , between the temporary fixing material and the substrate), or foaming, which is the starting point of the peeling, is likely to occur.
  • the temporary fixing material and the support are peeled off from the substrate, and it is not desirable if the temporary fixing material remains on the substrate side at this time.
  • the present disclosure provides a temporary fixing material that can achieve both suppression of peeling between a support and a substrate during processing including heat treatment and peelability from the substrate after processing, and a temporary fixing material for forming the same.
  • An object of the present invention is to provide a resin composition for forming a temporary fixing material, a support tape for transporting a substrate, and a method for manufacturing an electronic device.
  • the present inventors considered embedding fine unevenness on the substrate with a temporary fixing material having a low elastic modulus in order to suppress foaming during the reflow process. It is difficult to adjust the elastic modulus suitable for embedding depending on the aspect ratio and depth of , and if the elastic modulus is lowered too much, the temporary fixing material will stick to the substrate side when the temporary fixing material and support are peeled off from the substrate at room temperature after the reflow process. It turned out to be easy to survive. Therefore, the present inventors investigated suppressing the peeling during the reflow process by using a temporary fixing material that dares to reduce the embedding property in the unevenness. By adjusting the elastic modulus of the temporary fixing material to a specific range, the temporary fixing material can suppress peeling during the reflow process and easily peel after the reflow process, and have completed the present invention. rice field.
  • One aspect of the present disclosure is a temporary fixing material-forming resin composition for forming a temporary fixing material for temporarily fixing a support for transporting a substrate to an organic substrate, comprising: acrylic rubber having an epoxy group; and a silicone compound having a Provided is a resin composition for forming a temporary fixing material, wherein the elastic modulus of the film after heating is 500 MPa or more at 25°C.
  • a temporary fixing material capable of suppressing peeling between the support and the substrate during processing including heat treatment and releasability from the substrate after processing is compatible.
  • the inventors consider the reason why such an effect is exhibited as follows. First, when forming a film from the resin composition, the reaction between the acrylic rubber having an epoxy group and the silicone compound having an amino group improves the elastic modulus when the film is attached to a substrate before curing. Although the embedding property was suppressed, it is considered that the wettability to the substrate was improved and the peeling during processing was sufficiently suppressed.
  • the resin composition for forming the temporary fixing material may further contain an epoxy curing agent.
  • the content of the silicone compound in the temporary fixing material-forming resin composition may be 1 to 10 parts by mass with respect to 100 parts by mass of the acrylic rubber.
  • the present disclosure also provides a temporary fixing material formed using the resin composition for forming a temporary fixing material of the present disclosure. According to the temporary fixing material, it is possible to achieve both suppression of detachment between the support and the substrate during processing including heat treatment, and releasability from the substrate after processing.
  • the present disclosure also includes a support film for transporting an organic substrate, and a temporary fixing material layer provided on the support film for temporarily fixing the organic substrate and the support film, wherein the temporary fixing material layer is and a support tape for transporting a substrate, which is formed using the resin composition for forming a temporary fixing material of the present disclosure.
  • the support tape for transporting a substrate can improve the handling property of the organic substrate, suppresses peeling between the support and the substrate during processing including heat treatment, and can remove the temporary fixing material from the substrate after processing. can be compatible with
  • the present disclosure also provides a first step of bonding a support to an organic substrate via a temporary fixing material to obtain a laminate, a second step of heating the temporary fixing material of the laminate, and a laminate that has undergone the second step. and a fourth step of peeling off the support and the temporary fixing material from the organic substrate of the laminate that has undergone the third step, wherein the temporary fixing material is the above-mentioned book
  • the temporary fixing material is the above-mentioned book
  • Provided is a method for manufacturing an electronic device formed using the disclosed resin composition for forming a temporary fixing material.
  • the method for manufacturing an electronic device it is possible to manufacture, with high productivity, an electronic device including electronic components made thin using an organic substrate. That is, in the above manufacturing method, since the temporary fixing material is formed using the resin composition for temporary fixing of the present disclosure, (i) in the first step, the organic substrate and the support are bonded together. and (ii) the temporary fixing material that has undergone the second step is combined with the organic substrate in the third step. (iii) it can be easily peeled off from the organic substrate without soiling the substrate surface in the fourth step;
  • the processing in the third step may include at least one of solder resist formation and reflow.
  • the thickness of the organic substrate may be 200 ⁇ m or less. Also, the organic substrate may be a coreless substrate.
  • a temporary fixing material that can achieve both suppression of delamination between a support and a substrate during processing including heat treatment and peelability from the substrate after processing, and temporary fixing for forming the same It is possible to provide a material-forming resin composition, a support tape for transporting a substrate, and a method for manufacturing an electronic device.
  • the temporary fixing material-forming resin composition according to the present disclosure can sufficiently fix an organic substrate and a support for transportation, and can easily peel the support from the organic substrate without soiling the substrate surface. It is possible to form a temporary fixing material that can be used.
  • the support tape for transporting a substrate according to the present disclosure can improve the handling of the organic substrate and can be easily peeled off from the organic substrate without soiling the substrate surface.
  • FIG. 1 is a view showing an embodiment of a support tape for transporting a substrate
  • (A) is a top view
  • (B) is a schematic cross-sectional view taken along line II in (A).
  • (a) to (c) of FIG. 2 are schematic cross-sectional views for explaining an embodiment of a method for manufacturing an electronic device.
  • (d) to (e) of FIG. 3 are schematic cross-sectional views for explaining an embodiment of a method for manufacturing an electronic device.
  • (f) to (h) of FIG. 4 are schematic cross-sectional views for explaining an embodiment of a method for manufacturing an electronic device.
  • (meth)acrylic acid means acrylic acid or methacrylic acid
  • (meth)acrylate means acrylate or its corresponding methacrylate
  • a or B may include either A or B, or may include both.
  • the term “layer” includes not only a shape structure formed on the entire surface but also a shape structure formed partially when observed as a plan view.
  • the term “step” as used herein refers not only to an independent step, but also to the term if the desired action of the step is achieved even if it cannot be clearly distinguished from other steps. included. Further, a numerical range indicated using “-” indicates a range including the numerical values described before and after "-" as the minimum and maximum values, respectively.
  • the resin composition for forming a temporary fixing material contains acrylic rubber having an epoxy group and a silicone compound having an amino group.
  • the temporary fixing material-forming resin composition may further contain an epoxy curing agent or other components in addition to the above components.
  • the resin composition for forming a temporary fixing material according to the present embodiment can be used as a temporary fixing material for temporarily fixing a substrate transport support to an organic substrate.
  • a (meth)acrylic copolymer having an epoxy group can be used as the acrylic rubber having an epoxy group, and the epoxy group may be present in the polymer chain or at the end of the polymer chain.
  • the (meth)acrylic copolymer having an epoxy group may be obtained by a polymerization method such as pearl polymerization or solution polymerization, or may be a commercially available product.
  • Monomers constituting the copolymer include glycidyl (meth)acrylate, (meth)acrylic acid, (meth)acrylic acid ester, styrene, and the like.
  • the amount of glycidyl (meth)acrylate blended may be 1 to 20% by mass, based on the total amount of monomers constituting the copolymer, and may be 5 to 15% by mass. may be
  • the glass transition temperature (hereinafter sometimes referred to as "Tg") of acrylic rubber having an epoxy group is preferably -50°C to 50°C, more preferably -40°C to 20°C. If the Tg is in such a range, it is possible to obtain more sufficient fluidity while suppressing deterioration in handleability due to excessive increase in tackiness.
  • Tg is the midpoint glass transition temperature value when the thermoplastic resin is measured using differential scanning calorimetry (DSC, for example, "Thermo Plus 2" manufactured by Rigaku Corporation). Specifically, the above Tg is the midpoint glass transition calculated by a method in accordance with JIS K 7121:1987 by measuring changes in heat quantity under the conditions of a heating rate of 10°C/min and a measurement temperature of -80 to 80°C. temperature.
  • the weight-average molecular weight of the epoxy group-containing acrylic rubber is not particularly limited, and may be 100,000 to 1,200,000 or 200,000 to 1,000,000. If the weight-average molecular weight of the acrylic rubber is in such a range, it becomes easy to ensure film formability and fluidity.
  • the weight average molecular weight is a polystyrene conversion value using a standard polystyrene calibration curve by gel permeation chromatography (GPC).
  • the acrylic rubber having an epoxy group may be used alone or in combination of two or more.
  • the content of the acrylic rubber having an epoxy group in the resin composition for forming the temporary fixing material of the present embodiment is determined to suppress peeling between the support and the substrate during processing including heat treatment, and to improve the peelability from the substrate after processing. From the viewpoint of achieving both, it can be 40 to 90 parts by mass, may be 60 to 80 parts by mass, or may be 70 to 80 parts by mass with respect to 100 parts by mass of the total composition.
  • the temporary fixing material-forming resin composition of the present embodiment may contain a thermoplastic resin other than acrylic rubber having an epoxy group.
  • the thermoplastic resin may be a resin that forms a crosslinked structure by heating or the like.
  • Such resins include polymers having crosslinkable functional groups.
  • polymers having crosslinkable functional groups include thermoplastic polyimide resins, (meth)acrylic copolymers having crosslinkable functional groups, urethane resins, polyphenylene ether resins, polyetherimide resins, phenoxy resins, modified polyphenylene ether resins, and the like. be done.
  • a polymer having a crosslinkable functional group may have the crosslinkable functional group in the polymer chain or at the end of the polymer chain.
  • Specific examples of crosslinkable functional groups include alcoholic hydroxyl groups, phenolic hydroxyl groups, and carboxyl groups.
  • the Tg of the thermoplastic resin may be -50°C to 50°C or -40°C to 20°C.
  • the weight average molecular weight of the thermoplastic resin is not particularly limited, and may be from 100,000 to 1,200,000, or from 200,000 to 1,000,000.
  • a known silicone can be used as the silicone compound having an amino group.
  • it may be a modified silicone oil in which the methyl group of dimethyl silicone oil is substituted with an organic group containing an amino group.
  • the amino group may be contained in the terminal (both terminals or one terminal) of the silicone main chain, may be contained in the side chain, or may be contained in the terminal (both terminals or one terminal) and the side chain.
  • the molecular weight of the silicone main chain is not particularly limited, but the functional group (amino group) equivalent may be 10 to 3000 g/mol.
  • the silicone compound having an amino group may be used alone or in combination of two or more.
  • the content of the amino group-containing silicone compound in the temporary fixing material-forming resin composition of the present embodiment ensures the adhesion of the temporary fixing material to the substrate, suppresses the embedding property in the substrate, and wettability with the substrate.
  • the amount may be 1 to 10 parts by mass, and may be 4 to 6 parts by mass, with respect to 100 parts by mass of acrylic rubber having an epoxy group.
  • Epoxy curing agent a commonly used known curing agent can be used.
  • epoxy curing agents include amines, polyamides, acid anhydrides, polysulfides, boron trifluoride, bisphenols having two or more phenolic hydroxyl groups per molecule such as bisphenol A, bisphenol F, bisphenol S, phenol Phenol resins such as novolak resin, bisphenol A novolak resin, cresol novolak resin, and the like are included.
  • the epoxy curing agent may be a phenol novolac resin from the viewpoint of suppressing embedding into the substrate.
  • Commercially available products such as "PSM-4326” (manufactured by Gunei Chemical Industry Co., Ltd., trade name) and "MEH-7800M” (manufactured by Meiwa Kasei Co., Ltd., trade name) can be used as such epoxy curing agents. .
  • Epoxy curing agents may be used singly or in combination of two or more.
  • the content of the epoxy curing agent in the resin composition for forming the temporary fixing material of the present embodiment can be 5 to 40 parts by mass, such as 15 to 25 parts by mass, with respect to 100 parts by mass of acrylic rubber having an epoxy group. may be When the content of the epoxy curing agent is within the above range, it becomes easy for the temporary fixing material to have sufficient adherability, heat resistance, curability and releasability. In addition, when the content of the epoxy curing agent is 15 parts by mass or more, it can be cured in a relatively short time, the heat resistance is improved, and the holding property of the organic substrate during the manufacture of the electronic equipment is also improved. Components (eg, semiconductor chips) that make up the device tend to be less susceptible to damage.
  • the elastic modulus at 100° C. of the temporary fixing material before curing is less likely to be excessively high, making it easier to secure the adhesiveness.
  • the elastic modulus at 25° C. of the temporary fixing material after curing is unlikely to be excessively high, and the anchor effect at the time of peeling can be suppressed. tend to be easier to achieve at a higher level.
  • thermosetting resins inorganic fillers (inorganic fillers), organic fillers (organic fillers), curing accelerators, silicone compounds other than silicone compounds having amino groups, and silanes.
  • inorganic fillers inorganic fillers
  • organic fillers organic fillers
  • curing accelerators silicone compounds other than silicone compounds having amino groups
  • silanes silanes.
  • a coupling agent etc. are mentioned.
  • thermosetting resins examples include epoxy resins, acrylic resins, silicone resins, thermosetting polyimide resins, polyurethane resins, melamine resins, and urea resins.
  • inorganic fillers examples include silica, alumina, boron nitride, titania, glass, iron oxide, and ceramics.
  • the inorganic filler can be added for the purpose of imparting low thermal expansion and low hygroscopicity to the temporary fixing material.
  • An inorganic filler may be used individually by 1 type, and may be used in combination of 2 or more type.
  • organic fillers examples include carbon, rubber-based fillers, silicone-based fine particles, polyamide fine particles, and polyimide fine particles.
  • An organic filler may be used individually by 1 type, and may be used in combination of 2 or more type.
  • Curing accelerators include, for example, imidazoles, dicyandiamide derivatives, dicarboxylic acid dihydrazide, triphenylphosphine, tetraphenylphosphonium tetraphenylborate, 2-ethyl-4-methylimidazole-tetraphenylborate, 1,8-diazabicyclo[5, 4,0]undecene-7-tetraphenylborate and the like.
  • a hardening accelerator can be used individually by 1 type or in combination of 2 or more types.
  • silicone compounds can be used without any particular limitation as long as they have a polysiloxane structure.
  • examples include silicone-modified resins, straight silicone oils, non-reactive modified silicone oils, and reactive modified silicone oils.
  • a silicone compound can be used individually by 1 type or in combination of 2 or more types.
  • the temporary fixing material-forming resin composition according to the present embodiment has an elastic modulus of 2 MPa or more at 100° C. when a film is formed, and the elasticity of the film after heating at 170° C. for 2 hours modulus is 500 MPa or more at 25°C.
  • the film is produced by coating a substrate with a varnish of a resin composition for forming a temporary fixing material, and heating and drying the coating film (for example, heating at 90°C for 5 minutes and 140°C for 5 minutes) to form a temporary fixing material layer. It can be made by forming.
  • the cut film was set in a dynamic viscoelastic device (trade name: Rheogel-E4000, manufactured by UMB Co., Ltd.), a tensile load was applied, and the distance between chucks was 20 mm, the frequency was 10 Hz, and the temperature was increased at a rate of 5°C/min.
  • the storage modulus E' at 100°C is obtained by measuring the storage modulus E' from 23°C to 260°C under the measurement conditions of isokinetic heating.
  • the elastic modulus at 100° C. suppresses the embedding of the temporary fixing material into the irregularities on the substrate when attached to the substrate, and prevents the temporary fixing material from being removed from the substrate after processing including heat treatment (for example, reflow). From the viewpoint of achieving a high level of peelability, it may be 2 MPa or more, 3 MPa or more, or 4 MPa or more.
  • the elastic modulus at 100° C. may be 8 MPa or less, or 6 MPa or less from the viewpoint of facilitating attachment of the temporary fixing material to the substrate.
  • the elastic modulus at 100° C. is determined, for example, by the amount of the epoxy group-containing acrylic rubber, the epoxy curing agent, the amino group-containing silicone compound, the curing accelerator, and the Tg or epoxy equivalent of the epoxy group-containing acrylic rubber. can be adjusted by appropriately changing
  • the cut film was set in a dynamic viscoelasticity device (trade name: Rheogel-E4000, manufactured by UMB Co., Ltd.), a tensile load was applied, and measurement was performed at a frequency of 10 Hz and a temperature increase rate of 5 ° C./min.
  • the storage elastic modulus E′ from 23 ° C. to 260 ° C. was measured under the measurement conditions of a distance between chucks of 20 mm, a frequency of 10 Hz, a heating rate of 5 ° C./min, and a constant heating rate, and the storage elastic modulus at 25 ° C. Get the value of E'.
  • the elastic modulus at 25°C may be 500 MPa or more, or 600 MPa or more from the viewpoint of suppressing delamination during processing including heat treatment (for example, reflow).
  • the elastic modulus at 25° C. may be 1000 MPa or less, or 900 MPa or less from the viewpoint of suppressing the anchor effect during peeling.
  • the elastic modulus at 25° C. can be adjusted by appropriately changing, for example, the amounts of the epoxy group-containing acrylic rubber, the epoxy curing agent, and the curing accelerator, and the epoxy group-containing acrylic rubber's Tg or epoxy equivalent. , can be adjusted.
  • the temporary fixing material of this embodiment is formed using the above-described resin composition for forming a temporary fixing material of this embodiment.
  • a film-like temporary fixing material can be formed. In this case, it becomes easier to control the film thickness of the temporary fixing material, and variations in the thickness of the laminate of the organic substrate, the temporary fixing material, and the support can be reduced.
  • the film-like temporary fixing material can be attached to an organic substrate or support by a simple method such as lamination, and is excellent in workability.
  • a film-like temporary fixing material can be formed by applying a varnish of a resin composition for forming a temporary fixing material onto a base material and drying the coating film by heating at 90 to 140°C.
  • the thickness of the film-shaped temporary fixing material is not particularly limited, and from the viewpoint of sufficiently fixing the organic substrate and the support for transportation, it may be 10 to 350 ⁇ m, or even 10 to 200 ⁇ m. good. If the thickness is 10 ⁇ m or more, the variation in thickness during coating is reduced, and since the thickness is sufficient, the strength of the temporary fixing material or the cured product of the temporary fixing material is improved, and the organic substrate is obtained. and the transport support can be fixed more satisfactorily. If the thickness is 350 ⁇ m or less, the thickness of the temporary fixing material is less likely to vary, and the amount of residual solvent in the temporary fixing material can be easily reduced by sufficient drying, so that the cured product of the temporary fixing material can be easily removed. Foaming when heated can be further reduced.
  • the support tape for transporting a substrate of this embodiment includes a support film for transporting an organic substrate, and a temporary fixing material layer provided on the support film for temporarily fixing the organic substrate and the support film.
  • the temporary fixing material layer is formed using the resin composition for forming the temporary fixing material of the present embodiment.
  • the temporary fixing material layer may have a modulus of elasticity of 2 MPa or more at 100°C, and a modulus of elasticity of 500 MPa or more at 25°C after being heated at 170°C for 1 hour.
  • the elastic modulus at 100° C. and the elastic modulus at 25° C. may each be within the ranges described above.
  • FIG. 1A and 1B are diagrams showing an embodiment of a support tape for transporting a substrate
  • FIG. 1A is a top view
  • FIG. It is a schematic cross-sectional view along.
  • the substrate transport support tape 10 shown in these figures comprises a support film 1, a temporary fixing material layer 2A formed using the temporary fixing material-forming resin composition of the present embodiment, and a protective film 3 in this order. Prepare.
  • the support film 1 is not particularly limited as long as it can transport an organic substrate, and examples thereof include polyethylene terephthalate film, polybutylene terephthalate film, polyethylene naphthalate film, polyethylene film, polypropylene film, polyamide film, and polyimide film. be done.
  • the support film 1 may be a polyethylene terephthalate film, a polybutylene terephthalate film, a polyethylene naphthalate film, a polypropylene film, a polyamide film, or a polyimide film from the viewpoint of being excellent in flexibility and toughness. From a viewpoint, it may be a polyimide film.
  • the thickness of the support film 1 can be appropriately set depending on the desired strength and flexibility, and may be 3 to 350 ⁇ m. When the thickness is 3 ⁇ m or more, sufficient film strength tends to be obtained, and when the thickness is 350 ⁇ m or less, sufficient flexibility tends to be obtained. From this point of view, the thickness of the support film 1 may be 5 to 200 ⁇ m, or may be 7 to 150 ⁇ m.
  • the protective film 3 is not particularly limited, and examples thereof include polyethylene terephthalate film, polybutylene terephthalate film, polyethylene naphthalate film, polyethylene film, and polypropylene film.
  • the protective film 3 may be a polyethylene terephthalate film, a polyethylene film, or a polypropylene film from the viewpoint of flexibility and toughness.
  • a film subjected to release treatment with a silicone-based compound, a fluorine-based compound, or the like may be used as the protective film 3 .
  • the thickness of the protective film 3 can be appropriately set depending on the desired strength and flexibility, and may be, for example, 10 to 350 ⁇ m. When the thickness is 10 ⁇ m or more, sufficient film strength tends to be obtained, and when the thickness is 350 ⁇ m or less, sufficient flexibility tends to be obtained. From this point of view, the thickness of the protective film 3 may be 15 to 200 ⁇ m, or may be 20 to 150 ⁇ m.
  • the temporary fixing material layer 2A is prepared by mixing and kneading each component constituting the resin composition for forming the temporary fixing material of the present embodiment in an organic solvent to prepare a varnish, and applying the prepared varnish on the support film 1. It can be formed by a method of applying and drying.
  • the organic solvent is not particularly limited, and can be determined by considering the volatility during film formation from the boiling point. Specifically, from the viewpoint of making it difficult for the film to harden during film formation, methanol, ethanol, 2-methoxyethanol, 2-ethoxyethanol, 2-butoxyethanol, methyl ethyl ketone, acetone, methyl isobutyl ketone, toluene, xylene, etc. Solvents with relatively low boiling points can be used. For the purpose of improving the film-forming properties, solvents with relatively high boiling points such as dimethylacetamide, dimethylformamide, N-methylpyrrolidone, and cyclohexanone may be used. These solvents may be used individually by 1 type, and may be used in combination of 2 or more type. The solid content concentration in the varnish can be 10 to 80% by mass.
  • Mixing and kneading can be carried out by using a dispersing machine such as a normal stirrer, squeegee machine, triple roll, ball mill, etc., and by appropriately combining these. Drying is not particularly limited as long as the organic solvent used is sufficiently volatilized, but from the viewpoint that the above-mentioned elastic modulus at 100 ° C. and elastic modulus at 25 ° C. can be easily adjusted to the desired range. , 90-140° C., 120-140° C., or 130-140° C. for 5-10 minutes.
  • the substrate transport support tape 10 can be obtained by bonding the protective film 3 onto the temporary fixing material layer 2A.
  • the temporary fixing material layer is not applied to the support film, but is applied to any film that has been subjected to release treatment, and stored with the protective film attached, and when the substrate is attached, the protective film is attached to the support film. You can change it.
  • a substrate or the like obtained by thermally curing a laminate of glass fibers impregnated with an epoxy resin may be used as the support material.
  • the method of manufacturing an electronic device using the temporary fixing material can be broadly divided into the following four steps.
  • 2 and 3 are schematic cross-sectional views for explaining an embodiment of a method for manufacturing an electronic device. 2 and 3 illustrate the case where the temporary fixing material (temporary fixing material layer) is the temporary fixing material layer 2A of the substrate transport support tape 10 shown in FIG.
  • the configuration of the material is not limited to this.
  • an organic substrate 30 is prepared ((a) in FIG. 2), and the support film 1 is bonded to the organic substrate 30 via a temporary fixing material layer 2A to obtain a laminate 15 (FIG. 2A). 2 (b)).
  • the organic substrate 30 shown in (a) of FIG. and The organic substrate 30 includes through-hole electrodes 36 and wiring 34 .
  • the core layer 32 may be formed of an interlayer insulating material such as "Ajinomoto Build-up Film” (ABF) (manufactured by Ajinomoto Co., Inc., trade name).
  • the wiring layer 35 may be formed using a build-up material such as an epoxy resin composition.
  • the solder resist layer 38 may be made of a composition containing an acrylate resin.
  • the organic substrate 30 is not limited to the structure shown in FIG. 2(a), and various known substrates can be used.
  • a substrate having a thickness of 10 to 1000 ⁇ m, for example, can be used as the organic substrate 30 .
  • the thickness of the organic substrate 30 may be 200 ⁇ m or less, or may be 100 ⁇ m or less, from the viewpoint of thinning the electronic component or electronic device.
  • the thickness of the organic substrate 30 may be 30 ⁇ m or more, or may be 50 ⁇ m or more, from the viewpoint of maintaining the strength of electronic components such as semiconductor packages and reducing warpage.
  • the organic substrate 30 may be a coreless substrate.
  • the coreless substrate as used herein refers to a substrate that does not contain a core layer obtained by impregnating reinforcing fibers such as glass cloth with a thermosetting resin.
  • a roll laminator is used to laminate the organic substrate 30 and the support film 1 via the temporary fixing material layer 2A. can be laminated.
  • the substrate transport support tape 10 includes the protective film 3
  • the protective film 3 may be peeled off before lamination, or the temporary fixing material layer 2A and the support film 1 may be laminated while the protective film 3 is peeled off.
  • the roll laminator examples include Roll Laminator VA400III (trade name) manufactured by Taisei Laminator Co., Ltd.
  • the temporary fixing material layer 2A is applied to the organic substrate 30 and the support film 1 at a pressure of 0.1 MPa to 1.0 MPa, a temperature of 40° C. to 150° C., and a speed of 0.1 to 1.0 m/min. It can be pasted through.
  • a vacuum laminator can also be used instead of the roll laminator.
  • vacuum laminators examples include Vacuum Laminator LM-50 ⁇ 50-S (trade name) manufactured by NPC Co., Ltd. and Vacuum Laminator V130 (trade name) manufactured by Nichigo-Morton Co., Ltd.
  • the lamination conditions are air pressure of 1 hPa or less, pressure bonding temperature of 40° C. to 150° C. (preferably 60° C. to 120° C.), lamination pressure of 0.01 to 0.5 MPa (preferably 0.1 to 0.5 MPa), holding time of 1 second. It takes up to 600 seconds (preferably 30 seconds to 300 seconds) to bond the organic substrate 30 and the support film 1 via the temporary fixing material layer 2A.
  • Second step In the second step, the temporary fixing material layer 2A of the laminate 15 is heated. By this step, the organic substrate 30 and the support film 1 are sufficiently fixed by the cured temporary fixing material layer 2C ((c) in FIG. 2), and the handling property of the organic substrate 30 is improved.
  • Heating can be performed, for example, using an explosion-proof dryer. Heating conditions are preferably 100 to 200° C. for 10 to 300 minutes (more preferably 20 to 210 minutes) for curing. If the temperature is 100°C or higher, the temporary fixing material is sufficiently hardened and problems are less likely to occur in the subsequent steps. can be further suppressed. Further, if the heating time is 10 minutes or more, problems are less likely to occur in subsequent steps, and if the heating time is 300 minutes or less, work efficiency is less likely to deteriorate.
  • a temporary fixing material layer 2C in FIG. 2(c) indicates a cured body of the temporary fixing material layer 2A.
  • processing including heat treatment can be applied.
  • the processing includes formation of a solder resist (for example, solder resist layer 39 shown in (d) of FIG. 3), mounting of a semiconductor chip, reflow, sealing, and the like.
  • Processing may include at least one of forming and reflowing a solder resist.
  • a flip chip bonder can be used to mount the semiconductor chip on the organic substrate.
  • a mounting device include FC3000L (trade name) manufactured by Toray Engineering Co., Ltd., and the mounting conditions can be arbitrarily selected according to the desired organic substrate and semiconductor chip.
  • the reflow process can be performed by heating at a temperature at which solder melts.
  • the heating temperature is adjusted according to the type of solder, and may be, for example, 190 to 280.degree. C. or 220 to 270.degree.
  • the temporary fixing material formed using the resin composition for forming the temporary fixing material of the present embodiment even when the reflow process is performed at the above temperature, the adhesive can be attached via the temporary fixing material layer 2A.
  • the combined organic substrate 30 and the support film 1 can be prevented from being separated during the reflow process.
  • the support film 1 can be easily peeled off from the substrate 30 .
  • the semiconductor chip 40 mounted on the organic substrate 30 is sealed with the sealing material 50 after the semiconductor chip 40 is connected to the organic substrate 30 via the solder 42 by the reflow process.
  • the sealing device include FFT1030G (trade name) manufactured by TOWA Corporation, and the sealing conditions can be arbitrarily selected according to the desired organic substrate, semiconductor chip, and sealing material.
  • the curing conditions of the sealing material after sealing can be arbitrarily selected depending on the type of the sealing material.
  • the support film 1 and the temporary fixing are removed from the organic substrate 30 of the laminate (the semiconductor chip mounting substrate 55 on which the semiconductor chip is mounted and sealed) that has undergone the third step.
  • the material layer 2C is peeled off.
  • the peeling method one of the organic substrate and the support film is horizontally fixed, and the other is lifted at a certain angle from the horizontal direction. can be peeled off from the support film by a peel method.
  • These peeling methods are usually performed at room temperature, but may be performed at a temperature of about 40 to 100°C.
  • a cleaning step can be provided to remove it.
  • the temporary fixing material can be removed, for example, by cleaning the semiconductor chip mounting substrate.
  • cleaning liquid there are no particular restrictions on the cleaning liquid as long as it can remove some of the remaining temporary fixing material.
  • examples of such a cleaning liquid include the above organic solvents that can be used for diluting the resin composition for forming the temporary fixing material. These organic solvents may be used individually by 1 type, and may be used in combination of 2 or more type.
  • bases and acids may be added to the organic solvent.
  • bases examples include amines such as ethanolamine, diethanolamine, triethanolamine, triethylamine and ammonia; and ammonium salts such as tetramethylammonium hydroxide.
  • Organic acids such as acetic acid, oxalic acid, benzenesulfonic acid and dodecylbenzenesulfonic acid can be used as acids.
  • the amount added may be 0.01 to 10% by mass in terms of concentration in the cleaning liquid.
  • an existing surfactant may be added to the cleaning liquid to improve the removability of the residue.
  • the cleaning method is not particularly limited, and examples include a paddle cleaning method using the above cleaning liquid, a spray cleaning method, and a cleaning liquid bath immersion method.
  • the temperature is preferably 10 to 80° C., preferably 15 to 65° C.
  • the substrate is washed with water or alcohol and dried to obtain a semiconductor chip mounting substrate.
  • the separation from the organic substrate can be performed satisfactorily, and the temporary fixing material can be suppressed from remaining on the organic substrate, so that the cleaning process is omitted. It becomes possible to
  • the semiconductor chip mounting substrate 55 on which the semiconductor chip is mounted and sealed is further separated into semiconductor elements 60 by dicing (FIGS. 4(f) and 4(g)).
  • DL in FIG. 4(f) indicates a dicing line.
  • FIG. 4 is a cross-sectional view schematically showing the electronic device 100 manufactured through the above steps.
  • the electronic equipment device 100 has a plurality of semiconductor elements 60 arranged on a wiring substrate 70 via solder balls 65 .
  • a resin composition varnish for forming a temporary fixing material layer was prepared with the composition of parts by mass shown in Table 1.
  • the prepared varnish is applied to a release-treated polyethylene terephthalate (PET) film having a thickness of 38 ⁇ m and dried by heating at 90° C. for 5 minutes and at 140° C. for 5 minutes to form a temporary fixing material having a thickness of 30 ⁇ m. formed a layer.
  • PET polyethylene terephthalate
  • a protective film was laminated on the temporary fixing material layer to obtain a tape having a configuration of a PET film, a temporary fixing material layer and a protective film.
  • Acrylic rubber K-1 acrylic rubber synthesized above (weight-average molecular weight by GPC: 600,000, glycidyl methacrylate: 10% by mass, Tg: -28°C)
  • Acrylic rubber K-2 acrylic rubber synthesized above (weight average molecular weight by GPC: 400,000, glycidyl methacrylate: 10% by mass, Tg: -28°C)
  • Acrylic rubber K-3 Acrylic rubber synthesized above (weight average molecular weight by GPC: 600,000, glycidyl methacrylate: 10% by mass, Tg: -37°C) (curing agent)
  • PSM-4326 phenol resin (manufactured by Gun Ei Chemical Industry Co., Ltd., trade name)
  • MEH-7800M Phenolic resin (manufactured by Meiwa Kasei Co., Ltd., trade name) (amino-modified silicone)
  • PAM-E Aminoplastic resin
  • the elastic modulus of the temporary fixing material layer was measured by the following procedure. First, each varnish was applied to a PET film, and 8 temporary fixing material layers with a thickness of 30 ⁇ m were formed by heating and drying at 90° C. for 5 minutes and 140° C. for 5 minutes, and laminated at 60° C. A film with a thickness of 240 ⁇ m was produced. This film was cut to a width of 4 mm and a length of 33 mm.
  • the cut film was set in a dynamic viscoelastic device (trade name: Rheogel-E4000, manufactured by UMB Co., Ltd.), a tensile load was applied, and the distance between chucks was 20 mm, the frequency was 10 Hz, and the temperature was increased at a rate of 5°C/min.
  • the storage elastic modulus E' at 100°C was obtained by measuring the storage elastic modulus E' from 23°C to 260°C under the measurement conditions of isokinetic heating.
  • the elastic modulus of the temporary fixing material layer after curing was measured by the following procedure. First, a film with a thickness of 240 ⁇ m was produced in the same procedure as above. After heating in an oven at 170° C. for 1 hour, it was cut into 4 mm width and 33 mm length in the thickness direction. The cut film was set in a dynamic viscoelasticity device (trade name: Rheogel-E4000, manufactured by UMB Co., Ltd.), a tensile load was applied, and measurement was performed at a frequency of 10 Hz and a temperature increase rate of 5 ° C./min. The storage elastic modulus E′ was measured from 23 ° C. to 260 ° C. under the measurement conditions of a distance between chucks of 20 mm, a frequency of 10 Hz, a heating rate of 5 ° C./min, and a constant heating rate. A value for the rate E' was obtained.
  • the protective film of the tapes prepared in Examples and Comparative Examples was peeled off, and a polyimide film (manufactured by Ube Industries, Ltd., trade name: Upilex 25SGA, thickness: 25 ⁇ m) was applied to the exposed temporary fixing material layer as a support film.
  • the side surface was laminated at 60° C. using a hot plate HI-1000 manufactured by AS ONE Co., Ltd. to obtain a substrate transfer support tape.
  • a 1000 ⁇ m thick organic substrate material: glass epoxy substrate
  • a surface of solder resist AUS308 manufactured by Taiyo Ink Co., Ltd., product name: PSR-4000 AUS308
  • a roll laminator manufactured by Taisei Laminator Co., Ltd., Placed on the stage of VA-400III
  • the support tape for transporting the substrate from which the PET film was peeled off was placed at a temperature of 100 ° C., a pressure of 0.2 MPa, and a pressure of 0.2 m so that the temporary fixing material layer was attached to the organic substrate side.
  • /min to obtain a laminate of support film (polyimide film)/temporary fixing material layer/organic substrate.
  • the sample After heating the laminate obtained above in an oven at 170° C. for 1 hour, the sample was placed on a hot plate heated to 260° C. for 5 minutes so that the organic substrate was in contact with the hot plate. It was visually confirmed whether peeling (foaming) occurred between the support film (that is, between the organic substrate/temporary fixing material layer and/or between the support film/temporary fixing material layer). Then, the peeling state during reflow was evaluated based on the following evaluation criteria. A: No peeling (foaming) between the organic substrate/temporary fixing material layer and between the support film/temporary fixing material layer.
  • B There was slight peeling (foaming) in at least one of the organic substrate/temporary fixing material layer and the support film/temporary fixing material layer.
  • the area of the peeled (foaming) part is 2% or less of the total area.
  • C Peeling (foaming) occurred in at least one of the organic substrate/temporary fixing material layer and the support film/temporary fixing material layer.
  • the area of the peeled (foamed) part is more than 2% of the total area.
  • the elastic modulus at 100° C. of the resin compositions of Examples 1 to 5 containing the silicone having an amino group and the acrylic rubber having an epoxy group is 2 MPa or more, and the elastic modulus at 25° C. when heated at 170° C. for 1 hour is 500 MPa or more. It was confirmed that peeling can be suppressed and excellent peelability of the temporary fixing material layer from the organic substrate after reflow can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Epoxy Resins (AREA)
  • Non-Metallic Protective Coatings For Printed Circuits (AREA)

Abstract

This resin composition for forming a temporary fixative contains an acrylic rubber having an epoxy group and a silicone compound having an amine group. When a film is formed by heating this composition for 5 minutes at 90°C and for 5 minutes at 140°C, the modulus of this film is 2 MPa or greater at 100°C and the modulus of this film after heating for 2 hours at 170°C is 500 MPa or greater at 25°C.

Description

仮固定材形成用樹脂組成物、仮固定材、基板搬送用サポートテープ及び電子機器装置の製造方法Temporary fixing material-forming resin composition, temporary fixing material, support tape for transporting substrate, and method for manufacturing electronic device
 本開示は、仮固定材形成用樹脂組成物、仮固定材、基板搬送用サポートテープ及び電子機器装置の製造方法に関する。 The present disclosure relates to a method for manufacturing a resin composition for forming a temporary fixing material, a temporary fixing material, a substrate transport support tape, and an electronic device.
 スマートフォン、タブレットPC等の電子機器装置の小型化及び高性能化に伴い、電子機器装置に使われる半導体素子や半導体パッケージにおいては実装密度の向上が進められている。例えば、配線板と半導体チップとの接続については、ワイヤボンディングに代えて、フリップチップ実装などが採用されている。また、高密度実装への対応として、コア層とその両面に設けられたビルドアップ構造の配線層とを備える多層配線板なども採用されている。これらを利用した半導体パッケージの製造方法として、例えば、下記特許文献1には、多層配線板上にソルダーレジスト層を形成した後、リフローによって、配線板の配線と半導体チップとをハンダ材料で接続する方法が開示されている。 With the miniaturization and higher performance of electronic devices such as smartphones and tablet PCs, the mounting density of semiconductor elements and semiconductor packages used in electronic devices is being improved. For example, for connection between a wiring board and a semiconductor chip, flip chip mounting or the like is adopted instead of wire bonding. Also, in order to cope with high-density mounting, a multilayer wiring board or the like including a core layer and wiring layers having a build-up structure provided on both sides of the core layer has been adopted. As a method for manufacturing a semiconductor package using these, for example, Patent Document 1 below discloses that after forming a solder resist layer on a multilayer wiring board, the wiring of the wiring board and the semiconductor chip are connected with a solder material by reflow. A method is disclosed.
国際公開第2009/081518号WO2009/081518
 ところで、半導体素子や半導体パッケージなどの電子部品の更なる薄型化を図るために、基板については薄型の有機基板の使用が検討されており、具体的には、ガラスクロスに熱硬化樹脂を含浸させたコア層を用いないコアレス基板の開発が盛んに行われている。コアレス基板はコア層がないため、基板の層厚を薄くすることが可能であるが、一方で、高弾性のコア層がないために、基板自体の剛性を確保することが難しく、電子部品の製造プロセス中でのハンドリング性が課題となる。 By the way, in order to further reduce the thickness of electronic parts such as semiconductor elements and semiconductor packages, the use of thin organic substrates has been studied. Specifically, glass cloth is impregnated with thermosetting resin. The development of coreless substrates that do not use such a core layer has been actively carried out. Since coreless substrates do not have a core layer, it is possible to make the thickness of the substrate thinner. Handleability during the manufacturing process is an issue.
 このような背景から、本発明者らは、仮固定材を介して支持体を基板に貼り合わせ、積層体とすることで剛性を確保し、電子部品の製造プロセス中でのハンドリング性を向上させる方法を検討している。しかしながら、上記製造プロセスでは、上記積層体の状態で熱処理が含まれるソルダーレジストの形成及びリフローなどの加工を行うこととなるため、加工時に支持体及び基板間(支持体と仮固定材間、又は、仮固定材と基板間)での剥離、或いは剥離の起点となる発泡が生じやすいという問題がある。また、加工後においては、基板から仮固定材及び支持体を剥がすことになるが、このときに仮固定材が基板側に残存すると望ましくない。 Against this background, the present inventors adhered a support to a substrate via a temporary fixing material to form a laminate to ensure rigidity and improve handling during the manufacturing process of electronic components. I am considering how to do this. However, in the above manufacturing process, processing such as solder resist formation and reflow including heat treatment is performed in the state of the laminate, so during processing between the support and the substrate (between the support and the temporary fixing material, or , between the temporary fixing material and the substrate), or foaming, which is the starting point of the peeling, is likely to occur. Further, after processing, the temporary fixing material and the support are peeled off from the substrate, and it is not desirable if the temporary fixing material remains on the substrate side at this time.
 本開示は上記事情を鑑み、熱処理を含む加工時における支持体及び基板間の剥離の抑制と、加工後の基板からの剥離性とを両立することができる仮固定材及びそれを形成するための仮固定材形成用樹脂組成物、基板搬送用サポートテープ、並びに、電子機器装置の製造方法を提供することを目的とする。 In view of the above circumstances, the present disclosure provides a temporary fixing material that can achieve both suppression of peeling between a support and a substrate during processing including heat treatment and peelability from the substrate after processing, and a temporary fixing material for forming the same. An object of the present invention is to provide a resin composition for forming a temporary fixing material, a support tape for transporting a substrate, and a method for manufacturing an electronic device.
 上記課題を解決するために、本発明者らは、リフロー工程時の発泡を抑制するために弾性率が低い仮固定材によって基板上の微細な凹凸を埋め込むことを検討したが、この場合、凹凸のアスペクト比や深さによって埋め込みに適した弾性率の調整が難しく、弾性率を下げすぎると、リフロー工程後に室温で基板から仮固定材及び支持体を剥がす際に、仮固定材が基板側に残存しやすいことが判明した。そこで、本発明者らは、凹凸への埋め込み性をあえて小さくした仮固定材によって、リフロー工程時の剥離を抑制することを検討したところ、特定の熱可塑性樹脂と特定のシリコーン化合物とを組み合わせて仮固定材の弾性率を特定の範囲に調整することにより、仮固定材がリフロー工程時の剥離の抑制とリフロー工程後の剥離のしやすさとを両立できることを見出し、本発明を完成するに至った。 In order to solve the above problems, the present inventors considered embedding fine unevenness on the substrate with a temporary fixing material having a low elastic modulus in order to suppress foaming during the reflow process. It is difficult to adjust the elastic modulus suitable for embedding depending on the aspect ratio and depth of , and if the elastic modulus is lowered too much, the temporary fixing material will stick to the substrate side when the temporary fixing material and support are peeled off from the substrate at room temperature after the reflow process. It turned out to be easy to survive. Therefore, the present inventors investigated suppressing the peeling during the reflow process by using a temporary fixing material that dares to reduce the embedding property in the unevenness. By adjusting the elastic modulus of the temporary fixing material to a specific range, the temporary fixing material can suppress peeling during the reflow process and easily peel after the reflow process, and have completed the present invention. rice field.
 本開示の一側面は、有機基板に基板搬送用の支持体を仮固定する仮固定材を形成するための仮固定材形成用樹脂組成物であって、エポキシ基を有するアクリルゴムと、アミノ基を有するシリコーン化合物と、を含有し、90℃で5分間及び140℃で5分間加熱してフィルムを形成したときに、当該フィルムの弾性率が100℃において2MPa以上であり、170℃で2時間加熱された後の上記フィルムの弾性率が25℃において500MPa以上である、仮固定材形成用樹脂組成物を提供する。 One aspect of the present disclosure is a temporary fixing material-forming resin composition for forming a temporary fixing material for temporarily fixing a support for transporting a substrate to an organic substrate, comprising: acrylic rubber having an epoxy group; and a silicone compound having a Provided is a resin composition for forming a temporary fixing material, wherein the elastic modulus of the film after heating is 500 MPa or more at 25°C.
 上記の仮固定材形成用樹脂組成物によれば、熱処理を含む加工時における支持体及び基板間の剥離の抑制と、加工後の基板からの剥離性とを両立することができる仮固定材を形成することができる。このような効果が奏される理由について本発明者らは以下のとおり考えている。まず、樹脂組成物からフィルムを形成するときに、エポキシ基を有するアクリルゴムとアミノ基を有するシリコーン化合物とが反応することによって、硬化前のフィルムを基板に貼り付けるときの弾性率が向上して埋め込み性が抑制されたにもかかわらず、基板への濡れ性が向上することで加工時の剥離を充分抑制できたと考えられる。そして、上記の埋め込み性の抑制に加えて、硬化後のフィルムの室温における弾性率を充分高くすることで、加工後に室温で基板から仮固定材及び支持体を剥がす際に、仮固定材が基板側に残存することを充分抑制できたと本発明者らは推察する。 According to the above resin composition for forming a temporary fixing material, a temporary fixing material capable of suppressing peeling between the support and the substrate during processing including heat treatment and releasability from the substrate after processing is compatible. can be formed. The inventors consider the reason why such an effect is exhibited as follows. First, when forming a film from the resin composition, the reaction between the acrylic rubber having an epoxy group and the silicone compound having an amino group improves the elastic modulus when the film is attached to a substrate before curing. Although the embedding property was suppressed, it is considered that the wettability to the substrate was improved and the peeling during processing was sufficiently suppressed. In addition to suppressing the above embedding property, by sufficiently increasing the elastic modulus of the film after curing at room temperature, when the temporary fixing material and the support are peeled off from the substrate at room temperature after processing, the temporary fixing material does not adhere to the substrate. The present inventors presume that it was possible to sufficiently suppress the remaining on the side.
 上記仮固定材形成用樹脂組成物は、エポキシ硬化剤を更に含んでいてもよい。 The resin composition for forming the temporary fixing material may further contain an epoxy curing agent.
 上記仮固定材形成用樹脂組成物における上記シリコーン化合物の含有量は、上記アクリルゴム100質量部に対して、1~10質量部であってもよい。上記シリコーン化合物の含有量を上記範囲とすることにより、100℃における弾性率が2MPa以上である仮固定材を形成することが容易となるとともに、上述した基板への濡れ性が得られやすくなる。 The content of the silicone compound in the temporary fixing material-forming resin composition may be 1 to 10 parts by mass with respect to 100 parts by mass of the acrylic rubber. By setting the content of the silicone compound in the above range, it becomes easy to form a temporary fixing material having an elastic modulus of 2 MPa or more at 100° C., and the wettability to the substrate described above can be easily obtained.
 本開示はまた、上記本開示の仮固定材形成用樹脂組成物を用いて形成される、仮固定材を提供する。当該仮固定材によれば、熱処理を含む加工時における支持体及び基板間の剥離の抑制と、加工後の基板からの剥離性とを両立することができる。 The present disclosure also provides a temporary fixing material formed using the resin composition for forming a temporary fixing material of the present disclosure. According to the temporary fixing material, it is possible to achieve both suppression of detachment between the support and the substrate during processing including heat treatment, and releasability from the substrate after processing.
 本開示はまた、有機基板を搬送するための支持フィルムと、該支持フィルム上に設けられた、有機基板と支持フィルムとを仮固定するための仮固定材層と、備え、仮固定材層が、上記本開示の仮固定材形成用樹脂組成物を用いて形成されたものである、基板搬送用サポートテープを提供する。 The present disclosure also includes a support film for transporting an organic substrate, and a temporary fixing material layer provided on the support film for temporarily fixing the organic substrate and the support film, wherein the temporary fixing material layer is and a support tape for transporting a substrate, which is formed using the resin composition for forming a temporary fixing material of the present disclosure.
 上記基板搬送用サポートテープは、有機基板のハンドリング性を向上させることができるとともに、熱処理を含む加工時における支持体及び基板間の剥離の抑制と、加工後の基板からの仮固定材の剥離性とを両立することができる。 The support tape for transporting a substrate can improve the handling property of the organic substrate, suppresses peeling between the support and the substrate during processing including heat treatment, and can remove the temporary fixing material from the substrate after processing. can be compatible with
 本開示はまた、有機基板に仮固定材を介して支持体を貼り合わせて積層体を得る第1工程と、積層体の仮固定材を加熱する第2工程と、第2工程を経た積層体に対して熱処理が含まれる加工を施す第3工程と、第3工程を経た積層体の有機基板から支持体及び仮固定材を剥離する第4工程と、を備え、仮固定材が、上記本開示の仮固定材形成用樹脂組成物を用いて形成されたものである、電子機器装置の製造方法を提供する。 The present disclosure also provides a first step of bonding a support to an organic substrate via a temporary fixing material to obtain a laminate, a second step of heating the temporary fixing material of the laminate, and a laminate that has undergone the second step. and a fourth step of peeling off the support and the temporary fixing material from the organic substrate of the laminate that has undergone the third step, wherein the temporary fixing material is the above-mentioned book Provided is a method for manufacturing an electronic device formed using the disclosed resin composition for forming a temporary fixing material.
 上記電子機器装置の製造方法によれば、有機基板を用いて薄型化した電子部品を備える電子機器装置を高い生産性で製造することができる。すなわち、上記製造方法は、仮固定材が上記本開示の仮固定用樹脂組成物を用いて形成されたものであることにより、(i)第1工程において有機基板と支持体とを貼り合わせることができ、薄型の有機基板のハンドリング性が向上すること(例えば、薄型の有機基板の搬送が容易になること)、(ii)第2工程を経た仮固定材が、第3工程において有機基板と支持体とを充分固定でき、熱処理を含む加工を良好に実施できること、(iii)第4工程で基板表面を汚さずに有機基板から容易に剥離できること、等の効果を奏することができる。 According to the method for manufacturing an electronic device, it is possible to manufacture, with high productivity, an electronic device including electronic components made thin using an organic substrate. That is, in the above manufacturing method, since the temporary fixing material is formed using the resin composition for temporary fixing of the present disclosure, (i) in the first step, the organic substrate and the support are bonded together. and (ii) the temporary fixing material that has undergone the second step is combined with the organic substrate in the third step. (iii) it can be easily peeled off from the organic substrate without soiling the substrate surface in the fourth step;
 上記製造方法において、上記第3工程における上記加工が、ソルダーレジストの形成及びリフローのうちの少なくとも一方を含んでいてもよい。 In the manufacturing method, the processing in the third step may include at least one of solder resist formation and reflow.
 上記製造方法において、上記有機基板の厚さが200μm以下であってもよい。また、上記有機基板がコアレス基板であってもよい。 In the manufacturing method described above, the thickness of the organic substrate may be 200 μm or less. Also, the organic substrate may be a coreless substrate.
 本開示によれば、熱処理を含む加工時における支持体及び基板間の剥離の抑制と、加工後の基板からの剥離性とを両立することができる仮固定材及びそれを形成するための仮固定材形成用樹脂組成物、基板搬送用サポートテープ、並びに、電子機器装置の製造方法を提供することができる。 According to the present disclosure, a temporary fixing material that can achieve both suppression of delamination between a support and a substrate during processing including heat treatment and peelability from the substrate after processing, and temporary fixing for forming the same It is possible to provide a material-forming resin composition, a support tape for transporting a substrate, and a method for manufacturing an electronic device.
 本開示に係る仮固定材形成用樹脂組成物は、有機基板と搬送用の支持体とを充分固定することができるとともに、基板表面を汚さずに有機基板から支持体を容易に剥離することができる仮固定材を形成することができる。本開示に係る基板搬送用サポートテープは、有機基板のハンドリング性を向上させることができるとともに、基板表面を汚さずに有機基板から容易に剥離することができる。 The temporary fixing material-forming resin composition according to the present disclosure can sufficiently fix an organic substrate and a support for transportation, and can easily peel the support from the organic substrate without soiling the substrate surface. It is possible to form a temporary fixing material that can be used. The support tape for transporting a substrate according to the present disclosure can improve the handling of the organic substrate and can be easily peeled off from the organic substrate without soiling the substrate surface.
図1は、基板搬送用サポートテープの一実施形態を示す図であり、(A)は上面図であり、(B)は(A)のI-I線に沿った模式断面図である。FIG. 1 is a view showing an embodiment of a support tape for transporting a substrate, (A) is a top view, and (B) is a schematic cross-sectional view taken along line II in (A). 図2の(a)~(c)は、電子機器装置の製造方法の一実施形態を説明するための模式断面図である。(a) to (c) of FIG. 2 are schematic cross-sectional views for explaining an embodiment of a method for manufacturing an electronic device. 図3の(d)~(e)は、電子機器装置の製造方法の一実施形態を説明するための模式断面図である。(d) to (e) of FIG. 3 are schematic cross-sectional views for explaining an embodiment of a method for manufacturing an electronic device. 図4の(f)~(h)は、電子機器装置の製造方法の一実施形態を説明するための模式断面図である。(f) to (h) of FIG. 4 are schematic cross-sectional views for explaining an embodiment of a method for manufacturing an electronic device.
 以下、場合により図面を参照しつつ、本開示を実施するための形態について詳細に説明する。ただし、本開示は以下の実施形態に限定されるものではない。なお、本明細書において、「(メタ)アクリル酸」とは、アクリル酸又はメタクリル酸を意味し、「(メタ)アクリレート」とは、アクリレート又はそれに対応するメタクリレートを意味する。「A又はB」とは、AとBのどちらか一方を含んでいればよく、両方とも含んでいてもよい。 Hereinafter, embodiments for carrying out the present disclosure will be described in detail with reference to the drawings as the case may be. However, the present disclosure is not limited to the following embodiments. In this specification, "(meth)acrylic acid" means acrylic acid or methacrylic acid, and "(meth)acrylate" means acrylate or its corresponding methacrylate. "A or B" may include either A or B, or may include both.
 また、本明細書において「層」との語は、平面図として観察したときに、全面に形成されている形状の構造に加え、一部に形成されている形状の構造も包含される。また、本明細書において「工程」との語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の作用が達成されれば、本用語に含まれる。また、「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。 Further, in this specification, the term "layer" includes not only a shape structure formed on the entire surface but also a shape structure formed partially when observed as a plan view. In addition, the term "step" as used herein refers not only to an independent step, but also to the term if the desired action of the step is achieved even if it cannot be clearly distinguished from other steps. included. Further, a numerical range indicated using "-" indicates a range including the numerical values described before and after "-" as the minimum and maximum values, respectively.
[仮固定材形成用樹脂組成物]
 本実施形態に係る仮固定材形成用樹脂組成物は、エポキシ基を有するアクリルゴムと、アミノ基を有するシリコーン化合物とを含む。仮固定材形成用樹脂組成物は、上記成分の他に、エポキシ硬化剤、又はその他の成分を更に含んでいてもよい。
[Temporary fixing material forming resin composition]
The resin composition for forming a temporary fixing material according to this embodiment contains acrylic rubber having an epoxy group and a silicone compound having an amino group. The temporary fixing material-forming resin composition may further contain an epoxy curing agent or other components in addition to the above components.
 本実施形態に係る仮固定材形成用樹脂組成物は、有機基板に基板搬送用の支持体を仮固定するための仮固定材として用いることができる。 The resin composition for forming a temporary fixing material according to the present embodiment can be used as a temporary fixing material for temporarily fixing a substrate transport support to an organic substrate.
<エポキシ基を有するアクリルゴム>
 エポキシ基を有するアクリルゴムは、エポキシ基を有する(メタ)アクリル共重合体を用いることができ、エポキシ基をポリマー鎖中に有していても、ポリマー鎖末端に有していてもよい。
<Acrylic rubber having an epoxy group>
A (meth)acrylic copolymer having an epoxy group can be used as the acrylic rubber having an epoxy group, and the epoxy group may be present in the polymer chain or at the end of the polymer chain.
 エポキシ基を有する(メタ)アクリル共重合体は、パール重合、溶液重合等の重合方法によって得られるものを用いてもよく、あるいは、市販品を用いてもよい。共重合体を構成するモノマーとしては、グリシジル(メタ)アクリレート、(メタ)アクリル酸、(メタ)アクリル酸エステル、スチレン等が挙げられる。 The (meth)acrylic copolymer having an epoxy group may be obtained by a polymerization method such as pearl polymerization or solution polymerization, or may be a commercially available product. Monomers constituting the copolymer include glycidyl (meth)acrylate, (meth)acrylic acid, (meth)acrylic acid ester, styrene, and the like.
 エポキシ基を有する(メタ)アクリル共重合体は、グリシジル(メタ)アクリレートの配合量が、共重合体を構成するモノマー全量基準で、1~20質量%であってもよく、5~15質量%であってもよい。 In the (meth)acrylic copolymer having an epoxy group, the amount of glycidyl (meth)acrylate blended may be 1 to 20% by mass, based on the total amount of monomers constituting the copolymer, and may be 5 to 15% by mass. may be
 エポキシ基を有するアクリルゴムのガラス転移温度(以下、「Tg」と表記する場合もある)は、-50℃~50℃であることが好ましく、-40℃~20℃であることがより好ましい。Tgがこのような範囲であれば、タック力が上がりすぎて取り扱い性が悪化することを抑制しつつ、より充分な流動性を得ることができる。 The glass transition temperature (hereinafter sometimes referred to as "Tg") of acrylic rubber having an epoxy group is preferably -50°C to 50°C, more preferably -40°C to 20°C. If the Tg is in such a range, it is possible to obtain more sufficient fluidity while suppressing deterioration in handleability due to excessive increase in tackiness.
 Tgは、示差走査熱量測定(DSC、例えば株式会社リガク製「Thermo Plus 2」)を用いて熱可塑性樹脂を測定したときの中間点ガラス転移温度値である。具体的には、上記Tgは、昇温速度10℃/分、測定温度:-80~80℃の条件で熱量変化を測定し、JIS K 7121:1987に準拠した方法によって算出した中間点ガラス転移温度である。 Tg is the midpoint glass transition temperature value when the thermoplastic resin is measured using differential scanning calorimetry (DSC, for example, "Thermo Plus 2" manufactured by Rigaku Corporation). Specifically, the above Tg is the midpoint glass transition calculated by a method in accordance with JIS K 7121:1987 by measuring changes in heat quantity under the conditions of a heating rate of 10°C/min and a measurement temperature of -80 to 80°C. temperature.
 エポキシ基を有するアクリルゴムの重量平均分子量は特に限定されず、10万~120万であってもよく、20万~100万であってもよい。アクリルゴムの重量平均分子量がこのような範囲であれば、成膜性と流動性とを確保することが容易となる。重量平均分子量は、ゲルパーミエーションクロマトグラフィー法(GPC)で標準ポリスチレンによる検量線を用いたポリスチレン換算値である。 The weight-average molecular weight of the epoxy group-containing acrylic rubber is not particularly limited, and may be 100,000 to 1,200,000 or 200,000 to 1,000,000. If the weight-average molecular weight of the acrylic rubber is in such a range, it becomes easy to ensure film formability and fluidity. The weight average molecular weight is a polystyrene conversion value using a standard polystyrene calibration curve by gel permeation chromatography (GPC).
 エポキシ基を有するアクリルゴムは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 The acrylic rubber having an epoxy group may be used alone or in combination of two or more.
 本実施形態の仮固定材形成用樹脂組成物におけるエポキシ基を有するアクリルゴムの含有量は、熱処理を含む加工時における支持体及び基板間の剥離の抑制と、加工後の基板からの剥離性とを両立する観点から、組成物全量100質量部に対して40~90質量部とすることができ、60~80質量部であってもよく、70~80質量部であってもよい。 The content of the acrylic rubber having an epoxy group in the resin composition for forming the temporary fixing material of the present embodiment is determined to suppress peeling between the support and the substrate during processing including heat treatment, and to improve the peelability from the substrate after processing. From the viewpoint of achieving both, it can be 40 to 90 parts by mass, may be 60 to 80 parts by mass, or may be 70 to 80 parts by mass with respect to 100 parts by mass of the total composition.
 本実施形態の仮固定材形成用樹脂組成物は、エポキシ基を有するアクリルゴム以外の熱可塑性樹脂を含んでいてもよい。熱可塑性樹脂は、加熱等により架橋構造を形成する樹脂であってもよい。このような樹脂としては、架橋性官能基を有するポリマーが挙げられる。架橋性官能基を有するポリマーとしては、熱可塑性ポリイミド樹脂、架橋性官能基を有する(メタ)アクリル共重合体、ウレタン樹脂ポリフェニレンエーテル樹脂、ポリエーテルイミド樹脂、フェノキシ樹脂、変性ポリフェニレンエーテル樹脂等が挙げられる。 The temporary fixing material-forming resin composition of the present embodiment may contain a thermoplastic resin other than acrylic rubber having an epoxy group. The thermoplastic resin may be a resin that forms a crosslinked structure by heating or the like. Such resins include polymers having crosslinkable functional groups. Examples of polymers having crosslinkable functional groups include thermoplastic polyimide resins, (meth)acrylic copolymers having crosslinkable functional groups, urethane resins, polyphenylene ether resins, polyetherimide resins, phenoxy resins, modified polyphenylene ether resins, and the like. be done.
 架橋性官能基を有するポリマーは、架橋性官能基をポリマー鎖中に有していても、ポリマー鎖末端に有していてもよい。架橋性官能基の具体例としては、アルコール性水酸基、フェノール性水酸基、カルボキシル基等が挙げられる。 A polymer having a crosslinkable functional group may have the crosslinkable functional group in the polymer chain or at the end of the polymer chain. Specific examples of crosslinkable functional groups include alcoholic hydroxyl groups, phenolic hydroxyl groups, and carboxyl groups.
 熱可塑性樹脂のTgは、-50℃~50℃であってもよく、-40℃~20℃であってもよい。熱可塑性樹脂の重量平均分子量は特に限定されず、10万~120万であってもよく、20万~100万であってもよい。 The Tg of the thermoplastic resin may be -50°C to 50°C or -40°C to 20°C. The weight average molecular weight of the thermoplastic resin is not particularly limited, and may be from 100,000 to 1,200,000, or from 200,000 to 1,000,000.
<アミノ基を有するシリコーン化合物>
 アミノ基を有するシリコーン化合物は、公知のシリコーンを使用することができる。例えば、ジメチルシリコーンオイルのメチル基がアミノ基を含む有機基によって置換された変性シリコーンオイルであってもよい。アミノ基はシリコーン主鎖の末端(両末端又は片末端)に含まれていてもよいし、側鎖に含まれていてもよいし、末端(両末端又は片末端)及び側鎖に含まれていてもよい。
<Silicone compound having an amino group>
A known silicone can be used as the silicone compound having an amino group. For example, it may be a modified silicone oil in which the methyl group of dimethyl silicone oil is substituted with an organic group containing an amino group. The amino group may be contained in the terminal (both terminals or one terminal) of the silicone main chain, may be contained in the side chain, or may be contained in the terminal (both terminals or one terminal) and the side chain. may
 シリコーン主鎖の分子量は特に制限されないが、官能基(アミノ基)当量が10~3000g/molであってもよい。 The molecular weight of the silicone main chain is not particularly limited, but the functional group (amino group) equivalent may be 10 to 3000 g/mol.
 アミノ基を有するシリコーン化合物は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 The silicone compound having an amino group may be used alone or in combination of two or more.
 本実施形態の仮固定材形成用樹脂組成物におけるアミノ基を有するシリコーン化合物の含有量は、仮固定材の基板への貼り付け性の確保と、基板に対する埋め込み性の抑制及び基板との濡れ性の向上とを両立させる観点から、エポキシ基を有するアクリルゴム100質量部に対して1~10質量部とすることができ、4~6質量部であってもよい。 The content of the amino group-containing silicone compound in the temporary fixing material-forming resin composition of the present embodiment ensures the adhesion of the temporary fixing material to the substrate, suppresses the embedding property in the substrate, and wettability with the substrate. From the viewpoint of achieving both improvement of the above, the amount may be 1 to 10 parts by mass, and may be 4 to 6 parts by mass, with respect to 100 parts by mass of acrylic rubber having an epoxy group.
<エポキシ硬化剤>
 エポキシ硬化剤は、通常用いられている公知の硬化剤を使用することができる。エポキシ硬化剤としては、例えば、アミン類、ポリアミド、酸無水物、ポリスルフィド、三フッ化ホウ素、ビスフェノールA、ビスフェノールF、ビスフェノールS等のフェノール性水酸基を1分子中に2個以上有するビスフェノール類、フェノールノボラック樹脂、ビスフェノールAノボラック樹脂、クレゾールノボラック樹脂等のフェノール樹脂等が挙げられる。
<Epoxy curing agent>
As the epoxy curing agent, a commonly used known curing agent can be used. Examples of epoxy curing agents include amines, polyamides, acid anhydrides, polysulfides, boron trifluoride, bisphenols having two or more phenolic hydroxyl groups per molecule such as bisphenol A, bisphenol F, bisphenol S, phenol Phenol resins such as novolak resin, bisphenol A novolak resin, cresol novolak resin, and the like are included.
 エポキシ硬化剤は、基板に対する埋め込み性の抑制の観点から、フェノールノボラック樹脂であってもよい。このようなエポキシ硬化剤は、「PSM-4326」(群栄化学工業株式会社製、商品名)、「MEH-7800M」(明和化成株式会社製、商品名)などの市販品を用いることができる。 The epoxy curing agent may be a phenol novolac resin from the viewpoint of suppressing embedding into the substrate. Commercially available products such as "PSM-4326" (manufactured by Gunei Chemical Industry Co., Ltd., trade name) and "MEH-7800M" (manufactured by Meiwa Kasei Co., Ltd., trade name) can be used as such epoxy curing agents. .
 エポキシ硬化剤は、1種を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。 Epoxy curing agents may be used singly or in combination of two or more.
 本実施形態の仮固定材形成用樹脂組成物におけるエポキシ硬化剤の含有量は、エポキシ基を有するアクリルゴム100質量部に対して、5~40質量部とすることができ、15~25質量部であってもよい。エポキシ硬化剤の含有量が上記の範囲にあると、仮固定材は充分な貼り付け性、耐熱性、硬化性及び剥離性を兼ね備えることが容易となる。また、エポキシ硬化剤の含有量が15質量部以上であれば、比較的短時間で硬化でき、耐熱性が向上するとともに、電子機器装置の製造時における有機基板の保持性も向上し、電子機器装置を構成する部品(例えば、半導体チップなど)が損傷しにくい傾向がある。更に、硬化前の仮固定材の100℃における弾性率を高くすることが容易となり、基板の凹凸への埋込が抑制されることで、良好な剥離性が得られやすくなる。一方、エポキシ硬化剤の含有量が25質量部以下であれば、硬化前の仮固定材の100℃における弾性率が過度に高くなりにくく、貼り付け性を担保しやすくなる。また、硬化後の仮固定材の25℃における弾性率が過度に高くなりにくく、剥離時のアンカー効果を抑制することができ、有機基板の保持性と、有機基板と支持体との剥離性とを更に高水準で両立しやすくなる傾向にある。 The content of the epoxy curing agent in the resin composition for forming the temporary fixing material of the present embodiment can be 5 to 40 parts by mass, such as 15 to 25 parts by mass, with respect to 100 parts by mass of acrylic rubber having an epoxy group. may be When the content of the epoxy curing agent is within the above range, it becomes easy for the temporary fixing material to have sufficient adherability, heat resistance, curability and releasability. In addition, when the content of the epoxy curing agent is 15 parts by mass or more, it can be cured in a relatively short time, the heat resistance is improved, and the holding property of the organic substrate during the manufacture of the electronic equipment is also improved. Components (eg, semiconductor chips) that make up the device tend to be less susceptible to damage. Furthermore, it becomes easy to increase the elastic modulus at 100° C. of the temporary fixing material before curing, and embedding into the irregularities of the substrate is suppressed, thereby making it easier to obtain good peelability. On the other hand, when the content of the epoxy curing agent is 25 parts by mass or less, the elastic modulus at 100° C. of the temporary fixing material before curing is less likely to be excessively high, making it easier to secure the adhesiveness. In addition, the elastic modulus at 25° C. of the temporary fixing material after curing is unlikely to be excessively high, and the anchor effect at the time of peeling can be suppressed. tend to be easier to achieve at a higher level.
<その他の成分>
 上記の成分以外の成分としては、熱硬化性樹脂、無機フィラー(無機充填材)、有機フィラー(有機充填材)、硬化促進剤、アミノ基を有するシリコーン化合物以外のその他のシリコーン化合物、並びに、シランカップリング剤等が挙げられる。
<Other ingredients>
Components other than the above components include thermosetting resins, inorganic fillers (inorganic fillers), organic fillers (organic fillers), curing accelerators, silicone compounds other than silicone compounds having amino groups, and silanes. A coupling agent etc. are mentioned.
 熱硬化性樹脂としては、例えば、エポキシ樹脂、アクリル樹脂、シリコーン樹脂、熱硬化型ポリイミド樹脂、ポリウレタン樹脂、メラミン樹脂、ユリア樹脂が挙げられる。 Examples of thermosetting resins include epoxy resins, acrylic resins, silicone resins, thermosetting polyimide resins, polyurethane resins, melamine resins, and urea resins.
 無機フィラーとしては例えば、シリカ、アルミナ、窒化ホウ素、チタニア、ガラス、酸化鉄、セラミック等が挙げられる。無機フィラーは、仮固定材に低熱膨張性及び低吸湿性を付与する目的で添加することができる。無機フィラーは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 Examples of inorganic fillers include silica, alumina, boron nitride, titania, glass, iron oxide, and ceramics. The inorganic filler can be added for the purpose of imparting low thermal expansion and low hygroscopicity to the temporary fixing material. An inorganic filler may be used individually by 1 type, and may be used in combination of 2 or more type.
 有機フィラーとしては、例えば、カーボン、ゴム系フィラー、シリコーン系微粒子、ポリアミド微粒子、ポリイミド微粒子等が挙げられる。有機フィラーは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 Examples of organic fillers include carbon, rubber-based fillers, silicone-based fine particles, polyamide fine particles, and polyimide fine particles. An organic filler may be used individually by 1 type, and may be used in combination of 2 or more type.
 硬化促進剤としては、例えば、イミダゾール類、ジシアンジアミド誘導体、ジカルボン酸ジヒドラジド、トリフェニルホスフィン、テトラフェニルホスホニウムテトラフェニルボレート、2-エチル-4-メチルイミダゾール-テトラフェニルボレート、1,8-ジアザビシクロ[5,4,0]ウンデセン-7-テトラフェニルボレート等が挙げられる。硬化促進剤は、1種を単独で又は2種類以上を組み合わせて用いることができる。 Curing accelerators include, for example, imidazoles, dicyandiamide derivatives, dicarboxylic acid dihydrazide, triphenylphosphine, tetraphenylphosphonium tetraphenylborate, 2-ethyl-4-methylimidazole-tetraphenylborate, 1,8-diazabicyclo[5, 4,0]undecene-7-tetraphenylborate and the like. A hardening accelerator can be used individually by 1 type or in combination of 2 or more types.
 その他のシリコーン化合物としては、ポリシロキサン構造を有するものであれば特に制限なく用いることができる。例えば、シリコーン変性樹脂、ストレートシリコーンオイル、非反応性の変性シリコーンオイル、反応性の変性シリコーンオイル等が挙げられる。シリコーン化合物は、1種を単独で又は2種類以上を組み合わせて用いることができる。 Other silicone compounds can be used without any particular limitation as long as they have a polysiloxane structure. Examples include silicone-modified resins, straight silicone oils, non-reactive modified silicone oils, and reactive modified silicone oils. A silicone compound can be used individually by 1 type or in combination of 2 or more types.
 本実施形態に係る仮固定材形成用樹脂組成物は、フィルムを形成したときに、当該フィルムの弾性率が100℃において2MPa以上であり、170℃で2時間加熱された後の上記フィルムの弾性率が25℃において500MPa以上である。 The temporary fixing material-forming resin composition according to the present embodiment has an elastic modulus of 2 MPa or more at 100° C. when a film is formed, and the elasticity of the film after heating at 170° C. for 2 hours modulus is 500 MPa or more at 25°C.
 フィルムは、基材上に仮固定材形成用樹脂組成物のワニスを塗工し、塗膜を加熱乾燥(例えば、90℃で5分間及び140℃で5分間加熱)して仮固定材層を形成することにより作製することができる。 The film is produced by coating a substrate with a varnish of a resin composition for forming a temporary fixing material, and heating and drying the coating film (for example, heating at 90°C for 5 minutes and 140°C for 5 minutes) to form a temporary fixing material layer. It can be made by forming.
<加熱前(硬化前)のフィルムの100℃における弾性率>
 加熱前のフィルムの100℃における弾性率、以下の手順で測定される。まず、上述した方法で基材上に厚さ30μmの仮固定材層を形成する。この仮固定材層を、60℃で8枚ラミネートすることにより、厚さ240μmのフィルムを作製する。このフィルムを4mm幅、長さ33mmに切り出す。切り出したフィルムを動的粘弾性装置(商品名:Rheogel-E4000、(株)UMB製)にセットし、引張り荷重をかけて、チャック間距離:20mm、周波数10Hz、昇温速度5℃/分、等速昇温の測定条件で23℃から260℃までの貯蔵弾性率E’を測定し、100℃における貯蔵弾性率E’の値を得る。
<Elastic modulus at 100°C of film before heating (before curing)>
The elastic modulus at 100° C. of the film before heating is measured by the following procedure. First, a temporary fixing material layer having a thickness of 30 μm is formed on the substrate by the method described above. By laminating eight temporary fixing material layers at 60° C., a film having a thickness of 240 μm is produced. This film is cut to a width of 4 mm and a length of 33 mm. The cut film was set in a dynamic viscoelastic device (trade name: Rheogel-E4000, manufactured by UMB Co., Ltd.), a tensile load was applied, and the distance between chucks was 20 mm, the frequency was 10 Hz, and the temperature was increased at a rate of 5°C/min. The storage modulus E' at 100°C is obtained by measuring the storage modulus E' from 23°C to 260°C under the measurement conditions of isokinetic heating.
 上記100℃における弾性率は、基板への貼り付け時の、基板上の凹凸への仮固定材の埋込を抑制し、熱処理を含む加工(例えば、リフロー)後の基板からの仮固定材の剥離性を高水準で達成する観点から、2MPa以上、3MPa以上、又は4MPa以上であってもよい。100℃における弾性率は、仮固定材の基板への貼り付け性を担保しやすくする観点から、8MPa以下、又は6MPa以下であってもよい。 The elastic modulus at 100° C. suppresses the embedding of the temporary fixing material into the irregularities on the substrate when attached to the substrate, and prevents the temporary fixing material from being removed from the substrate after processing including heat treatment (for example, reflow). From the viewpoint of achieving a high level of peelability, it may be 2 MPa or more, 3 MPa or more, or 4 MPa or more. The elastic modulus at 100° C. may be 8 MPa or less, or 6 MPa or less from the viewpoint of facilitating attachment of the temporary fixing material to the substrate.
 上記100℃における弾性率は、例えば、エポキシ基を有するアクリルゴム、エポキシ硬化剤、アミノ基を有するシリコーン化合物、及び硬化促進剤などの配合量、並びに、エポキシ基を有するアクリルゴムのTg又はエポキシ当量などを適宜変更することによって、調整することができる。 The elastic modulus at 100° C. is determined, for example, by the amount of the epoxy group-containing acrylic rubber, the epoxy curing agent, the amino group-containing silicone compound, the curing accelerator, and the Tg or epoxy equivalent of the epoxy group-containing acrylic rubber. can be adjusted by appropriately changing
<加熱後(硬化後)のフィルムの25℃における弾性率>
 加熱後のフィルムの25℃における弾性率は、以下の手順で測定される。まず、上述した方法で基材上に厚さ30μmの仮固定材層を形成する。この仮固定材層を、60℃で8枚ラミネートすることにより、厚さ240μmのフィルムを作製する。このフィルムを、170℃のオーブンで1時間加熱し、厚さ方向に4mm幅、長さ33mmに切り出す。切り出したフィルムを動的粘弾性装置(商品名:Rheogel-E4000、(株)UMB製)にセットし、引張り荷重をかけて、周波数10Hz、昇温速度5℃/分で測定し、張り荷重をかけて、チャック間距離:20mm、周波数10Hz、昇温速度5℃/分、等速昇温の測定条件で23℃から260℃までの貯蔵弾性率E’を測定し、25℃における貯蔵弾性率E’の値を得る。
<Elastic modulus at 25°C of film after heating (after curing)>
The elastic modulus of the film after heating at 25°C is measured by the following procedure. First, a temporary fixing material layer having a thickness of 30 μm is formed on the substrate by the method described above. By laminating eight temporary fixing material layers at 60° C., a film having a thickness of 240 μm is produced. This film is heated in an oven at 170° C. for 1 hour, and cut into 4 mm width and 33 mm length in the thickness direction. The cut film was set in a dynamic viscoelasticity device (trade name: Rheogel-E4000, manufactured by UMB Co., Ltd.), a tensile load was applied, and measurement was performed at a frequency of 10 Hz and a temperature increase rate of 5 ° C./min. The storage elastic modulus E′ from 23 ° C. to 260 ° C. was measured under the measurement conditions of a distance between chucks of 20 mm, a frequency of 10 Hz, a heating rate of 5 ° C./min, and a constant heating rate, and the storage elastic modulus at 25 ° C. Get the value of E'.
 上記25℃における弾性率は、熱処理を含む加工(例えば、リフロー)時の剥離を抑制する観点から、500以上MPa、又は600MPa以上であってもよい。25℃における弾性率は、剥離時のアンカー効果を抑制する観点から、1000MPa以下、又は900MPa以下であってもよい。 The elastic modulus at 25°C may be 500 MPa or more, or 600 MPa or more from the viewpoint of suppressing delamination during processing including heat treatment (for example, reflow). The elastic modulus at 25° C. may be 1000 MPa or less, or 900 MPa or less from the viewpoint of suppressing the anchor effect during peeling.
 上記25℃における弾性率は、例えば、エポキシ基を有するアクリルゴム、エポキシ硬化剤、及び硬化促進剤などの配合量、並びに、エポキシ基を有するアクリルゴムのTg又はエポキシ当量などを適宜変更することによって、調整することができる。 The elastic modulus at 25° C. can be adjusted by appropriately changing, for example, the amounts of the epoxy group-containing acrylic rubber, the epoxy curing agent, and the curing accelerator, and the epoxy group-containing acrylic rubber's Tg or epoxy equivalent. , can be adjusted.
[仮固定材]
 本実施形態の仮固定材は、上述した本実施形態の仮固定材形成用樹脂組成物を用いて形成される。特に、本実施形態の仮固定材形成用樹脂組成物によれば、フィルム状の仮固定材を形成することができる。この場合、仮固定材の膜厚を制御することがより容易となり、有機基板、仮固定材及び支持体の積層体における厚さのバラツキを軽減することができる。また、フィルム状の仮固定材は、ラミネート等の簡便な方法により有機基板又は支持体上に貼り合わせることができ、作業性にも優れている。
[Temporary fixing material]
The temporary fixing material of this embodiment is formed using the above-described resin composition for forming a temporary fixing material of this embodiment. In particular, according to the temporary fixing material-forming resin composition of the present embodiment, a film-like temporary fixing material can be formed. In this case, it becomes easier to control the film thickness of the temporary fixing material, and variations in the thickness of the laminate of the organic substrate, the temporary fixing material, and the support can be reduced. In addition, the film-like temporary fixing material can be attached to an organic substrate or support by a simple method such as lamination, and is excellent in workability.
 フィルム状の仮固定材は、基材上に、仮固定材形成用樹脂組成物のワニスを塗工し、塗膜を90~140℃の条件で加熱乾燥することにより形成することができる。 A film-like temporary fixing material can be formed by applying a varnish of a resin composition for forming a temporary fixing material onto a base material and drying the coating film by heating at 90 to 140°C.
 フィルム状の仮固定材の厚さは、特に限定されず、有機基板と搬送用の支持体とを充分に固定するという観点から、10~350μmであってもよく、10~200μmであってもよい。厚さが10μm以上であれば、塗工時の厚さのバラツキが少なくなり、また、厚さが充分であるため、仮固定材又は仮固定材の硬化物の強度が良好になり、有機基板と搬送用の支持体とをより充分に固定することができる。厚さが350μm以下であれば、仮固定材の厚さのバラツキが生じにくく、また、充分な乾燥により仮固定材中の残留溶剤量を低減することが容易となり、仮固定材の硬化物を加熱したときの発泡を更に少なくできる。 The thickness of the film-shaped temporary fixing material is not particularly limited, and from the viewpoint of sufficiently fixing the organic substrate and the support for transportation, it may be 10 to 350 μm, or even 10 to 200 μm. good. If the thickness is 10 μm or more, the variation in thickness during coating is reduced, and since the thickness is sufficient, the strength of the temporary fixing material or the cured product of the temporary fixing material is improved, and the organic substrate is obtained. and the transport support can be fixed more satisfactorily. If the thickness is 350 μm or less, the thickness of the temporary fixing material is less likely to vary, and the amount of residual solvent in the temporary fixing material can be easily reduced by sufficient drying, so that the cured product of the temporary fixing material can be easily removed. Foaming when heated can be further reduced.
[基板搬送用サポートテープ]
 本実施形態の基板搬送用サポートテープは、有機基板を搬送するための支持フィルムと、該支持フィルム上に設けられた、有機基板と支持フィルムとを仮固定するための仮固定材層とを備え、仮固定材層が上述した本実施形態の仮固定材形成用樹脂組成物を用いて形成される。
[Support tape for transporting substrates]
The support tape for transporting a substrate of this embodiment includes a support film for transporting an organic substrate, and a temporary fixing material layer provided on the support film for temporarily fixing the organic substrate and the support film. , the temporary fixing material layer is formed using the resin composition for forming the temporary fixing material of the present embodiment.
 仮固定材層は、100℃における弾性率が2MPa以上であり、170℃で1時間加熱した後の25℃における弾性率が500MPa以上であってよい。また、100℃における弾性率及び25℃における弾性率はそれぞれ、上述した範囲であってもよい。 The temporary fixing material layer may have a modulus of elasticity of 2 MPa or more at 100°C, and a modulus of elasticity of 500 MPa or more at 25°C after being heated at 170°C for 1 hour. Moreover, the elastic modulus at 100° C. and the elastic modulus at 25° C. may each be within the ranges described above.
 図1は、基板搬送用サポートテープの一実施形態を示す図であり、図1の(A)は上面図であり、図1の(B)は図1の(A)のI-I線に沿った模式断面図である。これらの図に示す基板搬送用サポートテープ10は、支持フィルム1と、本実施形態の仮固定材形成用樹脂組成物を用いて形成される仮固定材層2Aと、保護フィルム3とをこの順に備える。 1A and 1B are diagrams showing an embodiment of a support tape for transporting a substrate, FIG. 1A is a top view, and FIG. It is a schematic cross-sectional view along. The substrate transport support tape 10 shown in these figures comprises a support film 1, a temporary fixing material layer 2A formed using the temporary fixing material-forming resin composition of the present embodiment, and a protective film 3 in this order. Prepare.
 支持フィルム1としては、有機基板を搬送できるものであれば特に制限はなく、例えば、ポリエチレンテレフタレートフィルム、ポリブチレンテレフタレートフィルム、ポリエチレンナフタレートフィルム、ポリエチレンフィルム、ポリプロピレンフィルム、ポリアミドフィルム、及びポリイミドフィルムが挙げられる。支持フィルム1は、柔軟性及び強靭性に優れるという観点から、ポリエチレンテレフタレートフィルム、ポリブチレンテレフタレートフィルム、ポリエチレンナフタレートフィルム、ポリプロピレンフィルム、ポリアミドフィルム及びポリイミドフィルムであってもよく、更に耐熱性及び強度の観点から、ポリイミドフィルムであってもよい。 The support film 1 is not particularly limited as long as it can transport an organic substrate, and examples thereof include polyethylene terephthalate film, polybutylene terephthalate film, polyethylene naphthalate film, polyethylene film, polypropylene film, polyamide film, and polyimide film. be done. The support film 1 may be a polyethylene terephthalate film, a polybutylene terephthalate film, a polyethylene naphthalate film, a polypropylene film, a polyamide film, or a polyimide film from the viewpoint of being excellent in flexibility and toughness. From a viewpoint, it may be a polyimide film.
 支持フィルム1の厚さは、目的とする強度及び柔軟性により適宜設定することができ、3~350μmであってもよい。厚さが3μm以上であれば充分なフィルム強度が得られる傾向にあり、厚さが350μm以下であれば充分な柔軟性が得られる傾向にある。このような観点から、支持フィルム1の厚さは、5~200μmであってもよく、7~150μmであってもよい。 The thickness of the support film 1 can be appropriately set depending on the desired strength and flexibility, and may be 3 to 350 μm. When the thickness is 3 μm or more, sufficient film strength tends to be obtained, and when the thickness is 350 μm or less, sufficient flexibility tends to be obtained. From this point of view, the thickness of the support film 1 may be 5 to 200 μm, or may be 7 to 150 μm.
 保護フィルム3としては、特に制限はなく、例えば、ポリエチレンテレフタレートフィルム、ポリブチレンテレフタレートフィルム、ポリエチレンナフタレートフィルム、ポリエチレンフィルム、及びポリプロピレンフィルムが挙げられる。保護フィルム3は、柔軟性及び強靭性の観点から、ポリエチレンテレフタレートフィルム、ポリエチレンフィルム及びポリプロピレンフィルムであってもよい。また、仮固定材層との剥離性向上の観点から、シリコーン系化合物、フッ素系化合物等により離型処理が施されたフィルムを保護フィルム3として用いてもよい。 The protective film 3 is not particularly limited, and examples thereof include polyethylene terephthalate film, polybutylene terephthalate film, polyethylene naphthalate film, polyethylene film, and polypropylene film. The protective film 3 may be a polyethylene terephthalate film, a polyethylene film, or a polypropylene film from the viewpoint of flexibility and toughness. In addition, from the viewpoint of improving releasability from the temporary fixing material layer, a film subjected to release treatment with a silicone-based compound, a fluorine-based compound, or the like may be used as the protective film 3 .
 保護フィルム3の厚さは、目的とする強度及び柔軟性により適宜設定することができ、例えば、10~350μmであってもよい。厚さが10μm以上であれば充分なフィルム強度が得られる傾向にあり、厚さが350μm以下であれば充分な柔軟性が得られる傾向にある。このような観点から、保護フィルム3の厚さは、15~200μmであってもよく、20~150μmであってもよい。 The thickness of the protective film 3 can be appropriately set depending on the desired strength and flexibility, and may be, for example, 10 to 350 μm. When the thickness is 10 μm or more, sufficient film strength tends to be obtained, and when the thickness is 350 μm or less, sufficient flexibility tends to be obtained. From this point of view, the thickness of the protective film 3 may be 15 to 200 μm, or may be 20 to 150 μm.
 仮固定材層2Aは、上述の本実施形態の仮固定材形成用樹脂組成物を構成する各成分を有機溶媒中で混合及び混練してワニスを調製し、作製したワニスを支持フィルム1上に塗布して乾燥する方法により形成することができる。 The temporary fixing material layer 2A is prepared by mixing and kneading each component constituting the resin composition for forming the temporary fixing material of the present embodiment in an organic solvent to prepare a varnish, and applying the prepared varnish on the support film 1. It can be formed by a method of applying and drying.
 有機溶剤は特に限定されず、製膜時の揮発性等を沸点から考慮して決めることができる。具体的には、製膜時にフィルムの硬化を進みにくくする観点から、メタノール、エタノール、2-メトキシエタノール、2-エトキシエタノール、2-ブトキシエタノール、メチルエチルケトン、アセトン、メチルイソブチルケトン、トルエン、キシレン等の比較的低沸点の溶剤を用いることができる。また、製膜性を向上させる等の目的では、例えば、ジメチルアセトアミド、ジメチルホルムアミド、N-メチルピロリドン、シクロヘキサノンの比較的高沸点の溶剤を使用してもよい。これらの溶剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。ワニスにおける固形分濃度は、10~80質量%とすることができる。 The organic solvent is not particularly limited, and can be determined by considering the volatility during film formation from the boiling point. Specifically, from the viewpoint of making it difficult for the film to harden during film formation, methanol, ethanol, 2-methoxyethanol, 2-ethoxyethanol, 2-butoxyethanol, methyl ethyl ketone, acetone, methyl isobutyl ketone, toluene, xylene, etc. Solvents with relatively low boiling points can be used. For the purpose of improving the film-forming properties, solvents with relatively high boiling points such as dimethylacetamide, dimethylformamide, N-methylpyrrolidone, and cyclohexanone may be used. These solvents may be used individually by 1 type, and may be used in combination of 2 or more type. The solid content concentration in the varnish can be 10 to 80% by mass.
 混合及び混練は、通常の攪拌機、らいかい機、三本ロール、ボールミル等の分散機を用い、これらを適宜組み合わせて行うことができる。乾燥は、使用した有機溶剤が充分に揮散する条件であれば特に制限はないが、上述した100℃における弾性率及び25℃における弾性率を所望の範囲に調整することが容易となるとの観点から、90~140℃、120~140℃、又は130~140℃で、5~10分間加熱することができる。 Mixing and kneading can be carried out by using a dispersing machine such as a normal stirrer, squeegee machine, triple roll, ball mill, etc., and by appropriately combining these. Drying is not particularly limited as long as the organic solvent used is sufficiently volatilized, but from the viewpoint that the above-mentioned elastic modulus at 100 ° C. and elastic modulus at 25 ° C. can be easily adjusted to the desired range. , 90-140° C., 120-140° C., or 130-140° C. for 5-10 minutes.
 支持フィルム1上に仮固定材層2Aを形成した後、仮固定材層2A上に保護フィルム3を貼り合わせることによって基板搬送用サポートテープ10を得ることができる。 After forming the temporary fixing material layer 2A on the support film 1, the substrate transport support tape 10 can be obtained by bonding the protective film 3 onto the temporary fixing material layer 2A.
 また、支持フィルムに仮固定材層を塗布せず、離形処理を施した任意のフィルムに塗布し、保護フィルムを貼り合わせた状態で保存し、基板貼り付け時に、保護フィルムを支持フィルムに貼り替えてもよい。この場合、支持フィルムの代わりに、エポキシ樹脂を含浸したガラス繊維の積層体を熱硬化させて得られる基板等を支持材として利用してもよい。 In addition, the temporary fixing material layer is not applied to the support film, but is applied to any film that has been subjected to release treatment, and stored with the protective film attached, and when the substrate is attached, the protective film is attached to the support film. You can change it. In this case, instead of the support film, a substrate or the like obtained by thermally curing a laminate of glass fibers impregnated with an epoxy resin may be used as the support material.
[電子機器装置の製造方法]
 本実施形態に係る仮固定材を用いた電子機器装置の製造方法は、大きく分けて以下の4工程を備えることができる。
(a)有機基板に仮固定材(仮固定材層)を介して支持体を貼り合わせて積層体を得る第1工程。
(b)積層体の仮固定材を加熱する第2工程。
(c)第2工程を経た積層体に、熱処理を含む加工を施す第3工程。
(d)第3工程を経た積層体の有機基板から支持体及び仮固定材を剥離する第4工程。
[Method for manufacturing electronic device]
The method of manufacturing an electronic device using the temporary fixing material according to this embodiment can be broadly divided into the following four steps.
(a) A first step of obtaining a laminate by bonding a support to an organic substrate with a temporary fixing material (temporary fixing material layer) interposed therebetween.
(b) a second step of heating the temporary fixing material of the laminate;
(c) a third step of subjecting the laminate that has undergone the second step to processing including heat treatment;
(d) A fourth step of peeling off the support and the temporary fixing material from the organic substrate of the laminate that has undergone the third step.
 図2及び図3は電子機器装置の製造方法の一実施形態を説明するための模式断面図である。なお、図2及び図3においては、仮固定材(仮固定材層)が図1の(B)に示す基板搬送用サポートテープ10の仮固定材層2Aである場合を図示したが、仮固定材の構成はこれに限定されない。 2 and 3 are schematic cross-sectional views for explaining an embodiment of a method for manufacturing an electronic device. 2 and 3 illustrate the case where the temporary fixing material (temporary fixing material layer) is the temporary fixing material layer 2A of the substrate transport support tape 10 shown in FIG. The configuration of the material is not limited to this.
<(a)第1工程>
 第1工程では、有機基板30を用意し(図2の(a))、この有機基板30に、仮固定材層2Aを介して支持フィルム1を貼り合わせて積層体15を得ている(図2の(b))。
<(a) first step>
In the first step, an organic substrate 30 is prepared ((a) in FIG. 2), and the support film 1 is bonded to the organic substrate 30 via a temporary fixing material layer 2A to obtain a laminate 15 (FIG. 2A). 2 (b)).
 図2の(a)に示す有機基板30は、コア層32と、コア層32の両面に設けられたビルドアップ構造の配線層35と、一方の配線層35上に設けられたソルダーレジスト層38とを備えている。有機基板30には、スルーホール電極36及び配線34が含まれている。コア層32は、「味の素ビルドアップフィルム」(ABF)(味の素株式会社製、商品名)等の層間絶縁材料から形成されていてもよい。配線層35は、エポキシ樹脂組成物等のビルドアップ材を用いて形成されていてもよい。ソルダーレジスト層38は、アクリレート系樹脂を含む組成物によって形成されていてもよい。 The organic substrate 30 shown in (a) of FIG. and The organic substrate 30 includes through-hole electrodes 36 and wiring 34 . The core layer 32 may be formed of an interlayer insulating material such as "Ajinomoto Build-up Film" (ABF) (manufactured by Ajinomoto Co., Inc., trade name). The wiring layer 35 may be formed using a build-up material such as an epoxy resin composition. The solder resist layer 38 may be made of a composition containing an acrylate resin.
 有機基板30としては、図2の(a)に示す構造に限定されず、種々の公知の基板を用いることができる。 The organic substrate 30 is not limited to the structure shown in FIG. 2(a), and various known substrates can be used.
 有機基板30としては、例えば、厚さ10~1000μmの基板を用いることができる。電子部品又は電子機器装置の薄型化の観点から、有機基板30の厚さは200μm以下であってもよく、100μm以下であってもよい。半導体パッケージ等の電子部品の強度維持及び反り低減の観点から、有機基板30の厚さは30μm以上であってもよく、50μm以上であってもよい。 A substrate having a thickness of 10 to 1000 μm, for example, can be used as the organic substrate 30 . The thickness of the organic substrate 30 may be 200 μm or less, or may be 100 μm or less, from the viewpoint of thinning the electronic component or electronic device. The thickness of the organic substrate 30 may be 30 μm or more, or may be 50 μm or more, from the viewpoint of maintaining the strength of electronic components such as semiconductor packages and reducing warpage.
 有機基板30は、コアレス基板であってもよい。ここでいうコアレス基板とは、ガラスクロス等の強化繊維に熱硬化性樹脂を含浸させて得られるコア層が含まれない基板を指す。 The organic substrate 30 may be a coreless substrate. The coreless substrate as used herein refers to a substrate that does not contain a core layer obtained by impregnating reinforcing fibers such as glass cloth with a thermosetting resin.
 図2の(b)に示すように、基板搬送用サポートテープ10を用いて積層体15を得る場合、ロールラミネーターを使用して有機基板30と、仮固定材層2Aを介して支持フィルム1とをラミネートすることができる。基板搬送用サポートテープ10が保護フィルム3を備える場合、保護フィルム3はラミネート前に剥がしていてもよく、保護フィルム3を剥がしながら仮固定材層2A及び支持フィルム1をラミネートしてもよい。 As shown in FIG. 2(b), when obtaining a laminate 15 using the support tape 10 for transporting substrates, a roll laminator is used to laminate the organic substrate 30 and the support film 1 via the temporary fixing material layer 2A. can be laminated. When the substrate transport support tape 10 includes the protective film 3, the protective film 3 may be peeled off before lamination, or the temporary fixing material layer 2A and the support film 1 may be laminated while the protective film 3 is peeled off.
 ロールラミネーターとして、例えば、大成ラミネーター社製ロールラミネーターVA400III(商品名)が挙げられる。この装置を使用する場合、圧力0.1MPa~1.0MPa、温度40℃~150℃、速度0.1~1.0m/分で、有機基板30と支持フィルム1とを仮固定材層2Aを介して貼り合わせることができる。 Examples of the roll laminator include Roll Laminator VA400III (trade name) manufactured by Taisei Laminator Co., Ltd. When using this device, the temporary fixing material layer 2A is applied to the organic substrate 30 and the support film 1 at a pressure of 0.1 MPa to 1.0 MPa, a temperature of 40° C. to 150° C., and a speed of 0.1 to 1.0 m/min. It can be pasted through.
 ロールラミネーターに代えて真空ラミネーターを用いることもできる。 A vacuum laminator can also be used instead of the roll laminator.
 真空ラミネーターとして、例えば、株式会社エヌ・ピー・シー製真空ラミネーターLM-50×50-S(商品名)及びニチゴー・モートン株式会社製真空ラミネーターV130(商品名)が挙げられる。ラミネート条件として、気圧1hPa以下、圧着温度40℃~150℃(好ましくは60℃~120℃)、ラミネート圧力0.01~0.5MPa(好ましくは0.1~0.5MPa)、保持時間1秒~600秒(好ましくは30秒~300秒)で、有機基板30と支持フィルム1とを仮固定材層2Aを介して貼り合わせることができる。 Examples of vacuum laminators include Vacuum Laminator LM-50×50-S (trade name) manufactured by NPC Co., Ltd. and Vacuum Laminator V130 (trade name) manufactured by Nichigo-Morton Co., Ltd. The lamination conditions are air pressure of 1 hPa or less, pressure bonding temperature of 40° C. to 150° C. (preferably 60° C. to 120° C.), lamination pressure of 0.01 to 0.5 MPa (preferably 0.1 to 0.5 MPa), holding time of 1 second. It takes up to 600 seconds (preferably 30 seconds to 300 seconds) to bond the organic substrate 30 and the support film 1 via the temporary fixing material layer 2A.
<(b)第2工程>
 第2工程では、積層体15の仮固定材層2Aを加熱する。この工程により、硬化した仮固定材層2Cによって有機基板30と支持フィルム1とが充分に固定され(図2の(c))、有機基板30のハンドリング性が向上する。
<(b) Second step>
In the second step, the temporary fixing material layer 2A of the laminate 15 is heated. By this step, the organic substrate 30 and the support film 1 are sufficiently fixed by the cured temporary fixing material layer 2C ((c) in FIG. 2), and the handling property of the organic substrate 30 is improved.
 加熱は、例えば、防爆乾燥機を使用して行うことができる。加熱条件は、100~200℃で10~300分(より好ましくは20~210分)の硬化が好ましい。温度が100℃以上であれば仮固定材が充分に硬化して後段の工程で問題が起きにくく、200℃以下であれば仮固定材の硬化中にアウトガスが発生しにくく、仮固定材の剥離を更に抑制できる。また、加熱時間が10分以上であれば後段の工程で問題が起きにくく、300分以下であれば作業効率が悪化しにくい。図2の(c)における仮固定材層2Cは仮固定材層2Aの硬化体を示す。 Heating can be performed, for example, using an explosion-proof dryer. Heating conditions are preferably 100 to 200° C. for 10 to 300 minutes (more preferably 20 to 210 minutes) for curing. If the temperature is 100°C or higher, the temporary fixing material is sufficiently hardened and problems are less likely to occur in the subsequent steps. can be further suppressed. Further, if the heating time is 10 minutes or more, problems are less likely to occur in subsequent steps, and if the heating time is 300 minutes or less, work efficiency is less likely to deteriorate. A temporary fixing material layer 2C in FIG. 2(c) indicates a cured body of the temporary fixing material layer 2A.
<(c)第3工程>
 第3工程においては、熱処理を含む加工を施すことができる。当該加工としては、ソルダーレジストの形成(例えば、図3の(d)に示されるソルダーレジスト層39)、半導体チップの搭載、リフロー、封止などが挙げられる。加工は、ソルダーレジストの形成及びリフローのうちの少なくとも一方を含んでいてもよい。
<(c) Third step>
In the third step, processing including heat treatment can be applied. The processing includes formation of a solder resist (for example, solder resist layer 39 shown in (d) of FIG. 3), mounting of a semiconductor chip, reflow, sealing, and the like. Processing may include at least one of forming and reflowing a solder resist.
 半導体チップの搭載は、例えば、フリップチップボンダーを用いて有機基板上に半導体チップを実装することができる。実装する装置としては、例えば、東レエンジニアリング株式会社製FC3000L(商品名)等が挙げられ、実装条件は所望の有機基板及び半導体チップに応じて任意に選ぶことができる。 For mounting the semiconductor chip, for example, a flip chip bonder can be used to mount the semiconductor chip on the organic substrate. Examples of a mounting device include FC3000L (trade name) manufactured by Toray Engineering Co., Ltd., and the mounting conditions can be arbitrarily selected according to the desired organic substrate and semiconductor chip.
 リフロー工程は、はんだが溶融する温度で加熱することで行うことができる。加熱温度は、はんだの種類に応じて調整されるが、例えば、190~280℃、又は220~270℃であってもよい。本実施形態の仮固定材形成用樹脂組成物を用いて形成される仮固定材を適用することで、上記温度でリフロー工程を行った場合であっても、仮固定材層2Aを介して貼り合わせられた有機基板30と支持フィルム1とがリフロー工程中に剥離することを抑制することができると共に、リフロー工程後に室温において、有機基板30への仮固定材層2Aの残存を抑制しながら有機基板30から支持フィルム1を容易に剥離することができる。 The reflow process can be performed by heating at a temperature at which solder melts. The heating temperature is adjusted according to the type of solder, and may be, for example, 190 to 280.degree. C. or 220 to 270.degree. By applying the temporary fixing material formed using the resin composition for forming the temporary fixing material of the present embodiment, even when the reflow process is performed at the above temperature, the adhesive can be attached via the temporary fixing material layer 2A. The combined organic substrate 30 and the support film 1 can be prevented from being separated during the reflow process. The support film 1 can be easily peeled off from the substrate 30 .
 また、本実施形態においては、リフロー工程によって、有機基板30上に半導体チップ40をはんだ42を介して接続した後、有機基板30上に搭載された半導体チップ40を封止材50で封止することができる(図3の(e)を参照)。封止する装置としては、例えば、TOWA株式会社製FFT1030G(商品名)等が挙げられ、封止条件は所望の有機基板、半導体チップ、及び封止材に応じて任意に選ぶことができる。また、封止後の封止材の硬化条件は封止材種により任意に選ぶことができる。 Further, in the present embodiment, the semiconductor chip 40 mounted on the organic substrate 30 is sealed with the sealing material 50 after the semiconductor chip 40 is connected to the organic substrate 30 via the solder 42 by the reflow process. (see FIG. 3(e)). Examples of the sealing device include FFT1030G (trade name) manufactured by TOWA Corporation, and the sealing conditions can be arbitrarily selected according to the desired organic substrate, semiconductor chip, and sealing material. Moreover, the curing conditions of the sealing material after sealing can be arbitrarily selected depending on the type of the sealing material.
<(d)第4工程>
 第4工程では、図3の(e)に示すように、第3工程を経た積層体(半導体チップが実装、封止された半導体チップ実装基板55)の有機基板30から支持フィルム1及び仮固定材層2Cを剥離する。剥離方法としては、有機基板又は支持フィルムの一方を水平に固定しておき、他方を水平方向から一定の角度を付けて持ち上げる方法、及び、有機基板に保護フィルムを貼り、有機基板と保護フィルムとをピール方式で支持フィルムから剥離する方法等が挙げられる。
<(d) Fourth step>
In the fourth step, as shown in (e) of FIG. 3, the support film 1 and the temporary fixing are removed from the organic substrate 30 of the laminate (the semiconductor chip mounting substrate 55 on which the semiconductor chip is mounted and sealed) that has undergone the third step. The material layer 2C is peeled off. As the peeling method, one of the organic substrate and the support film is horizontally fixed, and the other is lifted at a certain angle from the horizontal direction. can be peeled off from the support film by a peel method.
 これらの剥離方法は、通常、室温で実施されるが、40~100℃程度の温度下で実施してもよい。 These peeling methods are usually performed at room temperature, but may be performed at a temperature of about 40 to 100°C.
 本実施形態においては、半導体チップ実装基板に、仮固定材が一部残存した場合、これを除去するための洗浄工程を設けることができる。仮固定材の除去は、例えば、半導体チップ実装基板を洗浄することにより行うことができる。 In the present embodiment, if the temporary fixing material partially remains on the semiconductor chip mounting substrate, a cleaning step can be provided to remove it. The temporary fixing material can be removed, for example, by cleaning the semiconductor chip mounting substrate.
 洗浄液は、一部残存した仮固定材を除去できるような洗浄液であれば、特に制限はない。このような洗浄液としては、例えば、仮固定材形成用樹脂組成物の希釈に用いることができる上記有機溶剤が挙げられる。これらの有機溶剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 There are no particular restrictions on the cleaning liquid as long as it can remove some of the remaining temporary fixing material. Examples of such a cleaning liquid include the above organic solvents that can be used for diluting the resin composition for forming the temporary fixing material. These organic solvents may be used individually by 1 type, and may be used in combination of 2 or more type.
 また、残存した仮固定材が除去しにくい場合は、有機溶剤に塩基類、酸類を添加してもよい。塩基類の例としては、エタノールアミン、ジエタノールアミン、トリエタノールアミン、トリエチルアミン、アンモニア等のアミン類;テトラメチルアンモニウムヒドロキシド等のアンモニウム塩類が使用可能である。酸類は、酢酸、シュウ酸、ベンゼンスルホン酸、ドデシルベンゼンスルホン酸等の有機酸が使用可能である。添加量は、洗浄液中濃度で0.01~10質量%であってもよい。また、洗浄液には、残存物の除去性を向上させるため既存の界面活性剤を添加してもよい。 Also, if the remaining temporary fixing material is difficult to remove, bases and acids may be added to the organic solvent. Examples of bases that can be used include amines such as ethanolamine, diethanolamine, triethanolamine, triethylamine and ammonia; and ammonium salts such as tetramethylammonium hydroxide. Organic acids such as acetic acid, oxalic acid, benzenesulfonic acid and dodecylbenzenesulfonic acid can be used as acids. The amount added may be 0.01 to 10% by mass in terms of concentration in the cleaning liquid. In addition, an existing surfactant may be added to the cleaning liquid to improve the removability of the residue.
 洗浄方法に特に制限はなく、例えば、上記洗浄液を用いてパドルでの洗浄を行う方法、スプレー噴霧での洗浄方法、洗浄液槽に浸漬する方法が挙げられる。温度は10~80℃、好ましくは15~65℃が好適であり、最終的に水洗又はアルコール洗浄を行い、乾燥処理させて、半導体チップ実装基板が得られる。 The cleaning method is not particularly limited, and examples include a paddle cleaning method using the above cleaning liquid, a spray cleaning method, and a cleaning liquid bath immersion method. The temperature is preferably 10 to 80° C., preferably 15 to 65° C. Finally, the substrate is washed with water or alcohol and dried to obtain a semiconductor chip mounting substrate.
 なお、上述したように、本実施形態に係る仮固定材によれば、有機基板からの剥離を良好に行うことができ、有機基板への仮固定材の残存を抑制できるため、洗浄工程を省略することが可能となる。 As described above, according to the temporary fixing material according to the present embodiment, the separation from the organic substrate can be performed satisfactorily, and the temporary fixing material can be suppressed from remaining on the organic substrate, so that the cleaning process is omitted. It becomes possible to
 本実施形態においては、半導体チップが実装、封止された半導体チップ実装基板55は、更にダイシングによって半導体素子60に個片化される(図4の(f)及び(g))。なお、図4の(f)のDLはダイシングラインを示す。 In this embodiment, the semiconductor chip mounting substrate 55 on which the semiconductor chip is mounted and sealed is further separated into semiconductor elements 60 by dicing (FIGS. 4(f) and 4(g)). DL in FIG. 4(f) indicates a dicing line.
 図4の(h)は、上記工程を経て製造された電子機器装置100を模式的に示す断面図である。電子機器装置100は、配線基板70上に複数の半導体素子60がはんだボール65を介して配置されている。 (h) of FIG. 4 is a cross-sectional view schematically showing the electronic device 100 manufactured through the above steps. The electronic equipment device 100 has a plurality of semiconductor elements 60 arranged on a wiring substrate 70 via solder balls 65 .
 以上、本開示の実施形態について説明したが、本開示は必ずしも上述した実施形態に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更を行ってもよい。 Although the embodiments of the present disclosure have been described above, the present disclosure is not necessarily limited to the above-described embodiments, and modifications may be made as appropriate without departing from the scope of the present disclosure.
 以下、実施例及び比較例によって、本開示をさらに具体的に説明するが、本開示は以下の実施例に限定されるものではない。 The present disclosure will be described in more detail below with reference to examples and comparative examples, but the present disclosure is not limited to the following examples.
[アクリルゴムK-1の合成]
 撹拌機、温度計、窒素置換装置(窒素流入管)及び水分受容器付きの還流冷却器を備えた500ccのセパラブルフラスコ内に、脱イオン水200g、アクリル酸ブチル70g、メタクリル酸メチル9.5g、2-ヒドロキシエチルメタクリレート10g、グリシジルメタクリレート10g、スチレン0.5g、1.8%ポリビニルアルコール水溶液1.94g、ラウリルパーオキサイド0.2g、及びn-オクチルメルカプタン0.04gを配合した。続いて、60分間にわたってNガスをフラスコに吹き込んで系内の空気を除去した後、系内温度を65℃に昇温して5時間重合を行った。更に、系内温度を90℃に昇温して2時間攪拌を続け重合を完結させた。重合反応により得られた透明のビーズをろ過により分離し、脱イオン水で洗浄した後、真空乾燥機で50℃6時間乾燥させ、アクリルゴムK-1を得た。
[Synthesis of acrylic rubber K-1]
200 g of deionized water, 70 g of butyl acrylate, and 9.5 g of methyl methacrylate were placed in a 500 cc separable flask equipped with a stirrer, thermometer, nitrogen replacement device (nitrogen inlet tube), and reflux condenser with moisture receiver. , 10 g of 2-hydroxyethyl methacrylate, 10 g of glycidyl methacrylate, 0.5 g of styrene, 1.94 g of 1.8% polyvinyl alcohol aqueous solution, 0.2 g of lauryl peroxide, and 0.04 g of n-octyl mercaptan. Subsequently, N 2 gas was blown into the flask for 60 minutes to remove the air in the system, and then the temperature in the system was raised to 65° C. and polymerization was carried out for 5 hours. Further, the temperature in the system was raised to 90° C., and stirring was continued for 2 hours to complete the polymerization. Transparent beads obtained by the polymerization reaction were separated by filtration, washed with deionized water, and dried in a vacuum dryer at 50° C. for 6 hours to obtain acrylic rubber K-1.
 アクリルゴムK-1の重量平均分子量をGPCで測定したところ、重量平均分子量はポリスチレン換算で60万であった。また、アクリルゴムK-1のTgは-28℃であった。 When the weight average molecular weight of acrylic rubber K-1 was measured by GPC, the weight average molecular weight was 600,000 in terms of polystyrene. The Tg of acrylic rubber K-1 was -28°C.
[アクリルゴムK-2の合成]
 撹拌機、温度計、窒素置換装置(窒素流入管)及び水分受容器付きの還流冷却器を備えた500ccのセパラブルフラスコ内に、脱イオン水200g、アクリル酸ブチル70g、メタクリル酸メチル9.5g、2-ヒドロキシエチルメタクリレート10g、グリシジルメタクリレート10g、スチレン0.5g、1.8%ポリビニルアルコール水溶液1.94g、ラウリルパーオキサイド0.2g、及びn-オクチルメルカプタン0.06gを配合した。続いて、60分間にわたってNガスをフラスコに吹き込んで系内の空気を除去した後、系内温度を65℃に昇温して5時間重合を行った。更に、系内温度を90℃に昇温して2時間攪拌を続け重合を完結させた。重合反応により得られた透明のビーズをろ過により分離し、脱イオン水で洗浄した後、真空乾燥機で50℃6時間乾燥させ、アクリルゴムK-2を得た。
[Synthesis of acrylic rubber K-2]
200 g of deionized water, 70 g of butyl acrylate, and 9.5 g of methyl methacrylate were placed in a 500 cc separable flask equipped with a stirrer, thermometer, nitrogen replacement device (nitrogen inlet tube), and reflux condenser with moisture receiver. , 10 g of 2-hydroxyethyl methacrylate, 10 g of glycidyl methacrylate, 0.5 g of styrene, 1.94 g of 1.8% polyvinyl alcohol aqueous solution, 0.2 g of lauryl peroxide, and 0.06 g of n-octyl mercaptan. Subsequently, N 2 gas was blown into the flask for 60 minutes to remove the air in the system, and then the temperature in the system was raised to 65° C. and polymerization was carried out for 5 hours. Further, the temperature in the system was raised to 90° C., and stirring was continued for 2 hours to complete the polymerization. Transparent beads obtained by the polymerization reaction were separated by filtration, washed with deionized water, and dried in a vacuum dryer at 50° C. for 6 hours to obtain acrylic rubber K-2.
 アクリルゴムK-2の重量平均分子量をGPCで測定したところ、重量平均分子量はポリスチレン換算で40万であった。また、アクリルゴムK-2のTgは-28℃であった。 When the weight average molecular weight of acrylic rubber K-2 was measured by GPC, the weight average molecular weight was 400,000 in terms of polystyrene. The Tg of acrylic rubber K-2 was -28°C.
[アクリルゴムK-3の合成]
 撹拌機、温度計、窒素置換装置(窒素流入管)及び水分受容器付きの還流冷却器を備えた500ccのセパラブルフラスコ内に、脱イオン水200g、アクリル酸ブチル77.5g、メタクリル酸メチル2g、2-ヒドロキシエチルメタクリレート10g、グリシジルメタクリレート10g、スチレン0.5g、1.8%ポリビニルアルコール水溶液1.94g、ラウリルパーオキサイド0.2g、及びn-オクチルメルカプタン0.04gを配合した。続いて、60分間にわたってN2ガスをフラスコに吹き込んで系内の空気を除去した後、系内温度を65℃に昇温して5時間重合を行った。更に、系内温度を90℃に昇温して2時間攪拌を続け重合を完結させた。重合反応により得られた透明のビーズをろ過により分離し、脱イオン水で洗浄した後、真空乾燥機で50℃6時間乾燥させ、アクリルゴムK-3を得た。
[Synthesis of acrylic rubber K-3]
200 g of deionized water, 77.5 g of butyl acrylate, and 2 g of methyl methacrylate were placed in a 500 cc separable flask equipped with a stirrer, thermometer, nitrogen replacement device (nitrogen inlet tube), and reflux condenser with moisture receiver. , 10 g of 2-hydroxyethyl methacrylate, 10 g of glycidyl methacrylate, 0.5 g of styrene, 1.94 g of 1.8% polyvinyl alcohol aqueous solution, 0.2 g of lauryl peroxide, and 0.04 g of n-octyl mercaptan. Subsequently, N2 gas was blown into the flask for 60 minutes to remove the air in the system, and then the temperature in the system was raised to 65° C. and polymerization was carried out for 5 hours. Further, the temperature in the system was raised to 90° C., and stirring was continued for 2 hours to complete the polymerization. Transparent beads obtained by the polymerization reaction were separated by filtration, washed with deionized water, and dried in a vacuum dryer at 50° C. for 6 hours to obtain acrylic rubber K-3.
 アクリルゴムK-3の重量平均分子量をGPCで測定したところ、重量平均分子量はポリスチレン換算で60万であった。また、アクリルゴムK-3のTgは-37℃であった。 When the weight average molecular weight of acrylic rubber K-3 was measured by GPC, the weight average molecular weight was 600,000 in terms of polystyrene. The Tg of acrylic rubber K-3 was -37°C.
(実施例1~5、比較例1~3)
[仮固定材(仮固定材層)の作製]
 表1に示す質量部の組成で、仮固定材層を形成するための樹脂組成物のワニスをそれぞれ調製した。調製したワニスを、厚さ38μmの離型処理を施したポリエチレンテレフタレート(PET)フィルム上に塗布し、90℃で5分間、140℃で5分間加熱乾燥することによって、厚さ30μmの仮固定材層を形成した。その後、仮固定材層上に保護フィルムを貼り合わせ、PETフィルム、仮固定材層及び保護フィルムの構成を有するテープを得た。
(Examples 1 to 5, Comparative Examples 1 to 3)
[Preparation of Temporary Fixing Material (Temporary Fixing Material Layer)]
A resin composition varnish for forming a temporary fixing material layer was prepared with the composition of parts by mass shown in Table 1. The prepared varnish is applied to a release-treated polyethylene terephthalate (PET) film having a thickness of 38 μm and dried by heating at 90° C. for 5 minutes and at 140° C. for 5 minutes to form a temporary fixing material having a thickness of 30 μm. formed a layer. After that, a protective film was laminated on the temporary fixing material layer to obtain a tape having a configuration of a PET film, a temporary fixing material layer and a protective film.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に記載の各成分の詳細は以下のとおりである。
(熱可塑性樹脂)
アクリルゴムK-1:上記で合成したアクリルゴム(GPCによる重量平均分子量60万、グリシジルメタクリレート10質量%、Tg-28℃)
アクリルゴムK-2:上記で合成したアクリルゴム(GPCによる重量平均分子量40万、グリシジルメタクリレート10質量%、Tg-28℃)
アクリルゴムK-3:上記で合成したアクリルゴム(GPCによる重量平均分子量60万、グリシジルメタクリレート10質量%、Tg-37℃)
(硬化剤)
PSM-4326:フェノール樹脂(群栄化学工業株式会社製、商品名)
MEH-7800M:フェノール樹脂(明和化成株式会社製、商品名)
(アミノ変性シリコーン)
PAM-E:両末端アミノ変性シリコーン(信越化学工業株式会社製、商品名)
(無機充填材)
YA050C-HHG:ビニルシラン表面処理シリカフィラー(アドマッテクス株式会社製、商品名、平均粒子径50nm)
(硬化促進剤)
2PZ-CN:イミダゾール系硬化促進剤(四国化成工業株式会社製、商品名)
Details of each component listed in Table 1 are as follows.
(Thermoplastic resin)
Acrylic rubber K-1: acrylic rubber synthesized above (weight-average molecular weight by GPC: 600,000, glycidyl methacrylate: 10% by mass, Tg: -28°C)
Acrylic rubber K-2: acrylic rubber synthesized above (weight average molecular weight by GPC: 400,000, glycidyl methacrylate: 10% by mass, Tg: -28°C)
Acrylic rubber K-3: Acrylic rubber synthesized above (weight average molecular weight by GPC: 600,000, glycidyl methacrylate: 10% by mass, Tg: -37°C)
(curing agent)
PSM-4326: phenol resin (manufactured by Gun Ei Chemical Industry Co., Ltd., trade name)
MEH-7800M: Phenolic resin (manufactured by Meiwa Kasei Co., Ltd., trade name)
(amino-modified silicone)
PAM-E: Amino-modified silicone at both ends (manufactured by Shin-Etsu Chemical Co., Ltd., trade name)
(Inorganic filler)
YA050C-HHG: vinylsilane surface-treated silica filler (manufactured by Admatex Co., Ltd., trade name, average particle size 50 nm)
(Curing accelerator)
2PZ-CN: imidazole-based curing accelerator (manufactured by Shikoku Kasei Kogyo Co., Ltd., trade name)
 作製した実施例及び比較例のテープについて、仮固定材層の弾性率、及び、硬化後の仮固定材層の弾性率を以下に示す方法で評価した。評価結果を表2に示す。 The elastic modulus of the temporary fixing material layer and the elastic modulus of the temporary fixing material layer after curing were evaluated for the tapes of Examples and Comparative Examples produced by the methods shown below. Table 2 shows the evaluation results.
[仮固定材層の弾性率の測定]
 仮固定材層の弾性率は、以下の手順で測定した。まず、各ワニスをPETフィルム上に塗布し、90℃で5分間、140℃で5分間加熱乾燥することによって形成した厚さ30μmの仮固定材層を、60℃で8枚ラミネートすることにより、厚さ240μmのフィルムを作製した。このフィルムを4mm幅、長さ33mmに切り出した。切り出したフィルムを動的粘弾性装置(商品名:Rheogel-E4000、(株)UMB製)にセットし、引張り荷重をかけて、チャック間距離:20mm、周波数10Hz、昇温速度5℃/分、等速昇温の測定条件で23℃から260℃までの貯蔵弾性率E’を測定し、100℃での貯蔵弾性率E’の値を得た。
[Measurement of elastic modulus of temporary fixing material layer]
The elastic modulus of the temporary fixing material layer was measured by the following procedure. First, each varnish was applied to a PET film, and 8 temporary fixing material layers with a thickness of 30 μm were formed by heating and drying at 90° C. for 5 minutes and 140° C. for 5 minutes, and laminated at 60° C. A film with a thickness of 240 μm was produced. This film was cut to a width of 4 mm and a length of 33 mm. The cut film was set in a dynamic viscoelastic device (trade name: Rheogel-E4000, manufactured by UMB Co., Ltd.), a tensile load was applied, and the distance between chucks was 20 mm, the frequency was 10 Hz, and the temperature was increased at a rate of 5°C/min. The storage elastic modulus E' at 100°C was obtained by measuring the storage elastic modulus E' from 23°C to 260°C under the measurement conditions of isokinetic heating.
[硬化後の仮固定材層の弾性率の測定]
 硬化後の仮固定材層の弾性率は、以下の手順で測定した。まず、上記と同様の手順で厚さ240μmのフィルムを作製した。170℃のオーブンで1時間加熱した後、厚さ方向に4mm幅、長さ33mmに切り出した。切り出したフィルムを動的粘弾性装置(商品名:Rheogel-E4000、(株)UMB製)にセットし、引張り荷重をかけて、周波数10Hz、昇温速度5℃/分で測定し、張り荷重をかけて、チャック間距離:20mm、周波数10Hz、昇温速度5℃/分、等速昇温の測定条件で23℃から260℃までの貯蔵弾性率E’を測定し、25℃での貯蔵弾性率E’の値を得た。
[Measurement of elastic modulus of temporary fixing material layer after curing]
The elastic modulus of the temporary fixing material layer after curing was measured by the following procedure. First, a film with a thickness of 240 μm was produced in the same procedure as above. After heating in an oven at 170° C. for 1 hour, it was cut into 4 mm width and 33 mm length in the thickness direction. The cut film was set in a dynamic viscoelasticity device (trade name: Rheogel-E4000, manufactured by UMB Co., Ltd.), a tensile load was applied, and measurement was performed at a frequency of 10 Hz and a temperature increase rate of 5 ° C./min. The storage elastic modulus E′ was measured from 23 ° C. to 260 ° C. under the measurement conditions of a distance between chucks of 20 mm, a frequency of 10 Hz, a heating rate of 5 ° C./min, and a constant heating rate. A value for the rate E' was obtained.
 実施例及び比較例のテープを用いて作製した基板搬送用サポートテープについて、リフロー時の剥離の有無、及び、リフロー後の剥離性を、以下に示す方法で評価した。評価結果を表2に示す。 Regarding the support tapes for transporting substrates produced using the tapes of Examples and Comparative Examples, the presence or absence of peeling during reflow and the peelability after reflow were evaluated by the methods shown below. Table 2 shows the evaluation results.
[リフロー時の剥離の有無の評価]
 実施例及び比較例で作製したテープの保護フィルムを剥離し、露出した仮固定材層に、支持フィルムとしてのポリイミドフィルム(宇部興産株式会社製、商品名:ユーピレックス25SGA、厚さ:25μm)の内側面を、アズワン株式会社製ホットプレートHI-1000を用いて60℃でラミネートして、基板搬送用サポートテープを得た。
[Evaluation of presence or absence of peeling during reflow]
The protective film of the tapes prepared in Examples and Comparative Examples was peeled off, and a polyimide film (manufactured by Ube Industries, Ltd., trade name: Upilex 25SGA, thickness: 25 μm) was applied to the exposed temporary fixing material layer as a support film. The side surface was laminated at 60° C. using a hot plate HI-1000 manufactured by AS ONE Co., Ltd. to obtain a substrate transfer support tape.
 次に、ソルダーレジストAUS308(太陽インキ(株)製、商品名:PSR-4000 AUS308)の表面を有する厚さ1000μmの有機基板(材質:ガラスエポキシ基板)を、ロールラミネーター(大成ラミネーター株式会社製、VA-400III)のステージ上に置き、PETフィルムを剥離した基板搬送用サポートテープを、仮固定材層が有機基板側に貼り付くように、100℃の温度、0.2MPaの圧力、0.2m/minでラミネートし、支持フィルム(ポリイミドフィルム)/仮固定材層/有機基板の積層体を得た。 Next, a 1000 μm thick organic substrate (material: glass epoxy substrate) having a surface of solder resist AUS308 (manufactured by Taiyo Ink Co., Ltd., product name: PSR-4000 AUS308) was coated with a roll laminator (manufactured by Taisei Laminator Co., Ltd., Placed on the stage of VA-400III), the support tape for transporting the substrate from which the PET film was peeled off was placed at a temperature of 100 ° C., a pressure of 0.2 MPa, and a pressure of 0.2 m so that the temporary fixing material layer was attached to the organic substrate side. /min to obtain a laminate of support film (polyimide film)/temporary fixing material layer/organic substrate.
 上記で得られた積層体を170℃のオーブンで1時間加熱した後、このサンプルを、260℃に加熱したホットプレート上に、有機基板がホットプレートと接するようにして5分間置き、有機基板と支持フィルムとの間(すなわち、有機基板/仮固定材層間、及び/又は、支持フィルム/仮固定材層間)で剥離(発泡)が生じるかどうかを目視にて確認した。そして、以下の評価基準に基づき、リフロー時の剥離状態を評価した。
A:有機基板/仮固定材層間、及び、支持フィルム/仮固定材層間の両方で剥離(発泡)なし。
B:有機基板/仮固定材層間、及び、支持フィルム/仮固定材層間の少なくとも一方で僅かに剥離(発泡)あり。剥離(発泡)部分の面積が全面積の2%以下。
C:有機基板/仮固定材層間、及び、支持フィルム/仮固定材層間の少なくとも一方で剥離(発泡)あり。剥離(発泡)部分の面積が全面積の2%超。
After heating the laminate obtained above in an oven at 170° C. for 1 hour, the sample was placed on a hot plate heated to 260° C. for 5 minutes so that the organic substrate was in contact with the hot plate. It was visually confirmed whether peeling (foaming) occurred between the support film (that is, between the organic substrate/temporary fixing material layer and/or between the support film/temporary fixing material layer). Then, the peeling state during reflow was evaluated based on the following evaluation criteria.
A: No peeling (foaming) between the organic substrate/temporary fixing material layer and between the support film/temporary fixing material layer.
B: There was slight peeling (foaming) in at least one of the organic substrate/temporary fixing material layer and the support film/temporary fixing material layer. The area of the peeled (foaming) part is 2% or less of the total area.
C: Peeling (foaming) occurred in at least one of the organic substrate/temporary fixing material layer and the support film/temporary fixing material layer. The area of the peeled (foamed) part is more than 2% of the total area.
[リフロー後の剥離性の評価]
 リフロー時の剥離の有無を評価したサンプルを室温(25℃)まで冷却した後、有機基板から支持フィルムを剥離し、仮固定材層が有機基板に張り付いて残存するかどうかを目視にて確認した。そして、以下の評価基準に基づき、リフロー後の剥離性を評価した。
A:有機基板に仮固定材層の残存がなかった。
B:有機基板に仮固定材層の一部が残存した。
C:支持フィルム及び仮固定材層間で剥離が生じ、有機基板に仮固定材層の大部分が残存した。
[Evaluation of peelability after reflow]
After cooling the sample evaluated for the presence or absence of peeling during reflow to room temperature (25°C), the support film was peeled off from the organic substrate, and it was visually confirmed whether or not the temporary fixing material layer remained stuck to the organic substrate. bottom. Then, the peelability after reflow was evaluated based on the following evaluation criteria.
A: No temporary fixing material layer remained on the organic substrate.
B: Part of the temporary fixing material layer remained on the organic substrate.
C: Peeling occurred between the support film and the temporary fixing material layer, and most of the temporary fixing material layer remained on the organic substrate.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示した結果から明らかなように、アミノ基を有するシリコーンと、エポキシ基を有するアクリルゴムとを含有する実施例1~5の樹脂組成物を用いて形成された、100℃における弾性率が2MPa以上であり、170℃で1時間加熱したときの25℃における弾性率が500MPa以上である仮固定材層を備える基板搬送用サポートテープによれば、リフロー時の支持フィルム及び有機基板間の剥離を抑制することができ、且つ、リフロー後の有機基板からの仮固定材層の優れた剥離性を得ることができることが確認された。 As is clear from the results shown in Table 2, the elastic modulus at 100° C. of the resin compositions of Examples 1 to 5 containing the silicone having an amino group and the acrylic rubber having an epoxy group is 2 MPa or more, and the elastic modulus at 25° C. when heated at 170° C. for 1 hour is 500 MPa or more. It was confirmed that peeling can be suppressed and excellent peelability of the temporary fixing material layer from the organic substrate after reflow can be obtained.
 1…支持フィルム、2A…仮固定材層、2C…硬化後の仮固定材層、3…保護フィルム、10…サポートテープ、15…積層体、30…有機基板、40…半導体チップ、50…封止材、55…半導体チップ実装基板、60…半導体素子、65…はんだボール、70…配線基板、100…電子機器装置。 DESCRIPTION OF SYMBOLS 1... Support film, 2A... Temporary fixing material layer, 2C... Temporary fixing material layer after hardening, 3... Protective film, 10... Support tape, 15... Laminate, 30... Organic substrate, 40... Semiconductor chip, 50... Sealing Fastener 55 Semiconductor chip mounting board 60 Semiconductor element 65 Solder ball 70 Wiring board 100 Electronic device.

Claims (9)

  1.  有機基板に基板搬送用の支持体を仮固定する仮固定材を形成するための仮固定材形成用樹脂組成物であって、
     エポキシ基を有するアクリルゴムと、アミノ基を有するシリコーン化合物と、を含有し、
     90℃で5分間及び140℃で5分間加熱してフィルムを形成したときに、当該フィルムの弾性率が100℃において2MPa以上であり、170℃で2時間加熱された後の前記フィルムの弾性率が25℃において500MPa以上である、仮固定材形成用樹脂組成物。
    A temporary fixing material-forming resin composition for forming a temporary fixing material for temporarily fixing a substrate transport support to an organic substrate,
    containing an acrylic rubber having an epoxy group and a silicone compound having an amino group,
    When a film is formed by heating at 90°C for 5 minutes and at 140°C for 5 minutes, the elastic modulus of the film is 2 MPa or more at 100°C, and the elastic modulus of the film after heating at 170°C for 2 hours. is 500 MPa or more at 25° C., a resin composition for forming a temporary fixing material.
  2.  エポキシ硬化剤を更に含む、請求項1に記載の仮固定材形成用樹脂組成物。 The resin composition for forming a temporary fixing material according to claim 1, further comprising an epoxy curing agent.
  3.  前記アミノ基を有するシリコーン化合物の含有量が、前記エポキシ基を有するアクリルゴム100質量部に対して、1~10質量部である、請求項1又は2に記載の仮固定材形成用樹脂組成物。 3. The resin composition for forming a temporary fixing material according to claim 1, wherein the content of the silicone compound having an amino group is 1 to 10 parts by mass with respect to 100 parts by mass of the acrylic rubber having an epoxy group. .
  4.  請求項1~3のいずれか一項に記載の仮固定材形成用樹脂組成物を用いて形成される、仮固定材。 A temporary fixing material formed using the resin composition for forming a temporary fixing material according to any one of claims 1 to 3.
  5.  有機基板を搬送するための支持フィルムと、該支持フィルム上に設けられた、前記有機基板と前記支持フィルムとを仮固定するための仮固定材層と、備え、
     前記仮固定材層が、請求項1~3のいずれか一項に記載の仮固定材形成用樹脂組成物を用いて形成されたものである、基板搬送用サポートテープ。
    A support film for transporting an organic substrate, and a temporary fixing material layer provided on the support film for temporarily fixing the organic substrate and the support film,
    A support tape for transporting a substrate, wherein the temporary fixing material layer is formed using the resin composition for forming a temporary fixing material according to any one of claims 1 to 3.
  6.  有機基板に仮固定材を介して支持体を貼り合わせて積層体を得る第1工程と、
     前記積層体の前記仮固定材を加熱する第2工程と、
     前記第2工程を経た前記積層体に対して熱処理が含まれる加工を施す第3工程と、
     前記第3工程を経た前記積層体の前記有機基板から前記支持体及び前記仮固定材を剥離する第4工程と、
    を備え、
     前記仮固定材は、請求項1~3のいずれか一項に記載の仮固定材形成用樹脂組成物を用いて形成されたものである、電子機器装置の製造方法。
    a first step of obtaining a laminate by bonding a support to an organic substrate via a temporary fixing material;
    a second step of heating the temporary fixing material of the laminate;
    a third step of performing processing including heat treatment on the laminate that has undergone the second step;
    a fourth step of peeling off the support and the temporary fixing material from the organic substrate of the laminate that has undergone the third step;
    with
    A method for manufacturing an electronic device, wherein the temporary fixing material is formed using the resin composition for forming a temporary fixing material according to any one of claims 1 to 3.
  7.  前記第3工程における前記加工が、ソルダーレジストの形成及びリフローのうちの少なくとも一方を含む、請求項6に記載の電子機器装置の製造方法。 The method of manufacturing an electronic device according to claim 6, wherein the processing in the third step includes at least one of solder resist formation and reflow.
  8.  前記有機基板の厚さが200μm以下である、請求項6又は7に記載の電子機器装置の製造方法。 The method for manufacturing an electronic device according to claim 6 or 7, wherein the organic substrate has a thickness of 200 µm or less.
  9.  前記有機基板がコアレス基板である、請求項6~8のいずれか一項に記載の電子機器装置の製造方法。 The method for manufacturing an electronic device according to any one of claims 6 to 8, wherein the organic substrate is a coreless substrate.
PCT/JP2022/043976 2022-01-07 2022-11-29 Resin composition for forming temporary fixative, temporary fixative, support tape for substrate conveyance, and method for producing electronic device WO2023132158A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-001737 2022-01-07
JP2022001737A JP2023101236A (en) 2022-01-07 2022-01-07 Resin composition for forming temporary fixative, temporary fixative, support tape for substrate conveyance, and method for producing electronic device

Publications (1)

Publication Number Publication Date
WO2023132158A1 true WO2023132158A1 (en) 2023-07-13

Family

ID=87073466

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/043976 WO2023132158A1 (en) 2022-01-07 2022-11-29 Resin composition for forming temporary fixative, temporary fixative, support tape for substrate conveyance, and method for producing electronic device

Country Status (3)

Country Link
JP (1) JP2023101236A (en)
TW (1) TW202330855A (en)
WO (1) WO2023132158A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018203973A (en) * 2017-06-06 2018-12-27 日立化成株式会社 Tape for semiconductor processing
JP2020161823A (en) * 2016-05-02 2020-10-01 日立化成株式会社 Processing method of electronic component
JP2021072375A (en) * 2019-10-31 2021-05-06 昭和電工マテリアルズ株式会社 Support tape for substrate transfer, and manufacturing method for electronic apparatus device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020161823A (en) * 2016-05-02 2020-10-01 日立化成株式会社 Processing method of electronic component
JP2018203973A (en) * 2017-06-06 2018-12-27 日立化成株式会社 Tape for semiconductor processing
JP2021072375A (en) * 2019-10-31 2021-05-06 昭和電工マテリアルズ株式会社 Support tape for substrate transfer, and manufacturing method for electronic apparatus device

Also Published As

Publication number Publication date
JP2023101236A (en) 2023-07-20
TW202330855A (en) 2023-08-01

Similar Documents

Publication Publication Date Title
WO2017191815A1 (en) Resin film for temporary fixation
KR100845092B1 (en) Adhesive composition for a semiconductor packing, adhesive film, dicing die bonding film and semiconductor device using the same
JP4466397B2 (en) Adhesive film for semiconductor and semiconductor device using the same
WO2021085539A1 (en) Substrate-conveying support tape and electronic apparatus/device production method
JP2007059787A (en) Adhesive film for semiconductor and semiconductor device using it
JP2018203973A (en) Tape for semiconductor processing
TWI753200B (en) Adhesive film for semiconductor device manufacturing, method for manufacturing the same, and semiconductor device and method for manufacturing the same
WO2023132158A1 (en) Resin composition for forming temporary fixative, temporary fixative, support tape for substrate conveyance, and method for producing electronic device
JP6768188B2 (en) Adhesive composition for adhesive film and its manufacturing method
JP5481828B2 (en) Adhesive composition, film adhesive, adhesive sheet, semiconductor wafer with adhesive layer, semiconductor device, and method for manufacturing semiconductor device
JP7392730B2 (en) Resin composition for temporary fixing, support tape for substrate transportation, and method for manufacturing electronic equipment
JP7392731B2 (en) Resin composition for temporary fixing, support tape for substrate transportation, and method for manufacturing electronic equipment
TWI834006B (en) Resin composition for temporary fixation, support tape for substrate transportation, and method for manufacturing electronic equipment
JP7272400B2 (en) Adhesive composition, adhesive film, and method for producing connected body
JP7342886B2 (en) Resin composition for temporary fixation, resin film for temporary fixation, sheet for temporary fixation, and manufacturing method of semiconductor device
JP2019031608A (en) Resin film for temporary fixing, resin film sheet for temporary fixing, and manufacturing method thereof
CN110678966B (en) Adhesive tape for semiconductor processing
JP2003082306A (en) Adhesive film for semiconductor and its application
WO2023085167A1 (en) Thermosetting adhesive composition, multilayer film, bonded body and method for producing same
JP7338469B2 (en) Adhesive film for semiconductor device manufacturing
JP7035347B2 (en) Semiconductor processing tape

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22918745

Country of ref document: EP

Kind code of ref document: A1