WO2020255985A1 - ジシアノスチリル基を含むウェットエッチング可能なレジスト下層膜形成組成物 - Google Patents

ジシアノスチリル基を含むウェットエッチング可能なレジスト下層膜形成組成物 Download PDF

Info

Publication number
WO2020255985A1
WO2020255985A1 PCT/JP2020/023671 JP2020023671W WO2020255985A1 WO 2020255985 A1 WO2020255985 A1 WO 2020255985A1 JP 2020023671 W JP2020023671 W JP 2020023671W WO 2020255985 A1 WO2020255985 A1 WO 2020255985A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
underlayer film
resist underlayer
resist
forming composition
Prior art date
Application number
PCT/JP2020/023671
Other languages
English (en)
French (fr)
Inventor
貴文 遠藤
勇樹 遠藤
Original Assignee
日産化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学株式会社 filed Critical 日産化学株式会社
Priority to KR1020217041388A priority Critical patent/KR102592573B1/ko
Priority to CN202080044359.2A priority patent/CN113994263A/zh
Priority to JP2021526819A priority patent/JP7322949B2/ja
Priority to US17/619,433 priority patent/US11977331B2/en
Publication of WO2020255985A1 publication Critical patent/WO2020255985A1/ja

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/091Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers characterised by antireflection means or light filtering or absorbing means, e.g. anti-halation, contrast enhancement
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0045Photosensitive materials with organic non-macromolecular light-sensitive compounds not otherwise provided for, e.g. dissolution inhibitors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/11Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having cover layers or intermediate layers, e.g. subbing layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/42Stripping or agents therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/42Stripping or agents therefor
    • G03F7/422Stripping or agents therefor using liquids only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/308Chemical or electrical treatment, e.g. electrolytic etching using masks
    • H01L21/3081Chemical or electrical treatment, e.g. electrolytic etching using masks characterised by their composition, e.g. multilayer masks, materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes
    • H01L21/0276Photolithographic processes using an anti-reflective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31127Etching organic layers
    • H01L21/31133Etching organic layers by chemical means

Definitions

  • the present invention uses a resist underlayer film forming composition, an uncured resist underlayer film obtained by removing a solvent from a coating film composed of the resist underlayer film forming composition, and the resist underlayer film forming composition.
  • the present invention relates to a method for manufacturing a patterned substrate and a semiconductor device.
  • a lithography process in which a resist underlayer film is provided between a substrate and a resist film formed on the substrate to form a resist pattern having a desired shape is widely known.
  • the resist underlayer film is removed and the substrate is processed, and dry etching is mainly used as the process.
  • dry etching is also used in the process of removing unnecessary resist patterns and underlying resist underlayers after substrate processing, but wet etching with a chemical solution is used for the purpose of simplifying the process process and reducing damage to the processed substrate. May be used.
  • Patent Document 1 a. A dye-grafted hydroxyl-functional oligomer reaction product of a preselected phenol-or carboxylic acid-functional dye and a poly (epoxide) resin having an epoxy functional value greater than 2.0 and less than 10. The product has light-absorbing properties that are effective for ARC coating of the basal layer; b. Alkylated aminoplast crosslinkers derived from melamine, urea, benzoguanamine or glycoluril; c. Protonic acid curing catalyst; and d. Solvent system containing low to medium boiling alcohol; in the solvent system, the alcohol accounts for at least 20 (20)% by weight of the total solvent content and the molar ratio of alcohol is at least 4: 1 (4) per equivalent methylol unit of aminoplast.
  • Consists of, and e An improved ARC composition with ether or ester bonds derived from poly (epoxide) molecules;
  • the improved ARC eliminates the mutual mixing of resist / ARC components by the thermosetting action of ARCs, provides improved optical densities at target exposure and ARC layer thickness, and is a high molecular weight thermoplastic ARC showing high solubility differences.
  • the improved ARC composition is disclosed, which eliminates the need for binders.
  • This ARC composition is described in b. Alkylated aminoplast crosslinkers derived from melamine, urea, benzoguanamine or glycoluril, and c. Since it contains a proton acid curing catalyst, it provides a cured resist underlayer film. However, it is difficult to remove the cured resist underlayer film with a wet etching chemical solution.
  • the resist underlayer film By applying a resist on the resist underlayer film and exposing and developing it with radiation (for example, ArF excimer laser light, KrF excimer laser light, i-ray), the resist underlayer film is coated with a desired resist pattern.
  • Good resist solvent resistance is required so that peeling and damage are not caused by the resist solvent.
  • a resist developer alkaline aqueous solution mainly used in the resist developing step is also required to have good resist developer resistance so as not to cause peeling or damage.
  • the resist underlayer film has antireflection performance that suppresses reflection from the underlying substrate against radiation used in the lithography process and suppresses deterioration of the resist pattern due to standing waves. It has been demanded.
  • the resist underlayer film is removed by wet etching with a chemical solution, it is required that the resist underlayer film exhibits sufficient solubility in the wet etching chemical solution and can be easily removed from the substrate.
  • the wet etching chemical solution for removing the resist and the resist underlayer film an organic solvent is used in order to reduce damage to the processed substrate. Further, in order to improve the removability of the resist and the resist underlayer film, a basic organic solvent is used.
  • the resist underlayer film exhibits good resistance to a resist solvent which is an organic solvent and a resist developer which is an alkaline aqueous solution, and exhibits removability, preferably solubility, only in a wet etching chemical solution. Then there was a limit.
  • An object of the present invention is to solve the above problems.
  • the present invention includes the following.
  • a polymer (P) having a dicyanostyryl group or a compound (C) having a dicyanostyryl group is contained. Contains solvent, Free of alkylated aminoplast crosslinkers derived from melamine, urea, benzoguanamine, or glycoluril, Does not contain proton acid curing catalyst, Resist underlayer film forming composition.
  • the polymer (P) having a dicyanostyryl group or the compound (C) having a dicyanostyryl group is an epoxy group-containing polymer precursor (PP) or an epoxy group-containing compound precursor (PC), respectively.
  • the resist underlayer film forming composition according to [1] which is a reaction product of and an active proton compound.
  • the dicyanostyryl group has the following formula (1): (In the formula (1), X represents an alkyl group, a hydroxyl group, an alkoxy group, an alkoxycarbonyl group, a halogen atom, a cyano group or a nitro group, R represents a hydrogen atom, an alkyl group or an arylene group, and n is 0 to 4.
  • the m A's are alkylene groups having 1 to 10 carbon atoms which may be directly bonded, branched or substituted, respectively, and may contain an ether bond, a thioether bond or an ester bond in the alkylene group.
  • Each of the m Bs independently represents a direct bond, an ether bond, a thioether bond or an ester bond.
  • the m R 1 represents a hydrogen atom, a methyl group, an ethyl group or a propyl group, and may be bonded to Q to form a ring
  • R 2 and R 3 are independently hydrogen atoms, methyl groups or propyl groups, respectively. Represents an ethyl group
  • the m L's are independently represented by the following equation (3).
  • Y represents an ether bond, a thioether bond or an ester bond, and represents R represents a hydrogen atom, an alkyl group or an arylene group.
  • n represents an integer from 0 to 4
  • Each of n Xs independently represents an alkyl group, a hydroxyl group, an alkoxy group, an alkoxycarbonyl group, a halogen atom, a cyano group or a nitro group
  • a method of manufacturing a patterned substrate including. [13] A step of forming an uncured resist underlayer film composed of the resist underlayer film forming composition according to any one of [1] to [9] on a substrate containing copper on the surface. The step of forming a resist film on the uncured resist underlayer film and A step of forming a resist pattern by irradiating the resist film with light or an electron beam and subsequent development, and then a step of removing the resist underlayer film exposed between the resist patterns. A step of performing copper plating between the formed resist patterns, preferably between the resist patterns from which the resist underlayer film has been removed, The step of removing the resist pattern and the resist underlayer film existing under the resist pattern, and A method for manufacturing a semiconductor device, which comprises. [14] The production method according to [13], wherein at least one of the steps of removing the resist underlayer film is performed by a wet treatment.
  • the resist underlayer film forming composition according to the present invention does not contain an alkylated aminoplast cross-linking agent derived from melamine, urea, benzoguanamine, or glycoluril and does not contain a proton acid curing catalyst, the resist underlayer film is uncured. It becomes a resist underlayer film.
  • the uncured resist underlayer film exhibits resist solvent resistance and developer resistance, especially on a substrate containing copper on its surface.
  • the resist underlayer film forming composition according to the present invention can be applied to a semiconductor manufacturing process. For example, since lithography is performed on a copper substrate in the rewiring step, an uncured resist underlayer film may be used. Further, since the resist underlayer film forming composition according to the present invention does not contain the above-mentioned cross-linking agent and the above-mentioned curing catalyst, there is an advantage that it can be removed with a wet etching chemical solution.
  • the resist underlayer film-forming composition according to the present invention contains a polymer (P) having a dicyanostyryl group or a compound (C) having a dicyanostyryl group, and contains a solvent, but is derived from melamine, urea, benzoguanamine, or glycoluril. It does not contain the alkylated aminoplast cross-linking agent and does not contain a protonic acid curing catalyst.
  • the dicyanostyryl group referred to in the present invention refers to a group represented by the following formula.
  • X represents an alkyl group, a hydroxyl group, an alkoxy group, an alkoxycarbonyl group, a halogen atom, a cyano group or a nitro group
  • R represents a hydrogen atom, an alkyl group or an arylene group
  • n represents an integer of 0 to 4. Represented, * indicates a bonding portion with a part of the polymer (P) or the compound (C))
  • the term "polymer” refers to a chemical substance having a repeating structural unit, and also includes an oligomer, and the term “compound” refers to a chemical substance other than a polymer.
  • a "polymer having a dicyanostyryl group” is preferably a polymer having a dicyanostyryl group in the side chain of a repeating structural unit. In the present invention, any polymer and compound having a site capable of binding a dicyanostyryl group by a known chemical reaction can be used.
  • the polymer (P) having a dicyanostyryl group or the compound (C) having a dicyanostyryl group referred to in the present invention is a polymer precursor (PP) containing an epoxy group or a compound precursor containing an epoxy group (C), respectively.
  • the active proton compound referred to in the present invention means a compound included in the active proton compound, which is a term commonly used in organic chemistry, and is not particularly limited.
  • the active proton compound include a compound having a hydroxyl group, a compound having a carboxy group, a compound having a thiol group, a compound having an amino group, and a compound having a compound having an imide group, and the compound having a hydroxyl group or a carboxy group. Is preferable.
  • Examples of the carbonyl group in the active proton compound having a carbonyl group include a formyl group (aldehyde group) and a ketone group, but a formyl group is preferable.
  • the dicyanostyryl group has the following formula (1-1):
  • R 1 to R 3 represent a hydrogen atom, a methyl group or an ethyl group, and represent them.
  • X represents an alkyl group, a hydroxyl group, an alkoxy group, an alkoxycarbonyl group, a cyano group or a nitro group.
  • Y represents an ether bond, a thioether bond or an ester bond, R represents a hydrogen atom, an alkyl group or an arylene group.
  • n represents an integer of 0 to 4, and ** represents a bonding portion with a part of the polymer (P) or the compound (C)).
  • the polymer (P) having a dicyanostyryl group or the compound (C) having a dicyanostyryl group contains an aromatic ring or an aliphatic ring.
  • Aromatic compounds include benzene, thiophene, furan, pyridine, pyrimidine, pyrazine, pyrrole, oxazole, thiazole, imidazole, naphthalene, anthracene, quinoline, carbazole, quinazoline, purine, indolizine, benzothiophene, benzofuran, indole, phenylindole. , Acrydin and the like.
  • the aromatic compound may have at least one or more hydroxyl groups.
  • Such aromatic compounds having at least one or more hydroxyl groups are preferably phenolic hydroxy group-containing compounds.
  • the phenolic hydroxy group-containing compound include phenol, dihydroxybenzene, trihydroxybenzene, hydroxynaphthalene, dihydroxynaphthalene, trihydroxynaphthalene, tris (4-hydroxyphenyl) methane, tris (4-hydroxyphenyl) ethane, 1,1 Examples thereof include 2,2-tetrakis (4-hydroxyphenyl) ethane and polynuclear phenol.
  • polynuclear phenol examples include dihydroxybenzene, trihydroxybenzene, hydroxynaphthalene, dihydroxynaphthalene, trihydroxynaphthalene, tris (4-hydroxyphenyl) methane, tris (4-hydroxyphenyl) ethane, 2,2'-biphenol, or 1 , 1,2,2-tetrakis (4-hydroxyphenyl) ethane and the like.
  • the hydrogen atom of the aromatic compound is substituted with an alkyl group having 1 to 20 carbon atoms, a condensed ring group, a heterocyclic group, a hydroxy group, an amino group, a nitro group, an ether group, an alkoxy group, a cyano group, and a carboxyl group. It may have been done.
  • the above aromatic compounds may be linked by a single bond or a spacer.
  • the aromatic compound preferably contains one or more benzene ring, naphthalene ring, triazine ring or a combination thereof.
  • the aliphatic ring in the present invention preferably has 4 or more, 6 or more, 10 or less, or 8 or less carbon atoms. Atoms other than carbon and hydrogen may be contained in the ring, for example, one or more atoms such as oxygen, nitrogen, sulfur, halogen, alkali metal, alkaline earth metal, transition metal and the like. Examples thereof include cyclobutane ring, cyclopentane ring, cyclohexane ring, cycloheptane ring, pyrrolidine ring, piperidine ring, piperazine ring, morpholine ring, quinuclidine ring, hydantin ring, triazine ring, cyanuric acid and the like.
  • R in the formula (1-1) is a hydrogen atom.
  • X in the formula (1-1) is represented by an ether bond or an ester bond.
  • the ester bond referred to in the present invention includes -COO- and -OCO-.
  • the polymer (P) having a dicyanostyryl group or the compound (C) having a dicyanostyryl group is represented by the following formula (2).
  • Q is a group obtained by removing m terminal atoms from a polymer or compound.
  • m is 1 or more and less than or equal to the number of repeating units of the polymer.
  • Q is a compound, m is an integer of 1 to 4.
  • the m A's are alkylene groups having 1 to 10 carbon atoms which may be directly bonded, branched or substituted, respectively, and may contain an ether bond, a thioether bond or an ester bond in the alkylene group.
  • Each of the m Bs independently represents a direct bond, an ether bond, a thioether bond or an ester bond.
  • the m R 1 represents a hydrogen atom, a methyl group, an ethyl group or a propyl group, and may be bonded to Q to form a ring
  • R 2 and R 3 are independently hydrogen atoms, methyl groups or propyl groups, respectively.
  • the m L's are independently represented by the following equation (3). (In formula (3), Y represents an ether bond, a thioether bond or an ester bond, and represents R represents a hydrogen atom, an alkyl group or an arylene group.
  • n represents an integer from 0 to 4
  • n Xs independently represents an alkyl group, a hydroxyl group, an alkoxy group, an alkoxycarbonyl group, a halogen atom, a cyano group or a nitro group)].
  • Q in the formula (2) includes an aromatic ring or an aliphatic ring.
  • R in the formula (3) is a hydrogen atom.
  • Y in the formula (3) is represented by an ether bond or an ester bond.
  • alkyl group examples include a linear or branched alkyl group which may or may not have a substituent, and examples thereof include a methyl group, an ethyl group, an n-propyl group, an isopropyl group and an n-.
  • Nonadesyl group and Eikosyl group and the like An alkyl group having 1 to 20 carbon atoms is preferable, an alkyl group having 1 to 12 carbon atoms is more preferable, an alkyl group having 1 to 8 carbon atoms is more preferable, and an alkyl group having 1 to 4 carbon atoms is most preferable. Is.
  • Examples of the alkoxy group include a group in which an oxygen atom is bonded to the alkyl group.
  • Examples of the alkoxycarbonyl group include a group in which an oxygen atom and a carbonyl group are bonded to the alkyl group.
  • Examples of the alkylene group include a divalent group obtained by further removing a hydrogen atom from the alkyl group.
  • a methylene group For example, a methylene group, an ethylene group, a 1,3-propylene group, a 1,2-propylene group and the like.
  • the arylene group include a phenylene group, an o-methylphenylene group, an m-methylphenylene group, a p-methylphenylene group, an ⁇ -naphthylene group, a ⁇ -naphthylene group, an o-biphenylylene group, an m-biphenylylene group and a p-biphenylylene group.
  • Examples thereof include a group, a 1-anthrylene group, a 2-anthrylene group, a 9-anthrylene group, a 1-phenanthrylene group, a 2-phenanthrylene group, a 3-phenanthrylene group, a 4-phenanthrylene group and a 9-phenanthrylene group. It is preferably an arylene group having 6 to 14 carbon atoms, and more preferably an arylene group having 6 to 10 carbon atoms.
  • Halogen atom usually means each atom of fluorine, chlorine, bromine, and iodine.
  • polymer (P) having a dicyanostyryl group or the compound (C) having a dicyanostyryl group are as follows.
  • L 1 is Or Means.
  • the polymer (P) having a dicyanostyryl group or the compound (C) having a dicyanostyryl group may be obtained by the following two methods.
  • the polymer (P) having a dicyanostyryl group or the compound (C) having a dicyanostyryl group includes a polymer precursor (PP) containing an epoxy group or a compound precursor (PC) containing an epoxy group, and a dicyanostyryl group. It can be obtained by reacting with an active proton compound having the above by any known method.
  • the active proton compound having a dicyanostyryl group can also be obtained by cyanating the active proton compound having a carbonyl group.
  • An example of the synthesis scheme is as follows.
  • a step of reacting an active proton compound having a dicyanostyryl group with a compound precursor (PC) having an epoxy group is included.
  • An example of the synthesis scheme when the compound (C) is a heterocyclic compound is as follows.
  • Examples of the active proton compound having a carbonyl group of the present application can be exemplified by the following formulas (C-1) to (C-40), but the present invention is not limited thereto.
  • Examples of the catalyst for activating the epoxy group used in the above reaction include quaternary phosphonium salts such as ethyltriphenylphosphonium bromide and tetrabutylphosphonium bromide, and quaternary ammonium salts such as benzyltriethylammonium chloride. ..
  • the amount used is usually 0.001 to 1 equivalent with respect to 1 equivalent of the epoxy group.
  • the above reaction is carried out without a solvent, but is usually carried out with a solvent.
  • a solvent any solvent that does not inhibit the reaction can be used.
  • examples thereof include ethers such as 1,2-dimethoxyethane, diethylene glycol dimethyl ether, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, tetrahydrofuran and dioxane.
  • the reaction temperature is usually 40 ° C to 200 ° C.
  • the reaction time is variously selected depending on the reaction temperature, but is usually about 30 minutes to 50 hours.
  • the weight average molecular weight Mw of the compound obtained as described above is usually 200 to 3,000, or 500 to 2,000.
  • the weight average molecular weight Mw of the similarly obtained polymer is usually 1,000 to 20,000, or 2,000 to 10,000.
  • the solvent for the resist underlayer film forming composition according to the present invention is not particularly limited as long as it is a solvent capable of dissolving the polymer (P) having a dicyanostyryl group, the compound (C) having a dicyanostyryl group, and other components. can do.
  • the resist underlayer film forming composition according to the present invention is used in a uniform solution state, it is recommended to use a solvent generally used in the lithography process in combination in consideration of its coating performance. ..
  • Examples of such a solvent include methyl cellosolve acetate, ethyl cellosolve acetate, propylene glycol, propylene glycol monomethyl ether, propylene glycol monoethyl ether, methyl isobutyl carbinol, propylene glycol monobutyl ether, propylene glycol monomethyl ether acetate, and propylene glycol mono.
  • Isobutyl lactate methyl formate, ethyl formate, propyl formate, isopropyl formate, butyl formate, isobutyl formate, amyl formate, isoamyl formate, methyl acetate, ethyl acetate, amyl acetate, isoamyl acetate, hexyl acetate, methyl propionate, ethyl propionate.
  • Propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, ethyl lactate, butyl lactate, cyclohexanone, etc. are preferable.
  • propylene glycol monomethyl ether and propylene glycol monomethyl ether acetate are preferable.
  • the resist underlayer film forming composition according to the present invention does not contain an alkylated aminoplast cross-linking agent derived from melamine, urea, benzoguanamine, or glycoluril.
  • cross-linking agent having at least two cross-linking substituents, that is, methoxymethylated glycol uryl, butoxymethylated glycol uryl, methoxymethylated melamine, butoxymethylated melamine, methoxymethylated benzogwanamine, butoxymethyl. It is a compound such as benzogwanamine, methoxymethylated urea, butoxymethylated urea, or methoxymethylated thiourea. It also does not contain condensates of these compounds.
  • the resist underlayer film forming composition of the present invention does not also contain a cross-linking agent containing a cross-linking substituent having an aromatic ring (for example, a benzene ring or a naphthalene ring) in the molecule.
  • a cross-linking agent containing a cross-linking substituent having an aromatic ring for example, a benzene ring or a naphthalene ring
  • Examples of the cross-linking agent not contained in the resist underlayer film forming composition of the present invention include a compound having a partial structure of the following formula (4) and a polymer or oligomer having a repeating unit of the following formula (5). Be done.
  • the R a , R b , R c , and R d are hydrogen atoms or alkyl groups having 1 to 10 carbon atoms.
  • na, nb, nc and nd each represent an integer of 0 to 3.
  • the above-mentioned examples can be used for the above-mentioned alkyl group.
  • the resist underlayer film forming composition of the present invention also does not contain the protonic acid curing catalyst commonly used with the above-mentioned cross-linking agent.
  • Examples of the protonic acid curing catalyst not included in the resist underlayer film forming composition of the present invention include mineral acids and sulfonic acid compounds (for example, p-toluenesulfonic acid, trifluoromethanesulfonic acid, pyridinium p-toluenesulfonic acid, 4-phenol).
  • mineral acids and sulfonic acid compounds for example, p-toluenesulfonic acid, trifluoromethanesulfonic acid, pyridinium p-toluenesulfonic acid, 4-phenol).
  • the resist underlayer film forming composition of the present invention also does not contain an acid generator.
  • the acid generator not included in the resist underlayer film forming composition of the present invention include a thermal acid generator and a photoacid generator.
  • the thermoacid generator not included in the resist underlayer film forming composition of the present invention include 2,4,4,6-tetrabromocyclohexadienone, benzointosylate, 2-nitrobenzyltosylate, and other alkyl organic sulfonates. Esters and the like can be mentioned.
  • Examples of the photoacid generator not contained in the resist underlayer film forming composition of the present invention include onium salt compounds, sulfonimide compounds, disulfonyldiazomethane compounds and the like.
  • the resist underlayer film forming composition of the present invention does not contain an onium salt compound.
  • the onium salt compound not contained in the resist underlayer film forming composition of the present invention include diphenyliodonium hexafluorosulfonate, diphenyliodonium trifluoromethanesulfonate, diphenyliodonium nonafluoronormal butane sulfonate, diphenyliodonium perfluoronormal octane sulfonate, and diphenyliodonium camphor.
  • Iodonium salt compounds such as sulfonate, bis (4-tert-butylphenyl) iodonium camphor sulfonate and bis (4-tert-butylphenyl) iodonium trifluoromethanesulfonate, and triphenylsulfonium hexafluoroantimonate, triphenylsulfonium nonafluoronormal butane.
  • Examples thereof include sulfonium salt compounds such as sulfonate, triphenylsulfonium camphorsulfonate and triphenylsulfonium trifluoromethanesulfonate.
  • the resist underlayer film forming composition of the present invention does not contain a sulfonimide compound.
  • the sulfoneimide compound not contained in the resist underlayer film forming composition of the present invention include N- (trifluoromethanesulfonyloxy) succinimide, N- (nonafluoronormalbutanesulfonyloxy) succinimide, and N- (camphasulfonyloxy) succinimide. And N- (trifluoromethanesulfonyloxy) naphthalimide and the like.
  • the resist underlayer film forming composition of the present invention does not contain a disulfonyldiazomethane compound.
  • the disulfonyldiazomethane compound not contained in the resist underlayer film forming composition of the present invention include bis (trifluoromethylsulfonyl) diazomethane, bis (cyclohexylsulfonyl) diazomethane, bis (phenylsulfonyl) diazomethane, and bis (p-toluene).
  • Examples thereof include sulfonyl) diazomethane, bis (2,4-dimethylbenzenesulfonyl) diazomethane, and methylsulfonyl-p-toluenesulfonyl diazomethane.
  • the polymer (P) having a dicyanostyryl group or the compound (C) having a dicyanostyryl group contains a polymer precursor (PP) or an epoxy group containing an epoxy group, respectively.
  • PP polymer precursor
  • an active proton compound for example, a compound having a carboxylic acid. If there is a possibility that an unreacted active proton compound is present, it may be removed by a method known per se.
  • the resist underlayer film forming composition of the present invention does not generate pinholes or stings, and a surfactant can be blended in order to further improve the coatability against surface unevenness.
  • a surfactant include polyoxyethylene alkyl ethers such as polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, polyoxyethylene cetyl ether, and polyoxyethylene oleyl ether, polyoxyethylene octylphenol ether, and polyoxyethylene nonylphenol ether.
  • Etc. Polyoxyethylene alkylallyl ethers, polyoxyethylene / polyoxypropylene block copolymers, sorbitan monolaurate, sorbitan monopalmitate, sorbitan monostearate, sorbitan monooleate, sorbitan trioleate, sorbitan tristearate, etc.
  • Polyoxyethylene sorbitan such as sorbitan fatty acid esters, polyoxyethylene sorbitan monolaurate, polyoxyethylene sorbitan monopalmitate, polyoxyethylene sorbitan monostearate, polyoxyethylene sorbitan trioleate, polyoxyethylene sorbitan tristearate, etc.
  • Nonionic surfactants such as fatty acid esters, Ftop EF301, EF303, EF352 (manufactured by Tochem Products Co., Ltd., trade name), Megafuck F171, F173, R-30N, R-40, R-40N, R- 40LM (manufactured by DIC Co., Ltd., trade name), Florard FC430, FC431 (manufactured by Sumitomo 3M Co., Ltd., trade name), Asahi Guard AG710, Surflon S-382, SC101, SC102, SC103, SC104, SC105, SC106 (Asahi Glass Co., Ltd.) Organosiloxane polymer KP341 (manufactured by Shin-Etsu Chemical Industry Co., Ltd.) and the like can be mentioned.
  • fatty acid esters Ftop EF301, EF303, EF352
  • Megafuck F171, F173, R-30N, R-40, R-40N, R- 40LM
  • the blending amount of these surfactants is usually 2.0% by mass or less, preferably 1.0% by mass or less, based on the total solid content of the resist underlayer film material.
  • These surfactants may be used alone or in combination of two or more.
  • the ratio thereof is 0.0001 to 5 parts by mass, 0.001 to 1 part by mass, or 0.01 with respect to 100 parts by mass of the solid content of the resist underlayer film forming composition. To 0.5 parts by mass.
  • a light absorber, a rheology adjuster, an adhesion aid, or the like can be added to the resist underlayer film forming composition of the present invention.
  • Rheology modifiers are effective in improving the fluidity of the underlayer film forming composition.
  • Adhesive aids are effective in improving the adhesion between the semiconductor substrate or resist and the underlayer film.
  • Examples of the light-absorbing agent include commercially available light-absorbing agents described in "Technology and Market of Industrial Dyes” (CMC Publishing) and “Dye Handbook” (edited by Synthetic Organic Chemistry Association), for example, C.I. I. Disperse Yellow 1,3,4,5,7,8,13,23,31,49,50,51,54,60,64,66,68,79,82,88,90,93,102,114 and 124; C.I. I. Disperse Orange 1,5,13,25,29,30,31,44,57,72 and 73; C.I. I. Disperse Red 1,5,7,13,17,19,43,50,54,58,65,72,73,88,117,137,143,199 and 210; C.I.
  • the above-mentioned absorbent is usually blended in a proportion of 10% by mass or less, preferably 5% by mass or less, based on the total solid content of the resist underlayer film forming composition.
  • the rheology adjuster mainly improves the fluidity of the resist underlayer film forming composition, and particularly improves the film thickness uniformity of the resist underlayer film and the filling property of the resist underlayer film forming composition into the hole in the baking step. It is added for the purpose of enhancing.
  • Specific examples include phthalate derivatives such as dimethylphthalate, diethylphthalate, diisobutylphthalate, dihexylphthalate and butylisodecylphthalate, adipic acid derivatives such as dinormal butyl adipate, diisobutyl adipate, diisooctyl adipate and octyldecyl adipate, and didi.
  • Maleic acid derivatives such as normal butylmalate, diethylmalate, and dinonylmalate, oleic acid derivatives such as methyl olate, butyl oleate, and tetrahydrofurfuryl oleate, and stearic acid derivatives such as normal butyl stearate and glyceryl stearate can be mentioned. it can.
  • These rheology adjusters are usually blended in a proportion of less than 30% by mass based on the total solid content of the resist underlayer film forming composition.
  • Adhesive aids are added mainly for the purpose of improving the adhesion between the substrate or resist and the resist underlayer film forming composition, and particularly preventing the resist from peeling off during development.
  • Specific examples include chlorosilanes such as trimethylchlorosilane, dimethylmethylolchlorosilane, methyldiphenylchlorosilane, and chloromethyldimethylchlorosilane, trimethylmethoxysilane, dimethyldiethoxysilane, methyldimethoxysilane, dimethylmethylolethoxysilane, diphenyldimethoxysilane, and phenyltriethoxy.
  • Alkoxysilanes such as silane, hexamethyldisilazane, N, N'-bis (trimethylsilyl) urea, dimethyltrimethylsilylamine, silazans such as trimethylsilylimidazole, methyloltrichlorosilane, ⁇ -chloropropyltrimethoxysilane, ⁇ -aminopropyl Silanes such as triethoxysilane and ⁇ -glycidoxypropyltrimethoxysilane, benzotriazole, benzimidazole, indazole, imidazole, 2-mercaptobenzimidazole, 2-mercaptobenzothiazole, 2-mercaptobenzoxazole, urazol, thiouracil, Examples thereof include heterocyclic compounds such as mercaptoimidazole and mercaptopyrimidine, ureas such as 1,1-dimethylurea and 1,3-dimethylurea, and thiourea
  • the solid content of the resist underlayer film forming composition according to the present invention is usually 0.1 to 70% by mass, preferably 0.1 to 60% by mass.
  • the solid content is the content ratio of all the components excluding the solvent from the resist underlayer film forming composition.
  • the total ratio of the polymer (P) and the compound (C) in the solid content is preferably 1 to 100% by mass, 50 to 100% by mass, and 80 to 100% by mass in that order.
  • One of the scales for evaluating whether or not the resist underlayer film forming composition is in a uniform solution state is to observe the passability of a specific microfilter, but the resist underlayer film forming composition according to the present invention has. , Passes through a microfilter having a pore size of 0.1 ⁇ m and exhibits a uniform solution state.
  • microfilter material examples include fluororesins such as PTFE (polytetrafluoroethylene) and PFA (tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer), PE (polyethylene), UPE (ultrahigh molecular weight polyethylene), and PP ( (Polypropylene), PSF (polysulphon), PES (polyethersulfone), nylon, but it is preferably made of PTFE (polytetrafluoroethylene).
  • fluororesins such as PTFE (polytetrafluoroethylene) and PFA (tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer)
  • PE polyethylene
  • UPE ultrahigh molecular weight polyethylene
  • PP polypropylene
  • PSF polysulphon
  • PES polyethersulfone
  • nylon but it is preferably made of PTFE (polytetrafluoroethylene).
  • the substrates used in the manufacture of semiconductor devices include, for example, silicon wafer substrates, silicon / silicon dioxide coated substrates, silicon nitride substrates, glass substrates, ITO substrates, polyimide substrates, and low dielectric constant materials (low). -K material) Covered substrate and the like are included.
  • the FOWLP process has begun to be applied for the purpose of high-speed response and power saving by shortening the wiring length between semiconductor chips.
  • resist underlayer film forming composition In the RDL (rewiring) process for creating wiring between semiconductor chips, copper (Cu) is used as a wiring member, and an antireflection film (resist underlayer film forming composition) is applied as the copper wiring becomes finer. There is a need.
  • the resist underlayer film forming composition according to the present invention can also be suitably applied to a substrate containing copper on its surface.
  • the resist underlayer film forming composition of the present invention is applied onto a substrate used for manufacturing the above-mentioned semiconductor device (for example, a substrate containing copper on the surface) by an appropriate coating method such as a spinner or a coater, and then the resist underlayer film forming composition of the present invention is applied.
  • a resist underlayer film is formed by removing the solvent.
  • the conditions for removing the solvent are appropriately selected from a temperature of 80 ° C. to 400 ° C. and a time of 0.3 to 60 minutes.
  • the temperature is 150 ° C to 350 ° C and the time is 0.5 to 2 minutes.
  • the film thickness of the underlayer film formed is, for example, 10 to 1000 nm, 20 to 500 nm, or 30 to 400 nm, or 50 to 300 nm.
  • the resist underlayer film forming composition according to the present invention does not contain an alkylated aminoplast cross-linking agent derived from melamine, urea, benzoguanamine, or glycoluril, and does not contain a protonic acid curing catalyst, so that the resist is formed.
  • the lower layer film is an uncured resist lower layer film.
  • an inorganic resist underlayer film (hard mask) on the organic resist underlayer film according to the present invention.
  • a Si-based inorganic material film can be formed by a CVD method or the like.
  • a resist film for example, a layer of photoresist is formed on the uncured resist underlayer film.
  • the layer of the photoresist can be formed by a well-known method, that is, by applying the photoresist composition solution on the lower film and baking (baking).
  • the film thickness of the photoresist is, for example, 50 to 10000 nm, or 100 to 2000 nm.
  • the photoresist formed on the uncured resist underlayer film is not particularly limited as long as it is sensitive to the light used for exposure. Both negative photoresists and positive photoresists can be used. Positive photoresist consisting of novolak resin and 1,2-naphthoquinonediazide sulfonic acid ester, chemically amplified photoresist consisting of a binder having a group that decomposes with an acid to increase the alkali dissolution rate and a photoacid generator, with an acid A chemically amplified photoresist composed of a low molecular weight compound that decomposes to increase the alkali dissolution rate of the photoresist, an alkali-soluble binder, and a photoacid generator, and a binder having a group that decomposes with an acid to increase the alkali dissolution rate.
  • photoresists composed of low molecular weight compounds and photoacid generators that decompose with an acid to increase the alkali dissolution rate of the photoresist.
  • the product name APEX-E manufactured by Chypre the product name PAR710 manufactured by Sumitomo Chemical Co., Ltd.
  • the product name SEPR430 manufactured by Shin-Etsu Chemical Co., Ltd. can be mentioned.
  • Proc. SPIE, Vol. 3999, 330-334 (2000), Proc. SPIE, Vol. 3999,357-364 (2000), and Proc. SPIE, Vol. Fluorine-containing atomic polymer-based photoresists as described in 3999,365-374 (2000) can be mentioned.
  • a resist pattern is formed by irradiation and development with light or an electron beam.
  • Exposure is performed through a predetermined mask. Near ultraviolet rays, far ultraviolet rays, extreme ultraviolet rays (for example, EUV (wavelength 13.5 nm)) and the like are used for exposure. Specifically, i-line (wavelength 365 nm), KrF excimer laser (wavelength 248 nm), it is possible to use an ArF excimer laser (wavelength 193 nm) and F 2 excimer laser (wavelength 157 nm) or the like. Among these, i-line (wavelength 365 nm) is preferable.
  • post-exposure heating post exposure break
  • Post-exposure heating is carried out from a heating temperature of 70 ° C. to 150 ° C. and a heating time of 0.3 to 10 minutes under appropriately selected conditions.
  • a resist for electron beam lithography can be used instead of a photoresist as a resist.
  • the electron beam resist either a negative type or a positive type can be used.
  • a chemically amplified resist consisting of an acid generator and a binder having a group that decomposes with an acid to change the alkali dissolution rate, and a low molecular weight compound that decomposes with an alkali-soluble binder, an acid generator and an acid to change the alkali dissolution rate of the resist.
  • a chemically amplified resist composed of an acid generator, a binder having a group that decomposes with an acid to change the alkali dissolution rate, and a chemically amplified resist composed of a low molecular weight compound that decomposes with an acid to change the alkali dissolution rate of the resist are non-chemically amplified resists composed of binders having a group that is decomposed by an electron beam to change the alkali dissolution rate, and non-chemically amplified resists composed of a binder that is cut by an electron beam and has a site that changes the alkali dissolution rate. Even when these electron beam resists are used, a resist pattern can be formed in the same manner as when a photoresist is used with the irradiation source as an electron beam.
  • the developing solution includes an aqueous solution of alkali metal hydroxide such as potassium hydroxide and sodium hydroxide, an aqueous solution of quaternary ammonium hydroxide such as tetramethylammonium hydroxide, tetraethylammonium hydroxide and choline, ethanolamine and propylamine.
  • An alkaline aqueous solution such as an amine aqueous solution such as ethylenediamine can be mentioned as an example.
  • a surfactant or the like can be added to these developers.
  • the development conditions are appropriately selected from a temperature of 5 to 50 ° C. and a time of 10 to 600 seconds.
  • an organic lower layer film (lower layer) can be formed on a substrate, an inorganic lower layer film (intermediate layer) can be formed on the film, and a photoresist (upper layer) can be further coated on the film.
  • the pattern width of the photoresist becomes narrower, and even when the photoresist is thinly coated to prevent the pattern from collapsing, the substrate can be processed by selecting an appropriate etching gas.
  • a fluorine-based gas having a sufficiently fast etching rate for a photoresist can be used as an etching gas to process a resist underlayer film, and a fluorine-based gas having a sufficiently fast etching rate for an inorganic underlayer film can be etched.
  • the substrate can be processed as a gas, and the substrate can be processed using an oxygen-based gas having a sufficiently high etching rate for the organic underlayer film as an etching gas.
  • the inorganic underlayer film is removed using the photoresist pattern thus formed as a protective film, and then the organic underlayer film is removed using the film composed of the patterned photoresist and the inorganic underlayer film as a protective film. Is done. Finally, the semiconductor substrate is processed using the patterned inorganic underlayer film and organic underlayer film as protective films.
  • the inorganic underlayer film in the portion from which the photoresist has been removed is removed by dry etching to expose the semiconductor substrate.
  • dry etching of the inorganic underlayer film tetrafluoromethane (CF 4 ), perfluorocyclobutane (C 4 F 8 ), perfluoropropane (C 3 F 8 ), trifluoromethane, carbon monoxide, argon, oxygen, nitrogen, 6 Gases such as sulfur fluorofluoride, difluoromethane, nitrogen trifluoride and chlorine trifluoride, chlorine, trichloroborane and dichloroborane can be used.
  • a halogen-based gas is preferably used for dry etching of the inorganic underlayer film, and a fluorine-based gas is more preferable.
  • the fluorine-based gas include tetrafluoromethane (CF 4 ), perfluorocyclobutane (C 4 F 8 ), perfluoropropane (C 3 F 8 ), trifluoromethane, and difluoromethane (CH 2 F 2 ). Can be mentioned.
  • the organic underlayer film is removed using a film composed of a patterned photoresist and an inorganic underlayer film as a protective film. Since the inorganic underlayer film containing a large amount of silicon atoms is difficult to be removed by dry etching with an oxygen-based gas, the organic underlayer film is often removed by dry etching with an oxygen-based gas.
  • the processing of the semiconductor substrate is preferably performed by dry etching with a fluorine-based gas.
  • fluorine-based gas examples include tetrafluoromethane (CF 4 ), perfluorocyclobutane (C 4 F 8 ), perfluoropropane (C 3 F 8 ), trifluoromethane, and difluoromethane (CH 2 F 2 ). Can be mentioned.
  • an organic antireflection film can be formed on the upper layer of the uncured resist lower layer film before the photoresist is formed.
  • the antireflection film composition used there is not particularly limited, and can be arbitrarily selected and used from those conventionally used in the lithography process, and a commonly used method such as a spinner can be used.
  • the antireflection film can be formed by coating and firing with a coater.
  • the uncured resist underlayer film formed from the resist underlayer film forming composition may also have absorption to the light depending on the wavelength of the light used in the lithography process. Then, in such a case, it can function as an antireflection film having an effect of preventing the reflected light from the substrate. Further, the underlayer film formed of the resist underlayer film forming composition of the present invention can also function as a hard mask.
  • the underlayer film of the present invention has a function of preventing an adverse effect on the substrate of a layer for preventing the interaction between the substrate and the photoresist, a material used for the photoresist, or a substance generated during exposure to the photoresist.
  • It can also be used as a layer, a layer having a function of preventing diffusion of substances generated from the substrate during heating and firing into the upper photoresist, and a barrier layer for reducing the poisoning effect of the photoresist layer by the dielectric layer of the semiconductor substrate. It is possible.
  • the resist underlayer film from the conventional resist underlayer film forming composition originally needs to be a cured film having solvent resistance in order to suppress mixing with the resist at the time of resist application. Further, at the time of resist patterning, it is necessary to use a developer for resolving the resist, and resistance to this developer is also indispensable. Therefore, it has been difficult to make the cured film insoluble in the resist solvent and the developing solution and soluble only in the wet etching solution by the conventional technique.
  • the resist underlayer film forming composition according to the present invention it is possible to provide a resist underlayer film that is soluble in such a wet etching solution.
  • the wet etching solution preferably contains, for example, an organic solvent, and may contain an acidic compound or a basic compound.
  • organic solvent include dimethyl sulfoxide, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, N-ethylpyrrolidone, ethylene glycol, propylene glycol, diethylene glycol dimethyl ether and the like.
  • the acidic compound include inorganic acids and organic acids, examples of the inorganic acids include hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid and the like, and examples of the organic acid include p-toluenesulfonic acid, trifluoromethanesulfonic acid and salicylic acid.
  • 5-sulfosalicylic acid 4-phenolsulfonic acid, camphorsulfonic acid, 4-chlorobenzenesulfonic acid, benzenedisulfonic acid, 1-naphthalenesulfonic acid, acetic acid, propionic acid, trifluoroacetic acid, citric acid, benzoic acid, hydroxybenzoic acid, Examples thereof include naphthalene carboxylic acid.
  • the basic compound include inorganic bases and organic bases, and examples of the inorganic bases include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, tetramethylammonium hydroxide, tetraethylammonium hydroxide and choline.
  • the wet etching solution can use only one kind of organic solvent, or can use two or more kinds in combination. Moreover, only one kind of acidic compound or basic compound can be used, or two or more kinds can be used in combination.
  • the blending amount of the acidic compound or the basic compound is 0.01 to 20% by weight, preferably 0.1 to 5% by weight, particularly preferably 0.2 to 1% by weight, based on the wet etching solution. Is.
  • the wet etching solution is preferably an organic solvent containing a basic compound, and particularly preferably a mixed solution containing dimethyl sulfoxide and tetramethylammonium hydroxide.
  • the FOWLP Fe-Out Wafer Level Package
  • the resist underlayer film is applied in the RDL (rewiring) process for forming copper wiring.
  • a typical RDL process is described below, but is not limited to this.
  • a photosensitive insulating film is formed on the semiconductor chip, and then patterning is performed by light irradiation (exposure) and development to open the semiconductor chip electrode portion.
  • a copper seed layer for forming a copper wiring to be a wiring member by a plating step is formed by sputtering.
  • the resist underlayer film forming composition according to the present invention can remove the resist underlayer film by wet etching, the resist underlayer film in such an RDL step can be used as a resist underlayer film to simplify the process process and damage the processed substrate. From the viewpoint of reduction, it can be particularly preferably used.
  • EPICLON HP-4710 manufactured by DIC Corporation, epoxy functional value: 5.81 eq./kg
  • Example 2 12.23 g of propylene glycol monomethyl ether and 8.37 g of propylene glycol monomethyl ether acetate were added to 9.40 g of a solution of the reaction product corresponding to the above formula (A-3) (solid content was 22.3% by weight), and a resist was added. A solution of the underlayer film forming composition was prepared.
  • Example 3 14.49 g of propylene glycol monomethyl ether and 8.37 g of propylene glycol monomethyl ether acetate are added to 7.14 g of a solution of the reaction product corresponding to the above formula (A-4) (solid content is 29.4% by weight), and a resist is added. A solution of the underlayer film forming composition was prepared.
  • Example 4 12.66 g of propylene glycol monomethyl ether and 8.37 g of propylene glycol monomethyl ether acetate are added to 8.97 g of a solution of the reaction product corresponding to the above formula (A-5) (solid content is 23.4% by weight), and a resist is added. A solution of the underlayer film forming composition was prepared.
  • Example 5 13.49 g of propylene glycol monomethyl ether and 8.37 g of propylene glycol monomethyl ether acetate are added to 8.14 g of a solution of the reaction product corresponding to the above formula (A-6) (solid content is 25.8% by weight), and a resist is added. A solution of the underlayer film forming composition was prepared.
  • Example 6 12.86 g of propylene glycol monomethyl ether and 8.37 g of propylene glycol monomethyl ether acetate are added to 8.77 g of a solution of the reaction product corresponding to the above formula (A-7) (solid content is 23.9% by weight), and a resist is added. A solution of the underlayer film forming composition was prepared.
  • the resist underlayer film forming composition for lithography prepared in Examples 1 to 6 is applied on a silicon wafer with a spin coater so as to have a film thickness of about 50 nm, and is placed on a hot plate. It was heated at 200 ° C. for 90 seconds.
  • the obtained resist underlayer film has a wavelength of 193 nm (ArF excimer laser light wavelength), 248 nm (KrF excimer laser light wavelength) and 365 nm (i-line wavelength).
  • the n value (refractive index) and the k value (attenuation coefficient) in the above were measured. The results are shown in Table 1.
  • Examples 1 to 6 since Examples 1 to 6 have appropriate n and k values at 193 nm, 248 nm and 365 nm, they can be obtained from the resist underlayer film forming composition obtained in Examples 1 to 6.
  • the coated film has an antireflection function that can suppress reflection (standing wave) from the underlying substrate, which causes an unfavorable resist pattern in the lithography process using radiation such as ArF excimer laser, KrF excimer laser, and i-ray. Therefore, it is useful as a resist underlayer film.
  • the resist underlayer film forming composition prepared in Examples 1 to 6 was applied onto a copper substrate having a film thickness of 100 nm and heated at 200 ° C. for 90 seconds. A resist underlayer film was formed so as to have a film thickness of 170 nm.
  • the copper substrate coated with the resist underlayer film composition is immersed in propylene glycol monomethyl ether (PGME) or propylene glycol monomethyl ether acetate (PGMEA), which is a general resist solvent, at room temperature for 1 minute, and after immersion.
  • PGME propylene glycol monomethyl ether
  • PMEA propylene glycol monomethyl ether acetate
  • the coating film on the copper substrate was not removed (peeled) by PGME and PGMEA, and thus these organic solvents (resist solvents) were used.
  • resist solvents organic solvents
  • the coating film obtained from the resist underlayer film compositions of Examples 1 to 6 is useful as a resist underlayer film because an unfavorable peeling phenomenon does not occur due to the resist solvent.
  • the resist underlayer film forming composition prepared in Examples 1 to 6 is applied onto a copper substrate having a thickness of 100 nm and heated at 200 ° C. for 90 seconds. As a result, a resist underlayer film was formed so as to have a film thickness of 170 nm.
  • the copper substrate coated with the resist underlayer film composition is subjected to a 2.38 wt% tetramethylammonium hydroxide (tetramethylammonium hydroxide: TMAH) aqueous solution (product name: NMD-3, Tokyo Ohka Kogyo) which is an alkaline aqueous solution.
  • TMAH tetramethylammonium hydroxide
  • the coating film on the copper substrate was not removed (peeled) from the TMAH aqueous solution, and thus the resist developer (alkaline aqueous solution). It can be said that it has good chemical resistance to. That is, the coating film obtained from the resist underlayer film composition of Examples 1 to 6 can suppress an unfavorable peeling phenomenon by the resist developer, and therefore requires a development step with an alkaline aqueous solution. It is useful as an underlayer film.
  • the resist underlayer film forming composition prepared in Examples 1 to 6 and Comparative Examples 1 and 3 was placed on a copper substrate having a thickness of 100 nm.
  • the resist underlayer film was formed so as to have a film thickness of 170 nm by coating and heating at 200 ° C. for 90 seconds.
  • the copper substrate coated with the resist underlayer film composition is immersed in a dimethyl sulfoxide solution of 0.5 wt% tetramethylammonium hydroxide ((TMAH)), which is a basic organic solvent, at 50 ° C. for 5 minutes.
  • TMAH 0.5 wt% tetramethylammonium hydroxide
  • the coating film on the copper substrate was a wet etching chemical solution (compared to the resist underlayer film compositions of Comparative Examples 1 and 3). Sufficient removability was obtained for (basic organic solvent). That is, since the coating film obtained from the resist underlayer film compositions of Examples 1 to 6 can exhibit good removability (peeling property) with respect to the wet etching chemical solution, the resist underlayer film is wet-etched. It is useful in the semiconductor manufacturing process of removing with a chemical solution.
  • solubility test in wet etching chemical solution As an evaluation of solubility in a wet etching chemical solution (basic organic solvent), the resist underlayer film forming composition prepared in Examples 1 to 6 and Comparative Examples 1 and 3 was applied onto a silicon wafer substrate. By heating at 200 ° C. for 90 seconds, a resist underlayer film was formed so as to have a film thickness of 170 nm. Next, the film-formed resist underlayer film was peeled off from the substrate, and the obtained coating film was placed in a dimethyl sulfoxide solution of 0.5 wt% tetramethylammonium hydroxide (TMAH), which is a basic organic solvent, at 50 ° C.
  • TMAH tt% tetramethylammonium hydroxide
  • the resist underlayer film compositions of Examples 1 to 6 have a wet etching chemical solution (basic organic solvent) as compared with the resist underlayer film compositions of Comparative Examples 1 to 3. Sufficient solubility was obtained. That is, since the coating film obtained from the resist underlayer film compositions of Examples 1 to 6 exhibits good solubility in the wet etching chemical solution, in the semiconductor manufacturing step of removing the resist underlayer film with the wet etching chemical solution. It is useful. In particular, the coating film obtained from the resist underlayer film composition of Examples 1 to 6 is not only removable with a wet etching chemical solution, but also exhibits sufficient solubility, so that the removed film becomes a foreign substance (defect). It is more useful as a resist underlayer film because it is possible to prevent unfavorable contamination of the chemical solution caused by uneven dispersion of the (release film) in the chemical solution.
  • a resist underlayer film that exhibits good resistance to a resist solvent that is mainly an organic solvent and a resist developer that is an alkaline aqueous solution, and exhibits removability, preferably solubility, only in a wet etching chemical solution. be able to.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Materials For Photolithography (AREA)

Abstract

レジスト溶剤やアルカリ水溶液であるレジスト現像液に良好な耐性を示しつつ、ウェットエッチング薬液のみに除去性、好ましくは溶解性を示すレジスト下層膜を提供する。ジシアノスチリル基を有するポリマー(P)又はジシアノスチリル基を有する化合物(C)を含み、溶剤を含み、メラミン、尿素、ベンゾグアナミン、又はグリコールウリルから誘導されたアルキル化アミノプラスト架橋剤を含まず、プロトン酸硬化触媒を含まない、レジスト下層膜形成組成物。

Description

ジシアノスチリル基を含むウェットエッチング可能なレジスト下層膜形成組成物
 本発明は、レジスト下層膜形成組成物、当該レジスト下層膜形成組成物からなる塗布膜から溶剤を除去して得たことを特徴とする未硬化レジスト下層膜、当該レジスト下層膜形成組成物を用いたパターニングされた基板及び半導体装置の製造方法に関する。
 半導体製造において、基板とその上に形成されるレジスト膜との間にレジスト下層膜を設け、所望の形状のレジストパターンを形成するリソグラフィープロセスは広く知られている。レジストパターンを形成した後にレジスト下層膜の除去と基板の加工を行うが、その工程としてはドライエッチングが主に用いられる。さらに、基板加工後に不要なレジストパターンや下地のレジスト下層膜を除去する工程においても、ドライエッチングが用いられるが、プロセス工程の簡略化や加工基板へのダメージ低減を目的として、薬液によるウェットエッチングが用いられる場合がある。
 特許文献1には、
a.  予め選択されたフェノール-もしくはカルボン酸-官能性染料と、2.0より大きく10未満であるエポキシ官能価を有するポリ(エポキシド)樹脂との染料-グラフト化ヒドロキシル-官能性オリゴマー反応生成物;該生成物は基底層のARC塗布に有効な光-吸収特性を有する;
  b.  メラミン、尿素、ベンゾグアナミンまたはグリコールウリルから誘導されたアルキル化アミノプラスト架橋剤;
  c.  プロトン酸硬化触媒;および  d.  低ないし中沸点アルコールを含む溶媒系;該溶媒系中、アルコールは総溶媒含量の少なくとも二十(20)重量%を占めおよびアルコールのモル比はアミノプラストの当量メチロール単位につき少なくとも4対1(4:1)である;
からなり、そして  e.  ポリ(エポキシド)分子から誘導されたエーテルもしくはエステル結合を有する、改良されたARC組成物であって;
  該改良されたARCは、ARCsの熱硬化作用によってレジスト/ARC成分の相互混合をなくし、標的露光およびARC層厚において改善された光学濃度を提供し、ならびに高溶解度差を示す高分子量熱可塑性ARCバインダーの必要性をなくす、前記改良されたARC組成物
が開示されている。
 このARC組成物は、b.メラミン、尿素、ベンゾグアナミンまたはグリコールウリルから誘導されたアルキル化アミノプラスト架橋剤、及びc.プロトン酸硬化触媒を含むので、硬化したレジスト下層膜を与えるものである。しかしながら、硬化したレジスト下層膜は、ウェットエッチング薬液で除去することが困難である。
特表平11-511194号公報
 レジスト下層膜上にレジストを塗布し、放射線(例えば、ArFエキシマレーザー光、KrFエキシマレーザー光、i線)を用いて露光、現像することで、所望のレジストパターンを得るため、レジスト下層膜にはレジスト溶剤によって剥離やダメージが生じないような良好なレジスト溶剤耐性が求められている。さらに、レジスト現像工程で主に用いられるレジスト現像液(アルカリ水溶液)に対しても、剥離やダメージが生じないような良好なレジスト現像液耐性が求められている。さらにレジスト下層膜は所望のレジストパターンを得るために、リソグラフィー工程で用いられる放射線に対して、下地基板からの反射を抑制し、定在波によるレジストパターンの悪化を抑制できるような反射防止性能が求められている。特に、レジスト下層膜を薬液によるウェットエッチングで除去する場合、レジスト下層膜にはウェットエッチング薬液に対して十分な溶解性を示し、基板から容易に除去できることが求められている。
 一方、レジスト及びレジスト下層膜を除去するためのウェットエッチング薬液としては、加工基板へのダメージを低減するために、有機溶剤が用いられる。さらに、レジスト及びレジスト下層膜の除去性を向上するために、塩基性の有機溶剤が用いられる。しかしながら、レジスト下層膜としては、主に有機溶剤であるレジスト溶剤やアルカリ水溶液であるレジスト現像液に良好な耐性を示しつつ、ウェットエッチング薬液のみに除去性、好ましくは溶解性を示すことは従来技術では限界があった。本発明の目的は、上記の課題を解決することである。
 本発明は以下を包含する。
[1] ジシアノスチリル基を有するポリマー(P)又はジシアノスチリル基を有する化合物(C)を含み、
 溶剤を含み、
 メラミン、尿素、ベンゾグアナミン、又はグリコールウリルから誘導されたアルキル化アミノプラスト架橋剤を含まず、
 プロトン酸硬化触媒を含まない、
レジスト下層膜形成組成物。
[2] 前記ジシアノスチリル基を有するポリマー(P)又は前記ジシアノスチリル基を有する化合物(C)が、それぞれエポキシ基を含有するポリマー前駆体(PP)又はエポキシ基を含有する化合物前駆体(PC)と、活性プロトン化合物との反応生成物である、[1]に記載のレジスト下層膜形成組成物。
[3] 前記ジシアノスチリル基が、下記式(1):
Figure JPOXMLDOC01-appb-C000004

(式(1)中、Xはアルキル基、水酸基、アルコキシ基、アルコキシカルボニル基、ハロゲン原子、シアノ基又はニトロ基を表し、Rは水素原子、アルキル基又はアリーレン基を表し、nは0乃至4の整数を表し、*はポリマー(P)又は化合物(C)の一部との結合部分を示す)で表される、[1]又は[2]に記載のレジスト下層膜形成組成物。
[4] 前記ジシアノスチリル基を有するポリマー(P)又は前記ジシアノスチリル基を有する化合物(C)が下記式(2)で表される、[1]又は[2]に記載のレジスト下層膜形成組成物。
Figure JPOXMLDOC01-appb-C000005

[式(2)中、
Qはポリマー又は化合物からm個の末端原子を取り去った基であり、
Qがポリマーのとき、mは1以上、かつ、ポリマーの反復単位の数以下であり、
Qが化合物のとき、mは1乃至4の整数であり、
m個のAは、それぞれ独立に、直接結合、分岐又は置換されていてもよい炭素原子数1乃至10のアルキレン基であり、アルキレン基中にエーテル結合、チオエーテル結合又はエステル結合を含んでもよく、
m個のBは、それぞれ独立に、直接結合、エーテル結合、チオエーテル結合又はエステル結合を表し、
m個のRは水素原子、メチル基、エチル基又はプロピル基を表し、Qと結合して環を形成してもよく、R及びRは、それぞれ独立に、水素原子、メチル基又はエチル基を表し、
m個のLは、それぞれ独立に、下記式(3)で表され、
Figure JPOXMLDOC01-appb-C000006

(式(3)中、Yはエーテル結合、チオエーテル結合又はエステル結合を表し、
Rは水素原子、アルキル基又はアリーレン基を表し、
nは0乃至4の整数を表し、
n個のXは、それぞれ独立に、アルキル基、水酸基、アルコキシ基、アルコキシカルボニル基、ハロゲン原子、シアノ基又はニトロ基を表す)]
[5] 前記ジシアノスチリル基を有するポリマー(P)又はジシアノスチリル基を有する化合物(C)が、芳香族環又は脂肪族環を含む、[1]乃至[3]何れか1項に記載のレジスト下層膜形成組成物。
[6] 前記式(2)におけるQが芳香族環又は脂肪族環を含む、[4]に記載のレジスト下層膜形成組成物。
[7] 前記式(1)及び/又は式(3)におけるRが水素原子である、[3]又は[4]に記載のレジスト下層膜形成組成物。
[8] 前記式(3)におけるYがエーテル結合又はエステル結合で表される、[4]に記載のレジスト下層膜形成組成物。
[9] 表面に銅を含む基板上で用いられる、[1]乃至[8]何れか1項に記載のレジスト下層膜形成組成物。
[10] [1]から[9]のいずれか1項に記載のレジスト下層膜形成組成物からなる塗布膜から溶剤を除去して得たことを特徴とする、未硬化レジスト下層膜。
[11] 表面に銅を含む基板上に形成された、[10]に記載の未硬化レジスト下層膜。
[12] 表面に銅を含む基板上に[1]乃至[9]の何れか1項に記載のレジスト下層膜形成組成物を塗布し溶剤を除去してレジスト下層膜を形成する工程、前記レジスト下層膜上にレジストを塗布しベークしてレジスト膜を形成する工程、前記レジスト下層膜と前記レジストで被覆された半導体基板を露光する工程、露光後の前記レジスト膜を現像し、パターニングする工程を含む、パターニングされた基板の製造方法。
[13] 表面に銅を含む基板上に、[1]乃至[9]の何れか1項に記載のレジスト下層膜形成組成物からなる未硬化レジスト下層膜を形成する工程と、
 前記未硬化レジスト下層膜の上にレジスト膜を形成する工程と、
 レジスト膜に対する光又は電子線の照射とその後の現像によりレジストパターンを形成する工程、次いでレジストパターン間に露出したレジスト下層膜を除去する工程と、
 形成された前記レジストパターン間、好ましくはレジスト下層膜が除去されたレジストパターン間に銅めっきを行う工程と、
 レジストパターン及びその下に存在するレジスト下層膜を除去する工程と、
を含むことを特徴とする、半導体装置の製造方法。
[14] 前記レジスト下層膜を除去する工程の少なくとも1つが、ウェット処理にて行われる、[13]に記載の製造方法。
 本発明に係るレジスト下層膜形成組成物は、メラミン、尿素、ベンゾグアナミン、又はグリコールウリルから誘導されたアルキル化アミノプラスト架橋剤を含まず、プロトン酸硬化触媒を含まないため、レジスト下層膜は未硬化レジスト下層膜となる。しかし、その未硬化レジスト下層膜は、特に表面に銅を含む基板上においてレジスト溶剤耐性や現像液耐性を示す。この結果、本発明に係るレジスト下層膜形成組成物は半導体製造プロセスへの適用が可能である。例えば再配線工程では銅基板上にてリソグラフィーを行うため、未硬化レジスト下層膜であっても差支えない。また、本発明に係るレジスト下層膜形成組成物は上記架橋剤や上記硬化触媒を含まないため、ウェットエッチング薬液での除去が可能となる利点がある。
[レジスト下層膜形成組成物]
 本発明に係るレジスト下層膜形成組成物は、ジシアノスチリル基を有するポリマー(P)又はジシアノスチリル基を有する化合物(C)を含み、溶剤を含むが、メラミン、尿素、ベンゾグアナミン、又はグリコールウリルから誘導されたアルキル化アミノプラスト架橋剤を含まず、プロトン酸硬化触媒を含まないものである。
[ジシアノスチリル基を有するポリマー(P)又はジシアノスチリル基を有する化合物(C)]
 本発明にいうジシアノスチリル基とは、下記式で表される基をいう。
Figure JPOXMLDOC01-appb-C000007

(式中、Xはアルキル基、水酸基、アルコキシ基、アルコキシカルボニル基、ハロゲン原子、シアノ基又はニトロ基を表し、Rは水素原子、アルキル基又はアリーレン基を表し、nは0乃至4の整数を表し、*はポリマー(P)又は化合物(C)の一部との結合部分を示す)
 本発明に係るレジスト下層膜形成組成物において、「ポリマー」という用語は反復構造単位を有する化学物質をいい、オリゴマーをも包含し、「化合物」という用語はポリマー以外の化学物質をいう。「ジシアノスチリル基を有するポリマー」は、好ましくは、ジシアノスチリル基を反復構造単位の側鎖に有するポリマーである。
 本発明においては、公知の化学反応によりジシアノスチリル基を結合し得る部位を有する任意のポリマー及び化合物を利用することができる。
 好ましくは、本発明にいうジシアノスチリル基を有するポリマー(P)又はジシアノスチリル基を有する化合物(C)は、それぞれエポキシ基を含有するポリマー前駆体(PP)又はエポキシ基を含有する化合物前駆体(PC)と、ジシアノスチリル基を有する活性プロトン化合物との反応生成物、もしくはエポキシ基を含有するポリマー前駆体(PP)又はエポキシ基を含有する化合物前駆体(PC)とカルボニル基を有する活性プロトン化合物との反応中間体をシアノ化(ジシアノ化)して得られる反応生成物である。
 本発明にいう活性プロトン化合物は、有機化学において普通に用いられる用語である活性プロトン化合物に包含されるものを意味し、特段の限定はない。
 上記活性プロトン化合物としては、水酸基を有する化合物、カルボキシ基を有する化合物、チオール基を有する化合物、アミノ基を有する化合物、イミド基を有する化合物を有する化合物が挙げられるが、水酸基またはカルボキシ基を有する化合物であることが好ましい。
 上記カルボニル基を有する活性プロトン化合物におけるカルボニル基としては、ホルミル基(アルデヒド基)、ケトン基が挙げられるが、ホルミル基であることが好ましい。
 好ましくは、ジシアノスチリル基は、下記式(1-1):
Figure JPOXMLDOC01-appb-C000008

式(1-1)中、R乃至Rは、水素原子、メチル基又はエチル基を表し、
Xはアルキル基、水酸基、アルコキシ基、アルコキシカルボニル基、シアノ基又はニトロ基を表し、
Yはエーテル結合、チオエーテル結合又はエステル結合を表し、
Rは水素原子、アルキル基又はアリーレン基を表し、
nは0乃至4の整数を表し、**はポリマー(P)又は化合物(C)の一部との結合部分を示す)で表される。
 好ましくは、ジシアノスチリル基を有するポリマー(P)又はジシアノスチリル基を有する化合物(C)は、芳香族環又は脂肪族環を含む。
 本発明における芳香族環とは、
(a)ベンゼン、フェノール、フロログルシノールのような単環化合物、
(b)ナフタレン、ジヒドロキシナフタレンのような縮合環化合物、
(c)フラン、チオフェン、ピリジン、カルバゾールのような複素環化合物、
(d)ビフェニル、フェニルインドール、9,9-ビス(4-ヒドロキシフェニル)フルオレン、α,α,α’,α’-テトラキス(4-ヒドロキシフェニル)-p-キシレンのように(a)~(c)の芳香族環が単結合で結合された化合物、又は
(e)フェニルナフチルアミンのように-(CH-(n=1乃至20)、-CH<、-CH=CH-、-C≡C-、-N=N-、-NH-、-NR-、-NHCO-、-NRCO-、-S-、-COO-、-O-、-CO-及び-CH=N-で例示されるスペーサーで(a)乃至(d)の芳香族環が連結された化合物
に由来する環構造をいう。
 芳香族化合物としては、ベンゼン、チオフェン、フラン、ピリジン、ピリミジン、ピラジン、ピロール、オキサゾール、チアゾール、イミダゾール、ナフタレン、アントラセン、キノリン、カルバゾール、キナゾリン、プリン、インドリジン、ベンゾチオフェン、ベンゾフラン、インドール、フェニルインドール、アクリジン等が挙げられる。
 更に、上記芳香族化合物は少なくとも1つ以上のヒドロキシル基を有してもよい。
 そのような少なくとも1つ以上のヒドロキシル基を有する芳香族化合物は、好ましくはフェノール性ヒドロキシ基含有化合物である。
 フェノール性ヒドロキシ基含有化合物としては、フェノール、ジヒドロキシベンゼン、トリヒドロキシベンゼン、ヒドロキシナフタレン、ジヒドロキシナフタレン、トリヒドロキシナフタレン、トリス(4-ヒドロキシフェニル)メタン、トリス(4-ヒドロキシフェニル)エタン、1,1,2,2-テトラキス(4-ヒドロキシフェニル)エタン、多核フェノール等が挙げられる。
 上記多核フェノールとしては、ジヒドロキシベンゼン、トリヒドロキシベンゼン、ヒドロキシナフタレン、ジヒドロキシナフタレン、トリヒドロキシナフタレン、トリス(4-ヒドロキシフェニル)メタン、トリス(4-ヒドロキシフェニル)エタン、2,2’-ビフェノール、又は1,1,2,2-テトラキス(4-ヒドロキシフェニル)エタン等が挙げられる。
 上記芳香族化合物の水素原子は、炭素原子数1乃至20のアルキル基、縮環基、複素環基、ヒドロキシ基、アミノ基、ニトロ基、エーテル基、アルコキシ基、シアノ基、及びカルボキシル基で置換されていてもよい。
 なお、以上の芳香族化合物は、単結合又はスペーサーによって連結されていてもよい。
 スペーサーの例としては-(CH-(n=1乃至20)、-CH<、-CH=CH-、-C≡C-、-N=N-、-NH-、-NR-、-NHCO-、-NRCO-、-S-、-COO-、-O-、-CO-及び-CH=N-の一種又は二種以上の組合せが挙げられる。これらのスペーサーは2つ以上連結していてもよい。
 上記芳香族化合物は、1つ以上のベンゼン環、ナフタレン環、トリアジン環又はそれらの組み合わせを含むことが好ましい。
 本発明における脂肪族環は、好ましくは、4以上、6以上、10以下、又は8以下の炭素原子数を有する。その環内に炭素及び水素以外の原子、例えば、酸素、窒素、イオウ、ハロゲン、アルカリ金属、アルカリ土類金属、遷移金属等の一種又は二種以上の原子を含んでもよい。例えば、シクロブタン環、シクロペンタン環、シクロへキサン環、シクロヘプタン環、ピロリジン環、ピペリジン環、ピペラジン環、モルホリン環、キヌクリジン環、ヒダントイン環、トリアジン環、シアヌル酸等が挙げられる。
 好ましくは、式(1-1)におけるRは水素原子である。好ましくは、式(1-1)におけるXはエーテル結合又はエステル結合で表される。本発明にいうエステル結合は、-COO-及び-OCO-を包含する。
 好ましくは、ジシアノスチリル基を有するポリマー(P)又は前記ジシアノスチリル基を有する化合物(C)は下記式(2)で表される。
Figure JPOXMLDOC01-appb-C000009

[式(2)中、
Qはポリマー又は化合物からm個の末端原子を取り去った基であり、
Qがポリマーのとき、mは1以上、かつ、ポリマーの反復単位の数以下であり、
Qが化合物のとき、mは1乃至4の整数であり、
m個のAは、それぞれ独立に、直接結合、分岐又は置換されていてもよい炭素原子数1乃至10のアルキレン基であり、アルキレン基中にエーテル結合、チオエーテル結合又はエステル結合を含んでもよく、
m個のBは、それぞれ独立に、直接結合、エーテル結合、チオエーテル結合又はエステル結合を表し、
m個のRは水素原子、メチル基、エチル基又はプロピル基を表し、Qと結合して環を形成してもよく、R及びRは、それぞれ独立に、水素原子、メチル基又はエチル基を表し、
m個のLは、それぞれ独立に、下記式(3)で表され、
Figure JPOXMLDOC01-appb-C000010

(式(3)中、Yはエーテル結合、チオエーテル結合又はエステル結合を表し、
Rは水素原子、アルキル基又はアリーレン基を表し、
nは0乃至4の整数を表し、
n個のXは、それぞれ独立に、アルキル基、水酸基、アルコキシ基、アルコキシカルボニル基、ハロゲン原子、シアノ基又はニトロ基を表す)]
 好ましくは、式(2)におけるQは芳香族環又は脂肪族環を含む。好ましくは、式(3)におけるRは水素原子である。好ましくは、式(3)におけるYはエーテル結合又はエステル結合で表される。
 上記アルキル基としては、置換基を有しても、有さなくてもよい直鎖または分岐を有するアルキル基が挙げられ、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、n-ヘキシル基、イソヘキシル基、n-ヘプチル基、n-オクチル基、シクロヘキシル基、2-エチルヘキシル基、n-ノニル基、イソノニル基、p-tert-ブチルシクロヘキシル基、n-デシル基、n-ドデシルノニル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基およびエイコシル基などが挙げられる。好ましくは炭素原子数1乃至20のアルキル基、より好ましくは炭素原子数1乃至12のアルキル基、更に好ましくは炭素原子数1乃至8のアルキル基、最も好ましくは炭素原子数1乃至4のアルキル基である。
 上記アルコキシ基としては、上記アルキル基に酸素原子が結合した基が挙げられる。例えば、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基等である。
 上記アルコキシカルボニル基としては、上記アルキル基に酸素原子及びカルボニル基が結合した基が挙げられる。例えば、メトキシカルボニル基、エトキシカルボニル基、プロポキシカルボニル基、ブトキシカルボニル基等である。
 上記アルキレン基としては、上記アルキル基から更に水素原子を取り去った2価の基が挙げられる。例えば、メチレン基、エチレン基、1,3-プロピレン基、1,2-プロピレン基等である。
 上記アリーレン基としては、フェニレン基、o-メチルフェニレン基、m-メチルフェニレン基、p-メチルフェニレン基、α-ナフチレン基、β-ナフチレン基、o-ビフェニリレン基、m-ビフェニリレン基、p-ビフェニリレン基、1-アントリレン基、2-アントリレン基、9-アントリレン基、1-フェナントリレン基、2-フェナントリレン基、3-フェナントリレン基、4-フェナントリレン基及び9-フェナントリレン基が挙げられる。好ましくは炭素原子数6乃至14のアリーレン基、より好ましくは炭素原子数6乃至10のアリーレン基である。
 ハロゲン原子とは、通常、フッ素、塩素、臭素、ヨウ素の各原子をいう。
 ジシアノスチリル基を有するポリマー(P)又はジシアノスチリル基を有する化合物(C)の若干の具体例を挙げれば以下のとおりである。
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
 ここで、Lは、
Figure JPOXMLDOC01-appb-C000013

又は
Figure JPOXMLDOC01-appb-C000014

を意味する。
[ジシアノスチリル基を有するポリマー(P)又はジシアノスチリル基を有する化合物(C)の調製]
 上記ジシアノスチリル基を有するポリマー(P)又はジシアノスチリル基を有する化合物(C)は、下記2つの方法によって得てもよい。
(ジシアノスチリル基を有するポリマー(P)又はジシアノスチリル基を有する化合物(C)の合成法1)
 上記ジシアノスチリル基を有するポリマー(P)又はジシアノスチリル基を有する化合物(C)は、エポキシ基を含有するポリマー前駆体(PP)又はエポキシ基を含有する化合物前駆体(PC)と、ジシアノスチリル基を有する活性プロトン化合物とを、公知の任意の方法により反応させることにより得ることができる。
 上記ジシアノスチリル基を有する活性プロトン化合物は、カルボニル基を有する活性プロトン化合物をシアノ化することでも得られる。合成スキームを例示すると下記の通りである。
Figure JPOXMLDOC01-appb-C000015
 ジシアノスチリル基を有する化合物(C)を例にとって説明すると、ジシアノスチリル基を有する活性プロトン化合物と、エポキシ基を有する化合物前駆体(PC)と反応させる工程を含む。化合物(C)が複素環化合物である場合の合成スキームを例示すると以下のとおりである。
Figure JPOXMLDOC01-appb-C000016
(ジシアノスチリル基を有するポリマー(P)又はジシアノスチリル基を有する化合物(C)の合成法2)
 エポキシ基を有する化合物前駆体(PC)又はポリマー前駆体(PP)と、カルボニル基を有する活性プロトン化合物とを反応させて中間体化合物又は中間体ポリマーを得る工程、及び当該中間体を、例えば上記に示した方法でシアノ化(ジシアノ化)する工程を含む。エポキシ基を有する化合物前駆体(PC)の化合物が複素環化合物である場合の合成スキームを例示すると以下のとおりである。
Figure JPOXMLDOC01-appb-C000017
 本願のエポキシ基を有するポリマー前駆体(PP)またはエポキシ基を有する化合物前駆体(PC)としては、例えば下記式(B-1)乃至(B-36)を例示することができるが、これらに限定されるわけではない。
Figure JPOXMLDOC01-appb-C000018

Figure JPOXMLDOC01-appb-C000019

(B-17)中、a、b、c、dはそれぞれ0又は1であり、a+b+c+d=1である。
 本願のカルボニル基を有する活性プロトン化合物としては、例えば下記式(C-1)乃至(C-40)を例示することができるが、これらに限定されるわけではない。
Figure JPOXMLDOC01-appb-C000020

Figure JPOXMLDOC01-appb-C000021
 上記反応で用いられるエポキシ基を活性化させる触媒としては、例えばエチルトリフェニルホスホニウムブロマイド、テトラブチルホスホニウムブロマイドのような第4級ホスホニウム塩、ベンジルトリエチルアンモニウムクロリドのような第4級アンモニウム塩が挙げられる。その使用量は、通常、エポキシ基1当量に対して、0.001乃至1当量である。
 上記の反応は無溶媒でも行われるが、通常溶媒を用いて行われる。溶媒としては反応を阻害しないものであれば全て使用することができる。例えば1,2-ジメトキシエタン、ジエチレングリコールジメチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、テトラヒドロフラン、ジオキサン等のエーテル類が挙げられる。
 反応温度は通常40℃乃至200℃である。反応時間は反応温度によって種々選択されるが、通常30分乃至50時間程度である。
 以上のようにして得られる化合物の重量平均分子量Mwは、通常200乃至3,000、又は500乃至2,000である。同様にして得られるポリマーの重量平均分子量Mwは、通常1,000乃至20,000、又は2,000乃至10,000である。
[溶剤]
 本発明に係るレジスト下層膜形成組成物の溶剤としては、上記ジシアノスチリル基を有するポリマー(P)又はジシアノスチリル基を有する化合物(C)その他の成分を溶解できる溶剤であれば、特に制限なく使用することができる。特に、本発明に係るレジスト下層膜形成組成物は均一な溶液状態で用いられるものであるため、その塗布性能を考慮すると、リソグラフィー工程に一般的に使用される溶剤を併用することが推奨される。
 そのような溶剤としては、例えば、メチルセロソルブアセテート、エチルセロソルブアセテート、プロピレングリコール、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、メチルイソブチルカルビノール、プロピレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、プロピレングリコールモノプロピルエーテルアセテート、プロピレングリコールモノブチルエーテルアセテート、トルエン、キシレン、メチルエチルケトン、シクロペンタノン、シクロヘキサノン、2-ヒドロキシプロピオン酸エチル、2-ヒドロキシ-2-メチルプロピオン酸エチル、エトキシ酢酸エチル、ヒドロキシ酢酸エチル、2-ヒドロキシ-3-メチルブタン酸メチル、3-メトキシプロピオン酸メチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸エチル、3-エトキシプロピオン酸メチル、ピルビン酸メチル、ピルビン酸エチル、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノプロピルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジプロピルエーテル、ジエチレングリコールジブチルエーテルプロピレングリコールモノメチルエーテル、プロピレングリコールジメチルエーテル、プロピレングリコールジエチルエーテル、プロピレングリコールジプロピルエーテル、プロピレングリコールジブチルエーテル、乳酸エチル、乳酸プロピル、乳酸イソプロピル、乳酸ブチル、乳酸イソブチル、ギ酸メチル、ギ酸エチル、ギ酸プロピル、ギ酸イソプロピル、ギ酸ブチル、ギ酸イソブチル、ギ酸アミル、ギ酸イソアミル、酢酸メチル、酢酸エチル、酢酸アミル、酢酸イソアミル、酢酸ヘキシル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸プロピル、プロピオン酸イソプロピル、プロピオン酸ブチル、プロピオン酸イソブチル、酪酸メチル、酪酸エチル、酪酸プロピル、酪酸イソプロピル、酪酸ブチル、酪酸イソブチル、ヒドロキシ酢酸エチル、2-ヒドロキシ-2-メチルプロピオン酸エチル、3-メトキシ-2-メチルプロピオン酸メチル、2-ヒドロキシ-3-メチル酪酸メチル、メトキシ酢酸エチル、エトキシ酢酸エチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、3-メトキシプロピオン酸エチル、3-メトキシブチルアセテート、3-メトキシプロピルアセテート、3-メチル-3-メトキシブチルアセテート、3-メチル-3-メトキシブチルプロピオネート、3-メチル-3-メトキシブチルブチレート、アセト酢酸メチル、トルエン、キシレン、メチルエチルケトン、メチルプロピルケトン、メチルブチルケトン、2-ヘプタノン、3-ヘプタノン、4-ヘプタノン、シクロヘキサノン、N、N-ジメチルホルムアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン、4-メチル-2-ペンタノール、及びγ-ブチロラクトン等を挙げることができる。これらの溶剤は単独で、または二種以上の組み合わせで使用することができる。
 プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、乳酸エチル、乳酸ブチル、シクロヘキサノン、等が好ましい。特にプロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、が好ましい。
[架橋剤]
 本発明に係るレジスト下層膜形成組成物は、メラミン、尿素、ベンゾグアナミン、又はグリコールウリルから誘導されたアルキル化アミノプラスト架橋剤を含まない。
 より具体的には、少なくとも2個の架橋形成置換基を有する架橋剤であり、メトキシメチル化グリコールウリル、ブトキシメチル化グリコールウリル、メトキシメチル化メラミン、ブトキシメチル化メラミン、メトキシメチル化ベンゾグワナミン、ブトキシメチル化ベンゾグワナミン、メトキシメチル化尿素、ブトキシメチル化尿素、またはメトキシメチル化チオ尿素等の化合物である。また、これらの化合物の縮合体も含まない。
 好ましくは、本発明のレジスト下層膜形成組成物は、分子内に芳香族環(例えば、ベンゼン環、ナフタレン環)を有する架橋形成置換基を含有する架橋剤をも含まない。
 このような、本発明のレジスト下層膜形成組成物に含まれない架橋剤としては、下記式(4)の部分構造を有する化合物や、下記式(5)の繰り返し単位を有するポリマー又はオリゴマーが挙げられる。
Figure JPOXMLDOC01-appb-C000022

上記R、R、R、及びRは水素原子又は炭素数1乃至10のアルキル基である。na、nb、nc及びndは各々0乃至3の整数を表す。上記アルキル基は上述の例示を用いることができる。
 式(4)及び式(5)の化合物、ポリマー、オリゴマーは以下に例示される。
Figure JPOXMLDOC01-appb-C000023

Figure JPOXMLDOC01-appb-C000024
[プロトン酸硬化触媒]
 したがってまた、本発明のレジスト下層膜形成組成物は、上記架橋剤と共に慣用されるプロトン酸硬化触媒も含まない。
 本発明のレジスト下層膜形成組成物に含まれないプロトン酸硬化触媒としては、鉱酸、スルホン酸化合物(例えば、p-トルエンスルホン酸、トリフルオロメタンスルホン酸、ピリジニウムp-トルエンスルホン酸、4-フェノールスルホン酸、カンファースルホン酸、4-クロロベンゼンスルホン酸、ベンゼンジスルホン酸、1-ナフタレンスルホン酸)、蓚酸、マイレン酸、ヘキサミン酸、フタル酸、サリチル酸、5-スルホサリチル酸、クエン酸、安息香酸、ヒドロキシ安息香酸、ナフタレンカルボン酸およびそれらの混合物が挙げられる。
 好ましくは、本発明のレジスト下層膜形成組成物は酸発生剤も含まない。本発明のレジスト下層膜形成組成物に含まれない酸発生剤としては、熱酸発生剤や光酸発生剤が挙げられる。
 本発明のレジスト下層膜形成組成物に含まれない熱酸発生剤としては、2,4,4,6-テトラブロモシクロヘキサジエノン、ベンゾイントシレート、2-ニトロベンジルトシレート、その他有機スルホン酸アルキルエステル等が挙げられる。
 本発明のレジスト下層膜形成組成物に含まれない光酸発生剤としては、オニウム塩化合物、スルホンイミド化合物、及びジスルホニルジアゾメタン化合物等が挙げられる。
 好ましくは、本発明のレジスト下層膜形成組成物はオニウム塩化合物も含まない。本発明のレジスト下層膜形成組成物に含まれないオニウム塩化合物としてはジフェニルヨードニウムヘキサフルオロホスフエート、ジフェニルヨードニウムトリフルオロメタンスルホネート、ジフェニルヨードニウムノナフルオロノルマルブタンスルホネート、ジフェニルヨードニウムパーフルオロノルマルオクタンスルホネート、ジフェニルヨードニウムカンファースルホネート、ビス(4-tert-ブチルフェニル)ヨードニウムカンファースルホネート及びビス(4-tert-ブチルフェニル)ヨードニウムトリフルオロメタンスルホネート等のヨードニウム塩化合物、及びトリフェニルスルホニウムヘキサフルオロアンチモネート、トリフェニルスルホニウムノナフルオロノルマルブタンスルホネート、トリフェニルスルホニウムカンファースルホネート及びトリフェニルスルホニウムトリフルオロメタンスルホネート等のスルホニウム塩化合物等が挙げられる。
 好ましくは、本発明のレジスト下層膜形成組成物はスルホンイミド化合物も含まない。本発明のレジスト下層膜形成組成物に含まれないスルホンイミド化合物としては、例えばN-(トリフルオロメタンスルホニルオキシ)スクシンイミド、N-(ノナフルオロノルマルブタンスルホニルオキシ)スクシンイミド、N-(カンファースルホニルオキシ)スクシンイミド及びN-(トリフルオロメタンスルホニルオキシ)ナフタルイミド等が挙げられる。
 好ましくは、本発明のレジスト下層膜形成組成物はジスルホニルジアゾメタン化合物も含まない。本発明のレジスト下層膜形成組成物に含まれないジスルホニルジアゾメタン化合物としては、例えば、ビス(トリフルオロメチルスルホニル)ジアゾメタン、ビス(シクロヘキシルスルホニル)ジアゾメタン、ビス(フェニルスルホニル)ジアゾメタン、ビス(p-トルエンスルホニル)ジアゾメタン、ビス(2,4-ジメチルベンゼンスルホニル)ジアゾメタン、及びメチルスルホニル-p-トルエンスルホニルジアゾメタン等が挙げられる。
 本発明のレジスト下層膜形成組成物は、前記ジシアノスチリル基を有するポリマー(P)又は前記ジシアノスチリル基を有する化合物(C)が、それぞれエポキシ基を含有するポリマー前駆体(PP)又はエポキシ基を含有する化合物前駆体(PC)と、活性プロトン化合物との反応生成物である場合、未反応の活性プロトン化合物(例えばカルボン酸を有する化合物)を含まない。未反応の活性プロトン化合物が存在する可能性がある場合には、自体公知の方法で除去してもよい。
[その他の成分]
 本発明のレジスト下層膜形成組成物には、ピンホールやストレーション等の発生がなく、表面むらに対する塗布性をさらに向上させるために、界面活性剤を配合することができる。界面活性剤としては、例えばポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンセチルエーテル、ポリオキシエチレンオレイルエーテル等のポリオキシエチレンアルキルエーテル類、ポリオキシエチレンオクチルフェノールエーテル、ポリオキシエチレンノニルフェノールエーテル等のポリオキシエチレンアルキルアリルエーテル類、ポリオキシエチレン・ポリオキシプロピレンブロックコポリマー類、ソルビタンモノラウレート、ソルビタンモノパルミテート、ソルビタンモノステアレート、ソルビタンモノオレエート、ソルビタントリオレエート、ソルビタントリステアレート等のソルビタン脂肪酸エステル類、ポリオキシエチレンソルビタンモノラウレート、ポリオキシエチレンソルビタンモノパルミテート、ポリオキシエチレンソルビタンモノステアレート、ポリオキシエチレンソルビタントリオレエート、ポリオキシエチレンソルビタントリステアレート等のポリオキシエチレンソルビタン脂肪酸エステル類等のノニオン系界面活性剤、エフトップEF301、EF303、EF352(株式会社トーケムプロダクツ製、商品名)、メガファックF171、F173、R-30N、R-40、R-40N、R-40LM(DIC株式会社製、商品名)、フロラードFC430、FC431(住友スリーエム株式会社製、商品名)、アサヒガードAG710、サーフロンS-382、SC101、SC102、SC103、SC104、SC105、SC106(旭硝子株式会社製、商品名)等のフッ素系界面活性剤、オルガノシロキサンポリマーKP341(信越化学工業株式会社製)等を挙げることができる。これらの界面活性剤の配合量は、レジスト下層膜材料の全固形分に対して通常2.0質量%以下、好ましくは1.0質量%以下である。これらの界面活性剤は単独で使用してもよいし、また二種以上の組み合わせで使用することもできる。界面活性剤が使用される場合、その割合としては、レジスト下層膜形成組成物の固形分100質量部に対して0.0001乃至5質量部、または0.001乃至1質量部、または0.01乃至0.5質量部である。
 本発明のレジスト下層膜形成組成物には、吸光剤、レオロジー調整剤、接着補助剤などを添加することができる。レオロジー調整剤は、下層膜形成組成物の流動性を向上させるのに有効である。接着補助剤は、半導体基板またはレジストと下層膜の密着性を向上させるのに有効である。
 吸光剤としては例えば、「工業用色素の技術と市場」(CMC出版)や「染料便覧」(有機合成化学協会編)に記載の市販の吸光剤、例えば、C.I.Disperse Yellow 1,3,4,5,7,8,13,23,31,49,50,51,54,60,64,66,68,79,82,88,90,93,102,114及び124;C.I.Disperse Orange1,5,13,25,29,30,31,44,57,72及び73;C.I.Disperse Red 1,5,7,13,17,19,43,50,54,58,65,72,73,88,117,137,143,199及び210;C.I.Disperse Violet 43;C.I.Disperse Blue 96;C.I.Fluorescent Brightening Agent 112,135及び163;C.I.Solvent Orange2及び45;C.I.Solvent Red 1,3,8,23,24,25,27及び49;C.I.Pigment Green 10;C.I.Pigment Brown 2等を好適に用いることができる。上記吸光剤は通常、レジスト下層膜形成組成物の全固形分に対して10質量%以下、好ましくは5質量%以下の割合で配合される。
 レオロジー調整剤は、主にレジスト下層膜形成組成物の流動性を向上させ、特にベーキング工程において、レジスト下層膜の膜厚均一性の向上やホール内部へのレジスト下層膜形成組成物の充填性を高める目的で添加される。具体例としては、ジメチルフタレート、ジエチルフタレート、ジイソブチルフタレート、ジヘキシルフタレート、ブチルイソデシルフタレート等のフタル酸誘導体、ジノルマルブチルアジペート、ジイソブチルアジペート、ジイソオクチルアジペート、オクチルデシルアジペート等のアジピン酸誘導体、ジノルマルブチルマレート、ジエチルマレート、ジノニルマレート等のマレイン酸誘導体、メチルオレート、ブチルオレート、テトラヒドロフルフリルオレート等のオレイン酸誘導体、またはノルマルブチルステアレート、グリセリルステアレート等のステアリン酸誘導体を挙げることができる。これらのレオロジー調整剤は、レジスト下層膜形成組成物の全固形分に対して通常30質量%未満の割合で配合される。
 接着補助剤は、主に基板あるいはレジストとレジスト下層膜形成組成物の密着性を向上させ、特に現像においてレジストが剥離しないようにするための目的で添加される。具体例としては、トリメチルクロロシラン、ジメチルメチロールクロロシラン、メチルジフェニルクロロシラン、クロロメチルジメチルクロロシラン等のクロロシラン類、トリメチルメトキシシラン、ジメチルジエトキシシラン、メチルジメトキシシラン、ジメチルメチロールエトキシシラン、ジフェニルジメトキシシラン、フェニルトリエトキシシラン等のアルコキシシラン類、ヘキサメチルジシラザン、N,N’-ビス(トリメチルシリル)ウレア、ジメチルトリメチルシリルアミン、トリメチルシリルイミダゾール等のシラザン類、メチロールトリクロロシラン、γ-クロロプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、γ-グリシドキシプロピルトリメトキシシラン等のシラン類、ベンゾトリアゾール、ベンズイミダゾール、インダゾール、イミダゾール、2-メルカプトベンズイミダゾール、2-メルカプトベンゾチアゾール、2-メルカプトベンゾオキサゾール、ウラゾール、チオウラシル、メルカプトイミダゾール、メルカプトピリミジン等の複素環式化合物や、1,1-ジメチルウレア、1,3-ジメチルウレア等の尿素、またはチオ尿素化合物を挙げることができる。これらの接着補助剤は、レジスト下層膜形成組成物の全固形分に対して通常5質量%未満、好ましくは2質量%未満の割合で配合される。
 本発明に係るレジスト下層膜形成組成物の固形分は通常0.1乃至70質量%、好ましくは0.1乃至60質量%とする。固形分はレジスト下層膜形成組成物から溶剤を除いた全成分の含有割合である。固形分中における上記ポリマー(P)と上記化合物(C)との合計の割合は、1乃至100質量%、50乃至100質量%、80乃至100質量%の順で好ましい。
 レジスト下層膜形成組成物が均一な溶液状態であるかどうかを評価する尺度の一つは、特定のマイクロフィルターの通過性を観察することであるが、本発明に係るレジスト下層膜形成組成物は、孔径0.1μmのマイクロフィルターを通過し、均一な溶液状態を呈する。
 上記マイクロフィルター材質としては、PTFE(ポリテトラフルオロエチレン)、PFA(テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体)などのフッ素系樹脂、PE(ポリエチレン)、UPE(超高分子量ポリエチレン)、PP(ポリプロピレン)、PSF(ポリスルフォン)、PES(ポリエーテルスルホン)、ナイロンが挙げられるが、PTFE(ポリテトラフルオロエチレン)製であることが好ましい。
[基板]
 本発明において、半導体装置の製造に使用される基板には、例えば、シリコンウエハー基板、シリコン/二酸化シリコン被覆基板、シリコンナイトライド基板、ガラス基板、ITO基板、ポリイミド基板、及び低誘電率材料(low-k材料)被覆基板等が包含される。
 なお、最近は、半導体製造工程の三次元実装分野において、半導体チップ間の配線長短縮化による高速応答性、省電力化を目的にFOWLPプロセスが適用され始めている。半導体チップ間の配線を作成するRDL(再配線)工程では、配線部材として銅(Cu)が使用され、銅配線が微細化するにしたがい、反射防止膜(レジスト下層膜形成組成物)を適用する必要がある。本発明に係るレジスト下層膜形成組成物は、表面に銅を含む基板にも好適に適用することができる。
[レジスト下層膜及び半導体装置の製造方法]
 以下、本発明に係るレジスト下層膜形成組成物を用いたレジスト下層膜及び半導体装置の製造方法について説明する。
 上記した半導体装置の製造に使用される基板(例えば、表面に銅を含む基板)の上に、スピナー、コーター等の適当な塗布方法により本発明のレジスト下層膜形成組成物が塗布され、その後、溶剤を除去することによりレジスト下層膜が形成される。
 溶剤を除去する条件としては、温度80℃乃至400℃、時間0.3乃至60分間の中から適宜、選択される。好ましくは、温度150℃乃至350℃、時間0.5乃至2分間である。ここで、形成される下層膜の膜厚としては、例えば、10乃至1000nmであり、または20乃至500nmであり、または30乃至400nmであり、または50乃至300nmである。
 なお、本発明に係るレジスト下層膜形成組成物は、メラミン、尿素、ベンゾグアナミン、又はグリコールウリルから誘導されたアルキル化アミノプラスト架橋剤を含まず、プロトン酸硬化触媒を含まないため、形成されるレジスト下層膜は未硬化レジスト下層膜である。
 また、本発明に係る有機レジスト下層膜上に無機レジスト下層膜(ハードマスク)を形成することもできる。例えば、WO2009/104552A1に記載のシリコン含有レジスト下層膜(無機レジスト下層膜)形成組成物をスピンコートで形成する方法の他、Si系の無機材料膜をCVD法などで形成することができる。
 次いでその未硬化レジスト下層膜の上にレジスト膜、例えばフォトレジストの層が形成される。フォトレジストの層の形成は、周知の方法、すなわち、フォトレジスト組成物溶液の下層膜上への塗布及びベーク(焼成)によって行なうことができる。フォトレジストの膜厚としては例えば50乃至10000nmであり、または100乃至2000nmである。
 未硬化レジスト下層膜の上に形成されるフォトレジストとしては露光に使用される光に感光するものであれば特に限定はない。ネガ型フォトレジスト及びポジ型フォトレジストのいずれも使用できる。ノボラック樹脂と1,2-ナフトキノンジアジドスルホン酸エステルとからなるポジ型フォトレジスト、酸により分解してアルカリ溶解速度を上昇させる基を有するバインダーと光酸発生剤からなる化学増幅型フォトレジスト、酸により分解してフォトレジストのアルカリ溶解速度を上昇させる低分子化合物とアルカリ可溶性バインダーと光酸発生剤とからなる化学増幅型フォトレジスト、及び酸により分解してアルカリ溶解速度を上昇させる基を有するバインダーと酸により分解してフォトレジストのアルカリ溶解速度を上昇させる低分子化合物と光酸発生剤からなる化学増幅型フォトレジストなどがある。例えば、シプレー社製商品名APEX-E、住友化学工業株式会社製商品名PAR710、及び信越化学工業株式会社製商品名SEPR430等が挙げられる。また、例えば、Proc.SPIE,Vol.3999,330-334(2000)、Proc.SPIE,Vol.3999,357-364(2000)、やProc.SPIE,Vol.3999,365-374(2000)に記載されているような、含フッ素原子ポリマー系フォトレジストを挙げることができる。
 次に、光又は電子線の照射と現像によりレジストパターンを形成する。まず、所定のマスクを通して露光が行なわれる。露光には、近紫外線、遠紫外線、又は極端紫外線(例えば、EUV(波長13.5nm))等が用いられる。具体的には、i線(波長365nm)、KrFエキシマレーザー(波長248nm)、ArFエキシマレーザー(波長193nm)及びFエキシマレーザー(波長157nm)等を使用することができる。これらの中でも、i線(波長365nm)が好ましい。露光後、必要に応じて露光後加熱(post exposure bake)を行なうこともできる。露光後加熱は、加熱温度70℃乃至150℃、加熱時間0.3乃至10分間から適宜、選択された条件で行われる。
 また、本発明ではレジストとしてフォトレジストに変えて電子線リソグラフィー用レジストを用いることができる。電子線レジストとしてはネガ型、ポジ型いずれも使用できる。酸発生剤と酸により分解してアルカリ溶解速度を変化させる基を有するバインダーからなる化学増幅型レジスト、アルカリ可溶性バインダーと酸発生剤と酸により分解してレジストのアルカリ溶解速度を変化させる低分子化合物からなる化学増幅型レジスト、酸発生剤と酸により分解してアルカリ溶解速度を変化させる基を有するバインダーと酸により分解してレジストのアルカリ溶解速度を変化させる低分子化合物からなる化学増幅型レジスト、電子線によって分解してアルカリ溶解速度を変化させる基を有するバインダーからなる非化学増幅型レジスト、電子線によって切断されアルカリ溶解速度を変化させる部位を有するバインダーからなる非化学増幅型レジストなどがある。これらの電子線レジストを用いた場合も照射源を電子線としてフォトレジストを用いた場合と同様にレジストパターンを形成することができる。
 次いで、現像液によって現像が行なわれる。これにより、例えばポジ型フォトレジストが使用された場合は、露光された部分のフォトレジストが除去され、フォトレジストのパターンが形成される。
 現像液としては、水酸化カリウム、水酸化ナトリウムなどのアルカリ金属水酸化物の水溶液、水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウム、コリンなどの水酸化四級アンモニウムの水溶液、エタノールアミン、プロピルアミン、エチレンジアミンなどのアミン水溶液等のアルカリ性水溶液を例として挙げることができる。さらに、これらの現像液に界面活性剤などを加えることもできる。現像の条件としては、温度5乃至50℃、時間10乃至600秒から適宜選択される。
 本発明では基板上に有機下層膜(下層)を成膜した後、その上に無機下層膜(中間層)を成膜し、更にその上にフォトレジスト(上層)を被覆することができる。これによりフォトレジストのパターン幅が狭くなり、パターン倒れを防ぐためにフォトレジストを薄く被覆した場合でも、適切なエッチングガスを選択することにより基板の加工が可能になる。例えば、フォトレジストに対して十分に早いエッチング速度となるフッ素系ガスをエッチングガスとしてレジスト下層膜に加工が可能であり、また無機下層膜に対して十分に早いエッチング速度となるフッ素系ガスをエッチングガスとして基板の加工が可能であり、更に有機下層膜に対して十分に早いエッチング速度となる酸素系ガスをエッチングガスとして基板の加工を行うことができる。
 そして、このようにして形成されたフォトレジストのパターンを保護膜として無機下層膜の除去が行われ、次いでパターン化されたフォトレジスト及び無機下層膜からなる膜を保護膜として、有機下層膜の除去が行われる。最後に、パターン化された無機下層膜及び有機下層膜を保護膜として、半導体基板の加工が行なわれる。
 まず、フォトレジストが除去された部分の無機下層膜をドライエッチングによって取り除き、半導体基板を露出させる。無機下層膜のドライエッチングにはテトラフルオロメタン(CF)、パーフルオロシクロブタン(C)、パーフルオロプロパン(C)、トリフルオロメタン、一酸化炭素、アルゴン、酸素、窒素、六フッ化硫黄、ジフルオロメタン、三フッ化窒素及び三フッ化塩素、塩素、トリクロロボラン及びジクロロボラン等のガスを使用することができる。無機下層膜のドライエッチングにはハロゲン系ガスを使用することが好ましく、フッ素系ガスによることがより好ましい。フッ素系ガスとしては、例えば、テトラフルオロメタン(CF)、パーフルオロシクロブタン(C)、パーフルオロプロパン(C)、トリフルオロメタン、及びジフルオロメタン(CH)等が挙げられる。
 その後、パターン化されたフォトレジスト及び無機下層膜からなる膜を保護膜として有機下層膜の除去が行われる。
 シリコン原子を多く含む無機下層膜は、酸素系ガスによるドライエッチングでは除去されにくいため、有機下層膜の除去はしばしば酸素系ガスによるドライエッチングによって行なわれる。
 最後に、半導体基板の加工が行なわれる。半導体基板の加工はフッ素系ガスによるドライエッチングによって行なわれることが好ましい。
 フッ素系ガスとしては、例えば、テトラフルオロメタン(CF)、パーフルオロシクロブタン(C)、パーフルオロプロパン(C)、トリフルオロメタン、及びジフルオロメタン(CH)等が挙げられる。
 また、未硬化レジスト下層膜の上層には、フォトレジストの形成前に有機系の反射防止膜を形成することができる。そこで使用される反射防止膜組成物としては特に制限はなく、これまでリソグラフィープロセスにおいて慣用されているものの中から任意に選択して使用することができ、また、慣用されている方法、例えば、スピナー、コーターによる塗布及び焼成によって反射防止膜の形成を行なうことができる。
 レジスト下層膜形成組成物より形成される未硬化レジスト下層膜は、また、リソグラフィープロセスにおいて使用される光の波長によっては、その光に対する吸収を有することがある。そして、そのような場合には、基板からの反射光を防止する効果を有する反射防止膜として機能することができる。さらに、本発明のレジスト下層膜形成組成物で形成された下層膜はハードマスクとしても機能し得るものである。本発明の下層膜は、基板とフォトレジストとの相互作用の防止するための層、フォトレジストに用いられる材料又はフォトレジストへの露光時に生成する物質の基板への悪作用を防ぐ機能とを有する層、加熱焼成時に基板から生成する物質の上層フォトレジストへの拡散を防ぐ機能を有する層、及び半導体基板誘電体層によるフォトレジスト層のポイズニング効果を減少させるためのバリア層等として使用することも可能である。
 一方、プロセス工程の簡略化や基板ダメージ低減、コスト削減を目的にドライエッチング除去に代え、薬液を用いたウェットエッチング除去による手法も検討されている。しかしながら、従来のレジスト下層膜形成組成物からのレジスト下層膜は、元来、レジスト塗布時にレジストとのミキシングを抑制するため、溶剤耐性を有する硬化膜とする必要がある。また、レジストパターニング時には、レジストを解像するために現像液を用いる必要があるが、この現像液にも耐性が必要不可欠となる。したがって、硬化膜が、レジスト溶剤や現像液に不溶性でウェットエッチング液のみに可溶性を持たせることは、従来の技術では難しかった。しかし、本発明に係るレジスト下層膜形成組成物によれば、このようなウェットエッチング液に可溶なレジスト下層膜を提供することができる。
 ウェットエッチング液としては、例えば、有機溶媒を含むことが好ましく、酸性化合物または塩基性化合物を含んでもよい。有機溶剤としては、ジメチルスルホキシド、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン、N-エチルピロリドン、エチレングリコール、プロピレングリコール、ジエチレングリコールジメチルエーテル等が挙げられる。酸性化合物としては、無機酸もしくは有機酸が挙げられ、無機酸としては、塩酸、硫酸、硝酸、リン酸等が挙げられ、有機酸としては、p-トルエンスルホン酸、トリフルオロメタンスルホン酸、サリチル酸、5-スルホサリチル酸、4-フェノールスルホン酸、カンファースルホン酸、4-クロロベンゼンスルホン酸、ベンゼンジスルホン酸、1-ナフタレンスルホン酸、酢酸、プロピオン酸、トリフルオロ酢酸、クエン酸、安息香酸、ヒドロキシ安息香酸、ナフタレンカルボン酸等が挙げられる。また、塩基性化合物としては、無機塩基もしくは有機塩基が挙げられ、無機塩基としては、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物、水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウム、コリンなどの水酸化四級アンモニウム、エタノールアミン、プロピルアミン、ジエチルアミノエタノール、エチレンジアミンなどのアミンを挙げることができる。さらに、前記ウェットエッチング液は有機溶媒を一種のみを使用することができ、または二種以上を組み合わせて使用することができる。また、酸性化合物または塩基性化合物を一種のみを使用することができ、または二種以上を組み合わせて使用することができる。酸性化合物または塩基性化合物の配合量はウェットエッチング液に対して、0.01乃至20重量%であり、好ましくは0.1乃至5重量%であり、特に好ましくは、0.2乃至1重量%である。また、ウェットエッチング液として好ましくは、塩基性化合物を含む有機溶媒であり、特に好ましくはジメチルスルホキシドと水酸化テトラメチルアンモニウムを含む混合液である。
 なお、最近は、半導体製造工程の三次元実装分野において、FOWLP(Fan-Out Wafer Level Package)プロセスが適用され始めており、銅配線を形成するRDL(再配線)工程において、レジスト下層膜を適用することができる。
 代表的なRDL工程においては、以下に説明されるがこの限りではない。まず、半導体チップ上に感光性絶縁膜を成膜させた後、光照射(露光)と現像によるパターニングを行うことで、半導体チップ電極部を開口させる。続いて、配線部材となる銅配線をめっき工程によって形成するための銅のシード層をスパッタリングによって成膜する。さらに、レジスト下層膜とフォトレジスト層を順に成膜した後、光照射と現像を行い、レジストのパターニングを行う。不要なレジスト下層膜はドライエッチングによって除去され、露出したレジストパターン間の銅シード層上に電解銅めっきを行い、第一の配線層となる銅配線を形成する。さらに、不要なレジスト及びレジスト下層膜及び銅シード層をドライエッチングまたはウェットエッチングまたはその両方によって除去する。さらに、形成した銅配線層を再び絶縁膜で被覆した後、銅シード層、レジスト下層膜、レジストの順で成膜し、レジストパターニング、レジスト下層膜除去、銅めっきを行うことにより、第二の銅配線層を形成する。この工程を繰り返して、目的の銅配線を形成させた後、電極取り出し用のバンプを形成させる。
 本発明に係るレジスト下層膜形成組成物は、レジスト下層膜をウェットエッチングで除去することが可能であるため、このようなRDL工程におけるレジスト下層膜として、プロセス工程の簡略化や加工基板へのダメージ低減の観点から、特に好適に用いることができる。
 次に実施例を挙げ本発明の内容を具体的に説明するが、本発明はこれらに限定されるものではない。
 下記合成例で得られたポリマーの重量平均分子量の測定に用いた装置等を示す。
装置:東ソー株式会社製HLC-8320GPC
GPCカラム:Shodex〔登録商標〕・Asahipak〔登録商標〕(昭和電工株式会社)
カラム温度:40℃
流量:0.35mL/分
溶離液:テトラヒドロフラン(THF)
標準試料:ポリスチレン(東ソー株式会社)
<合成例1>
 フェノールノボラック型エポキシ樹脂(製品名:DEN、ダウ・ケミカル社製、エポキシ官能価:5.55eq./kg)15.00g、4-ヒドロキシベンズアルデヒド10.17g、テトラブチルホスホニウムブロマイド1.41g、プロピレングリコールモノメチルエーテル39.87gを反応フラスコに加え、窒素雰囲気下、24時間加熱還流した。続いて、マロノニトリル5.50gをプロピレングリコールモノメチルエーテル34.99gで溶解させた溶液を系内に加え、さらに4時間加熱還流した。得られた反応生成物は式(A-1)に相当し、GPCによるポリスチレン換算で測定される重量平均分子量Mwは2100であった。 
Figure JPOXMLDOC01-appb-C000025
<合成例2>
 フェノールノボラック型エポキシ樹脂(製品名:DEN、ダウ・ケミカル社製、エポキシ官能価:5.55eq./kg)12.00g、4-ヒドロキシベンズアルデヒド4.07g、テレフタルアルデヒド酸5.00、テトラブチルホスホニウムブロマイド1.13g、プロピレングリコールモノメチルエーテル33.30gを反応フラスコに加え、窒素雰囲気下、23時間加熱還流した。続いて、マロノニトリル4.40gをプロピレングリコールモノメチルエーテル28.77gで溶解させた溶液を系内に加え、さらに4時間加熱還流した。得られた反応生成物は式(A-2)に相当し、GPCによるポリスチレン換算で測定される重量平均分子量Mwは2400であった。 
Figure JPOXMLDOC01-appb-C000026
<合成例3>
 シクロヘキサン型エポキシ樹脂(製品名:EHPE3150、ダイセル株式会社製、エポキシ官能価:5.99eq./kg)12.00g、4-ヒドロキシベンズアルデヒド4.39g、テレフタルアルデヒド酸5.40、テトラブチルホスホニウムブロマイド1.22g、プロピレングリコールモノメチルエーテル34.50gを反応フラスコに加え、窒素雰囲気下、23時間加熱還流した。さらに、マロノニトリル4.75gをプロピレングリコールモノメチルエーテル30.25gで溶解させた溶液を系内に加え、続いて4時間加熱還流した。得られた反応生成物は式(A-3)に相当し、GPCによるポリスチレン換算で測定される重量平均分子量Mwは5400であった。 
Figure JPOXMLDOC01-appb-C000027
<合成例4>
 ナフタレン型エポキシ樹脂(製品名:EPICLON HP-4710、DIC株式会社製、エポキシ官能価:5.81eq./kg)9.00g、4-ヒドロキシベンズアルデヒド6.39g、テトラブチルホスホニウムブロマイド0.89g、プロピレングリコールモノメチルエーテル24.42gを反応フラスコに加え、窒素雰囲気下、24時間加熱還流した。続いて、マロノニトリル3.46gをプロピレングリコールモノメチルエーテル21.63gで溶解させた溶液を系内に加え、さらに6時間加熱還流した。得られた反応生成物は式(A-4)に相当し、GPCによるポリスチレン換算で測定される重量平均分子量Mwは1700であった。 
Figure JPOXMLDOC01-appb-C000028
<合成例5>
 ナフタレン型エポキシ樹脂(製品名:EPICLON HP-4710、DIC株式会社製、エポキシ官能価:5.81eq./kg)13.00g、4-ヒドロキシベンズアルデヒド4.62g、テレフタルアルデヒド酸5.67g、テトラブチルホスホニウムブロマイド1.28g、プロピレングリコールモノメチルエーテル36.86gを反応フラスコに加え、窒素雰囲気下、23時間加熱還流した。続いて、マロノニトリル4.99gをプロピレングリコールモノメチルエーテル32.13gで溶解させた溶液を系内に加え、さらに4時間加熱還流した。得られた反応生成物は式(A-5)に相当し、GPCによるポリスチレン換算で測定される重量平均分子量Mwは1900であった。 
Figure JPOXMLDOC01-appb-C000029
<合成例6>
 トリアジン型エポキシ化合物(製品名:TEPIC、日産化学株式会社製、エポキシ官能価:10.03eq./kg)10.00g、4-ヒドロキシベンズアルデヒド12.25g、テトラブチルホスホニウムブロマイド0.85g、プロピレングリコールモノメチルエーテル53.90gを反応フラスコに加え、窒素雰囲気下、23時間加熱還流した。続いて、マロノニトリル6.63gをプロピレングリコールモノメチルエーテル15.46gで溶解させた溶液を系内に加え、さらに5時間加熱還流した。得られた反応生成物は式(A-6)に相当し、GPCによるポリスチレン換算で測定される重量平均分子量Mwは800であった。
Figure JPOXMLDOC01-appb-C000030
<合成例7>
 トリアジン型エポキシ化合物(製品名:TEPIC、日産化学株式会社製、エポキシ官能価:10.03eq./kg)9.00g、4-ヒドロキシベンズアルデヒド5.51g、テレフタルアルデヒド酸6.78g、テトラブチルホスホニウムブロマイド1.53g、プロピレングリコールモノメチルエーテル34.23gを反応フラスコに加え、窒素雰囲気下、23時間加熱還流した。続いて、マロノニトリル5.96gをプロピレングリコールモノメチルエーテル32.93gで溶解させた溶液を系内に加え、さらに4時間加熱還流した。得られた反応生成物は式(A-7)に相当し、GPCによるポリスチレン換算で測定される重量平均分子量Mwは900であった。 
Figure JPOXMLDOC01-appb-C000031
<実施例1>
 前記式(A-2)に相当する反応生成物の溶液(固形分は22.7重量%)9.26gに、プロピレングリコールモノメチルエーテル1.21g、プロピレングリコールモノメチルエーテルアセテート19.53gを加え、レジスト下層膜形成組成物の溶液を調製した。
<実施例2>
 前記式(A-3)に相当する反応生成物の溶液(固形分は22.3重量%)9.40gに、プロピレングリコールモノメチルエーテル12.23g、プロピレングリコールモノメチルエーテルアセテート8.37gを加え、レジスト下層膜形成組成物の溶液を調製した。
<実施例3>
 前記式(A-4)に相当する反応生成物の溶液(固形分は29.4重量%)7.14gに、プロピレングリコールモノメチルエーテル14.49g、プロピレングリコールモノメチルエーテルアセテート8.37gを加え、レジスト下層膜形成組成物の溶液を調製した。
<実施例4>
 前記式(A-5)に相当する反応生成物の溶液(固形分は23.4重量%)8.97gに、プロピレングリコールモノメチルエーテル12.66g、プロピレングリコールモノメチルエーテルアセテート8.37gを加え、レジスト下層膜形成組成物の溶液を調製した。
<実施例5>
 前記式(A-6)に相当する反応生成物の溶液(固形分は25.8重量%)8.14gに、プロピレングリコールモノメチルエーテル13.49g、プロピレングリコールモノメチルエーテルアセテート8.37gを加え、レジスト下層膜形成組成物の溶液を調製した。
<実施例6>
 前記式(A-7)に相当する反応生成物の溶液(固形分は23.9重量%)8.77gに、プロピレングリコールモノメチルエーテル12.86g、プロピレングリコールモノメチルエーテルアセテート8.37gを加え、レジスト下層膜形成組成物の溶液を調製した。
<比較例1>
 前記式(A-1)に相当する反応生成物の溶液(固形分は22.9重量%)7.58gに、架橋剤としてテトラメトキシメチルグリコールウリル0.35g、架橋触媒としてピリジニウム-p-トルエンスルホナート0.02g、プロピレングリコールモノメチルエーテル13.69g、プロピレングリコールモノメチルエーテルアセテート8.37gを加え、レジスト下層膜形成組成物の溶液を調製した。
<比較例2>
 前記式(A-2)に相当する反応生成物の溶液(固形分は22.7重量%)7.98gに、架橋剤としてテトラメトキシメチルグリコールウリル0.27g、架橋触媒としてピリジニウム-p-トルエンスルホナート0.02g、プロピレングリコールモノメチルエーテル13.36g、プロピレングリコールモノメチルエーテルアセテート8.37gを加え、レジスト下層膜形成組成物の溶液を調製した。
<比較例3>
 前記式(A-3)に相当する反応生成物の溶液(固形分は22.3重量%)8.12gに、架橋剤としてテトラメトキシメチルグリコールウリル0.27g、架橋触媒としてピリジニウム-p-トルエンスルホナート0.02g、プロピレングリコールモノメチルエーテル13.22g、プロピレングリコールモノメチルエーテルアセテート8.37gを加え、レジスト下層膜形成組成物の溶液を調製した。
〔光学定数の評価〕
 光学定数の測定として、実施例1乃至実施例6で調製されたリソグラフィー用レジスト下層膜形成組成物を膜厚50nm程度となるように、スピンコーターにてシリコンウェハー上に塗布し、ホットプレート上で200℃、90秒間加熱した。得られたレジスト下層膜を分光エリプソメーター(VUV-VASE、J.A.Woolam製)を用い、波長193nm(ArFエキシマレーザー光波長)、248nm(KrFエキシマレーザー光波長)及び365nm(i線波長)におけるn値(屈折率)及びk値(減衰係数)を測定した。その結果を表1に示す。
Figure JPOXMLDOC01-appb-T000032
 上記の結果から、実施例1乃至6では193nm、248nm及び365nmに適度なn値及びk値を有していることから、実施例1乃至6によって得られたレジスト下層膜形成組成物から得られた塗布膜は、ArFエキシマレーザー、KrFエキシマレーザー、i線等の放射線を用いたリソグラフィー工程において、好ましくないレジストパターンの要因となる下地基板からの反射(定在波)を抑制できる反射防止機能を有するため、レジスト下層膜として有用である。
[レジスト溶剤に対する剥離性試験]
 レジスト溶剤(有機溶剤)に対する除去性評価として、実施例1乃至実施例6で調製されたレジスト下層膜形成組成物を100nm膜厚の銅基板上に塗布し、200℃、90秒間加熱することで、膜厚170nmとなるようにレジスト下層膜を成膜した。次に、前記レジスト下層膜組成物を塗布した銅基板を一般的なレジスト溶剤であるプロピレングリコールモノメチルエーテル(PGME)またはプロピレングリコールモノメチルエーテルアセテート(PGMEA)中に室温で1分間浸漬し、浸漬後における塗布膜の除去性を目視にて観察した。その結果を表2に示す。尚、塗布膜が除去された場合は、レジスト溶剤(有機溶剤)に対する耐性を持たないものと判断し、除去されない場合は耐性を持つものと判断した。
Figure JPOXMLDOC01-appb-T000033
 上記の結果から、実施例1乃至実施例6のレジスト下層膜組成物において、銅基板上での塗布膜はPGME及びPGMEAによって除去(剥離)されなかったことより、これら有機溶剤(レジスト溶剤)に対して良好な薬液耐性を有していると言える。すなわち、実施例1乃至実施例6のレジスト下層膜組成物から得られた塗布膜は、レジスト溶剤によって好ましくない剥離現象が起こらないため、レジスト下層膜として有用である。
[レジスト現像液に対する除去性試験]
 レジスト現像液(アルカリ水溶液)への除去性評価として、実施例1乃至実施例6で調製されたレジスト下層膜形成組成物を100nm膜厚の銅基板上に塗布し、200℃、90秒間加熱することで、膜厚170nmとなるようにレジスト下層膜を成膜した。次に、前記レジスト下層膜組成物を塗布した銅基板をアルカリ水溶液である2.38重量%水酸化テトラメチルアンモニウム(テトラメチルアンモニウムヒドロキシド:TMAH)水溶液(製品名:NMD-3、東京応化工業株式会社製)中に室温で1分間浸漬し、浸漬後における塗布膜の除去性を目視にて観察した。その結果を表3に示す。尚、塗布膜が除去された場合は、レジスト現像液(アルカリ水溶液)に対する耐性を持たないものと判断し、除去されなかった場合は耐性を持つものと判断した。
Figure JPOXMLDOC01-appb-T000034
 上記の結果から、実施例1乃至実施例6のレジスト下層膜組成物において、銅基板上での塗布膜はTMAH水溶液に対して除去(剥離)されなかったことより、レジスト現像液(アルカリ水溶液)に対して良好な薬液耐性を有していると言える。すなわち、実施例1乃至実施例6のレジスト下層膜組成物から得られた塗布膜は、レジスト現像液によって好ましくない剥離現象を抑制することができるため、アルカリ水溶液での現像工程を必要とするレジスト下層膜として有用である。
[ウェットエッチング薬液への除去性試験]
 ウェットエッチング薬液(塩基性有機溶剤)への除去性評価として、実施例1乃至実施例6及び比較例1及び比較例3で調製されたレジスト下層膜形成組成物を100nm膜厚の銅基板上に塗布し、200℃、90秒間加熱することで、膜厚170nmとなるようにレジスト下層膜を成膜した。次に、前記レジスト下層膜組成物を塗布した銅基板を塩基性有機溶剤である0.5重量%水酸化テトラメチルアンモニウム((TMAH)のジメチルスルホキシド溶液中に50℃で5分間浸漬し、浸漬後における塗布膜の除去性を目視にて観察した。その結果を表4に示す。尚、塗布膜が除去された場合は、塩基性有機溶剤に対して良好な除去性(剥離性)を持つものと判断し、除去されない場合は良好な除去性(剥離性)を持たないものと判断した。
Figure JPOXMLDOC01-appb-T000035
 上記の結果から、実施例1乃至実施例6のレジスト下層膜組成物は、比較例1及び比較例3のレジスト下層膜組成物と比較して、銅基板上での塗布膜はウェットエッチング薬液(塩基性有機溶剤)に対して十分な除去性が得られた。すなわち、実施例1乃至実施例6のレジスト下層膜組成物から得られた塗布膜はウェットエッチング薬液に対して、良好な除去性(剥離性)を示すことができるため、レジスト下層膜をウェットエッチング薬液で除去する半導体製造工程において有用である。
[ウェットエッチング薬液への溶解性試験]
 ウェットエッチング薬液(塩基性有機溶剤)への溶解性評価として、実施例1乃至実施例6及び比較例1及至比較例3で調製されたレジスト下層膜形成組成物をシリコンウェハ基板上に塗布し、200℃、90秒間加熱することで、膜厚170nmとなるようにレジスト下層膜を成膜した。次に、成膜された前記レジスト下層膜を基板から剥離し、得られた塗布膜を塩基性有機溶剤である0.5重量%水酸化テトラメチルアンモニウム(TMAH)のジメチルスルホキシド溶液中に50℃で5分間浸漬し、浸漬後における塗布膜の溶解性を目視にて観察した。その結果を表5に示す。尚、塗布膜が溶解した場合は、ウェットエッチング薬液に対して良好な溶解性を持つものと判断し、溶解しなかった場合(不溶)は良好な溶解性を持たないものと判断した。
Figure JPOXMLDOC01-appb-T000036
 上記の結果から、実施例1乃至実施例6のレジスト下層膜組成物は、比較例1乃至比較例3のレジスト下層膜組成物と比較して、塗布膜はウェットエッチング薬液(塩基性有機溶剤)に対して十分な溶解性が得られた。すなわち、実施例1乃至実施例6のレジスト下層膜組成物から得られた塗布膜はウェットエッチング薬液に対して良好な溶解性を示すため、レジスト下層膜をウェットエッチング薬液で除去する半導体製造工程において有用である。特に、実施例1乃至実施例6のレジスト下層膜組成物から得られる塗布膜は、ウェットエッチング薬液で除去できるだけでなく、十分な溶解性も示すことから、異物(ディフェクト)となる除去された膜(剥離膜)が薬液中に不均一に分散することによって生じる好ましくない薬液の汚染を防止することが可能であるため、レジスト下層膜としてより有用である。
 本発明によれば、主に有機溶剤であるレジスト溶剤やアルカリ水溶液であるレジスト現像液に良好な耐性を示しつつ、ウェットエッチング薬液のみに除去性、好ましくは溶解性を示すレジスト下層膜を提供することができる。

Claims (14)

  1.  ジシアノスチリル基を有するポリマー(P)又はジシアノスチリル基を有する化合物(C)を含み、
     溶剤を含み、
     メラミン、尿素、ベンゾグアナミン、又はグリコールウリルから誘導されたアルキル化アミノプラスト架橋剤を含まず、
     プロトン酸硬化触媒を含まない、
    レジスト下層膜形成組成物。
  2.  前記ジシアノスチリル基を有するポリマー(P)又は前記ジシアノスチリル基を有する化合物(C)が、それぞれエポキシ基を含有するポリマー前駆体(PP)又はエポキシ基を含有する化合物前駆体(PC)と、活性プロトン化合物との反応生成物である、請求項1に記載のレジスト下層膜形成組成物。
  3.  前記ジシアノスチリル基が、下記式(1):
    Figure JPOXMLDOC01-appb-C000001

    (式(1)中、Xはアルキル基、水酸基、アルコキシ基、アルコキシカルボニル基、ハロゲン原子、シアノ基又はニトロ基を表し、Rは水素原子、アルキル基又はアリーレン基を表し、nは0乃至4の整数を表し、*はポリマー(P)又は化合物(C)の一部との結合部分を示す)で表される、請求項1又は2に記載のレジスト下層膜形成組成物。
  4.  前記ジシアノスチリル基を有するポリマー(P)又は前記ジシアノスチリル基を有する化合物(C)が下記式(2)で表される、請求項1又は2に記載のレジスト下層膜形成組成物。
    Figure JPOXMLDOC01-appb-C000002

    [式(2)中、
    Qはポリマー又は化合物からm個の末端原子を取り去った基であり、
    Qがポリマーのとき、mは1以上、かつ、ポリマーの反復単位の数以下であり、
    Qが化合物のとき、mは1乃至4の整数であり、
    m個のAは、それぞれ独立に、直接結合、分岐又は置換されていてもよい炭素原子数1乃至10のアルキレン基であり、アルキレン基中にエーテル結合、チオエーテル結合又はエステル結合を含んでもよく、
    m個のBは、それぞれ独立に、直接結合、エーテル結合、チオエーテル結合又はエステル結合を表し、
    m個のRは水素原子、メチル基、エチル基又はプロピル基を表し、Qと結合して環を形成してもよく、R及びRは、それぞれ独立に、水素原子、メチル基又はエチル基を表し、
    m個のLは、それぞれ独立に、下記式(3)で表され、
    Figure JPOXMLDOC01-appb-C000003

    (式(3)中、Yはエーテル結合、チオエーテル結合又はエステル結合を表し、
    Rは水素原子、アルキル基又はアリーレン基を表し、
    nは0乃至4の整数を表し、
    n個のXは、それぞれ独立に、アルキル基、水酸基、アルコキシ基、アルコキシカルボニル基、ハロゲン原子、シアノ基又はニトロ基を表す)]
  5.  前記ジシアノスチリル基を有するポリマー(P)又はジシアノスチリル基を有する化合物(C)が、芳香族環又は脂肪族環を含む、請求項1乃至3何れか1項に記載のレジスト下層膜形成組成物。
  6.  前記式(2)におけるQが芳香族環又は脂肪族環を含む、請求項4に記載のレジスト下層膜形成組成物。
  7.  前記式(1)及び/又は式(3)におけるRが水素原子である、請求項3又は4に記載のレジスト下層膜形成組成物。
  8.  前記式(3)におけるYがエーテル結合又はエステル結合で表される、請求項4に記載のレジスト下層膜形成組成物。
  9.  表面に銅を含む基板上で用いられる、請求項1乃至8何れか1項に記載のレジスト下層膜形成組成物。
  10.  請求項1から請求項9のいずれか1項に記載のレジスト下層膜形成組成物からなる塗布膜から溶剤を除去して得たことを特徴とする、未硬化レジスト下層膜。
  11.  表面に銅を含む基板上に形成された、請求項10に記載の未硬化レジスト下層膜。
  12.  表面に銅を含む基板上に請求項1乃至9の何れか1項に記載のレジスト下層膜形成組成物を塗布し溶剤を除去してレジスト下層膜を形成する工程、前記レジスト下層膜上にレジストを塗布しベークしてレジスト膜を形成する工程、前記レジスト下層膜と前記レジストで被覆された半導体基板を露光する工程、露光後の前記レジスト膜を現像し、パターニングする工程を含む、パターニングされた基板の製造方法。
  13.  表面に銅を含む基板上に、請求項1乃至9の何れか1項に記載のレジスト下層膜形成組成物からなる未硬化レジスト下層膜を形成する工程と、
     前記未硬化レジスト下層膜の上にレジスト膜を形成する工程と、
     レジスト膜に対する光又は電子線の照射とその後の現像によりレジストパターンを形成する工程、次いでレジストパターン間に露出したレジスト下層膜を除去する工程と、
     形成された前記レジストパターンに銅めっきを行う工程と、
     レジストパターン及びその下に存在するレジスト下層膜を除去する工程と、
    を含むことを特徴とする、半導体装置の製造方法。
  14.  前記レジスト下層膜を除去する工程の少なくとも1つが、ウェット処理にて行われる、請求項13に記載の製造方法。
PCT/JP2020/023671 2019-06-17 2020-06-17 ジシアノスチリル基を含むウェットエッチング可能なレジスト下層膜形成組成物 WO2020255985A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020217041388A KR102592573B1 (ko) 2019-06-17 2020-06-17 디시아노스티릴기를 포함하는 웨트에칭가능한 레지스트 하층막 형성 조성물
CN202080044359.2A CN113994263A (zh) 2019-06-17 2020-06-17 包含二氰基苯乙烯基的能够湿蚀刻的抗蚀剂下层膜形成用组合物
JP2021526819A JP7322949B2 (ja) 2019-06-17 2020-06-17 ジシアノスチリル基を含むウェットエッチング可能なレジスト下層膜形成組成物
US17/619,433 US11977331B2 (en) 2019-06-17 2020-06-17 Composition containing a dicyanostyryl group, for forming a resist underlayer film capable of being wet etched

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019111916 2019-06-17
JP2019-111916 2019-06-17

Publications (1)

Publication Number Publication Date
WO2020255985A1 true WO2020255985A1 (ja) 2020-12-24

Family

ID=74040810

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/023671 WO2020255985A1 (ja) 2019-06-17 2020-06-17 ジシアノスチリル基を含むウェットエッチング可能なレジスト下層膜形成組成物

Country Status (5)

Country Link
US (1) US11977331B2 (ja)
JP (1) JP7322949B2 (ja)
KR (1) KR102592573B1 (ja)
CN (1) CN113994263A (ja)
WO (1) WO2020255985A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI803390B (zh) * 2022-07-15 2023-05-21 三福化工股份有限公司 蝕刻液組成物及其蝕刻方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6199331A (ja) * 1984-10-19 1986-05-17 Sumitomo Chem Co Ltd 微細パタ−ン形成法
JP2006508377A (ja) * 2002-06-25 2006-03-09 ブルーワー サイエンス アイ エヌ シー. 湿式現像可能な反射防止組成物
JP2011501745A (ja) * 2007-10-10 2011-01-13 ビーエーエスエフ ソシエタス・ヨーロピア スルホニウム塩開始剤

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5693691A (en) 1995-08-21 1997-12-02 Brewer Science, Inc. Thermosetting anti-reflective coatings compositions
GB0219745D0 (en) 2002-08-23 2002-10-02 Fast Technology Ag Torque sensor adaptor
JP2005321752A (ja) 2004-04-09 2005-11-17 Nissan Chem Ind Ltd イソシアヌル酸化合物と安息香酸化合物との反応生成物を含む反射防止膜形成組成物
TW201202856A (en) 2010-03-31 2012-01-16 Jsr Corp Composition for forming resist underlayer film and pattern forming method
CN113994261A (zh) * 2019-06-17 2022-01-28 日产化学株式会社 包含具有二氰基苯乙烯基的杂环化合物的能够湿蚀刻的抗蚀剂下层膜形成用组合物

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6199331A (ja) * 1984-10-19 1986-05-17 Sumitomo Chem Co Ltd 微細パタ−ン形成法
JP2006508377A (ja) * 2002-06-25 2006-03-09 ブルーワー サイエンス アイ エヌ シー. 湿式現像可能な反射防止組成物
JP2011501745A (ja) * 2007-10-10 2011-01-13 ビーエーエスエフ ソシエタス・ヨーロピア スルホニウム塩開始剤

Also Published As

Publication number Publication date
CN113994263A (zh) 2022-01-28
JPWO2020255985A1 (ja) 2020-12-24
US11977331B2 (en) 2024-05-07
KR20220024080A (ko) 2022-03-03
JP7322949B2 (ja) 2023-08-08
US20220397828A1 (en) 2022-12-15
KR102592573B1 (ko) 2023-10-23
TW202113486A (zh) 2021-04-01

Similar Documents

Publication Publication Date Title
CN108139674B (zh) 含有含长链烷基的酚醛清漆的抗蚀剂下层膜形成用组合物
JP7287389B2 (ja) 炭素酸素間二重結合を利用したレジスト下層膜形成組成物
JP7327479B2 (ja) ジシアノスチリル基を有する複素環化合物を含むウェットエッチング可能なレジスト下層膜形成組成物
JP7056651B2 (ja) フルオレン化合物を用いたレジスト下層膜形成組成物
JP2024059666A (ja) 環式カルボニル化合物を用いたレジスト下層膜形成組成物
JP7255487B2 (ja) レジスト下層膜形成組成物
JP7322949B2 (ja) ジシアノスチリル基を含むウェットエッチング可能なレジスト下層膜形成組成物
JP7416062B2 (ja) レジスト下層膜形成組成物
TWI834886B (zh) 含有二氰基苯乙烯基之可濕蝕刻之阻劑下層膜形成組成物、經圖案化的基板之製造方法及半導體裝置之製造方法
TWI842901B (zh) 阻劑下層膜形成組成物、阻劑下層膜及半導體裝置之製造方法
JP7375757B2 (ja) ヘテロ原子をポリマー主鎖中に含むレジスト下層膜形成組成物
WO2021015181A1 (ja) レジスト下層膜形成組成物
WO2021070775A1 (ja) レジスト下層膜形成組成物
WO2021256527A1 (ja) ジアリールメタン誘導体を用いたレジスト下層膜形成組成物
WO2024106454A1 (ja) クルクミン誘導体を有するレジスト下層膜形成用組成物
JP2022132962A (ja) レジスト下層膜形成組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20827494

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021526819

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20827494

Country of ref document: EP

Kind code of ref document: A1