WO2022249444A1 - 波長計測装置、狭帯域化レーザ装置、及び電子デバイスの製造方法 - Google Patents

波長計測装置、狭帯域化レーザ装置、及び電子デバイスの製造方法 Download PDF

Info

Publication number
WO2022249444A1
WO2022249444A1 PCT/JP2021/020383 JP2021020383W WO2022249444A1 WO 2022249444 A1 WO2022249444 A1 WO 2022249444A1 JP 2021020383 W JP2021020383 W JP 2021020383W WO 2022249444 A1 WO2022249444 A1 WO 2022249444A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength
measurement
range
measurement range
spectroscope
Prior art date
Application number
PCT/JP2021/020383
Other languages
English (en)
French (fr)
Inventor
琢磨 山中
Original Assignee
ギガフォトン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ギガフォトン株式会社 filed Critical ギガフォトン株式会社
Priority to CN202180096739.5A priority Critical patent/CN117099274A/zh
Priority to JP2023523903A priority patent/JPWO2022249444A1/ja
Priority to PCT/JP2021/020383 priority patent/WO2022249444A1/ja
Publication of WO2022249444A1 publication Critical patent/WO2022249444A1/ja
Priority to US18/487,774 priority patent/US20240044711A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude
    • H01S3/136Stabilisation of laser output parameters, e.g. frequency or amplitude by controlling devices placed within the cavity
    • H01S3/137Stabilisation of laser output parameters, e.g. frequency or amplitude by controlling devices placed within the cavity for stabilising of frequency
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/45Interferometric spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/027Control of working procedures of a spectrometer; Failure detection; Bandwidth calculation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J3/26Generating the spectrum; Monochromators using multiple reflection, e.g. Fabry-Perot interferometer, variable interference filters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J9/00Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength
    • G01J9/02Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength by interferometric methods
    • G01J9/0246Measuring optical wavelength
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70008Production of exposure light, i.e. light sources
    • G03F7/70025Production of exposure light, i.e. light sources by lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08004Construction or shape of optical resonators or components thereof incorporating a dispersive element, e.g. a prism for wavelength selection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08086Multiple-wavelength emission
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude
    • H01S3/1305Feedback control systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J2003/003Comparing spectra of two light sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08004Construction or shape of optical resonators or components thereof incorporating a dispersive element, e.g. a prism for wavelength selection
    • H01S3/08009Construction or shape of optical resonators or components thereof incorporating a dispersive element, e.g. a prism for wavelength selection using a diffraction grating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/10069Memorized or pre-programmed characteristics, e.g. look-up table [LUT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/22Gases
    • H01S3/223Gases the active gas being polyatomic, i.e. containing two or more atoms
    • H01S3/225Gases the active gas being polyatomic, i.e. containing two or more atoms comprising an excimer or exciplex

Definitions

  • the present disclosure relates to a wavelength measuring device, a band narrowing laser device, and an electronic device manufacturing method.
  • a KrF excimer laser device that outputs laser light with a wavelength of about 248 nm and an ArF excimer laser device that outputs laser light with a wavelength of about 193 nm are used.
  • the spectral line width of the spontaneous oscillation light of the KrF excimer laser device and the ArF excimer laser device is as wide as 350-400 pm. Therefore, if the projection lens is made of a material that transmits ultraviolet light, such as KrF and ArF laser light, chromatic aberration may occur. As a result, resolution can be reduced. Therefore, it is necessary to narrow the spectral line width of the laser light output from the gas laser device to such an extent that the chromatic aberration can be ignored. Therefore, in the laser resonator of the gas laser device, a line narrow module (LNM) including a band narrowing element (etalon, grating, etc.) is provided in order to narrow the spectral line width.
  • LNM line narrow module
  • a gas laser device whose spectral line width is narrowed will be referred to as a band-narrowed laser device.
  • a wavelength measurement device includes a first spectroscope that has a first free spectral range and generates a first measurement waveform from an interference pattern of pulsed laser light; a second spectroscope having a second free spectral range smaller than the range and generating a second measurement waveform from the interference pattern of the pulsed laser light; and reading out data in the first measurement range of the first spectroscope. , setting the second measurement range of the second spectroscope based on the data of the first measurement range, reading the data of the second measurement range, and reading the data of the first measurement range and the second measurement range and a processor that calculates the center wavelength of the pulsed laser light based on the data.
  • a band-narrowing laser device includes a laser oscillator configured to output pulsed laser light, a band-narrowing optical system arranged in the laser oscillator, and a selection of the band-narrowing optical system.
  • a first spectroscope having a first free spectral range and generating a first measurement waveform from the interference pattern of the pulsed laser light; and a second spectral range smaller than the first free spectral range.
  • a second spectroscope having a free spectral range and generating a second measurement waveform from the interference pattern of the pulsed laser light; Read out the data of the first measurement range of the instrument, set the second measurement range of the second spectroscope based on the data of the first measurement range, read out the data of the second measurement range, a processor that calculates the center wavelength of the pulsed laser light based on the data of the measurement range and the data of the second measurement range, and controls the actuator based on the target wavelength and the center wavelength.
  • An electronic device manufacturing method includes a laser oscillator configured to output pulsed laser light, a band-narrowing optical system arranged in the laser oscillator, and selection of the band-narrowing optical system.
  • a first spectroscope having a first free spectral range and generating a first measurement waveform from the interference pattern of the pulsed laser light; and a second spectral range smaller than the first free spectral range.
  • a second spectroscope having a free spectral range and generating a second measurement waveform from the interference pattern of the pulsed laser light; Read out the data of the first measurement range of the instrument, set the second measurement range of the second spectroscope based on the data of the first measurement range, read out the data of the second measurement range, a processor that calculates the center wavelength of the pulsed laser light based on the data of the measurement range and the data of the second measurement range, and controls the actuator based on the target wavelength and the center wavelength; It includes generating laser light, outputting the pulsed laser light to an exposure apparatus, and exposing the pulsed laser light onto a photosensitive substrate in the exposure apparatus to manufacture an electronic device.
  • FIG. 1 schematically shows the configuration of an exposure system in a comparative example.
  • FIG. 2 schematically shows the configuration of a band-narrowing laser device according to a comparative example.
  • FIG. 3 is a graph showing wavelength measurement ranges of a coarse etalon spectroscope and a fine etalon spectroscope in a comparative example.
  • FIG. 4 is a graph showing an example of wavelength change in a comparative example.
  • FIG. 5 is a graph in which a part of FIG. 3 is enlarged.
  • FIG. 6 is a graph showing wavelength measurement ranges of a coarse etalon spectroscope and a fine etalon spectroscope in an embodiment of the present disclosure.
  • FIG. 7 is a graph showing an example of wavelength change in the embodiment.
  • FIG. 8 is a graph in which a part of FIG. 6 is enlarged.
  • FIG. 9 schematically shows the configuration of a band-narrowing laser device according to an embodiment.
  • FIG. 10 is a flow chart showing processing of the laser control processor in the embodiment.
  • FIG. 11 is a graph showing an example of a first measurement waveform obtained by detecting interference fringes of a coarse etalon spectroscope when preoscillation occurs in the embodiment.
  • FIG. 12 is a graph showing an example of a second measurement waveform obtained by detecting interference fringes of the fine etalon spectroscope when pre-oscillation occurs in the embodiment.
  • FIG. 13 shows an example of how to calculate the fringe radius.
  • FIG. 14 is a flowchart showing details of pre-oscillation processing in the embodiment.
  • FIG. 15 is a flowchart showing details of adjustment oscillation processing in the embodiment.
  • FIG. 16 is a flowchart showing details of adjustment oscillation processing in the embodiment.
  • FIG. 17 is a graph showing an example of a first measurement waveform obtained by detecting interference fringes of a coarse etalon spectrometer when measuring wavelengths in the embodiment.
  • FIG. 18 is a graph showing an example of a second measurement waveform obtained by detecting interference fringes of a fine etalon spectroscope when measuring wavelengths in the embodiment.
  • FIG. 19 is a flowchart showing details of wavelength measurement processing in the embodiment.
  • Comparative Example FIG. 1 schematically shows the configuration of an exposure system in a comparative example.
  • the comparative examples of the present disclosure are forms known by the applicant to be known only by the applicant, and not known examples to which the applicant admits.
  • the exposure system includes a band-narrowing laser device 1 and an exposure device 100 .
  • Exposure apparatus 100 is an example of an external apparatus in the present disclosure.
  • the narrowband laser device 1 includes a laser control processor 30 .
  • the laser control processor 30 is a processing device that includes a memory 132 storing a control program and a CPU (central processing unit) 131 that executes the control program.
  • Laser control processor 30 is specially configured or programmed to perform the various processes contained in this disclosure.
  • the laser control processor 30 corresponds to the processor in this disclosure.
  • the band-narrowing laser device 1 is configured to output pulsed laser light toward the exposure device 100 .
  • Exposure apparatus 100 includes illumination optical system 101 , projection optical system 102 , and exposure control processor 110 .
  • the illumination optical system 101 illuminates a reticle pattern of a reticle (not shown) arranged on the reticle stage RT with the pulsed laser light incident from the band-narrowing laser device 1 .
  • the projection optical system 102 reduces and projects the pulsed laser beam transmitted through the reticle to form an image on a workpiece (not shown) placed on the workpiece table WT.
  • the workpiece is a photosensitive substrate such as a semiconductor wafer coated with a resist film.
  • the exposure control processor 110 is a processing device that includes a memory 112 storing a control program and a CPU 111 that executes the control program. Exposure control processor 110 is specially configured or programmed to perform the various processes contained in this disclosure. The exposure control processor 110 supervises the control of the exposure apparatus 100 and transmits/receives various data and various signals to/from the laser control processor 30 .
  • the exposure control processor 110 transmits to the laser control processor 30 the data of the wavelength command value for the target wavelength, the data of the set value of the target pulse energy, and the trigger signal.
  • the laser control processor 30 controls the band narrowing laser device 1 according to these data and signals.
  • the exposure control processor 110 synchronously translates the reticle stage RT and the workpiece table WT in opposite directions. As a result, the workpiece is exposed to pulsed laser light reflecting the reticle pattern. A reticle pattern is transferred to the semiconductor wafer by such an exposure process. After that, an electronic device can be manufactured through a plurality of steps.
  • FIG. 2 schematically shows a configuration of a band-narrowing laser device 1 according to a comparative example.
  • the narrowband laser device 1 includes a laser oscillator 20 , a power supply 12 , a monitor module 16 , a laser control processor 30 and a wavelength control processor 50 .
  • the band-narrowing laser device 1 can be connected to the exposure device 100 .
  • the monitor module 16, the laser control processor 30, and the wavelength control processor 50 constitute the wavelength measurement device in the present disclosure.
  • Laser oscillator 20 includes laser chamber 10 , discharge electrode 11 a , band narrowing module 14 , output coupling mirror 15 and shutter 26 .
  • the band narrowing module 14 and the output coupling mirror 15 constitute a laser resonator.
  • a laser chamber 10 is arranged in the optical path of the laser resonator. Windows 10a and 10b are provided at both ends of the laser chamber 10.
  • FIG. Inside the laser chamber 10, a discharge electrode 11a and a discharge electrode (not shown) paired therewith are arranged.
  • a discharge electrode (not shown) is positioned so as to overlap the discharge electrode 11a in the direction of the V-axis perpendicular to the paper surface.
  • the laser chamber 10 is filled with a laser gas containing, for example, argon gas or krypton gas as a rare gas, fluorine gas as a halogen gas, and neon gas as a buffer gas.
  • the power supply 12 includes a switch 13 and is connected to the discharge electrode 11a and a charger (not shown).
  • Band narrowing module 14 includes a plurality of prisms 14a and 14b and a grating 14c.
  • the prism 14b is supported by a rotating stage 14e.
  • the rotating stage 14e is configured to rotate the prism 14b about an axis parallel to the V-axis in accordance with the drive signal output from the wavelength driver 51.
  • FIG. The selected wavelength of the band narrowing module 14 is changed by rotating the prism 14b by the rotating stage 14e.
  • the band-narrowing module 14 corresponds to the band-narrowing optical system in the present disclosure, and the rotation stage 14e corresponds to the actuator in the present disclosure.
  • One surface of the out-coupling mirror 15 is coated with a partially reflective film.
  • the monitor module 16 is arranged in the optical path of the pulsed laser light between the output coupling mirror 15 and the exposure apparatus 100 .
  • the monitor module 16 includes beam splitters 16 a , 16 b and 17 a , an energy sensor 16 c , a highly reflective mirror 17 b , a coarse etalon spectroscope 18 and a fine etalon spectroscope 19 .
  • the coarse etalon spectroscope 18 corresponds to the first spectroscope in the present disclosure
  • the fine etalon spectroscope 19 corresponds to the second spectroscope in the present disclosure.
  • the beam splitter 16a is located in the optical path of the pulsed laser light output from the output coupling mirror 15.
  • the beam splitter 16a is configured to transmit part of the pulsed laser light output from the output coupling mirror 15 toward the exposure apparatus 100 with high transmittance and reflect the other part.
  • the beam splitter 16b is located in the optical path of the pulsed laser beam reflected by the beam splitter 16a.
  • the energy sensor 16c is positioned in the optical path of the pulsed laser beam reflected by the beam splitter 16b.
  • the beam splitter 17a is located on the optical path of the pulsed laser beam that has passed through the beam splitter 16b.
  • the high reflection mirror 17b is positioned in the optical path of the pulsed laser beam reflected by the beam splitter 17a.
  • the coarse etalon spectroscope 18 is arranged in the optical path of the pulsed laser beam that has passed through the beam splitter 17a.
  • the coarse etalon spectroscope 18 includes a diffuser plate 18a, an etalon 18b, a condenser lens 18c, and a line sensor 18d.
  • the diffusion plate 18a is positioned on the optical path of the pulsed laser beam transmitted through the beam splitter 17a.
  • the diffusion plate 18a has a large number of irregularities on its surface, and is configured to transmit and diffuse the pulsed laser beam.
  • the etalon 18b is positioned in the optical path of the pulsed laser beam transmitted through the diffuser plate 18a.
  • Etalon 18b includes two partially reflective mirrors. The two partially reflecting mirrors face each other with an air gap of a predetermined distance, and are bonded together via spacers.
  • the condenser lens 18c is positioned on the optical path of the pulsed laser beam that has passed through the etalon 18b.
  • the line sensor 18d is located on the focal plane of the condenser lens 18c along the optical path of the pulsed laser beam that has passed through the condenser lens 18c.
  • the line sensor 18d receives interference fringes formed by the etalon 18b and the condenser lens 18c.
  • An interference fringe is an interference pattern of pulsed laser light and has a shape of concentric circles, and the square of the distance from the center of the concentric circles is proportional to the change in wavelength.
  • the line sensor 18d is a light distribution sensor including a large number of light receiving elements arranged one-dimensionally.
  • an image sensor including a large number of light receiving elements arranged two-dimensionally may be used as the light distribution sensor.
  • Each light receiving element is called a channel.
  • a light intensity distribution of interference fringes is obtained from the light intensity detected in each channel.
  • the fine etalon spectroscope 19 is arranged in the optical path of the pulsed laser beam reflected by the high reflection mirror 17b.
  • the fine etalon spectroscope 19 includes a diffuser plate 19a, an etalon 19b, a condenser lens 19c, and a line sensor 19d. These configurations are the same as those of the diffuser plate 18a, etalon 18b, condenser lens 18c, and line sensor 18d included in the coarse etalon spectroscope 18, respectively.
  • etalon 19b has a smaller free spectral range than etalon 18b. The free spectral range will be described later.
  • the condenser lens 19c has a longer focal length than the condenser lens 18c.
  • the shutter 26 is arranged on the optical path of the pulsed laser light between the monitor module 16 and the exposure apparatus 100 .
  • the shutter 26 is configured to be switchable between a first state in which the pulsed laser beam output from the laser oscillator 20 is passed toward the exposure device 100 and a second state in which the pulsed laser beam is blocked. Putting the shutter 26 in the first state is called opening the shutter 26 , and putting the shutter 26 in the second state is called closing the shutter 26 .
  • the wavelength control processor 50 is a processing device that includes a memory 61 storing control programs and a CPU 62 that executes the control programs. Wavelength control processor 50 is specially configured or programmed to perform various processes contained in this disclosure.
  • the memory 61 also stores various data for calculating the center wavelength of the pulsed laser beam.
  • FIG. 2 shows the laser control processor 30 and the wavelength control processor 50 as separate components, the laser control processor 30 may also serve as the wavelength control processor 50 .
  • the laser control processor 30 receives from the exposure control processor 110 included in the exposure apparatus 100 the data of the wavelength command value for the target wavelength, the data of the set value of the target pulse energy, and the trigger signal.
  • the laser control processor 30 transmits to the power supply 12 setting data for the applied voltage to be applied to the discharge electrode 11a based on the set value of the target pulse energy.
  • the laser control processor 30 transmits the wavelength command value data to the wavelength control processor 50 .
  • the laser control processor 30 transmits an oscillation trigger signal based on the trigger signal to the switch 13 included in the power supply 12 .
  • the switch 13 is turned on when receiving an oscillation trigger signal from the laser control processor 30 .
  • the power supply 12 When the switch 13 is turned on, the power supply 12 generates a pulsed high voltage from electric energy charged in a charger (not shown) and applies this high voltage to the discharge electrode 11a.
  • a discharge occurs inside the laser chamber 10 when a high voltage is applied to the discharge electrode 11a.
  • the energy of this discharge excites the laser medium inside the laser chamber 10 to shift to a high energy level.
  • the excited laser medium shifts to a lower energy level, it emits light with a wavelength corresponding to the energy level difference.
  • Light generated inside the laser chamber 10 is emitted to the outside of the laser chamber 10 through windows 10a and 10b.
  • Light emitted from the window 10a of the laser chamber 10 is expanded in beam width by the prisms 14a and 14b and enters the grating 14c.
  • Light incident on the grating 14c from the prisms 14a and 14b is reflected by the plurality of grooves of the grating 14c and diffracted in directions corresponding to the wavelength of the light.
  • Prisms 14a and 14b reduce the beam width of the diffracted light from grating 14c and return the light to laser chamber 10 through window 10a.
  • the output coupling mirror 15 transmits and outputs a portion of the light emitted from the window 10b of the laser chamber 10, and reflects the other portion back into the laser chamber 10 through the window 10b.
  • the light emitted from the laser chamber 10 reciprocates between the band narrowing module 14 and the output coupling mirror 15 and is amplified each time it passes through the discharge space inside the laser chamber 10 .
  • This light is band-narrowed each time it is folded back by the band-narrowing module 14 .
  • the laser-oscillated and narrow-band light is output from the output coupling mirror 15 as a pulsed laser light.
  • the energy sensor 16 c detects the pulse energy of the pulsed laser light and outputs pulse energy data to the laser control processor 30 and the wavelength control processor 50 .
  • the pulse energy data is used by the laser control processor 30 to feedback-control setting data for the applied voltage applied to the discharge electrode 11a.
  • the timing at which the pulse energy data is received can be used as a reference for the timing at which the wavelength control processor 50 outputs data output triggers to the coarse etalon spectroscope 18 and the fine etalon spectroscope 19 .
  • the coarse etalon spectroscope 18 generates a first measurement waveform from the interference pattern of the pulsed laser light detected by the line sensor 18d.
  • the coarse etalon spectroscope 18 transmits the first measurement waveform to the wavelength control processor 50 according to the data output trigger output from the wavelength control processor 50 .
  • the fine etalon spectroscope 19 generates a second measurement waveform from the interference pattern of the pulsed laser light detected by the line sensor 19d.
  • the fine etalon spectroscope 19 transmits the second measurement waveform to the wavelength control processor 50 according to the data output trigger output from the wavelength control processor 50 .
  • Each of the first and second measurement waveforms is also called a fringe waveform, and indicates the relationship between the distance from the center of the concentric circles that form the interference fringes and the light intensity.
  • the wavelength control processor 50 receives from the laser control processor 30 a wavelength command value that is the target wavelength. Also, the wavelength control processor 50 calculates the center wavelength of the pulsed laser light as the measurement wavelength ⁇ m using the measurement waveforms output from the coarse etalon spectroscope 18 and the fine etalon spectroscope 19 . The wavelength control processor 50 feedback-controls the central wavelength of the pulsed laser light by outputting a control signal to the wavelength driver 51 based on the target wavelength and the measurement wavelength ⁇ m.
  • the etalon interference condition is given in the following equation 1 when the order m of the interference fringes is an integer.
  • the resolution R of an etalon is expressed by the following equation.
  • R FSR/F where FSR is the etalon's free spectral range and F is the etalon's finesse.
  • the etalon 19b can measure the wavelength change in more detail than the etalon 18b.
  • the wavelength change coincides with a multiple of the free spectral range FSRf of the etalon 19b, the interference fringes detected using the etalon 19b are almost the same. indistinguishable from Therefore, by combining with the etalon 18b having a large free spectral range FSRc, wavelength changes in a wide range can be measured with high precision.
  • FIG. 3 is a graph showing wavelength measurement ranges of the coarse etalon spectroscope 18 and the fine etalon spectroscope 19 in a comparative example.
  • the horizontal axis of FIG. 3 is the wavelength.
  • the free spectral range FSRc of the etalon 18b is 500 pm and the free spectral range FSRf of the etalon 19b is 10 pm.
  • the free spectral range FSRc of etalon 18b corresponds to the first free spectral range in this disclosure
  • the free spectral range FSRf of etalon 19b corresponds to the second free spectral range in this disclosure.
  • FIG. 4 is a graph showing an example of wavelength change in a comparative example.
  • the horizontal axis of FIG. 4 is wavelength, and the vertical axis is time. If the wavelength change from the first wavelength to the second wavelength is smaller than the free spectral range FSRf of the etalon 19b, the wavelength change can be read from the measurement results of the fine etalon spectroscope 19.
  • FIG. 4 is a graph showing an example of wavelength change in a comparative example.
  • the horizontal axis of FIG. 4 is wavelength
  • the vertical axis is time. If the wavelength change from the first wavelength to the second wavelength is smaller than the free spectral range FSRf of the etalon 19b, the wavelength change can be read from the measurement results of the fine etalon spectroscope 19.
  • FIG. 5 is a graph enlarging a part of FIG. If the wavelength change is larger than the free spectral range FSRf of the etalon 19b, the order of the interference fringes cannot be determined from the measurement result of the fine etalon spectroscope 19, so the wavelength change cannot be read.
  • the center wavelength ⁇ can be calculated by combining the measurement results of the coarse etalon spectroscope 18 and the fine etalon spectroscope 19. can.
  • the calculation of the center wavelength ⁇ may not keep up.
  • the second measurement range of the fine etalon spectroscope 19 is set based on the data of the first measurement range of the coarse etalon spectroscope 18, and the data of the first measurement range and the second The center wavelength of the pulsed laser light is calculated as the measurement wavelength ⁇ m based on the data of the measurement range of .
  • the second measurement range is set accurately by setting the second measurement range based on the data of the first measurement range, and the amount of calculation is reduced by using the data of the first and second measurement ranges. , to speed up the measurement of the measurement wavelength ⁇ m.
  • FIG. 6 is a graph showing wavelength measurement ranges of the coarse etalon spectroscope 18 and the fine etalon spectroscope 19 in the embodiment of the present disclosure.
  • FIG. 7 is a graph showing an example of wavelength change in the embodiment.
  • the first measurement range is a measurement range corresponding to the first wavelength range shown in FIGS. 6 and 7 among the measurement ranges of the coarse etalon spectroscope 18 .
  • the first wavelength range is less than the free spectral range FSRc of etalon 18b and greater than the free spectral range FSRf of etalon 19b.
  • the first wavelength range includes both the first wavelength and the second wavelength. That is, the first measurement range is set to the same range when measuring the first wavelength and when measuring the second wavelength.
  • the wavelength difference between the first wavelength and the second wavelength is greater than the free spectral range FSRf of the etalon 19b.
  • FIGS. 6 and 7 are similar to FIGS. 3 and 4, respectively.
  • FIG. 8 is a graph showing a part of FIG. 6 enlarged.
  • the second measurement range of the fine etalon spectroscope 19 is set based on the data of the first measurement range of the coarse etalon spectroscope 18 .
  • the second measurement range is a measurement range corresponding to the second wavelength range shown in FIG. 8 among the measurement ranges of the fine etalon spectroscope 19 .
  • the second measurement range is set so that the second wavelength range includes the first wavelength.
  • the second measurement range is set such that the second wavelength range includes the second wavelength. That is, the second measurement range is set to a different range when measuring the first wavelength and when measuring the second wavelength.
  • the second wavelength range is less than the free spectral range FSRf of etalon 19b.
  • FIG. 9 schematically shows the configuration of a band-narrowing laser device 1a according to an embodiment.
  • the memory 61 included in the wavelength control processor 50 stores data specifying the first measurement range.
  • the first measurement range is set by pre-oscillation, which will be described later, and stored in the memory 61 .
  • the memory 61 may store the reference wavelength WL C0 , the reference order m f0 , the fringe constant C f and the like in addition to the first measurement range.
  • FIG. 10 is a flow chart showing processing of the laser control processor 30 in the embodiment.
  • the wavelength control processor 50 may perform the processing shown in FIG.
  • the laser control processor 30 receives the first and second wavelength command values ⁇ 1t and ⁇ 2t from the exposure control processor 110 .
  • the band-narrowing laser device 1a alternately oscillates with two wavelengths will be described, but the embodiment can also be applied to the case of oscillating with one wavelength.
  • the focal length of the exposure apparatus 100 depends on the wavelength of the pulsed laser light. Since the pulsed laser beams oscillated at two wavelengths and incident on the exposure apparatus 100 form images at different positions in the direction of the optical path axis of the pulsed laser beams, the depth of focus can be substantially increased. For example, even when a resist film having a large thickness is exposed, the imaging performance in the thickness direction of the resist film can be maintained.
  • the laser control processor 30 sets the target wavelength to a value between the first wavelength command value ⁇ 1t and the second wavelength command value ⁇ 2t, and controls the laser oscillator 20 to pre-oscillate.
  • the laser control processor 30 calculates various parameters for wavelength measurement (S5). The details of the pre-oscillation process will be described later with reference to FIGS. 11 to 14. FIG.
  • the laser control processor 30 controls the laser oscillator 20 to perform adjusted oscillation while switching the target wavelength between the first wavelength command value ⁇ 1t and the second wavelength command value ⁇ 2t.
  • the laser control processor 30 determines the driving amounts D1 and D2 of the rotating stage 14e when the target wavelength is switched, based on the driving amounts D1 i and D2 i of the rotating stage 14e and the measured measurement wavelength ⁇ m. set. Details of the adjusted oscillation process will be described later with reference to FIG. When laser oscillation is performed with one wavelength, the process of S3 may not be performed.
  • the laser control processor 30 notifies the exposure control processor 110 of the end of preliminary oscillation and adjustment oscillation, and controls the laser oscillator 20 to start laser oscillation for the exposure operation.
  • laser oscillation is performed while switching the target wavelength between the first wavelength command value ⁇ 1t and the second wavelength command value ⁇ 2t.
  • the laser control processor 30 reads the data of the coarse etalon spectroscope 18 and the fine etalon spectroscope 19, performs wavelength measurement, and calculates the measurement wavelength ⁇ m. The details of the wavelength measurement process will be described later with reference to FIGS. 17 to 19. FIG.
  • the laser control processor 30 controls the rotary stage 14e so that the measurement wavelength ⁇ m approaches the target wavelength.
  • the laser control processor 30 determines whether change information for the first and second wavelength command values ⁇ 1t and ⁇ 2t has been received from the exposure control processor 110.
  • the laser control processor 30 returns the process to S2. If the change information of the first and second wavelength command values ⁇ 1t and ⁇ 2t has not been received (S7: NO), the laser control processor 30 advances the process to S8.
  • the laser control processor 30 determines whether or not to replace the semiconductor wafer. If the semiconductor wafer is to be replaced (S8: YES), the laser control processor 30 returns the processing to S2. If the semiconductor wafer is not to be replaced (S8: NO), the laser control processor 30 proceeds to S9.
  • the laser control processor 30 determines whether or not to end the exposure operation. When not ending the exposure operation (S9: NO), the laser control processor 30 returns the process to S5. When ending the exposure operation (S9: YES), the laser control processor 30 ends the processing of this flowchart.
  • FIG. 11 is a graph showing an example of a first measurement waveform obtained by detecting interference fringes of the coarse etalon spectroscope 18 when pre-oscillation occurs in the embodiment.
  • the horizontal axis of FIG. 11 indicates a plurality of channels included in the line sensor 18d, and the vertical axis indicates the amount of light in each channel.
  • pre-oscillation laser oscillation is performed with a target wavelength set near the wavelength actually used for exposure. Also, the radius rc0m of the interference fringes of the coarse etalon spectroscope 18 in the pre-oscillation is calculated. The central wavelength of the pulsed laser beam calculated from the radius r c0m of the interference fringes is defined as the reference wavelength WL C0 . The first measurement range is set to a constant width with reference to the peak position of the interference fringes of the coarse etalon spectroscope 18 .
  • FIG. 12 is a graph showing an example of a second measurement waveform obtained by detecting the interference fringes of the fine etalon spectroscope 19 during pre-oscillation in the embodiment.
  • the horizontal axis of FIG. 12 indicates a plurality of channels included in the line sensor 19d, and the vertical axis indicates the amount of light in each channel.
  • the first interference fringe radius r f0m and the second interference fringe radius r f0m ⁇ 1 of the fine etalon spectroscope 19 are calculated.
  • the second interference fringes are interference fringes that are one order smaller than the first interference fringes.
  • the radii r c0m , r f0m , and r f0m ⁇ 1 of the interference fringes correspond to the distance from the center ctr of the interference fringes to the peak position of the interference fringes.
  • FIG. 13 shows an example of how to calculate the fringe radius.
  • Imax be the maximum amount of light in one interference fringe.
  • the square r2 of the radius r of the interference fringes is calculated by Equation 2 below.
  • r 2 (r out 2 +r in 2 )/2 Equation 2
  • the position corresponding to the distance of the radius r from the center ctr of the interference fringes is sometimes called the peak position of the interference fringes.
  • FIG. 14 is a flowchart showing the details of pre-oscillation processing in the embodiment.
  • the processing shown in FIG. 14 corresponds to the subroutine of S2 shown in FIG.
  • the laser control processor 30 closes the shutter 26 .
  • the laser control processor 30 sets the target wavelength for pre-lasing to a value between the first and second wavelength command values ⁇ 1t and ⁇ 2t.
  • the target wavelength for pre-oscillation is set to the average value of the first and second wavelength command values ⁇ 1t and ⁇ 2t.
  • the laser control processor 30 controls the laser oscillator 20 to start pre-oscillation by the trigger signal from the exposure control processor 110 .
  • the laser control processor 30 calculates the square of the radius r c0m of the interference fringes of the coarse etalon spectroscope 18 r c0m 2 .
  • the method for calculating the radius squared r c0m 2 may be the one described with reference to FIG. 13 (see Equation 2). Further, the laser control processor 30 calculates the center wavelength of the pulsed laser light as the reference wavelength WL C0 using the following formula.
  • WL C0 ⁇ c0 +a ⁇ r c0m 2
  • ⁇ c0 is the value of the central wavelength ⁇ when the tilt angle ⁇ of the pulsed laser light passing between the partially reflecting mirrors of the etalon 18 b in Equation 1 is 0, and a is the proportionality peculiar to the coarse etalon spectroscope 18 . is a constant.
  • the laser control processor 30 sets two first measurement ranges of the coarse etalon spectroscope 18 so as to include the two peak positions of the measured interference fringes (see FIG. 11). For example, the width of 17 channels before and after the peak position of the interference fringes is set as the first measurement range. Alternatively, the width of 33 channels before and after the peak position of the interference fringes is set as the first measurement range.
  • the laser control processor 30 calculates the squares r f0m 2 and r f0m ⁇ 1 2 of the radii r f0m and r f0m ⁇ 1 of the interference fringes of the fine etalon spectroscope 19 .
  • the method of calculating the squared radii r f0m 2 and r f0m ⁇ 1 2 may be the same as described with reference to FIG. 13 (see Equation 2).
  • the laser control processor 30 calculates the fringe constant Cf of the fine etalon spectroscope 19 using the following equation.
  • C f r f0m 2 ⁇ r f0m ⁇ 1 2
  • the laser control processor 30 controls the laser oscillator 20 to stop pre-oscillation.
  • the laser control processor 30 opens the shutter 26 .
  • the laser control processor 30 ends the processing of this flowchart and returns to the processing shown in FIG.
  • FIGS. 15 and 16 are flowcharts showing details of adjusted oscillation processing in the embodiment. The processing shown in FIGS. 15 and 16 corresponds to the subroutine of S3 shown in FIG.
  • laser control processor 30 closes shutter 26 in S301.
  • the laser control processor 30 controls the laser oscillator 20 to start adjusted oscillation by the trigger signal from the exposure control processor 110 .
  • the laser control processor 30 sets the target wavelength to the first wavelength command value ⁇ 1t, and drives the rotary stage 14e by the driving amount D1i .
  • the laser control processor 30 reads the data of the coarse etalon spectroscope 18 and the fine etalon spectroscope 19, performs wavelength measurement, and calculates the measurement wavelength ⁇ m. The details of the wavelength measurement process will be described later with reference to FIGS. 17 to 19. FIG.
  • the laser control processor 30 controls the rotary stage 14e so that the measurement wavelength ⁇ m approaches the target wavelength ⁇ 1t. It should be noted that in S306, only the rotary stage 14e is controlled, and the output and wavelength of the pulsed laser light need not be measured.
  • the laser control processor 30 next calculates the drive amount D1i +1 of the rotary stage 14e when the target wavelength is ⁇ 1t by the following equation.
  • D1 i+1 D1 i + ⁇ 1
  • is a constant of proportionality unique to the rotary stage 14e.
  • the laser control processor 30 sets the target wavelength to the second wavelength command value ⁇ 2t, and drives the rotary stage 14e by the drive amount D2i .
  • the laser control processor 30 reads the data of the coarse etalon spectroscope 18 and the fine etalon spectroscope 19, performs wavelength measurement, and calculates the measurement wavelength ⁇ m. The details of the wavelength measurement process will be described later with reference to FIGS. 17 to 19. FIG.
  • the laser control processor 30 controls the rotary stage 14e so that the measurement wavelength ⁇ m approaches the target wavelength ⁇ 2t. In addition, in S311, only the rotation stage 14e is controlled, and the output and wavelength measurement of the pulsed laser light need not be performed.
  • the laser control processor 30 adds 1 to the value of i to update the value of i. That is, the next driving amounts D1 i+1 and D2 i+1 calculated in S307 and S312 are used as the driving amounts D1 i and D2 i when S303 and S308 are executed next.
  • the laser control processor 30 determines whether the wavelength differences ⁇ 1 and ⁇ 2 are within the allowable range. For example, it is determined whether the absolute values of the wavelength differences ⁇ 1 and ⁇ 2 are equal to or less than a predetermined value. If the wavelength differences ⁇ 1 and ⁇ 2 are not within the allowable range (S314: NO), the laser control processor 30 returns the process to S303. If the wavelength differences ⁇ 1 and ⁇ 2 are within the allowable range (S314: YES), the laser control processor 30 proceeds to S315.
  • the laser control processor 30 controls the laser oscillator 20 to stop the adjustment oscillation.
  • the laser control processor 30 sets the latest driving amounts D1 i and D2 i to the driving amounts D1 and D2 in the exposure operation, respectively.
  • laser control processor 30 opens shutter 26 .
  • the laser control processor 30 ends the processing of this flowchart and returns to the processing shown in FIG.
  • FIG. 17 is a graph showing an example of a first measurement waveform obtained by detecting interference fringes of the coarse etalon spectroscope 18 when measuring wavelength in the embodiment.
  • the horizontal axis of FIG. 17 indicates a plurality of channels included in the line sensor 18d, and the vertical axis indicates the amount of light in each channel.
  • the dashed line indicates the first measurement waveform when pre-oscillation occurs.
  • wavelength measurement only data in the first measurement range of the coarse etalon spectroscope 18 set by pre-oscillation is read. If the interference fringes are included in the first measurement range, the radius rc1m of the interference fringes of the coarse etalon spectroscope 18 in wavelength measurement can be calculated.
  • the center wavelength WL C1 of the pulsed laser light is calculated from the radius r c1m of the interference fringes.
  • the center wavelength WL C1 calculated based on the data of the first measurement range corresponds to the calculated wavelength in the present disclosure.
  • a second measurement range of the fine etalon spectroscope 19 is set based on a first change amount ⁇ WL C that indicates a change in the central wavelength WL C1 with respect to the reference wavelength WL C0 .
  • FIG. 18 is a graph showing an example of a second measurement waveform obtained by detecting interference fringes of the fine etalon spectroscope 19 when measuring wavelengths in the embodiment.
  • the horizontal axis of FIG. 18 indicates a plurality of channels included in the line sensor 19d, and the vertical axis indicates the amount of light in each channel.
  • the dashed line indicates the second measurement waveform when pre-oscillation occurs.
  • wavelength measurement only data in the second measurement range of fine etalon spectroscope 19 is read. If the interference fringes are included in the second measurement range, the radius rf1m of the interference fringes of the fine etalon spectroscope 19 in wavelength measurement can be calculated. The center wavelength of the pulsed laser light is calculated as the measurement wavelength ⁇ m from the radius rf1m of the interference fringes.
  • FIG. 19 is a flowchart showing details of wavelength measurement processing in the embodiment.
  • the processing shown in FIG. 19 corresponds to the subroutines of S5 shown in FIG. 10, S304 shown in FIG. 15, and S309 shown in FIG.
  • the laser control processor 30 reads the data of the first measurement range of the coarse etalon spectroscope 18 and calculates the center wavelength WL C1 of the pulsed laser light.
  • the method of calculating the center wavelength WL C1 may be the same as the method of calculating the reference wavelength WL C0 described with reference to FIG.
  • the laser control processor 30 predicts a second change amount dm f indicating a change in the order of the interference fringes of the fine etalon spectroscope 19 with respect to the reference order m f0 using the following equation.
  • dm f ⁇ WL C /FSRf
  • the laser control processor 30 also predicts the order m f1 of the interference fringes of the fine etalon spectroscope 19 using the following equation.
  • mf1 mf0 + dmf
  • the laser control processor 30 predicts the radius R f1m of the interference fringes of the fine etalon spectroscope 19 using the following formula.
  • R f1m (m f1 ⁇ C f ) 1/2
  • the laser control processor 30 also predicts two peak positions P f1l and P f1r of the interference fringes of the fine etalon spectroscope 19 using the following equations.
  • P f1l ctr ⁇ R f1m
  • P f1r ctr+R f1m
  • the laser control processor 30 sets two second measurement ranges of the fine etalon spectroscope 19 so as to include the predicted two peak positions P f1l and P f1r .
  • a width of 17 channels before and after the peak position P f1l of the interference fringes and a width of 17 channels before and after the peak position P f1r are set as the second measurement range.
  • the width of 33 channels before and after the peak position P f1l of the interference fringes and the width of 33 channels before and after the peak position P f1r are set as the second measurement range.
  • the laser control processor 30 reads data of the second measurement range of the fine etalon spectroscope 19 .
  • the laser control processor 30 calculates r f1m 2 , which is the square of the radius r f1m of the interference fringes of the fine etalon spectroscope 19 .
  • the method for calculating the square of the radius r f1m 2 may be the one described with reference to FIG. 13 (see Equation 2). Further, the laser control processor 30 calculates the center wavelength of the pulsed laser light as the measurement wavelength ⁇ m using the following formula.
  • ⁇ m ⁇ f0 + b ⁇ r f1m 2
  • ⁇ f0 is the value of the central wavelength ⁇ when the tilt angle ⁇ of the pulsed laser light passing between the partially reflecting mirrors of the etalon 19b in Equation 1 is set to 0
  • b is the proportionality peculiar to the fine etalon spectroscope 19. is a constant.
  • the laser control processor 30 ends the processing of this flowchart and returns to the processing shown in FIG.
  • the wavelength measurement device includes the coarse etalon spectroscope 18, the fine etalon spectroscope 19, and the laser control processor 30.
  • the coarse etalon spectroscope 18 has a free spectral range FSRc and generates a first measurement waveform from the interference pattern of pulsed laser light.
  • the fine etalon spectroscope 19 has a free spectral range FSRf smaller than the free spectral range FSRc, and generates a second measurement waveform from the interference pattern of the pulsed laser light.
  • the laser control processor 30 reads the data of the first measurement range of the coarse etalon spectroscope 18, sets the second measurement range of the fine etalon spectroscope 19 based on the data of the first measurement range, and sets the second measurement range of the fine etalon spectroscope 19.
  • the data of the measurement range are read, and the measurement wavelength ⁇ m of the pulse laser light is calculated based on the data of the first measurement range and the data of the second measurement range.
  • the second measurement range of the fine etalon spectroscope 19 is set based on the data of the first measurement range. can be set to speed up wavelength measurement.
  • the first measurement range corresponds to a wavelength range less than the free spectral range FSRc of the etalon 18b. According to this, wavelength measurement can be speeded up.
  • the second measurement range corresponds to a wavelength range smaller than the free spectral range FSRf of the etalon 19b. According to this, wavelength measurement can be speeded up.
  • the laser control processor 30 sets the first measurement range based on the first measurement waveform generated by pre-oscillation. According to this, it is possible to accurately set the first measurement range suitable for measurement near the wavelength of the pre-oscillation.
  • the laser control processor 30 sets the first measurement range to a range including the peak positions of the interference fringes of the first measurement waveform generated by pre-oscillation. According to this, the first measurement range can be set accurately.
  • the laser control processor 30 calculates the first change amount ⁇ WL C indicating the change in the center wavelength WL C1 calculated based on the data of the first measurement range, A second measurement range is set based on the amount of change ⁇ WL C. According to this, the second measurement range can be set accurately.
  • the laser control processor 30 calculates the reference wavelength WL C0 based on the first measurement waveform generated by the pre-oscillation, and calculates the change of the center wavelength WL C1 with respect to the reference wavelength WL C0 . It is calculated as a change amount ⁇ WL C of 1. According to this, the first amount of change ⁇ WL C can be accurately calculated.
  • the laser control processor 30 based on the first change amount ⁇ WL C , sets the second change amount indicating the change in the order m f1 of the interference fringes measured by the fine etalon spectroscope 19.
  • dm f is predicted and a second measurement range is set based on the second variation dm f . According to this, the second measurement range can be set accurately.
  • the laser control processor 30 calculates the reference order mf0 of the interference fringes of the fine etalon spectroscope 19 based on the second measurement waveform generated by the pre-oscillation, and A change of the order mf1 of the interference fringes measured at 19 with respect to the reference order mf0 is predicted as a second change amount dmf . According to this, the second amount of change dm_f can be accurately predicted.
  • the laser control processor 30 predicts the order m f1 of the interference fringes measured by the fine etalon spectroscope 19 based on the first change amount ⁇ WL C , and based on the order m f1 to set the second measurement range. According to this, the second measurement range can be set accurately.
  • the laser control processor 30 predicts the radius R f1m of the interference fringes measured by the fine etalon spectroscope 19 based on the first change amount ⁇ WL C , and based on the radius R f1m to set the second measurement range. According to this, the second measurement range can be set accurately.
  • the laser control processor 30 predicts the peak positions P f1l and P f1r of the interference fringes measured by the fine etalon spectroscope 19 based on the first change amount ⁇ WL C , and A second measurement range is set based on the positions P f1l and P f1r . According to this, the second measurement range can be set accurately.
  • the band-narrowing laser device 1a includes a laser oscillator 20 configured to output pulsed laser light, a band-narrowing module 14 arranged in the laser oscillator 20, and a band-narrowing a rotary stage 14e for changing the selected wavelength of the module 14;
  • the band-narrowing laser device 1 a further includes a coarse etalon spectroscope 18 , a fine etalon spectroscope 19 and a laser control processor 30 .
  • the coarse etalon spectroscope 18 has a free spectral range FSRc and generates a first measurement waveform from the interference pattern of pulsed laser light.
  • the fine etalon spectroscope 19 has a free spectral range FSRf smaller than the free spectral range FSRc, and generates a second measurement waveform from the interference pattern of the pulsed laser light.
  • the laser control processor 30 sets the target wavelength based on the first and second wavelength command values ⁇ 1t and ⁇ 2t received from the exposure apparatus 100, reads the data of the first measurement range of the coarse etalon spectroscope 18, Set the second measurement range of the fine etalon spectrometer 19 based on the data of the measurement range of, read the data of the second measurement range, and based on the data of the first measurement range and the data of the second measurement range to calculate the measurement wavelength ⁇ m of the pulsed laser light, and control the rotary stage 14e based on the target wavelength and the measurement wavelength ⁇ m.
  • the second measurement range of the fine etalon spectroscope 19 is set based on the data of the first measurement range. can be set to speed up wavelength measurement.
  • the laser control processor 30 receives the first and second wavelength command values ⁇ 1t and ⁇ 2t that change the target wavelength between the first wavelength and the second wavelength, and performs the first measurement
  • the range is set to the same range when measuring the first wavelength and when measuring the second wavelength
  • the second measurement range is set when measuring the first wavelength and when measuring the second wavelength. Set to different ranges. According to this, by setting the first measurement range to the same range when measuring the first wavelength and when measuring the second wavelength, the first measurement range is kept constant and the first wavelength and the second wavelength are measured. Two wavelengths can be measured.
  • the laser control processor 30 receives first and second wavelength command values ⁇ 1t and ⁇ 2t that change the target wavelength between the first wavelength and the second wavelength, and The difference from the second wavelength is smaller than the free spectral range FSRc of the etalon 18b and larger than the free spectral range FSRf of the etalon 19b. According to this, since the difference between the first wavelength and the second wavelength is smaller than the free spectral range FSRc of the etalon 18b, the first wavelength and the second wavelength are switched with a wavelength difference larger than the free spectral range FSRf of the etalon 19b. Also, high-speed wavelength measurement can be realized by the wavelength measurement device of the present disclosure.
  • the laser control processor 30 receives first and second wavelength command values ⁇ 1t and ⁇ 2t that change the target wavelength between the first wavelength and the second wavelength, and The laser oscillator 20 is controlled to pre-oscillate at a wavelength between the second wavelengths, and the first measurement range is set based on the first measurement waveform generated by the pre-oscillation. According to this, the first measurement range can be accurately set based on the data of the pre-oscillation at the wavelength between the first wavelength and the second wavelength.
  • the laser control processor 30 receives first and second wavelength command values ⁇ 1t and ⁇ 2t that change the target wavelength between the first wavelength and the second wavelength, and The laser oscillator 20 is controlled to pre-oscillate at a wavelength between the second wavelengths, the reference wavelength WL C0 is calculated based on the first measurement waveform generated by the pre-oscillation, and data of the first measurement range is obtained. and a second measurement range is set based on the first change amount .DELTA.WL C. According to this, the reference wavelength WL C0 is calculated based on the pre-oscillation data at the wavelength between the first wavelength and the second wavelength, and the first change amount ⁇ WL C is calculated, thereby performing the second measurement.
  • the range can be set precisely.
  • the laser control processor 30 calculates the reference order mf0 of the interference fringes of the fine etalon spectroscope 19 based on the second measurement waveform generated by pre-oscillation, and calculates the first change Based on the quantity ⁇ WL C , a second change amount dm f indicating a change of the order m f1 of the interference fringes measured by the fine etalon spectroscope 19 with respect to the reference order m f0 is predicted, and the second change amount dm f Based on this, the second measurement range is set.
  • the reference order m f0 is calculated based on the data of the pre-oscillation at the wavelength between the first wavelength and the second wavelength, and the second variation dm f is predicted to perform the second measurement.
  • the range can be set precisely.
  • the laser control processor 30 receives first and second wavelength command values ⁇ 1t and ⁇ 2t that change the target wavelength between the first wavelength and the second wavelength, and
  • the laser oscillator 20 is controlled to perform adjusted oscillation while switching the target wavelength between the second wavelength and the target wavelength based on the drive amounts D1 i and D2 i of the rotary stage 14e in adjusted oscillation and the measurement wavelength ⁇ m.
  • the driving amounts D1 and D2 of the rotary stage 14e at the time of switching are set. According to this, by setting the driving amounts D1 and D2 of the rotary stage 14e when the target wavelength is switched, the switching between the first wavelength and the second wavelength can be performed accurately.

Abstract

波長計測装置は、第1のフリースペクトラルレンジを有し、パルスレーザ光の干渉パターンから第1の計測波形を生成する第1の分光器と、第1のフリースペクトラルレンジより小さい第2のフリースペクトラルレンジを有し、パルスレーザ光の干渉パターンから第2の計測波形を生成する第2の分光器と、第1の分光器の第1の計測範囲のデータを読み出し、第1の計測範囲のデータに基づいて第2の分光器の第2の計測範囲を設定し、第2の計測範囲のデータを読み出し、第1の計測範囲のデータ及び第2の計測範囲のデータに基づいてパルスレーザ光の中心波長を算出するプロセッサと、を備える。

Description

波長計測装置、狭帯域化レーザ装置、及び電子デバイスの製造方法
 本開示は、波長計測装置、狭帯域化レーザ装置、及び電子デバイスの製造方法に関する。
 近年、半導体露光装置においては、半導体集積回路の微細化及び高集積化につれて、解像力の向上が要請されている。このため、露光用光源から放出される光の短波長化が進められている。たとえば、露光用のガスレーザ装置としては、波長約248nmのレーザ光を出力するKrFエキシマレーザ装置、ならびに波長約193nmのレーザ光を出力するArFエキシマレーザ装置が用いられる。
 KrFエキシマレーザ装置及びArFエキシマレーザ装置の自然発振光のスペクトル線幅は、350~400pmと広い。そのため、KrF及びArFレーザ光のような紫外線を透過させる材料で投影レンズを構成すると、色収差が発生してしまう場合がある。その結果、解像力が低下し得る。そこで、ガスレーザ装置から出力されるレーザ光のスペクトル線幅を、色収差が無視できる程度となるまで狭帯域化する必要がある。そのため、ガスレーザ装置のレーザ共振器内には、スペクトル線幅を狭帯域化するために、狭帯域化素子(エタロンやグレーティング等)を含む狭帯域化モジュール(Line Narrow Module:LNM)が備えられる場合がある。以下では、スペクトル線幅が狭帯域化されるガスレーザ装置を狭帯域化レーザ装置という。
米国特許出願公開第2002/167975号明細書 特開平05-007031号公報 米国特許出願公開第2019/033133号明細書
概要
 本開示の1つの観点に係る波長計測装置は、第1のフリースペクトラルレンジを有し、パルスレーザ光の干渉パターンから第1の計測波形を生成する第1の分光器と、第1のフリースペクトラルレンジより小さい第2のフリースペクトラルレンジを有し、パルスレーザ光の干渉パターンから第2の計測波形を生成する第2の分光器と、第1の分光器の第1の計測範囲のデータを読み出し、第1の計測範囲のデータに基づいて第2の分光器の第2の計測範囲を設定し、第2の計測範囲のデータを読み出し、第1の計測範囲のデータ及び第2の計測範囲のデータに基づいてパルスレーザ光の中心波長を算出するプロセッサと、を備える。
 本開示の1つの観点に係る狭帯域化レーザ装置は、パルスレーザ光を出力するように構成されたレーザ発振器と、レーザ発振器に配置された狭帯域化光学系と、狭帯域化光学系の選択波長を変化させるアクチュエータと、第1のフリースペクトラルレンジを有し、パルスレーザ光の干渉パターンから第1の計測波形を生成する第1の分光器と、第1のフリースペクトラルレンジより小さい第2のフリースペクトラルレンジを有し、パルスレーザ光の干渉パターンから第2の計測波形を生成する第2の分光器と、外部装置から受信した波長指令値に基づいて目標波長を設定し、第1の分光器の第1の計測範囲のデータを読み出し、第1の計測範囲のデータに基づいて第2の分光器の第2の計測範囲を設定し、第2の計測範囲のデータを読み出し、第1の計測範囲のデータ及び第2の計測範囲のデータに基づいてパルスレーザ光の中心波長を算出し、目標波長と中心波長とに基づいてアクチュエータを制御するプロセッサと、を備える。
 本開示の1つの観点に係る電子デバイスの製造方法は、パルスレーザ光を出力するように構成されたレーザ発振器と、レーザ発振器に配置された狭帯域化光学系と、狭帯域化光学系の選択波長を変化させるアクチュエータと、第1のフリースペクトラルレンジを有し、パルスレーザ光の干渉パターンから第1の計測波形を生成する第1の分光器と、第1のフリースペクトラルレンジより小さい第2のフリースペクトラルレンジを有し、パルスレーザ光の干渉パターンから第2の計測波形を生成する第2の分光器と、露光装置から受信した波長指令値に基づいて目標波長を設定し、第1の分光器の第1の計測範囲のデータを読み出し、第1の計測範囲のデータに基づいて第2の分光器の第2の計測範囲を設定し、第2の計測範囲のデータを読み出し、第1の計測範囲のデータ及び第2の計測範囲のデータに基づいてパルスレーザ光の中心波長を算出し、目標波長と中心波長とに基づいてアクチュエータを制御するプロセッサと、を備える狭帯域化レーザ装置によってパルスレーザ光を生成し、パルスレーザ光を露光装置に出力し、電子デバイスを製造するために、露光装置内で感光基板上にパルスレーザ光を露光することを含む。
 本開示のいくつかの実施形態を、単なる例として、添付の図面を参照して以下に説明する。
図1は、比較例における露光システムの構成を概略的に示す。 図2は、比較例に係る狭帯域化レーザ装置の構成を模式的に示す。 図3は、比較例におけるコースエタロン分光器とファインエタロン分光器の波長計測範囲を示すグラフである。 図4は、比較例における波長変化の例を示すグラフである。 図5は、図3の一部を拡大したグラフである。 図6は、本開示の実施形態におけるコースエタロン分光器とファインエタロン分光器の波長計測範囲を示すグラフである。 図7は、実施形態における波長変化の例を示すグラフである。 図8は、図6の一部を拡大したグラフである。 図9は、実施形態に係る狭帯域化レーザ装置の構成を模式的に示す。 図10は、実施形態におけるレーザ制御プロセッサの処理を示すフローチャートである。 図11は、実施形態において事前発振したときにコースエタロン分光器の干渉縞を検出して得られる第1の計測波形の例を示すグラフである。 図12は、実施形態において事前発振したときにファインエタロン分光器の干渉縞を検出して得られる第2の計測波形の例を示すグラフである。 図13は、干渉縞の半径を計算する方法の一例を示す。 図14は、実施形態における事前発振の処理の詳細を示すフローチャートである。 図15は、実施形態における調整発振の処理の詳細を示すフローチャートである。 図16は、実施形態における調整発振の処理の詳細を示すフローチャートである。 図17は、実施形態において波長計測するときにコースエタロン分光器の干渉縞を検出して得られる第1の計測波形の例を示すグラフである。 図18は、実施形態において波長計測するときにファインエタロン分光器の干渉縞を検出して得られる第2の計測波形の例を示すグラフである。 図19は、実施形態における波長計測の処理の詳細を示すフローチャートである。
実施形態
<内容>
1.比較例
 1.1 露光装置100の構成
 1.2 露光装置100の動作
 1.3 狭帯域化レーザ装置1の構成
  1.3.1 レーザ発振器20
  1.3.2 モニタモジュール16
  1.3.3 シャッター26
  1.3.4 各種処理装置
 1.4 狭帯域化レーザ装置1の動作
  1.4.1 レーザ制御プロセッサ30
  1.4.2 レーザ発振器20
  1.4.3 モニタモジュール16
  1.4.4 波長制御プロセッサ50
 1.5 比較例の課題
2.第1の計測範囲のデータに基づいて第2の計測範囲を設定する狭帯域化レーザ装置1a
 2.1 概要
 2.2 構成
 2.3 動作
  2.3.1 全体の流れ
  2.3.2 事前発振の詳細
  2.3.3 調整発振の詳細
  2.3.4 波長計測の詳細
 2.4 作用
3.その他
 以下、本開示の実施形態について、図面を参照しながら詳しく説明する。以下に説明される実施形態は、本開示のいくつかの例を示すものであって、本開示の内容を限定するものではない。また、実施形態で説明される構成及び動作の全てが本開示の構成及び動作として必須であるとは限らない。なお、同一の構成要素には同一の参照符号を付して、重複する説明を省略する。
1.比較例
 図1は、比較例における露光システムの構成を概略的に示す。本開示の比較例とは、出願人のみによって知られていると出願人が認識している形態であって、出願人が自認している公知例ではない。
 露光システムは、狭帯域化レーザ装置1と、露光装置100と、を含む。露光装置100は本開示における外部装置の一例である。狭帯域化レーザ装置1は、レーザ制御プロセッサ30を含む。レーザ制御プロセッサ30は、制御プログラムが記憶されたメモリ132と、制御プログラムを実行するCPU(central processing unit)131と、を含む処理装置である。レーザ制御プロセッサ30は本開示に含まれる各種処理を実行するために特別に構成又はプログラムされている。レーザ制御プロセッサ30は本開示におけるプロセッサに相当する。狭帯域化レーザ装置1は、パルスレーザ光を露光装置100に向けて出力するように構成されている。
 1.1 露光装置100の構成
 露光装置100は、照明光学系101と、投影光学系102と、露光制御プロセッサ110と、を含む。
 照明光学系101は、狭帯域化レーザ装置1から入射したパルスレーザ光によって、レチクルステージRT上に配置された図示しないレチクルのレチクルパターンを照明する。
 投影光学系102は、レチクルを透過したパルスレーザ光を、縮小投影してワークピーステーブルWT上に配置された図示しないワークピースに結像させる。ワークピースはレジスト膜が塗布された半導体ウエハ等の感光基板である。
 露光制御プロセッサ110は、制御プログラムが記憶されたメモリ112と、制御プログラムを実行するCPU111と、を含む処理装置である。露光制御プロセッサ110は本開示に含まれる各種処理を実行するために特別に構成又はプログラムされている。露光制御プロセッサ110は、露光装置100の制御を統括するとともに、レーザ制御プロセッサ30との間で各種データ及び各種信号を送受信する。
 1.2 露光装置100の動作
 露光制御プロセッサ110は、目標波長となる波長指令値のデータ、目標パルスエネルギーの設定値のデータ、及びトリガ信号をレーザ制御プロセッサ30に送信する。レーザ制御プロセッサ30は、これらのデータ及び信号に従って狭帯域化レーザ装置1を制御する。
 露光制御プロセッサ110は、レチクルステージRTとワークピーステーブルWTとを同期して互いに逆方向に平行移動させる。これにより、レチクルパターンを反映したパルスレーザ光でワークピースが露光される。
 このような露光工程によって半導体ウエハにレチクルパターンが転写される。その後、複数の工程を経ることで電子デバイスを製造することができる。
 1.3 狭帯域化レーザ装置1の構成
 図2は、比較例に係る狭帯域化レーザ装置1の構成を模式的に示す。狭帯域化レーザ装置1は、レーザ発振器20と、電源12と、モニタモジュール16と、レーザ制御プロセッサ30と、波長制御プロセッサ50と、を含む。狭帯域化レーザ装置1は露光装置100に接続可能とされている。モニタモジュール16、レーザ制御プロセッサ30、及び波長制御プロセッサ50が、本開示における波長計測装置を構成する。
  1.3.1 レーザ発振器20
 レーザ発振器20は、レーザチャンバ10と、放電電極11aと、狭帯域化モジュール14と、出力結合ミラー15と、シャッター26と、を含む。
 狭帯域化モジュール14と出力結合ミラー15とが、レーザ共振器を構成する。レーザチャンバ10は、レーザ共振器の光路に配置されている。レーザチャンバ10の両端にはウインドウ10a及び10bが設けられている。レーザチャンバ10の内部に、放電電極11a及びこれと対をなす図示しない放電電極が配置されている。図示しない放電電極は、紙面に垂直なV軸の方向において放電電極11aと重なるように位置している。レーザチャンバ10には、例えばレアガスとしてアルゴンガス又はクリプトンガス、ハロゲンガスとしてフッ素ガス、バッファガスとしてネオンガス等を含むレーザガスが封入される。
 電源12は、スイッチ13を含むとともに、放電電極11aと図示しない充電器とに接続されている。
 狭帯域化モジュール14は、複数のプリズム14a及び14bとグレーティング14cとを含む。プリズム14bは、回転ステージ14eに支持されている。回転ステージ14eは、波長ドライバ51から出力される駆動信号に従ってプリズム14bをV軸に平行な軸周りに回転させるように構成されている。回転ステージ14eによってプリズム14bを回転させることにより狭帯域化モジュール14の選択波長が変化する。狭帯域化モジュール14は本開示における狭帯域化光学系に相当し、回転ステージ14eは本開示におけるアクチュエータに相当する。
 出力結合ミラー15の1つの面は、部分反射膜でコーティングされている。
  1.3.2 モニタモジュール16
 モニタモジュール16は、出力結合ミラー15と露光装置100との間のパルスレーザ光の光路に配置されている。モニタモジュール16は、ビームスプリッタ16a、16b、及び17aと、エネルギーセンサ16cと、高反射ミラー17bと、コースエタロン分光器18と、ファインエタロン分光器19と、を含む。コースエタロン分光器18は本開示における第1の分光器に相当し、ファインエタロン分光器19は本開示における第2の分光器に相当する。
 ビームスプリッタ16aは、出力結合ミラー15から出力されたパルスレーザ光の光路に位置する。ビームスプリッタ16aは、出力結合ミラー15から出力されたパルスレーザ光の一部を露光装置100に向けて高い透過率で透過させるとともに、他の一部を反射するように構成されている。ビームスプリッタ16bは、ビームスプリッタ16aによって反射されたパルスレーザ光の光路に位置する。エネルギーセンサ16cは、ビームスプリッタ16bによって反射されたパルスレーザ光の光路に位置する。
 ビームスプリッタ17aは、ビームスプリッタ16bを透過したパルスレーザ光の光路に位置する。高反射ミラー17bは、ビームスプリッタ17aによって反射されたパルスレーザ光の光路に位置する。
 コースエタロン分光器18は、ビームスプリッタ17aを透過したパルスレーザ光の光路に配置されている。コースエタロン分光器18は、拡散プレート18aと、エタロン18bと、集光レンズ18cと、ラインセンサ18dと、を含む。
 拡散プレート18aは、ビームスプリッタ17aを透過したパルスレーザ光の光路に位置する。拡散プレート18aは、表面に多数の凹凸を有し、パルスレーザ光を透過させるとともに拡散させるように構成されている。
 エタロン18bは、拡散プレート18aを透過したパルスレーザ光の光路に位置する。エタロン18bは、2枚の部分反射ミラーを含む。2枚の部分反射ミラーは、所定距離のエアギャップを有して対向し、スペーサを介して貼り合わせられている。
 集光レンズ18cは、エタロン18bを透過したパルスレーザ光の光路に位置する。
 ラインセンサ18dは、集光レンズ18cを透過したパルスレーザ光の光路であって、集光レンズ18cの焦点面に位置する。ラインセンサ18dは、エタロン18b及び集光レンズ18cによって形成される干渉縞を受光する。干渉縞はパルスレーザ光の干渉パターンであって、同心円状の形状を有し、この同心円の中心からの距離の2乗は波長の変化に比例する。
 ラインセンサ18dは、一次元に配列された多数の受光素子を含む光分布センサである。あるいは、ラインセンサ18dの代わりに、二次元に配列された多数の受光素子を含むイメージセンサが光分布センサとして用いられてもよい。受光素子の各々をチャネルという。各チャネルにおいて検出された光強度から干渉縞の光強度分布が得られる。
 ファインエタロン分光器19は、高反射ミラー17bによって反射されたパルスレーザ光の光路に配置されている。ファインエタロン分光器19は、拡散プレート19aと、エタロン19bと、集光レンズ19cと、ラインセンサ19dと、を含む。これらの構成は、コースエタロン分光器18に含まれる拡散プレート18a、エタロン18b、集光レンズ18c、及びラインセンサ18dとそれぞれ同様である。但し、エタロン19bはエタロン18bよりも小さいフリースペクトラルレンジを有する。フリースペクトラルレンジについては後述する。また、集光レンズ19cは集光レンズ18cよりも長い焦点距離を有する。
  1.3.3 シャッター26
 シャッター26は、モニタモジュール16と露光装置100との間のパルスレーザ光の光路に配置されている。シャッター26は、レーザ発振器20から出力されたパルスレーザ光を露光装置100に向けて通過させる第1の状態と、パルスレーザ光を遮断する第2の状態と、に切り替え可能に構成されている。シャッター26を第1の状態とすることをシャッター26を開くといい、シャッター26を第2の状態とすることをシャッター26を閉じるという。
  1.3.4 各種処理装置
 波長制御プロセッサ50は、制御プログラムが記憶されたメモリ61と、制御プログラムを実行するCPU62と、を含む処理装置である。波長制御プロセッサ50は本開示に含まれる各種処理を実行するために特別に構成又はプログラムされている。
 メモリ61は、パルスレーザ光の中心波長を算出するための各種データも記憶している。
 図2においては、レーザ制御プロセッサ30と波長制御プロセッサ50とを別々の構成要素として示しているが、レーザ制御プロセッサ30が波長制御プロセッサ50を兼ねていてもよい。
 1.4 狭帯域化レーザ装置1の動作
  1.4.1 レーザ制御プロセッサ30
 レーザ制御プロセッサ30は、目標波長となる波長指令値のデータ及び目標パルスエネルギーの設定値のデータとトリガ信号とを露光装置100に含まれる露光制御プロセッサ110から受信する。
 レーザ制御プロセッサ30は、目標パルスエネルギーの設定値に基づいて、放電電極11aに印加される印加電圧の設定データを電源12に送信する。レーザ制御プロセッサ30は、波長指令値のデータを波長制御プロセッサ50に送信する。また、レーザ制御プロセッサ30は、トリガ信号に基づく発振トリガ信号を電源12に含まれるスイッチ13に送信する。
  1.4.2 レーザ発振器20
 スイッチ13は、レーザ制御プロセッサ30から発振トリガ信号を受信するとオン状態となる。電源12は、スイッチ13がオン状態となると、図示しない充電器に充電された電気エネルギーからパルス状の高電圧を生成し、この高電圧を放電電極11aに印加する。
 放電電極11aに高電圧が印加されると、レーザチャンバ10の内部に放電が起こる。この放電のエネルギーにより、レーザチャンバ10の内部のレーザ媒質が励起されて高エネルギー準位に移行する。励起されたレーザ媒質が、その後低エネルギー準位に移行するとき、そのエネルギー準位差に応じた波長の光を放出する。
 レーザチャンバ10の内部で発生した光は、ウインドウ10a及び10bを介してレーザチャンバ10の外部に出射する。レーザチャンバ10のウインドウ10aから出射した光は、プリズム14a及び14bによってビーム幅を拡大させられて、グレーティング14cに入射する。
 プリズム14a及び14bからグレーティング14cに入射した光は、グレーティング14cの複数の溝によって反射されるとともに、光の波長に応じた方向に回折させられる。
 プリズム14a及び14bは、グレーティング14cからの回折光のビーム幅を縮小させるとともに、その光を、ウインドウ10aを介してレーザチャンバ10に戻す。
 出力結合ミラー15は、レーザチャンバ10のウインドウ10bから出射した光のうちの一部を透過させて出力し、他の一部を反射してウインドウ10bを介してレーザチャンバ10の内部に戻す。
 このようにして、レーザチャンバ10から出射した光は、狭帯域化モジュール14と出力結合ミラー15との間で往復し、レーザチャンバ10の内部の放電空間を通過する度に増幅される。この光は、狭帯域化モジュール14で折り返される度に狭帯域化される。こうしてレーザ発振し狭帯域化された光が、出力結合ミラー15からパルスレーザ光として出力される。
  1.4.3 モニタモジュール16
 エネルギーセンサ16cは、パルスレーザ光のパルスエネルギーを検出し、パルスエネルギーのデータをレーザ制御プロセッサ30及び波長制御プロセッサ50に出力する。パルスエネルギーのデータは、レーザ制御プロセッサ30が放電電極11aに印加される印加電圧の設定データをフィードバック制御するのに用いられる。また、パルスエネルギーのデータを受信したタイミングは、波長制御プロセッサ50がコースエタロン分光器18及びファインエタロン分光器19にデータ出力トリガを出力するタイミングの基準として用いることができる。
 コースエタロン分光器18は、ラインセンサ18dで検出されたパルスレーザ光の干渉パターンから第1の計測波形を生成する。コースエタロン分光器18は、波長制御プロセッサ50から出力されるデータ出力トリガに従って、第1の計測波形を波長制御プロセッサ50に送信する。
 ファインエタロン分光器19は、ラインセンサ19dで検出されたパルスレーザ光の干渉パターンから第2の計測波形を生成する。ファインエタロン分光器19は、波長制御プロセッサ50から出力されるデータ出力トリガに従って、第2の計測波形を波長制御プロセッサ50に送信する。
 第1及び第2の計測波形の各々は、フリンジ波形ともいい、干渉縞を構成する同心円の中心からの距離と光強度との関係を示している。
  1.4.4 波長制御プロセッサ50
 波長制御プロセッサ50は、目標波長となる波長指令値をレーザ制御プロセッサ30から受信する。また、波長制御プロセッサ50は、コースエタロン分光器18及びファインエタロン分光器19からそれぞれ出力される計測波形を用いてパルスレーザ光の中心波長を計測波長λmとして算出する。波長制御プロセッサ50は、目標波長と計測波長λmとに基づいて波長ドライバ51に制御信号を出力することにより、パルスレーザ光の中心波長をフィードバック制御する。
 1.5 比較例の課題
 一般に、エタロンの干渉条件は次の式1において干渉縞の次数mが整数になる場合として与えられる。
   mλ=2nd・cosθ ・・・式1
ここで、λはパルスレーザ光の中心波長であり、nはエタロンを構成する2枚の部分反射ミラー間のエアギャップの屈折率であり、dは2枚の部分反射ミラー間の距離であり、θは2枚の部分反射ミラー間を通るパルスレーザ光の傾斜角度である。
 中心波長λを変化させたとき、式1の干渉条件を満たす中心波長λは周期的に現れる。その周期をフリースペクトラルレンジFSRという。
 一般に、エタロンの分解能Rは、以下の式で表される。
   R=FSR/F
ここで、FSRはエタロンのフリースペクトラルレンジであり、Fはエタロンのフィネスである。
 エタロン18bとエタロン19bとでフィネスFがほぼ同じである場合、フリースペクトラルレンジFSRが小さいほど分解能Rが高くなる。従って、エタロン18bよりもエタロン19bの方が波長変化を詳細に計測できる。
 しかし、波長変化がエタロン19bのフリースペクトラルレンジFSRfの倍数と一致した場合、エタロン19bを用いて検出される干渉縞はほぼ同じとなるため、エタロン19bの計測結果だけでは波長変化が生じたか否かの区別がつかない。そのため、フリースペクトラルレンジFSRcの大きいエタロン18bと組み合わせることで、広い範囲の波長変化を高精度に計測できる。
 図3は、比較例におけるコースエタロン分光器18とファインエタロン分光器19の波長計測範囲を示すグラフである。図3の横軸は波長である。エタロン18bのフリースペクトラルレンジFSRcを500pmとし、エタロン19bのフリースペクトラルレンジFSRfを10pmとする。エタロン18bのフリースペクトラルレンジFSRcは本開示における第1のフリースペクトラルレンジに相当し、エタロン19bのフリースペクトラルレンジFSRfは本開示における第2のフリースペクトラルレンジに相当する。
 図4は、比較例における波長変化の例を示すグラフである。図4の横軸は波長であり、縦軸は時間である。第1波長から第2波長への波長変化がエタロン19bのフリースペクトラルレンジFSRfより小さい場合には、ファインエタロン分光器19の計測結果から波長変化を読み取ることができる。
 図5は、図3の一部を拡大したグラフである。波長変化がエタロン19bのフリースペクトラルレンジFSRfより大きい場合、ファインエタロン分光器19の計測結果からは干渉縞の次数を判別できないため、波長変化を読み取ることができない。
 第1波長から第2波長への波長変化がエタロン18bのフリースペクトラルレンジFSRcより小さい場合には、コースエタロン分光器18及びファインエタロン分光器19の計測結果を組み合わせて中心波長λを算出することができる。しかし、波長変化を頻繁に行う場合には中心波長λの計算が間に合わなくなることがある。
 以下に説明する実施形態においては、コースエタロン分光器18の第1の計測範囲のデータに基づいてファインエタロン分光器19の第2の計測範囲を設定し、第1の計測範囲のデータ及び第2の計測範囲のデータに基づいてパルスレーザ光の中心波長を計測波長λmとして算出する。第1の計測範囲のデータに基づいて第2の計測範囲を設定することで第2の計測範囲を的確に設定し、第1及び第2の計測範囲のデータを用いることで計算量を低減し、計測波長λmの計測を高速化する。
2.第1の計測範囲のデータに基づいて第2の計測範囲を設定する狭帯域化レーザ装置1a
 2.1 概要
 図6は、本開示の実施形態におけるコースエタロン分光器18とファインエタロン分光器19の波長計測範囲を示すグラフである。図7は、実施形態における波長変化の例を示すグラフである。
 第1の計測範囲は、コースエタロン分光器18の計測範囲のうち、図6及び図7に示される第1の波長範囲に相当する計測範囲である。第1の波長範囲は、エタロン18bのフリースペクトラルレンジFSRcより小さく、エタロン19bのフリースペクトラルレンジFSRfより大きい。パルスレーザ光の中心波長を第1波長と第2波長との間で変化させる場合に、第1の波長範囲は、第1波長と第2波長との両方を含む。すなわち、第1の計測範囲は、第1波長を計測する場合と第2波長を計測する場合とで同じ範囲に設定される。第1波長と第2波長との波長差は、エタロン19bのフリースペクトラルレンジFSRfより大きい。
 他の点については、図6及び図7は図3及び図4とそれぞれ同様である。
 図8は、図6の一部を拡大したグラフである。実施形態においては、コースエタロン分光器18の第1の計測範囲のデータに基づいて、ファインエタロン分光器19の第2の計測範囲を設定する。第2の計測範囲は、ファインエタロン分光器19の計測範囲のうち、図8に示される第2の波長範囲に相当する計測範囲である。
 第1の計測範囲のデータから第1波長が検出された場合、第2の波長範囲が第1波長を含むように第2の計測範囲が設定される。第1の計測範囲のデータから第2波長が検出された場合、第2の波長範囲が第2波長を含むように第2の計測範囲が設定される。すなわち、第2の計測範囲は、第1波長を計測する場合と第2波長を計測する場合とで異なる範囲に設定される。第2の波長範囲は、エタロン19bのフリースペクトラルレンジFSRfより小さい。
 2.2 構成
 図9は、実施形態に係る狭帯域化レーザ装置1aの構成を模式的に示す。狭帯域化レーザ装置1aにおいて、波長制御プロセッサ50に含まれるメモリ61は、第1の計測範囲を特定するデータを記憶している。第1の計測範囲は、後述の事前発振によって設定され、メモリ61に記憶される。メモリ61は、第1の計測範囲以外にも、基準波長WLC0、基準次数mf0、フリンジ定数C等を記憶してもよい。
 2.3 動作
 2.3.1 全体の流れ
 図10は、実施形態におけるレーザ制御プロセッサ30の処理を示すフローチャートである。レーザ制御プロセッサ30の代わりに、波長制御プロセッサ50が図10に示される処理を行ってもよい。
 S1において、レーザ制御プロセッサ30は、露光制御プロセッサ110から第1及び第2波長指令値λ1t及びλ2tを受信する。ここでは狭帯域化レーザ装置1aが2波長で交互にレーザ発振する場合について説明するが、1波長でレーザ発振する場合にも実施形態を適用できる。
 露光装置100における焦点距離は、パルスレーザ光の波長に依存する。2波長発振して露光装置100に入射したパルスレーザ光は、パルスレーザ光の光路軸の方向において互いに異なる位置で結像するので、実質的に焦点深度を大きくすることができる。例えば、膜厚の大きいレジスト膜を露光する場合でも、レジスト膜の厚み方向での結像性能を維持し得る。
 S2において、レーザ制御プロセッサ30は、目標波長を第1波長指令値λ1tと第2波長指令値λ2tとの間の値に設定して事前発振を行うようレーザ発振器20を制御する。事前発振において、レーザ制御プロセッサ30は、波長計測(S5)のための各種パラメータを算出する。事前発振の処理の詳細については図11~図14を参照しながら後述する。
 S3において、レーザ制御プロセッサ30は、第1波長指令値λ1tと第2波長指令値λ2tとで目標波長を切り替えながら調整発振を行うようレーザ発振器20を制御する。調整発振において、レーザ制御プロセッサ30は、回転ステージ14eの駆動量D1及びD2と計測される計測波長λmとに基づいて、目標波長を切り替えたときの回転ステージ14eの駆動量D1及びD2を設定する。調整発振の処理の詳細については図16を参照しながら後述する。1波長でレーザ発振する場合にはS3の処理は行わなくてもよい。
 S4において、レーザ制御プロセッサ30は、事前発振及び調整発振の終了を露光制御プロセッサ110に通知し、露光動作のためのレーザ発振を開始するようレーザ発振器20を制御する。露光動作においては、第1波長指令値λ1tと第2波長指令値λ2tとで目標波長を切り替えながらレーザ発振が行われる。
 S5において、レーザ制御プロセッサ30は、コースエタロン分光器18及びファインエタロン分光器19のデータを読み出して波長計測を行い、計測波長λmを算出する。波長計測の処理の詳細については図17~図19を参照しながら後述する。
 S6において、レーザ制御プロセッサ30は、計測波長λmが目標波長に近づくように回転ステージ14eを制御する。
 S7において、レーザ制御プロセッサ30は、露光制御プロセッサ110から第1及び第2波長指令値λ1t及びλ2tの変更情報を受信したか否かを判定する。第1及び第2波長指令値λ1t及びλ2tの変更情報を受信した場合(S7:YES)、レーザ制御プロセッサ30は、S2に処理を戻す。第1及び第2波長指令値λ1t及びλ2tの変更情報を受信していない場合(S7:NO)、レーザ制御プロセッサ30は、S8に処理を進める。
 S8において、レーザ制御プロセッサ30は、半導体ウエハを交換するか否かを判定する。半導体ウエハを交換する場合(S8:YES)、レーザ制御プロセッサ30は、S2に処理を戻す。半導体ウエハを交換しない場合(S8:NO)、レーザ制御プロセッサ30は、S9に処理を進める。
 S9において、レーザ制御プロセッサ30は、露光動作を終了するか否かを判定する。露光動作を終了しない場合(S9:NO)、レーザ制御プロセッサ30は、処理をS5に戻す。露光動作を終了する場合(S9:YES)、レーザ制御プロセッサ30は、本フローチャートの処理を終了する。
 2.3.2 事前発振の詳細
 図11は、実施形態において事前発振したときにコースエタロン分光器18の干渉縞を検出して得られる第1の計測波形の例を示すグラフである。図11の横軸は、ラインセンサ18dに含まれる複数のチャネルを示し、縦軸はそれぞれのチャネルにおける光量を示す。
 事前発振においては、実際に露光に用いる波長の付近に目標波長を設定してレーザ発振が行われる。また、事前発振におけるコースエタロン分光器18の干渉縞の半径rc0mが算出される。干渉縞の半径rc0mから算出されるパルスレーザ光の中心波長を基準波長WLC0とする。第1の計測範囲は、コースエタロン分光器18の干渉縞のピーク位置を基準とした一定幅に設定される。
 図12は、実施形態において事前発振したときにファインエタロン分光器19の干渉縞を検出して得られる第2の計測波形の例を示すグラフである。図12の横軸は、ラインセンサ19dに含まれる複数のチャネルを示し、縦軸はそれぞれのチャネルにおける光量を示す。
 事前発振においては、ファインエタロン分光器19の第1の干渉縞の半径rf0m及び第2の干渉縞の半径rf0m-1が算出される。第2の干渉縞は、第1の干渉縞よりも次数が1小さい干渉縞である。
 干渉縞の半径rc0m、rf0m、及びrf0m-1は、干渉縞の中心ctrから干渉縞のピーク位置までの距離に相当する。
 図13は、干渉縞の半径を計算する方法の一例を示す。1つの干渉縞における光量の最大値をImaxとする。その干渉縞の中心ctrから、その干渉縞の外側において半値Imax/2となる位置までの距離をroutとし、その干渉縞の内側において半値Imax/2となる位置までの距離をrinとする。干渉縞の半径rの2乗rは以下の式2で算出される。
   r=(rout +rin )/2 ・・・式2
 干渉縞の中心ctrから半径rの距離に相当する位置を、干渉縞のピーク位置と呼ぶことがある。
 図14は、実施形態における事前発振の処理の詳細を示すフローチャートである。図14に示される処理は、図10に示されるS2のサブルーチンに相当する。
 S201において、レーザ制御プロセッサ30は、シャッター26を閉じる。
 S202において、レーザ制御プロセッサ30は、事前発振の目標波長を第1及び第2波長指令値λ1t及びλ2tの間の値に設定する。好ましくは、事前発振の目標波長は第1及び第2波長指令値λ1t及びλ2tの平均値に設定される。
 S203において、レーザ制御プロセッサ30は、露光制御プロセッサ110からのトリガ信号による事前発振を開始するようレーザ発振器20を制御する。
 S204において、レーザ制御プロセッサ30は、コースエタロン分光器18の干渉縞の半径rc0mの2乗rc0m を算出する。半径の2乗rc0m の算出方法は、図13を参照しながら説明したものでもよい(式2参照)。さらに、レーザ制御プロセッサ30は、パルスレーザ光の中心波長を基準波長WLC0として以下の式により算出する。
   WLC0=λc0+a・rc0m
ここで、λc0は式1においてエタロン18bの部分反射ミラー間を通るパルスレーザ光の傾斜角度θを0としたときの中心波長λの値であり、aはコースエタロン分光器18に固有の比例定数である。
 S205において、レーザ制御プロセッサ30は、計測された干渉縞の2箇所のピーク位置をそれぞれ含むように、コースエタロン分光器18の2つの第1の計測範囲を設定する(図11参照)。例えば、干渉縞のピーク位置の前後17チャネルの幅を第1の計測範囲とする。あるいは、干渉縞のピーク位置の前後33チャネルの幅を第1の計測範囲とする。
 S206において、レーザ制御プロセッサ30は、ファインエタロン分光器19の干渉縞の半径rf0m及びrf0m-1のそれぞれの2乗rf0m 及びrf0m-1 を算出する。半径の2乗rf0m 及びrf0m-1 の算出方法は、図13を参照しながら説明したものでもよい(式2参照)。さらに、レーザ制御プロセッサ30は、ファインエタロン分光器19のフリンジ定数Cを以下の式により算出する。
   C=rf0m -rf0m-1
 S207において、レーザ制御プロセッサ30は、ファインエタロン分光器19の干渉縞の基準次数mf0を以下の式により算出する。
   mf0=rf0m /C
 S208において、レーザ制御プロセッサ30は、事前発振を停止するようにレーザ発振器20を制御する。
 S209において、レーザ制御プロセッサ30は、シャッター26を開く。
 S209の後、レーザ制御プロセッサ30は本フローチャートの処理を終了し、図10に示される処理に戻る。
 2.3.3 調整発振の詳細
 図15及び図16は、実施形態における調整発振の処理の詳細を示すフローチャートである。図15及び図16に示される処理は、図10に示されるS3のサブルーチンに相当する。
 図15を参照し、S301において、レーザ制御プロセッサ30は、シャッター26を閉じる。
 S302において、レーザ制御プロセッサ30は、露光制御プロセッサ110からのトリガ信号による調整発振を開始するようレーザ発振器20を制御する。
 S303において、レーザ制御プロセッサ30は、目標波長を第1波長指令値λ1tに設定し、回転ステージ14eを駆動量D1駆動する。
 S304において、レーザ制御プロセッサ30は、コースエタロン分光器18及びファインエタロン分光器19のデータを読み出して波長計測を行い、計測波長λmを算出する。波長計測の処理の詳細については図17~図19を参照しながら後述する。
 S305において、レーザ制御プロセッサ30は、計測波長λmと目標波長λ1tとの波長差Δλ1を以下の式により算出する。
   Δλ1=λm-λ1t
 S306において、レーザ制御プロセッサ30は、計測波長λmが目標波長λ1tに近づくように回転ステージ14eを制御する。なお、S306においては回転ステージ14eを制御するだけで、パルスレーザ光の出力及び波長計測はしなくてもよい。
 S307において、レーザ制御プロセッサ30は、次に目標波長をλ1tとしたときの回転ステージ14eの駆動量D1i+1を次の式により算出する。
   D1i+1=D1+α・Δλ1
ここで、αは回転ステージ14eに固有の比例定数である。
 図16を参照し、S308において、レーザ制御プロセッサ30は、目標波長を第2波長指令値λ2tに設定し、回転ステージ14eを駆動量D2駆動する。
 S309において、レーザ制御プロセッサ30は、コースエタロン分光器18及びファインエタロン分光器19のデータを読み出して波長計測を行い、計測波長λmを算出する。波長計測の処理の詳細については図17~図19を参照しながら後述する。
 S310において、レーザ制御プロセッサ30は、計測波長λmと目標波長λ2tとの波長差Δλ2を以下の式により算出する。
   Δλ2=λm-λ2t
 S311において、レーザ制御プロセッサ30は、計測波長λmが目標波長λ2tに近づくように回転ステージ14eを制御する。なお、S311においては回転ステージ14eを制御するだけで、パルスレーザ光の出力及び波長計測はしなくてもよい。
 S312において、レーザ制御プロセッサ30は、次に目標波長をλ2tとしたときの回転ステージ14eの駆動量D2i+1を次の式により算出する。
   D2i+1=D2+α・Δλ2
 S313において、レーザ制御プロセッサ30は、iの値に1を加算してiの値を更新する。すなわち、S307及びS312で算出された次の駆動量D1i+1及びD2i+1は、S303及びS308を次に実行するときの駆動量D1及びD2として用いられる。
 S314において、レーザ制御プロセッサ30は、波長差Δλ1及びΔλ2が許容範囲内であるか否かを判定する。例えば、波長差Δλ1及びΔλ2の各々の絶対値が所定値以下であるか否かを判定する。波長差Δλ1及びΔλ2が許容範囲内でない場合(S314:NO)、レーザ制御プロセッサ30は、S303に処理を戻す。波長差Δλ1及びΔλ2が許容範囲内である場合(S314:YES)、レーザ制御プロセッサ30は、S315に処理を進める。
 S315において、レーザ制御プロセッサ30は、調整発振を停止するようにレーザ発振器20を制御する。
 S316において、レーザ制御プロセッサ30は、最新の駆動量D1及びD2を露光動作における駆動量D1及びD2にそれぞれ設定する。
 S317において、レーザ制御プロセッサ30は、シャッター26を開く。
 S317の後、レーザ制御プロセッサ30は本フローチャートの処理を終了し、図10に示される処理に戻る。
 2.3.4 波長計測の詳細
 図17は、実施形態において波長計測するときにコースエタロン分光器18の干渉縞を検出して得られる第1の計測波形の例を示すグラフである。図17の横軸は、ラインセンサ18dに含まれる複数のチャネルを示し、縦軸はそれぞれのチャネルにおける光量を示す。図17には、事前発振したときの第1の計測波形が破線で示されている。
 波長計測においては、事前発振で設定されたコースエタロン分光器18の第1の計測範囲のデータのみが読み出される。第1の計測範囲に干渉縞が含まれていれば、波長計測におけるコースエタロン分光器18の干渉縞の半径rc1mを算出できる。干渉縞の半径rc1mからパルスレーザ光の中心波長WLC1が算出される。第1の計測範囲のデータに基づいて算出される中心波長WLC1は本開示における算出波長に相当する。基準波長WLC0に対する中心波長WLC1の変化を示す第1の変化量ΔWLに基づいて、ファインエタロン分光器19の第2の計測範囲が設定される。
 図18は、実施形態において波長計測するときにファインエタロン分光器19の干渉縞を検出して得られる第2の計測波形の例を示すグラフである。図18の横軸は、ラインセンサ19dに含まれる複数のチャネルを示し、縦軸はそれぞれのチャネルにおける光量を示す。図18には、事前発振したときの第2の計測波形が破線で示されている。
 波長計測においては、ファインエタロン分光器19の第2の計測範囲のデータのみが読み出される。第2の計測範囲に干渉縞が含まれていれば、波長計測におけるファインエタロン分光器19の干渉縞の半径rf1mを算出できる。干渉縞の半径rf1mからパルスレーザ光の中心波長が計測波長λmとして算出される。
 図19は、実施形態における波長計測の処理の詳細を示すフローチャートである。図19に示される処理は、図10に示されるS5、図15に示されるS304、及び図16に示されるS309のサブルーチンに相当する。
 S501において、レーザ制御プロセッサ30は、コースエタロン分光器18の第1の計測範囲のデータを読み出し、パルスレーザ光の中心波長WLC1を算出する。中心波長WLC1の算出方法は、図14を参照しながら説明した基準波長WLC0の算出方法と同様でよい。
 S502において、レーザ制御プロセッサ30は、中心波長WLC1の基準波長WLC0に対する変化を示す第1の変化量ΔWLを以下の式により算出する。
   ΔWL=WLC1-WLC0
 S503において、レーザ制御プロセッサ30は、ファインエタロン分光器19の干渉縞の次数の基準次数mf0に対する変化を示す第2の変化量dmを以下の式により予測する。
   dm=ΔWL/FSRf
 また、レーザ制御プロセッサ30は、ファインエタロン分光器19の干渉縞の次数mf1を以下の式により予測する。
   mf1=mf0+dm
 S504において、レーザ制御プロセッサ30は、ファインエタロン分光器19の干渉縞の半径Rf1mを以下の式により予測する。
   Rf1m=(mf1・C1/2
 また、レーザ制御プロセッサ30は、ファインエタロン分光器19の干渉縞の2箇所のピーク位置Pf1l及びPf1rを以下の式により予測する。
   Pf1l=ctr-Rf1m
   Pf1r=ctr+Rf1m
 S505において、レーザ制御プロセッサ30は、予測された2箇所のピーク位置Pf1l及びPf1rをそれぞれ含むように、ファインエタロン分光器19の2つの第2の計測範囲を設定する。例えば、干渉縞のピーク位置Pf1lの前後17チャネル及びピーク位置Pf1rの前後17チャネルの幅を第2の計測範囲とする。あるいは、干渉縞のピーク位置Pf1lの前後33チャネル及びピーク位置Pf1rの前後33チャネルの幅を第2の計測範囲とする。
 S506において、レーザ制御プロセッサ30は、ファインエタロン分光器19の第2の計測範囲のデータを読み出す。レーザ制御プロセッサ30は、ファインエタロン分光器19の干渉縞の半径rf1mの2乗rf1m を算出する。半径の2乗rf1m の算出方法は、図13を参照しながら説明したものでもよい(式2参照)。さらに、レーザ制御プロセッサ30は、パルスレーザ光の中心波長を計測波長λmとして以下の式により算出する。
   λm=λf0+b・rf1m
ここで、λf0は式1においてエタロン19bの部分反射ミラー間を通るパルスレーザ光の傾斜角度θを0としたときの中心波長λの値であり、bはファインエタロン分光器19に固有の比例定数である。
 S506の後、レーザ制御プロセッサ30は本フローチャートの処理を終了し、図10に示される処理に戻る。
 2.4 作用
 (1)本開示の実施形態によれば、波長計測装置は、コースエタロン分光器18と、ファインエタロン分光器19と、レーザ制御プロセッサ30とを備える。コースエタロン分光器18は、フリースペクトラルレンジFSRcを有し、パルスレーザ光の干渉パターンから第1の計測波形を生成する。ファインエタロン分光器19は、フリースペクトラルレンジFSRcより小さいフリースペクトラルレンジFSRfを有し、パルスレーザ光の干渉パターンから第2の計測波形を生成する。レーザ制御プロセッサ30は、コースエタロン分光器18の第1の計測範囲のデータを読み出し、第1の計測範囲のデータに基づいてファインエタロン分光器19の第2の計測範囲を設定し、第2の計測範囲のデータを読み出し、第1の計測範囲のデータ及び第2の計測範囲のデータに基づいてパルスレーザ光の計測波長λmを算出する。
 これによれば、第1の計測範囲のデータに基づいてファインエタロン分光器19の第2の計測範囲を設定するので、ファインエタロン分光器19の計測範囲のうちの第2の計測範囲を的確に設定し、波長の計測を高速化できる。
 (2)実施形態によれば、第1の計測範囲は、エタロン18bのフリースペクトラルレンジFSRcより小さい波長範囲に対応する。
 これによれば、波長の計測を高速化できる。
 (3)実施形態によれば、第2の計測範囲は、エタロン19bのフリースペクトラルレンジFSRfより小さい波長範囲に対応する。
 これによれば、波長の計測を高速化できる。
 (4)実施形態によれば、レーザ制御プロセッサ30は、事前発振で生成された第1の計測波形に基づいて、第1の計測範囲を設定する。
 これによれば、事前発振の波長付近での測定に適した第1の計測範囲を的確に設定できる。
 (5)実施形態によれば、レーザ制御プロセッサ30は、事前発振で生成された第1の計測波形の干渉縞のピーク位置を含む範囲に第1の計測範囲を設定する。
 これによれば、第1の計測範囲を的確に設定できる。
 (6)実施形態によれば、レーザ制御プロセッサ30は、第1の計測範囲のデータに基づいて算出される中心波長WLC1の変化を示す第1の変化量ΔWLを算出し、第1の変化量ΔWLに基づいて第2の計測範囲を設定する。
 これによれば、第2の計測範囲を的確に設定できる。
 (7)実施形態によれば、レーザ制御プロセッサ30は、事前発振で生成された第1の計測波形に基づいて基準波長WLC0を算出し、中心波長WLC1の基準波長WLC0に対する変化を第1の変化量ΔWLとして算出する。
 これによれば、第1の変化量ΔWLを的確に算出できる。
 (8)実施形態によれば、レーザ制御プロセッサ30は、第1の変化量ΔWLに基づいて、ファインエタロン分光器19で計測される干渉縞の次数mf1の変化を示す第2の変化量dmを予測し、第2の変化量dmに基づいて第2の計測範囲を設定する。
 これによれば、第2の計測範囲を的確に設定できる。
 (9)実施形態によれば、レーザ制御プロセッサ30は、事前発振で生成された第2の計測波形に基づいてファインエタロン分光器19の干渉縞の基準次数mf0を算出し、ファインエタロン分光器19で計測される干渉縞の次数mf1の基準次数mf0に対する変化を第2の変化量dmとして予測する。
 これによれば、第2の変化量dmを的確に予測できる。
 (10)実施形態によれば、レーザ制御プロセッサ30は、第1の変化量ΔWLに基づいて、ファインエタロン分光器19で計測される干渉縞の次数mf1を予測し、次数mf1に基づいて第2の計測範囲を設定する。
 これによれば、第2の計測範囲を的確に設定できる。
 (11)実施形態によれば、レーザ制御プロセッサ30は、第1の変化量ΔWLに基づいて、ファインエタロン分光器19で計測される干渉縞の半径Rf1mを予測し、半径Rf1mに基づいて第2の計測範囲を設定する。
 これによれば、第2の計測範囲を的確に設定できる。
 (12)実施形態によれば、レーザ制御プロセッサ30は、第1の変化量ΔWLに基づいて、ファインエタロン分光器19で計測される干渉縞のピーク位置Pf1l及びPf1rを予測し、ピーク位置Pf1l及びPf1rに基づいて第2の計測範囲を設定する。
 これによれば、第2の計測範囲を的確に設定できる。
 (13)実施形態によれば、狭帯域化レーザ装置1aは、パルスレーザ光を出力するように構成されたレーザ発振器20と、レーザ発振器20に配置された狭帯域化モジュール14と、狭帯域化モジュール14の選択波長を変化させる回転ステージ14eと、を備える。狭帯域化レーザ装置1aは、さらに、コースエタロン分光器18と、ファインエタロン分光器19と、レーザ制御プロセッサ30とを備える。コースエタロン分光器18は、フリースペクトラルレンジFSRcを有し、パルスレーザ光の干渉パターンから第1の計測波形を生成する。ファインエタロン分光器19は、フリースペクトラルレンジFSRcより小さいフリースペクトラルレンジFSRfを有し、パルスレーザ光の干渉パターンから第2の計測波形を生成する。レーザ制御プロセッサ30は、露光装置100から受信した第1及び第2波長指令値λ1t及びλ2tに基づいて目標波長を設定し、コースエタロン分光器18の第1の計測範囲のデータを読み出し、第1の計測範囲のデータに基づいてファインエタロン分光器19の第2の計測範囲を設定し、第2の計測範囲のデータを読み出し、第1の計測範囲のデータ及び第2の計測範囲のデータに基づいてパルスレーザ光の計測波長λmを算出し、目標波長と計測波長λmとに基づいて回転ステージ14eを制御する。
 これによれば、第1の計測範囲のデータに基づいてファインエタロン分光器19の第2の計測範囲を設定するので、ファインエタロン分光器19の計測範囲のうちの第2の計測範囲を的確に設定し、波長の計測を高速化できる。
 (14)実施形態によれば、レーザ制御プロセッサ30は、目標波長を第1波長と第2波長との間で変化させる第1及び第2波長指令値λ1t及びλ2tを受信し、第1の計測範囲を、第1波長を計測する場合と第2波長を計測する場合とで同じ範囲に設定し、第2の計測範囲を、第1波長を計測する場合と第2波長を計測する場合とで異なる範囲に設定する。
 これによれば、第1波長を計測する場合と第2波長を計測する場合とで第1の計測範囲を同じ範囲に設定することにより、第1の計測範囲を一定にして第1波長及び第2波長を計測できる。
 (15)実施形態によれば、レーザ制御プロセッサ30は、目標波長を第1波長と第2波長との間で変化させる第1及び第2波長指令値λ1t及びλ2tを受信し、第1波長と第2波長との差は、エタロン18bのフリースペクトラルレンジFSRcより小さく、エタロン19bのフリースペクトラルレンジFSRfより大きい。
 これによれば、第1波長と第2波長との差がエタロン18bのフリースペクトラルレンジFSRcより小さいので、エタロン19bのフリースペクトラルレンジFSRfより大きい波長差で第1波長と第2波長とを切り替えても、本開示の波長計測装置による高速な波長計測を実現できる。
 (16)実施形態によれば、レーザ制御プロセッサ30は、目標波長を第1波長と第2波長との間で変化させる第1及び第2波長指令値λ1t及びλ2tを受信し、第1波長及び第2波長の間の波長で事前発振を行うようにレーザ発振器20を制御し、事前発振で生成された第1の計測波形に基づいて、第1の計測範囲を設定する。
 これによれば、第1波長及び第2波長の間の波長での事前発振のデータに基づくことにより、第1の計測範囲を的確に設定できる。
 (17)実施形態によれば、レーザ制御プロセッサ30は、目標波長を第1波長と第2波長との間で変化させる第1及び第2波長指令値λ1t及びλ2tを受信し、第1波長及び第2波長の間の波長で事前発振を行うようにレーザ発振器20を制御し、事前発振で生成された第1の計測波形に基づいて基準波長WLC0を算出し、第1の計測範囲のデータに基づいて算出される中心波長WLC1の基準波長WLC0に対する変化を示す第1の変化量ΔWLを算出し、第1の変化量ΔWLに基づいて第2の計測範囲を設定する。
 これによれば、第1波長及び第2波長の間の波長での事前発振のデータに基づいて基準波長WLC0を算出し、第1の変化量ΔWLを算出することにより、第2の計測範囲を的確に設定できる。
 (18)実施形態によれば、レーザ制御プロセッサ30は、事前発振で生成された第2の計測波形に基づいてファインエタロン分光器19の干渉縞の基準次数mf0を算出し、第1の変化量ΔWLに基づいて、ファインエタロン分光器19で計測される干渉縞の次数mf1の基準次数mf0に対する変化を示す第2の変化量dmを予測し、第2の変化量dmに基づいて第2の計測範囲を設定する。
 これによれば、第1波長及び第2波長の間の波長での事前発振のデータに基づいて基準次数mf0を算出し、第2の変化量dmを予測することにより、第2の計測範囲を的確に設定できる。
 (19)実施形態によれば、レーザ制御プロセッサ30は、目標波長を第1波長と第2波長との間で変化させる第1及び第2波長指令値λ1t及びλ2tを受信し、第1波長と第2波長とで目標波長を切り替えながら調整発振を行うようにレーザ発振器20を制御し、調整発振での回転ステージ14eの駆動量D1及びD2と計測波長λmとに基づいて、目標波長を切り替えたときの回転ステージ14eの駆動量D1及びD2を設定する。
 これによれば、目標波長を切り替えたときの回転ステージ14eの駆動量D1及びD2を設定することにより、第1波長と第2波長との切り替えを的確に行える。
3.その他
 上述の説明は、制限ではなく単なる例示を意図している。従って、特許請求の範囲を逸脱することなく本開示の実施形態に変更を加えることができることは、当業者には明らかである。また、本開示の実施形態を組み合わせて使用することも当業者には明らかである。
 本明細書及び特許請求の範囲全体で使用される用語は、明記が無い限り「限定的でない」用語と解釈されるべきである。たとえば、「含む」、「有する」、「備える」、「具備する」などの用語は、「記載されたもの以外の構成要素の存在を除外しない」と解釈されるべきである。また、修飾語「1つの」は、「少なくとも1つ」又は「1又はそれ以上」を意味すると解釈されるべきである。また、「A、B及びCの少なくとも1つ」という用語は、「A」「B」「C」「A+B」「A+C」「B+C」又は「A+B+C」と解釈されるべきである。さらに、それらと「A」「B」「C」以外のものとの組み合わせも含むと解釈されるべきである。

Claims (20)

  1.  第1のフリースペクトラルレンジを有し、パルスレーザ光の干渉パターンから第1の計測波形を生成する第1の分光器と、
     前記第1のフリースペクトラルレンジより小さい第2のフリースペクトラルレンジを有し、前記パルスレーザ光の干渉パターンから第2の計測波形を生成する第2の分光器と、
     前記第1の分光器の第1の計測範囲のデータを読み出し、前記第1の計測範囲のデータに基づいて前記第2の分光器の第2の計測範囲を設定し、前記第2の計測範囲のデータを読み出し、前記第1の計測範囲のデータ及び前記第2の計測範囲のデータに基づいて前記パルスレーザ光の中心波長を算出するプロセッサと、
    を備える波長計測装置。
  2.  請求項1に記載の波長計測装置であって、
     前記第1の計測範囲は、前記第1のフリースペクトラルレンジより小さい波長範囲に対応する、
    波長計測装置。
  3.  請求項1に記載の波長計測装置であって、
     前記第2の計測範囲は、前記第2のフリースペクトラルレンジより小さい波長範囲に対応する、
    波長計測装置。
  4.  請求項1に記載の波長計測装置であって、
     前記プロセッサは、事前発振で生成された前記第1の計測波形に基づいて、前記第1の計測範囲を設定する、
    波長計測装置。
  5.  請求項1に記載の波長計測装置であって、
     前記プロセッサは、事前発振で生成された前記第1の計測波形の干渉縞のピーク位置を含む範囲に前記第1の計測範囲を設定する、
    波長計測装置。
  6.  請求項1に記載の波長計測装置であって、
     前記プロセッサは、
      前記第1の計測範囲のデータに基づいて算出される算出波長の変化を示す第1の変化量を算出し、
      前記第1の変化量に基づいて前記第2の計測範囲を設定する、
    波長計測装置。
  7.  請求項6に記載の波長計測装置であって、
     前記プロセッサは、
      事前発振で生成された前記第1の計測波形に基づいて基準波長を算出し、
      前記算出波長の前記基準波長に対する変化を前記第1の変化量として算出する、
    波長計測装置。
  8.  請求項6に記載の波長計測装置であって、
     前記プロセッサは、
      前記第1の変化量に基づいて、前記第2の分光器で計測される干渉縞の次数の変化を示す第2の変化量を予測し、
      前記第2の変化量に基づいて前記第2の計測範囲を設定する、
    波長計測装置。
  9.  請求項8に記載の波長計測装置であって、
     前記プロセッサは、
      事前発振で生成された前記第2の計測波形に基づいて前記第2の分光器の干渉縞の基準次数を算出し、
      前記次数の前記基準次数に対する変化を前記第2の変化量として予測する、
    波長計測装置。
  10.  請求項6に記載の波長計測装置であって、
     前記プロセッサは、
      前記第1の変化量に基づいて、前記第2の分光器で計測される干渉縞の次数を予測し、
      前記次数に基づいて前記第2の計測範囲を設定する、
    波長計測装置。
  11.  請求項6に記載の波長計測装置であって、
     前記プロセッサは、
      前記第1の変化量に基づいて、前記第2の分光器で計測される干渉縞の半径を予測し、
      前記半径に基づいて前記第2の計測範囲を設定する、
    波長計測装置。
  12.  請求項6に記載の波長計測装置であって、
     前記プロセッサは、
      前記第1の変化量に基づいて、前記第2の分光器で計測される干渉縞のピーク位置を予測し、
      前記ピーク位置に基づいて前記第2の計測範囲を設定する、
    波長計測装置。
  13.  パルスレーザ光を出力するように構成されたレーザ発振器と、
     前記レーザ発振器に配置された狭帯域化光学系と、
     前記狭帯域化光学系の選択波長を変化させるアクチュエータと、
     第1のフリースペクトラルレンジを有し、前記パルスレーザ光の干渉パターンから第1の計測波形を生成する第1の分光器と、
     前記第1のフリースペクトラルレンジより小さい第2のフリースペクトラルレンジを有し、前記パルスレーザ光の干渉パターンから第2の計測波形を生成する第2の分光器と、
     外部装置から受信した波長指令値に基づいて目標波長を設定し、前記第1の分光器の第1の計測範囲のデータを読み出し、前記第1の計測範囲のデータに基づいて前記第2の分光器の第2の計測範囲を設定し、前記第2の計測範囲のデータを読み出し、前記第1の計測範囲のデータ及び前記第2の計測範囲のデータに基づいて前記パルスレーザ光の中心波長を算出し、前記目標波長と前記中心波長とに基づいて前記アクチュエータを制御するプロセッサと、
    を備える狭帯域化レーザ装置。
  14.  請求項13に記載の狭帯域化レーザ装置であって、
     前記プロセッサは、
      前記目標波長を第1波長と第2波長との間で変化させる前記波長指令値を受信し、
      前記第1の計測範囲を、前記第1波長を計測する場合と前記第2波長を計測する場合とで同じ範囲に設定し、
      前記第2の計測範囲を、前記第1波長を計測する場合と前記第2波長を計測する場合とで異なる範囲に設定する、
    狭帯域化レーザ装置。
  15.  請求項13に記載の狭帯域化レーザ装置であって、
     前記プロセッサは、前記目標波長を第1波長と第2波長との間で変化させる前記波長指令値を受信し、
     前記第1波長と前記第2波長との差は、前記第1のフリースペクトラルレンジより小さく、前記第2のフリースペクトラルレンジより大きい、
    狭帯域化レーザ装置。
  16.  請求項13に記載の狭帯域化レーザ装置であって、
     前記プロセッサは、
      前記目標波長を第1波長と第2波長との間で変化させる前記波長指令値を受信し、
      前記第1波長及び前記第2波長の間の波長で事前発振を行うように前記レーザ発振器を制御し、
      前記事前発振で生成された前記第1の計測波形に基づいて、前記第1の計測範囲を設定する、
    狭帯域化レーザ装置。
  17.  請求項13に記載の狭帯域化レーザ装置であって、
     前記プロセッサは、
      前記目標波長を第1波長と第2波長との間で変化させる前記波長指令値を受信し、
      前記第1波長及び前記第2波長の間の波長で事前発振を行うように前記レーザ発振器を制御し、
      前記事前発振で生成された前記第1の計測波形に基づいて基準波長を算出し、
      前記第1の計測範囲のデータに基づいて算出される算出波長の前記基準波長に対する変化を示す第1の変化量を算出し、
      前記第1の変化量に基づいて前記第2の計測範囲を設定する、
    狭帯域化レーザ装置。
  18.  請求項17に記載の狭帯域化レーザ装置であって、
     前記プロセッサは、
      前記事前発振で生成された前記第2の計測波形に基づいて前記第2の分光器の干渉縞の基準次数を算出し、
      前記第1の変化量に基づいて、前記第2の分光器で計測される干渉縞の次数の前記基準次数に対する変化を示す第2の変化量を予測し、
      前記第2の変化量に基づいて前記第2の計測範囲を設定する、
    狭帯域化レーザ装置。
  19.  請求項13に記載の狭帯域化レーザ装置であって、
     前記プロセッサは、
      前記目標波長を第1波長と第2波長との間で変化させる前記波長指令値を受信し、
      前記第1波長と前記第2波長とで切り替えながら調整発振を行うように前記レーザ発振器を制御し、前記調整発振での前記アクチュエータの駆動量と前記中心波長とに基づいて、前記目標波長を切り替えたときの前記アクチュエータの駆動量を設定する、
    狭帯域化レーザ装置。
  20.  電子デバイスの製造方法であって、
     パルスレーザ光を出力するように構成されたレーザ発振器と、
     前記レーザ発振器に配置された狭帯域化光学系と、
     前記狭帯域化光学系の選択波長を変化させるアクチュエータと、
     第1のフリースペクトラルレンジを有し、前記パルスレーザ光の干渉パターンから第1の計測波形を生成する第1の分光器と、
     前記第1のフリースペクトラルレンジより小さい第2のフリースペクトラルレンジを有し、前記パルスレーザ光の干渉パターンから第2の計測波形を生成する第2の分光器と、
     露光装置から受信した波長指令値に基づいて目標波長を設定し、前記第1の分光器の第1の計測範囲のデータを読み出し、前記第1の計測範囲のデータに基づいて前記第2の分光器の第2の計測範囲を設定し、前記第2の計測範囲のデータを読み出し、前記第1の計測範囲のデータ及び前記第2の計測範囲のデータに基づいて前記パルスレーザ光の中心波長を算出し、前記目標波長と前記中心波長とに基づいて前記アクチュエータを制御するプロセッサと、
    を備える狭帯域化レーザ装置によって前記パルスレーザ光を生成し、
     前記パルスレーザ光を前記露光装置に出力し、
     電子デバイスを製造するために、前記露光装置内で感光基板上に前記パルスレーザ光を露光する
    ことを含む電子デバイスの製造方法。
PCT/JP2021/020383 2021-05-28 2021-05-28 波長計測装置、狭帯域化レーザ装置、及び電子デバイスの製造方法 WO2022249444A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180096739.5A CN117099274A (zh) 2021-05-28 2021-05-28 波长计测装置、窄带化激光装置和电子器件的制造方法
JP2023523903A JPWO2022249444A1 (ja) 2021-05-28 2021-05-28
PCT/JP2021/020383 WO2022249444A1 (ja) 2021-05-28 2021-05-28 波長計測装置、狭帯域化レーザ装置、及び電子デバイスの製造方法
US18/487,774 US20240044711A1 (en) 2021-05-28 2023-10-16 Wavelength measurement apparatus, narrowed-line laser apparatus, and method for manufacturing electronic devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/020383 WO2022249444A1 (ja) 2021-05-28 2021-05-28 波長計測装置、狭帯域化レーザ装置、及び電子デバイスの製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/487,774 Continuation US20240044711A1 (en) 2021-05-28 2023-10-16 Wavelength measurement apparatus, narrowed-line laser apparatus, and method for manufacturing electronic devices

Publications (1)

Publication Number Publication Date
WO2022249444A1 true WO2022249444A1 (ja) 2022-12-01

Family

ID=84228680

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/020383 WO2022249444A1 (ja) 2021-05-28 2021-05-28 波長計測装置、狭帯域化レーザ装置、及び電子デバイスの製造方法

Country Status (4)

Country Link
US (1) US20240044711A1 (ja)
JP (1) JPWO2022249444A1 (ja)
CN (1) CN117099274A (ja)
WO (1) WO2022249444A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06188502A (ja) * 1992-12-21 1994-07-08 Komatsu Ltd 波長検出装置
JP2006269631A (ja) * 2005-03-23 2006-10-05 Gigaphoton Inc 多波長計測手段を有するレーザ装置
US20120182555A1 (en) * 2011-01-19 2012-07-19 Massachusetts Institute Of Technology Gas detector for atmospheric species detection
WO2017098625A1 (ja) * 2015-12-10 2017-06-15 ギガフォトン株式会社 狭帯域化レーザ装置及びスペクトル線幅計測装置
WO2020157839A1 (ja) * 2019-01-29 2020-08-06 ギガフォトン株式会社 レーザ装置の波長制御方法及び電子デバイスの製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06188502A (ja) * 1992-12-21 1994-07-08 Komatsu Ltd 波長検出装置
JP2006269631A (ja) * 2005-03-23 2006-10-05 Gigaphoton Inc 多波長計測手段を有するレーザ装置
US20120182555A1 (en) * 2011-01-19 2012-07-19 Massachusetts Institute Of Technology Gas detector for atmospheric species detection
WO2017098625A1 (ja) * 2015-12-10 2017-06-15 ギガフォトン株式会社 狭帯域化レーザ装置及びスペクトル線幅計測装置
WO2020157839A1 (ja) * 2019-01-29 2020-08-06 ギガフォトン株式会社 レーザ装置の波長制御方法及び電子デバイスの製造方法

Also Published As

Publication number Publication date
US20240044711A1 (en) 2024-02-08
JPWO2022249444A1 (ja) 2022-12-01
CN117099274A (zh) 2023-11-21

Similar Documents

Publication Publication Date Title
JP6752718B2 (ja) 狭帯域化レーザ装置
JP5114767B2 (ja) 狭帯域化レーザのスペクトル幅調整装置
US10615565B2 (en) Line narrowed laser apparatus
JP6113426B2 (ja) マスタオシレータシステムおよびレーザ装置
US11467502B2 (en) Wavelength control method of laser apparatus and electronic device manufacturing method
US10283927B2 (en) Line narrowed laser apparatus
JP3905111B2 (ja) レーザ装置及び波長検出方法
JP2001168421A (ja) 波長検出装置
WO2022249444A1 (ja) 波長計測装置、狭帯域化レーザ装置、及び電子デバイスの製造方法
US6628682B1 (en) Wavelength detection device for line-narrowed laser apparatus and ultra line-narrowed fluorine laser apparatus
US20220390851A1 (en) Exposure method, exposure system, and method for manufacturing electronic devices
WO2022085146A1 (ja) レーザ装置、及び電子デバイスの製造方法
WO2022180698A1 (ja) レーザ装置、及び電子デバイスの製造方法
JP2003185502A (ja) レーザ装置及び波長検出方法
WO2023276103A1 (ja) 波長制御方法、レーザ装置、及び電子デバイスの製造方法
JP2631553B2 (ja) レーザの波長制御装置
JP2006269631A (ja) 多波長計測手段を有するレーザ装置
WO2021186740A1 (ja) 狭帯域化ガスレーザ装置、その制御方法、及び電子デバイスの製造方法
WO2023007685A1 (ja) 放電励起型レーザ装置の制御方法、放電励起型レーザ装置、及び電子デバイスの製造方法
US20230064314A1 (en) Line narrowing gas laser device, wavelength control method, and electronic device manufacturing method
US20220385028A1 (en) Line narrowing device and electronic device manufacturing method
WO2023166583A1 (ja) レーザ装置、スペクトル線幅の計測方法、及び電子デバイスの製造方法
WO2024047871A1 (ja) 狭帯域化レーザ装置、及び電子デバイスの製造方法
WO2022157897A1 (ja) レーザシステムの制御方法、レーザシステム、及び電子デバイスの製造方法
US20220385022A1 (en) Line narrowing gas laser device, control method thereof, and electronic device manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21943089

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180096739.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2023523903

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE