WO2010110087A1 - Manufacturing method for electronic device - Google Patents

Manufacturing method for electronic device Download PDF

Info

Publication number
WO2010110087A1
WO2010110087A1 PCT/JP2010/054154 JP2010054154W WO2010110087A1 WO 2010110087 A1 WO2010110087 A1 WO 2010110087A1 JP 2010054154 W JP2010054154 W JP 2010054154W WO 2010110087 A1 WO2010110087 A1 WO 2010110087A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass substrate
substrate
main surface
thin glass
support
Prior art date
Application number
PCT/JP2010/054154
Other languages
French (fr)
Japanese (ja)
Inventor
研一 江畑
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to CN201080013547.5A priority Critical patent/CN102362305B/en
Priority to JP2011505975A priority patent/JPWO2010110087A1/en
Publication of WO2010110087A1 publication Critical patent/WO2010110087A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • H05B33/04Sealing arrangements, e.g. against humidity
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/80Manufacture or treatment specially adapted for the organic devices covered by this subclass using temporary substrates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/871Self-supporting sealing arrangements
    • H10K59/8721Metallic sealing arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an electronic device manufacturing method and an electronic device with a support.
  • LCD liquid crystal display devices
  • OLED organic EL display devices
  • LCD liquid crystal display devices
  • electronic devices such as solar cells, thin film secondary batteries, and semiconductor wafers having a circuit formed on the surface are also required to be lighter and thinner.
  • thinning of substrates such as glass, resin, and metal used for electronic devices such as display devices has been progressing.
  • both outer sides of the display device panel are formed using chemical etching. A method of etching the surface to reduce the thickness of the display device panel is used.
  • the glass substrate is thinned by performing chemical etching after forming the display device member on the surface of the glass substrate.
  • a problem that an obvious scratch appears that is, a problem of generation of etch pits may occur.
  • a thin glass substrate having a thickness of less than 0.7 mm (also referred to as “thin glass substrate”) is bonded to another supporting glass substrate to form a laminate,
  • a method of performing a predetermined process for manufacturing the display device in a state and then separating the thin glass substrate and the supporting glass substrate has been proposed.
  • Patent Document 1 a product glass substrate and a reinforcing glass substrate are bonded and integrated using an electrostatic adsorption force or a vacuum adsorption force between glass substrates, and a display using the product glass substrate is used. A method of manufacturing the device is described. Further, Patent Document 2 describes a method for manufacturing a liquid crystal display device in which end portions of a substrate and a support of a liquid crystal display device are bonded using a glass frit adhesive, and thereafter an electrode pattern or the like is formed. Has been. Patent Document 3 describes a method for manufacturing a substrate for a display device, which includes a step of irradiating laser light to at least the vicinity of the edge surface of two glass substrates to fuse the two glass substrates.
  • Patent Document 4 a substrate is attached to a substrate transport jig having an adhesive layer provided on a support, and the substrate transport jig is transported through a manufacturing process of a liquid crystal display element.
  • a liquid crystal display device manufacturing method is described in which liquid crystal display element formation processing is sequentially performed on a substrate attached to a jig, and the substrate is peeled off from the substrate carrying jig after a predetermined process is completed.
  • an electrode substrate for a liquid crystal display element is subjected to a predetermined processing on the electrode substrate for a liquid crystal display element using a jig in which an ultraviolet curable adhesive is provided on a support, and then an ultraviolet curable type is used.
  • Patent Document 6 describes a transport method in which a thin plate is temporarily fixed to a support plate with an adhesive, a peripheral portion of the adhesive is sealed with a sealant, and the support plate on which the thin plate is temporarily fixed is transported.
  • Patent Document 7 discloses a thin glass laminate obtained by laminating a thin glass substrate and a supporting glass substrate, and the thin glass substrate and the supporting glass substrate have peelability and non-adhesiveness.
  • a thin glass laminate characterized by being laminated via a silicone resin layer is described. Then, in order to separate the thin glass substrate and the supporting glass substrate, it is only necessary to apply a force to separate the thin glass substrate from the supporting glass substrate in the vertical direction. It is described that it can be more easily peeled off by injecting air into the interface.
  • Patent Document 8 describes a double-sided adhesive sheet for manufacturing semiconductors using silicone.
  • Patent Document 1 a method for fixing glass substrates described in Patent Document 1 using electrostatic adsorption force or vacuum adsorption force
  • a method for fixing both ends of a glass substrate described in Patent Document 2 with glass frit a method for fixing both ends of a glass substrate described in Patent Document 2 with glass frit
  • Patent Document 3 In the method of merging two glass substrates by irradiating laser light near the end face of the peripheral portion described in the above, the glass substrates are laminated and adhered without any intermediate layer. Distortion defects occur in the glass substrate due to foreign matters such as dust. Therefore, it is difficult to obtain a glass substrate laminate having a smooth surface.
  • the silicone resin layer does not remain on the thin glass substrate after peeling, but some sort of origin derived from the resin layer.
  • Substance for example, a compound.
  • a low molecular weight compound that is a part of a substance that forms a resin layer and is deposited on the surface of the resin layer. It was thought that this was caused by a slight amount of foreign matter such as dust scattered in the air, metal pieces or machine oil resulting from the manufacturing process on the surface of the thin glass substrate.
  • the present inventor has found a method for removing the foreign matter without causing thermal, electromagnetic, mechanical and chemical damage to the thin glass substrate and the display device member attached thereto.
  • a display device member such as a thin film transistor, an organic EL element, or a color filter is formed on the surface opposite to the separation surface of the thin glass substrate. This is because there are cases where the two thin glass substrates are made into cells by the sealing agent, and it is necessary to prevent them from being damaged as described above.
  • the present invention has been made in view of the above problems. That is, the present invention provides an electronic device by peeling a support made of the resin layer and the support substrate from an electronic device with a support in which a substrate having a member for an electronic device, a resin layer, and a support substrate are laminated. After that, the main surface of the electronic device substrate is not damaged without causing thermal, electromagnetic, mechanical and chemical damage to the substrate and the electronic device member (eg, thin film transistor, organic EL element, color filter).
  • a method of manufacturing an electronic device that can remove attached foreign matter and, as a result, can firmly adhere a film with an adhesive such as a polarizing film or a retardation film to the surface of the substrate after peeling with a resin layer attached The purpose is to provide.
  • the present inventor has intensively studied in order to solve the above problems, and has completed the present invention.
  • the present invention relates to the following (1) to (8).
  • a support comprising the support substrate and the resin layer is peeled from an electronic device with a support to which a resin layer having a peelable surface fixed to the main surface is in close contact, and includes the electronic device member and the substrate.
  • the manufacturing method of an electronic device which comprises the peeling process which obtains an electronic device, and the removal process which removes the foreign material attached to the 1st main surface of the said board
  • the substrate for the electronic device without causing thermal, electromagnetic, mechanical and chemical damage to the substrate and the member for the electronic device (for example, thin film transistor, organic EL element, color filter)
  • the member for the electronic device for example, thin film transistor, organic EL element, color filter
  • FIG. 1 is a schematic cross-sectional view showing one embodiment of the panel with a support of the present invention.
  • FIG. 2 is a schematic front view which shows another one aspect
  • FIG. 3 is a schematic cross-sectional view showing another embodiment of the panel with a support of the present invention.
  • FIG. 4 is a schematic front view showing another embodiment of the panel with a support of the present invention.
  • FIG. 5 is a schematic front view which shows another one aspect
  • FIG. 6 is a schematic cross-sectional view showing another embodiment of the panel with a support of the present invention.
  • FIG. 7 is a schematic diagram for explaining an example of an atmospheric pressure remote plasma apparatus that can be used in the removing step of the panel manufacturing method of the present invention.
  • the electronic device manufacturing method of the present invention (hereinafter also referred to as “the electronic device manufacturing method of the present invention”) is a first substrate having a first main surface and a second main surface and an electronic device member on the second main surface. From the electronic device with a support, in which the resin layer having a peelable surface fixed to the first main surface of the support substrate having the first main surface and the second main surface is in close contact with the main surface, the support substrate and the A peeling step of peeling a support made of a resin layer to obtain an electronic device including the electronic device member and the substrate; and a removing step of removing foreign substances attached to the first main surface of the substrate in the electronic device;
  • An electronic device manufacturing method comprising:
  • the electronic device with a support used for the peeling step in the electronic device manufacturing method of the present invention that is, the first main surface and the second main surface on the first main surface of the substrate having the first main surface and the second main surface.
  • the electronic device with a support in which the resin layer having a peelable surface fixed to the first main surface of the support substrate having a surface is in close contact is also referred to as “the electronic device with a support of the present invention” below.
  • the electronic device with a support used in the present invention is provided on the first main surface of the substrate having the first main surface and the second main surface and the electronic device member on the second main surface.
  • the resin layer having a peelable surface fixed to the first main surface of the support substrate having the first main surface and the second main surface is in close contact. That is, the electronic device with a support has an electronic device member, a substrate, a resin layer, and a support substrate, which are laminated in this order.
  • the electronic device has an electronic device member and a substrate, and the electronic device member is formed on the second main surface of the substrate.
  • the electronic device with a support body is one in which a laminate in which a substrate, a resin layer, and a support substrate are laminated in this order is laminated via an electronic device member, that is, a support substrate, a resin layer, a substrate, an electron A device member, a substrate, a resin layer, and a support substrate may be laminated in this order.
  • the electronic device refers to an electronic component such as a display panel, a solar cell, a thin film secondary battery, or a semiconductor wafer having a circuit formed on the surface.
  • the display device panel includes a liquid crystal panel, an organic EL panel, a plasma display panel, a field emission panel, and the like.
  • the manufacturing method of the panel for display apparatuses is called “the panel manufacturing method of this invention”
  • the panel for display apparatuses with a support body is called “the panel with a support body of this invention.”
  • the thin glass substrate in the panel with a support of the present invention will be described.
  • the thickness, shape, size, physical properties (heat shrinkage rate, surface shape, chemical resistance, etc.), composition, etc. of the thin glass substrate are not particularly limited.
  • conventional glass for display devices such as LCD and OLED It may be the same as the substrate.
  • the thickness of the thin glass substrate is preferably less than 0.7 mm, more preferably 0.5 mm or less, and further preferably 0.4 mm or less. Further, the thickness of the thin glass substrate is preferably 0.05 mm or more, more preferably 0.07 mm or more, and further preferably 0.1 mm or more.
  • the shape of the thin glass substrate is not limited, but is preferably rectangular.
  • the rectangle is substantially a rectangle and includes a shape obtained by cutting off the corners of the peripheral portion (corner cut).
  • the size of the thin glass substrate is not limited, for example, in the case of a rectangle, it may be 100 to 2000 mm ⁇ 100 to 2000 mm, and more preferably 500 to 1000 mm ⁇ 500 to 1000 mm. Even with such a thickness and size, in the present invention, the thin glass substrate and the support can be easily peeled off.
  • the heat shrinkage rate is preferably small.
  • the linear expansion coefficient which is an index of the thermal shrinkage rate, is preferably 500 ⁇ 10 ⁇ 7 / ° C. or less, more preferably 300 ⁇ 10 ⁇ 7 / ° C. or less, and 200 ⁇ 10 ⁇ 7 / ° C. More preferably, it is 100 ° C. ⁇ 7 / ° C. or less, and further preferably 45 ⁇ 10 ⁇ 7 / ° C. or less.
  • a linear expansion coefficient means a thing prescribed
  • composition of the glass material of the thin glass substrate may be the same as that of alkali glass or alkali-free glass containing an alkali metal oxide that is conventionally known, for example.
  • alkali-free glass is preferable because of its low thermal shrinkage rate.
  • the panel with a support of the present invention has a display device member on the second main surface of the thin glass substrate.
  • the display device member is composed of a light emitting layer, a protective layer, a TFT array (hereinafter referred to as an array), a color filter, a liquid crystal, and ITO that are provided on the surface of a conventional glass substrate for a display device such as an LCD or OLED. It means various circuit patterns such as transparent electrodes.
  • the kind of member for display apparatuses on the 2nd main surface of the said thin glass substrate is not specifically limited.
  • a panel for a display device is composed of such a member for a display device and the thin glass substrate.
  • the panel with a support of the present invention has a support glass substrate on which a resin layer is fixed as a support on the first main surface of the thin glass substrate.
  • the supporting glass substrate is in close contact with the thin glass substrate through the resin layer, and reinforces the strength of the thin glass substrate.
  • the thickness, shape, size, physical properties (heat shrinkage rate, surface shape, chemical resistance, etc.), composition, etc. of the supporting glass substrate are not particularly limited.
  • the thickness of the supporting glass substrate is not particularly limited, but it is necessary that the supporting glass panel of the present invention has such a thickness that can be processed in the current production line.
  • the thickness is preferably 0.1 to 1.1 mm, more preferably 0.3 to 0.8 mm, and still more preferably 0.4 to 0.7 mm.
  • the thickness of the supporting glass substrate and the resin layer Together with the thickness it is 0.4 mm.
  • the current production line is most commonly designed to process a glass substrate having a thickness of 0.7 mm.
  • the thickness of a thin glass substrate is 0.4 mm
  • the resin layer The thickness is 0.3 mm.
  • the relationship between the thickness of the supporting glass substrate and the relative thickness of the thin glass substrate is not limited, and the thickness of the supporting glass substrate may be larger than the thickness of the thin glass substrate. It may be thinner than the thickness of the thin glass substrate.
  • the shape of the supporting glass substrate is not limited, but is preferably rectangular.
  • the rectangle is substantially a rectangle and includes a shape obtained by cutting off the corners of the peripheral portion (corner cut).
  • the size of the supporting glass substrate is not limited, it is preferably about the same as the thin glass substrate, and slightly larger than the thin glass substrate.
  • the longitudinal direction or the lateral direction is larger by about 0.05 to 10 mm. The reason is that it is easy to protect the end portion of the thin glass substrate from the contact of an alignment device such as a positioning pin at the time of manufacturing a panel for a display device, and that the thin glass substrate and the supporting glass substrate are more easily separated. Because it can.
  • the supporting glass substrate may have a linear expansion coefficient that is substantially the same as or different from that of the thin glass substrate. Substantially the same is preferable in that the thin glass substrate or the supporting glass substrate is less likely to warp when processed by the panel manufacturing method of the present invention.
  • the difference in linear expansion coefficient between the thin glass substrate and the supporting glass substrate is preferably 300 ⁇ 10 ⁇ 7 / ° C. or less, more preferably 100 ⁇ 10 ⁇ 7 / ° C. or less, and 50 ⁇ 10 ⁇ 7 / ° C. More preferably, it is not higher than ° C.
  • composition of the glass material of the supporting glass substrate may be the same as that of alkali glass or non-alkali glass, for example.
  • alkali-free glass is preferable because of its low thermal shrinkage rate.
  • the substrate is a thin glass substrate, but the present invention is not limited to this. From the viewpoint of industrial availability, glass plates, silicon wafers, metal plates, plastic plates and the like are preferable examples.
  • the composition of the thin glass substrate may be the same as that of alkali glass or non-alkali glass, for example. Among these, alkali-free glass is preferable because of its low thermal shrinkage rate.
  • the type is not particularly limited, for example, in the case of a transparent substrate, polyethylene terephthalate resin, polycarbonate resin, polyethersulfone resin, polyethylene naphthalate resin, polyacrylic resin, polysilicone resin, Examples thereof include transparent fluororesins.
  • a transparent substrate polyethylene terephthalate resin, polycarbonate resin, polyethersulfone resin, polyethylene naphthalate resin, polyacrylic resin, polysilicone resin
  • transparent fluororesins In the case of an opaque substrate, polyimide resin, fluorine resin, polyamide resin, polyaramid resin, polyether ketone resin, polyether ether ketone resin, various liquid crystal polymer resins, and the like are exemplified.
  • a metal plate is employed as the substrate, the type is not particularly limited, and examples thereof include a stainless steel plate and a copper plate.
  • the heat resistance of the substrate is not particularly limited, but it is preferable that the heat resistance is high when forming a TFT array of a display device member.
  • the 5% heating weight loss temperature is preferably 300 ° C. or higher. Furthermore, it is more preferable that it is 350 degreeC or more.
  • any of the above glass plates is applicable in terms of heat resistance.
  • preferable plastic plates include polyimide resin, fluororesin, polyamide resin, polyaramid resin, polyethersulfone resin, polyetherketone resin, polyetheretherketone resin, polyethylene naphthalate resin, various liquid crystal polymer resins, etc. Is exemplified.
  • the substrate may be a laminate in which different materials are laminated, such as a glass plate, a silicon wafer, a metal plate, and a plastic plate.
  • a laminate in which different types of substrates are laminated via a resin layer such as a laminate in which a glass plate, a resin layer, and a plastic plate are laminated in this order, or a laminate in which a glass plate, a plastic, and a glass plate are laminated in this order.
  • substrate is mentioned. Furthermore, the laminated body etc. which use as a board
  • the support substrate is a support glass substrate using a glass plate, but the present invention is not limited to this. From the viewpoint of industrial availability, glass plates, silicon wafers, metal plates, plastic plates and the like are preferable examples.
  • a glass plate is employed as the support substrate, the thickness, shape, size, physical properties (thermal shrinkage, surface shape, chemical resistance, etc.), composition, etc. of the support glass substrate are not particularly limited.
  • the thickness of the supporting glass substrate is not particularly limited, but it is necessary that the supporting glass substrate has a thickness that can be processed by the current production line. For example, the thickness is preferably 0.1 to 1.1 mm, more preferably 0.3 to 0.8 mm, and still more preferably 0.4 to 0.7 mm.
  • the thickness of the supporting glass substrate and the resin layer Together with the thickness is 0.4 mm.
  • the current production line is most commonly designed to process a glass substrate having a thickness of 0.7 mm.
  • the resin layer The thickness is 0.3 mm.
  • the thickness of the supporting glass substrate is preferably thicker than that of the thin glass substrate.
  • the resin layer in the panel with a support of the present invention will be described.
  • the resin layer is fixed to the first main surface of the support glass substrate. And although the resin layer is closely_contact
  • peelability the property which can peel easily on the surface of a resin layer is called peelability.
  • the resin layer and the first main surface of the thin glass substrate are not attached by the adhesive force that the adhesive has, the force due to van der Waals force between solid molecules, That is, it is preferable that it is attached by adhesion.
  • the bonding force of the resin layer to the first main surface of the supporting glass substrate is relatively higher than the bonding force of the thin glass substrate to the first main surface.
  • bonding with respect to the 1st main surface of a thin glass substrate is called close_contact
  • bonding with respect to the 1st main surface of a support glass substrate is called fixation.
  • the thickness of the resin layer is not particularly limited.
  • the thickness is preferably 1 to 100 ⁇ m, more preferably 5 to 30 ⁇ m, and even more preferably 7 to 20 ⁇ m. This is because when the thickness of the resin layer is within such a range, the first main surface of the thin glass substrate and the resin layer are sufficiently adhered. Moreover, even if bubbles or foreign substances are present, it is possible to suppress the occurrence of distortion defects in the thin glass substrate. On the other hand, if the resin layer is too thick, it takes time and materials to form the resin layer, which is not economical.
  • the resin layer may consist of two or more layers.
  • the thickness of the resin layer means the total thickness of all the layers.
  • the kind of resin which forms each layer may differ.
  • the surface tension of the peelable surface of the resin layer with respect to the first main surface of the thin glass substrate is preferably 30 mN / m or less, more preferably 25 mN / m or less, and 22 mN / m or less. More preferably. This is because such surface tension can be more easily peeled off from the first main surface of the thin glass substrate, and at the same time, the close contact with the first main surface of the thin glass substrate becomes sufficient.
  • a resin layer consists of a material whose glass transition point is lower than room temperature (about 25 degreeC) or does not have a glass transition point.
  • the resin layer has heat resistance.
  • the panel manufacturing method of the present invention for example, when a member for a display device is formed on the second main surface of the thin glass substrate, the glass laminate of the thin glass substrate, the resin layer, and the supporting glass substrate can be subjected to heat treatment. Because. Moreover, since the adhesiveness with the 1st main surface of a thin glass substrate will become low when the elasticity modulus of a resin layer is too high, it is unpreferable. Moreover, since an exfoliation property will become low when an elasticity modulus is too low, it is unpreferable.
  • the type of resin forming the resin layer is not particularly limited.
  • acrylic resin, polyolefin resin, polyurethane resin, and silicone resin can be used.
  • Several types of resins can be mixed and used.
  • silicone resins are preferred. This is because the silicone resin is excellent in heat resistance and preferably has a degree of peelability from the thin glass substrate.
  • silicone resin layer is also preferable in that the peelability does not substantially deteriorate even when it is treated at, for example, about 300 to 400 ° C. for about 1 hour.
  • the resin layer is preferably a cured product of curable silicone for release paper among silicone resins.
  • the silicone for release paper is mainly composed of silicone containing linear dimethylpolysiloxane in the molecule.
  • the resin layer formed by curing the composition containing the main agent and the crosslinking agent on the surface (first main surface) of the supporting glass substrate using a catalyst, a photopolymerization initiator or the like has excellent peelability. Therefore, it is preferable. Further, since the resin layer has high flexibility, even if foreign matter such as bubbles or dust is mixed between the thin glass substrate and the resin layer, the occurrence of distortion defects of the thin glass substrate can be suppressed.
  • Such silicone for release paper is classified into a condensation reaction type silicone, an addition reaction type silicone, an ultraviolet curable type silicone, or an electron beam curable type silicone depending on the curing mechanism, and any of them can be used.
  • addition reaction type silicone is preferable. This is because the curing reaction is easy, the degree of peelability is good when the resin layer is formed, and the heat resistance is also high.
  • the silicone for release paper is classified into a solvent type, an emulsion type, and a solventless type, and any type can be used.
  • a solventless type is preferable. This is because productivity, safety, and environmental characteristics are excellent.
  • a solvent that causes foaming is not included at the time of curing when forming the resin layer, that is, at the time of heat curing, ultraviolet curing, or electron beam curing, bubbles are unlikely to remain in the resin layer.
  • KNS-320A, KS-847, and TPR6700 are silicones that contain a main agent and a crosslinking agent in advance.
  • the silicone resin forming the resin layer has a property that the components in the silicone resin do not easily migrate to the thin glass substrate, that is, low silicone migration.
  • FIG. 1 is a schematic cross-sectional view showing one embodiment of the panel with a support of the present invention.
  • the display device panel 16 includes a layered display device member 14 and a thin glass substrate 12, which are laminated.
  • the display device member 14 is formed on the second main surface of the thin glass substrate 12.
  • the 1st main surface of the thin glass substrate 12 and the surface of the resin layer 18 fixed to the 1st main surface of the support glass substrate 19 adhere closely, and the panel 10 with a support body of this invention is formed.
  • the thin glass substrate 12, the resin layer 18, and the support glass substrate 19 have substantially the same size in the surface direction.
  • FIG. 2 is a schematic front view showing another embodiment of the panel with a support of the present invention
  • FIG. 3 is a cross-sectional view (schematic cross-sectional view) taken along line AA ′.
  • the display device panel 26 includes a layered display device member 24 and a thin glass substrate 22, which are laminated.
  • the display device member 24 is formed on the second main surface of the thin glass substrate 22.
  • the 1st main surface of the thin glass substrate 22 and the resin layer 28 fixed to the 1st main surface of the support glass substrate 29 have adhered, and the panel 20 with a support body of this invention is formed.
  • the panel 20 with a support of the present invention of the embodiment shown in FIGS. 2 and 3 has a major surface area of the support glass substrate 29 larger than that of the thin glass substrate 22, and the outer edge in the surface direction of the thin glass substrate 22 is support glass. It does not protrude from the outer edge of the substrate 29.
  • the panel 20 with a support of the present invention has an area (hereinafter referred to as “surface” in the resin layer) of the surface of the resin layer 28 (surface contacting the first main surface of the thin glass substrate 22).
  • the area of the first main surface of the thin glass substrate 22 is larger than the area.
  • the surface area of the resin layer 28 is smaller than the area of the first main surface of the thin glass substrate 22 due to the formation of gaps 25 described later.
  • a portion ⁇ of the first main surface of the thin glass substrate 22 that is not in contact with the resin layer 28 and a portion ⁇ of the supporting glass substrate 29 facing the end ⁇ of the support-equipped panel 20 of the present invention ( ⁇ 1, ⁇ 2). ) Is formed. It is preferable that such a gap portion 25 is formed because the thin glass substrate and the resin layer can be more easily peeled in the peeling step in the panel manufacturing method of the present invention described later.
  • the depth of the gap portion 25 is preferably 1 mm or more, more preferably 3 mm or more, and further preferably 5 mm or more. Moreover, it is preferable that it is 15 mm or less, and it is more preferable that it is 10 mm or less. This is because the thin glass substrate and the resin layer can be more easily peeled in the peeling step in the panel manufacturing method of the present invention described later.
  • the “depth of the gap” means the length from the end surface ( ⁇ 2) of the thin glass substrate to the end surface of the resin layer in the direction perpendicular to the end surface. In the case shown in FIGS. 2 and 3, it means the length of the portion indicated by ⁇ . As shown in FIG.
  • the position of the gap portion 25 may be the central portion of one side of the rectangular thin glass substrate 22 as shown in FIG. 2, or all of one side of the rectangular thin glass substrate 22 as shown in FIG. Good. Further, one of the corners of the rectangular thin glass substrate 22 as shown in FIG. 5 may be a large corner cut. 4 and 5 are schematic front views showing still another aspect of the panel with a support according to the present invention.
  • the panel with a support of the present invention supports both main surfaces of the display device member 34 with the thin glass substrates (32a, 32b) and the resin layers (38a, 38b).
  • a mode of sandwiching with a laminated body with glass substrates (39a, 39b) may be employed. Even if it is such an aspect, it is a panel with a support body of this invention which can be processed with the panel manufacturing method of this invention.
  • the manufacturing method of the panel with a support of this invention is demonstrated.
  • the manufacturing method of the panel with a support body of this invention is not specifically limited,
  • the resin layer formation process which forms the resin layer which has a peelable surface in the 1st main surface of the said support glass substrate,
  • the said thin glass substrate, and the said support glass An adhesion process for laminating a substrate and bringing the peelable surface of the resin layer into close contact with the first main surface of the thin glass substrate; and a display device for forming a display device member on the second main surface of the thin glass substrate
  • it is a manufacturing method of the panel with a support which comprises for a member formation process.
  • the manufacturing method of the thin glass substrate and the supporting glass substrate in the manufacturing method of the panel with a support of the present invention is not particularly limited.
  • it can be produced by a conventionally known method.
  • it can be obtained by melting a conventionally known glass raw material to form a molten glass, and then forming it into a plate shape by a float method, a fusion method, a slot method, a redraw method or the like.
  • the resin layer formation process in the manufacturing method of the panel with a support of this invention is demonstrated.
  • the method for forming the resin layer on the surface (first main surface) of the supporting glass substrate is not particularly limited.
  • a method of adhering a film-like resin to the surface of a supporting glass substrate can be mentioned.
  • a method of performing a surface modification treatment to give a high adhesive force to the surface of the film and adhering to the first main surface of the supporting glass substrate can be mentioned.
  • Treatment methods for surface modification include chemical methods (primer treatment) that chemically improve adhesion, such as silane coupling agents, and physical methods that increase surface active groups, such as flame (flame) treatment. Examples thereof include a mechanical method for increasing the catch by increasing the surface roughness, such as sandblasting.
  • the method of coating the resin composition used as a resin layer on the 1st main surface of a support glass substrate by a well-known method for example is mentioned.
  • Known methods include spray coating, die coating, spin coating, dip coating, roll coating, bar coating, screen printing, and gravure coating. From such a method, it can select suitably according to the kind of resin composition.
  • a solventless release paper silicone is used as the resin composition
  • a die coating method, a spin coating method or a screen printing method is preferred.
  • Masking means that when a resin composition is coated, a removable film or the like is pasted on a portion where a gap is formed in advance so that the resin composition is not coated on that portion, and the film is peeled off later. Is the method.
  • the coating amount is preferably 1 to 100 g / m 2 , and more preferably 5 to 20 g / m 2 .
  • a resin layer is formed from an addition reaction type silicone, a resin composition containing a silicone (main agent) containing linear dimethylpolysiloxane in the molecule, a crosslinking agent and a catalyst
  • the coating is performed on the first main surface of the supporting glass substrate by a known method such as the spray coating method, followed by heat curing.
  • the heating and curing conditions vary depending on the blending amount of the catalyst.
  • the reaction is preferably carried out at 100 ° C to 200 ° C. In this case, the reaction time is 5 to 60 minutes, preferably 10 to 30 minutes.
  • the curing reaction In order to obtain a silicone resin layer having a low silicone migration property, it is preferable to allow the curing reaction to proceed as much as possible so that an unreacted silicone component does not remain in the silicone resin layer, but at such a reaction temperature and reaction time. When it exists, it is possible to prevent an unreacted silicone component from remaining in the silicone resin layer, which is preferable. If the reaction time is too long or the reaction temperature is too high, the silicone resin is simultaneously oxidized and decomposed to produce a low molecular weight silicone component, which may increase the silicone transferability. It is preferable to allow the curing reaction to proceed as much as possible so that an unreacted silicone component does not remain in the silicone resin layer in order to improve the peelability after the heat treatment.
  • a thin glass substrate is laminated on the surface of the resin layer.
  • the silicone resin layer is formed by heating and curing the silicone for release paper coated on the first main surface of the supporting glass substrate, and then the adhesion step
  • the thin glass substrate is laminated on the silicone resin-formed surface of the supporting glass substrate.
  • the release paper silicone By curing the release paper silicone with heat, the cured silicone resin is chemically bonded to the supporting glass substrate.
  • the adhesion step includes laminating the first main surface of the thin glass substrate and the support glass substrate on which the resin layer is formed on the first main surface, and the resin layer on the first main surface of the thin glass substrate. It is the process of closely attaching the peelable surface.
  • the first main surface of the thin glass substrate and the peelable surface of the resin layer are preferably bonded by a force caused by van der Waals force between the solid molecules facing each other, that is, an adhesion force. In this case, the supporting glass substrate and the thin glass substrate can be held in a laminated state.
  • a method for laminating the thin glass substrate and the supporting glass substrate in which the resin layer is fixed to the first main surface is not particularly limited. For example, it can implement using a well-known method. For example, after laminating a thin glass substrate on the surface of the resin layer under a normal pressure environment, a method of pressure bonding the resin layer and the thin glass substrate using a roll or a press can be mentioned. It is preferable because the resin layer and the thin glass substrate are more closely adhered by pressure bonding with a roll or a press. Further, it is preferable because bubbles mixed between the resin layer and the thin glass substrate can be easily removed by pressure bonding with a roll or a press.
  • the surface of the thin glass substrate is sufficiently washed and laminated in a clean environment. Even if a foreign substance is mixed between the resin layer and the thin glass substrate, the resin layer is not deformed and does not affect the flatness of the surface of the thin glass substrate. Since it becomes favorable, it is preferable.
  • a display device member is formed on the main surface.
  • an array or a color filter included in the LCD can be mentioned.
  • a transparent electrode, a hole injection layer, a hole transport layer, a light emitting layer, and an electron transport layer included in the OLED can be given.
  • the display device member forming step is a step of forming a display device member on the second main surface of the thin glass substrate of the thin glass laminate.
  • a method of forming the display device member on the second main surface of the thin glass substrate of the thin glass laminate is not particularly limited, and may be the same as a conventionally known method.
  • a process for forming an array on a conventionally known glass substrate, a process for forming a color filter, a glass substrate on which the array is formed, and a glass substrate on which the color filter is formed are used as a sealing agent.
  • a process for forming an organic EL structure on the second main surface of a thin glass substrate a process of forming a transparent electrode, a hole injection layer, a hole transport layer, Various processes such as a process for depositing a light emitting layer / electron transport layer and the like, a sealing process, and the like are performed. Specifically, for example, a film forming process, a vapor deposition process, and an adhesion of a sealing plate are performed. Processing and the like.
  • the panel with a support of the present invention can be produced.
  • the panel manufacturing method of this invention is not specifically limited, In the panel for display apparatuses obtained through the peeling process which peels the support body which consists of the said support glass substrate and the said resin layer from the said panel with a support body, and this peeling process It is preferable that it is a panel manufacturing method which comprises the removal process of removing foreign materials, such as a transcription
  • a peeling process is a process of peeling the support body which consists of the said support glass substrate and the said resin layer from the said panel for display apparatuses with a support body.
  • the peeling method is a method capable of peeling without causing thermal, electromagnetic, mechanical and chemical damage to the thin glass substrate, the display device member formed on the second main surface, and the sealant.
  • the supporting glass substrate is not damaged is preferable, and a method in which the resin layer having peelability fixed to the first main surface of the supporting glass substrate is not damaged is more preferable.
  • a sharp blade-like object can be inserted into the interface between the thin glass substrate and the resin layer, or a mixed fluid of water and compressed air can be blown off.
  • the panel with support is placed on the surface plate so that the supporting glass substrate side is on the upper side and the display device panel side is on the lower side, and the display device panel side substrate is vacuum-adsorbed on the surface plate (on both sides).
  • the support glass substrate is laminated sequentially.
  • a mixed fluid of water and compressed air is sprayed on the boundary between the thin glass substrate and the resin layer of the panel with support, and the end of the support glass substrate is Pull up vertically.
  • an air layer is sequentially formed at the boundary, the air layer spreads over the entire boundary, and the support can be easily peeled off (support glass substrates are laminated on both main surfaces of the panel with the support). If it is, repeat the peeling step one side at a time).
  • the support that has been peeled off by such a peeling step can be reused.
  • the resin layer is a silicone resin layer
  • the lower the silicone resin layer in the support after peeling the lower the silicone transferability, so that the poor peeling due to the increase in peel strength when the glass laminate is subjected to the heating step is suppressed. Tend to be. Therefore, it can be reused more preferably.
  • the removal process in the panel manufacturing method of the present invention will be described.
  • the removing step is a step of removing foreign matter attached to the first main surface of the thin glass substrate in the display device panel.
  • a film with an adhesive such as a polarizing film or a retardation film on the first main surface (the surface in close contact with the resin layer) of the thin glass substrate in the display device panel obtained after being subjected to the peeling step. Even if affixed, the adhesive strength was weak and sometimes peeled off.
  • the present inventor examined the cause of this, the transferred material derived from the resin layer on the first main surface, dust particles scattered in the air, and foreign matters such as metal pieces and machine oil resulting from the manufacturing process were very little. It was thought that the cause was attached. Then, the inventor removes the foreign matter without causing thermal, electromagnetic, mechanical and chemical damage to the thin glass substrate and the display device member formed on the second main surface of the thin glass substrate. I found a way to do it.
  • the foreign matter is the first of the thin glass substrate including any substance derived from the resin layer (that is, a transfer product), dust particles scattered in the air, metal pieces or machine oil resulting from the manufacturing process, and the like. It means something other than a thin glass substrate attached to the main surface.
  • the transferred material include compounds that form a resin layer, and those attached to the first main surface by being in close contact with the first main surface of the thin glass substrate. Further, for example, a low molecular compound that is a part of the substance forming the resin layer and is deposited on the surface of the resin layer can be used. The transferred material will be specifically described.
  • the resin layer is made of silicone
  • a comparison is made on the first main surface of the thin glass substrate due to the close contact between the first main surface of the thin glass substrate and the silicone resin layer fixed to the first main surface of the supporting glass substrate. It is considered that a low molecular weight silicone compound is attached by a diffusion effect in the resin layer.
  • a glass laminated body passes through a heating process, it is difficult to remove a silicone compound from the 1st main surface of a thin glass substrate using the solvent etc. which can melt
  • the substrate is not a thin glass substrate but a substrate made of a resin such as polyimide (hereinafter also referred to as a resin substrate)
  • the resin substrate is peeled off from the support, and then a resin that can dissolve the silicone compound is used to The silicone compound adhering to the first main surface of the substrate can be removed.
  • an acrylic adhesive is used in a polarizing film or the like, and is adjusted so as to obtain an appropriate adhesive strength to a hydrophilic glass substrate surface.
  • a silicone compound that is water repellent adheres to the glass substrate surface, the adhesive strength of the acrylic adhesive to the glass substrate surface decreases and the rework property increases, but the polarizing plate peels off due to external force. There is.
  • the factors that determine the adhesive strength of the polarizing film to the glass substrate surface include the hydrophilicity of the glass substrate surface, that is, the water contact angle, the elasticity of the film, the viscosity of the adhesive, etc. , And a 25 mm width polarizing film or a film with an adhesive attached to the glass substrate surface, and then measured by a method of peeling by 90 °.
  • the method for removing the foreign matter attached to the first main surface of the substrate such as the thin glass substrate in the electronic device such as the display device panel is not particularly limited, but depends on the type of the resin layer or the substrate as described above. It is difficult to remove even if a solvent is used, and it is preferable to apply a method of thermally or chemically decomposing foreign matter.
  • the resin layer is a silicone resin layer and the substrate is a thin glass substrate
  • the foreign substance is considered to be mainly composed of a silicone compound
  • the silicone compound attached to the first main surface of the thin glass substrate is silica
  • Examples thereof include a method of thermally decomposing into water and carbon dioxide, and a method of chemically decomposing using acid or alkali.
  • the resin layer is a silicone resin layer and the substrate is a resin substrate
  • the silicone compound adhering to the resin substrate can be removed not only by thermal or chemical decomposition but also by dissolution with a solvent.
  • the panel for display apparatuses used for a removal process is the aspect by which members for electronic devices, such as an array, an organic EL element, or a color filter, are formed on the 2nd main surface of a thin glass substrate, or two thin glass plates Since the substrate is bonded with a sealant and liquid crystal is injected between the two laminated thin glass substrates, it is necessary to remove the foreign matter without damaging them. That is, the removing step is preferably a step of removing the foreign matter without causing thermal, electromagnetic, mechanical, and chemical damage to the thin glass substrate, the display device member, and the sealant.
  • the adhesive strength of the first main surface of the thin glass substrate before adhering the resin layer is f 0, and the first main surface of the thin glass substrate in the display device panel obtained after the removing step is adhered. It is preferable that f ⁇ f 0 when the strength is f. This can be realized by optimally performing the processes in the peeling step and the removing step.
  • a plasma irradiation treatment is a preferred example.
  • a method that has an electric field shield by a so-called remote plasma method and that does not have a thermal or electromagnetic influence on the display device panel is preferable.
  • the atmospheric pressure remote plasma method is preferable compared to a method requiring high vacuum such as a plasma ashing method, and it is preferable because foreign matter can be removed at low cost.
  • the adhesive strength of a film with an adhesive such as a polarizing plate on the first main surface of the thin glass substrate can be made equal to or higher than that before adhering to the resin layer.
  • the number of times of plasma irradiation on the first main surface of the thin glass substrate is not particularly limited, and the plasma may be irradiated once or plural times as long as the first main surface of the thin glass substrate can obtain a desired adhesive strength.
  • the surface temperature of the thin glass substrate at the time of plasma irradiation is preferably 100 ° C. or lower. The reason is that the display performance can be maintained without causing deterioration or damage to a member such as a sealant or a liquid crystal of the display device panel.
  • FIG. 7 is a schematic diagram of a plasma discharge apparatus that can be used to remove the foreign matter by a remote plasma method in the removing step of the panel manufacturing method of the present invention.
  • the voltage application electrode 42 and the ground electrode 43 are installed to face each other, and the surfaces facing the base material are each covered with a solid dielectric 46.
  • the processing gas is introduced into the discharge space 44 formed by the voltage application electrode 42 and the ground electrode 43 in the direction of the arrow, is converted into plasma, and is blown out from the plasma blowing port 45 toward the display device panel 50.
  • the conveyance speed of the display device panel 50 is preferably 0.1 to 5 m / min, more preferably 0.5 to 2 m / min, and preferably about 1 m / min.
  • a method for removing foreign substances such as a silicone compound attached to the first main surface of the thin glass substrate in the display device panel it is preferable to remove the foreign substances using a chemical solution containing acid or alkali.
  • a chemical solution containing acid or alkali is more preferable.
  • butt dipping cleaning is preferable to shower cleaning because of contact with the liquid, and there is no particular effect on the sealant by selecting an appropriate concentration, temperature, and processing time.
  • Foreign substances such as silicone compounds can be removed.
  • a member that is preferably not in contact with the chemical solution in the display device member is preferably appropriately sealed or masked.
  • the display device member has a liquid crystal injection hole, there is a possibility that a chemical solution may enter the display device, so that it is preferable to appropriately perform sealing or masking treatment.
  • the display member and the sealant Corona discharge and flame can be mentioned within the range of treatment conditions that do not cause damage.
  • the treatment conditions for example, the surface temperature of the thin glass substrate during corona discharge or flame treatment is preferably 100 ° C. or less. The reason is that the display performance can be maintained without causing deterioration or damage to a member such as a sealant or a liquid crystal of the display device panel.
  • a foreign substance such as a silicone compound attached to the first main surface of the thin glass substrate, thermal, electromagnetic, mechanical or chemical to the thin glass substrate, the display device member and the sealant Foreign substances can be removed using a chemical solution containing a solvent having an sp value, that is, a solubility parameter of 7 to 15 (unit: cal 1/2 cm ⁇ 3/2 ) within a range of processing conditions that do not cause damage. preferable.
  • a solubility parameter 7 to 15 (unit: cal 1/2 cm ⁇ 3/2 ) within a range of processing conditions that do not cause damage.
  • the solubility parameter is outside the range of 7 to 15, since the affinity between the liquid and the resin layer is low, the liquid is difficult to get wet with the resin layer.
  • a chemical solution containing methanol, ethanol, propanol, acetone, xylene, hexane, or the like it is preferable to use an alcohol-based cleaning liquid, for example, a cleaning liquid containing methanol, ethanol, propanol or the like.
  • a cleaning liquid containing methanol, ethanol, propanol or the like By selecting an appropriate concentration, temperature, and treatment time for the cleaning liquid, it is possible to remove foreign substances such as a silicone compound attached to the substrate surface while suppressing damage to the sealing agent.
  • the display device member that is preferably not in contact with the chemical solution is preferably appropriately sealed or masked.
  • the display device panel has a liquid crystal injection hole, there is a risk that a chemical solution may enter the display device panel from the liquid crystal injection hole. Therefore, it is preferable to perform sealing or masking treatment on the liquid crystal injection hole.
  • the panel manufacturing method of this invention it is preferable to have two or more such removal processes. That is, it is preferable that the foreign matter is removed by performing a single type of removing step a plurality of times, or the foreign matter is removed by combining a plurality of types of removing steps.
  • the above-described method using plasma and a method using a chemical solution such as an acid may be combined to remove the foreign matter.
  • the removing step it is preferable to further remove the foreign matter using ultrasonic vibration.
  • a panel for a display device can be obtained by further subjecting it to a desired process.
  • the desired process is a process of dividing a large cell having a plurality of cells into cells of a desired size, injecting liquid crystal into the divided cell, and then setting the injection port.
  • the process of sealing, the process of sticking a polarizing plate to the cell with which the said inlet was sealed, and a module formation process are mentioned.
  • a step of assembling a thin glass substrate on which an organic EL structure is formed and a counter substrate may be mentioned. Note that the step of dividing into cells of a desired size is preferably performed by a laser cutter because the strength of the thin glass substrate is not reduced by the cutting process and no cullet is produced.
  • a thin glass substrate and a supporting glass substrate are prepared, and these surfaces are cleaned. Examples of cleaning include pure water cleaning and UV cleaning.
  • a resin layer is formed on the first main surface of the supporting glass substrate.
  • a silicone resin is coated on the first main surface of the supporting glass substrate using a screen printer. And it heat-hardens, forms a resin layer on the 1st main surface of a support glass substrate, and obtains the support glass substrate to which the resin layer was fixed.
  • the peelable surface of the resin layer and the first main surface of the thin glass substrate are attached and bonded together.
  • the resin layer and the thin glass substrate can be bonded together by vacuum pressing at room temperature.
  • the thin glass laminated body which is a laminated body of a support glass substrate, a resin layer, and a thin glass substrate can be obtained.
  • the second main surface of the thin glass substrate in the thin glass laminate may be polished or washed. Examples of cleaning include pure water cleaning and UV cleaning.
  • the member for display apparatuses is formed in the 2nd main surface of the thin glass substrate in each thin glass laminated body.
  • One thin glass laminate is subjected to a known color filter forming step to form a color filter on the second main surface of the thin glass substrate.
  • Another thin glass laminated body forms an array in the 2nd main surface of the thin glass substrate by using for a well-known array formation process.
  • Two panels with a support of the present invention can be manufactured by such a method.
  • the panel with a support of the present invention having the color filter obtained here is also referred to as “panel x with support”
  • the panel with a support of the present invention having an array is also referred to as “panel y with support”. .
  • the panel x with support and the panel y with support manufactured as described above are further processed by, for example, the following methods 1 to 4 to manufacture a panel for a display device. To do.
  • the two support bodies of panel z1 with a support body after sealing are used for the peeling process in the above-mentioned panel manufacturing method of this invention, and are peeled. And it uses for the removal process in the panel manufacturing method of this invention.
  • the panel thus obtained is also referred to as “panel w1” below.
  • the two separated substrates are reused for the production of another panel with a substrate.
  • the panel w1 is cut into individual cells.
  • liquid crystal is injected into the cut individual cell from the injection hole, and then the injection hole is sealed to form a liquid crystal cell.
  • the removing step in the panel manufacturing method of the present invention may be performed after the support is peeled from the panel with the support or after the individual cells are cut and the liquid crystal cells are formed.
  • a liquid crystal cell is manufactured using a conventionally known liquid crystal dropping method (ODF). Liquid crystal is suspended on either the color filter forming surface or the array forming surface in each of the panel with support x and the panel with support y, and the other formation surface is opposed to the surface on which the liquid crystal is suspended, Bonding is performed using a sealant such as an ultraviolet curable sealant for cell formation.
  • the panel with support of the present invention obtained here is also referred to as “panel with support z2” below.
  • the two support bodies of the support-equipped panel z2 are subjected to a peeling step in the above-described panel manufacturing method of the present invention and peeled off. And it uses for the removal process in the panel manufacturing method of this invention.
  • the panel thus obtained is also referred to as “panel w2” below.
  • the two separated substrates are reused for the production of another panel with a substrate.
  • the panel w2 is cut into individual cells.
  • a polarizing plate is attached to the panel w2 cut into individual cells, and a backlight or the like is formed, whereby the LCD 2 can be obtained.
  • the removal step of the present invention in this case may be either after the support glass substrate is peeled off or after the cells are individually cut and the liquid crystal cell is formed.
  • a liquid crystal cell is manufactured using ODF. Liquid crystal is suspended on either the color filter forming surface or the array forming surface in each of the panel with support x and the panel with support y, and the other formation surface is opposed to the surface on which the liquid crystal is suspended, Bonding is performed using a sealant such as an ultraviolet curable sealant for cell formation.
  • the bonded panel x with support and panel y with support are cut into individual cells together with the support.
  • the panel with support of the present invention obtained by cutting here is also referred to as “panel with support z3” below.
  • two support bodies of the panel z3 with a support body are peeled in the peeling process in the above-mentioned panel manufacturing method of this invention.
  • the panel thus obtained is also referred to as “panel w3” below.
  • LCD3 can be obtained by attaching a polarizing plate to the panel w3 and forming a backlight or the like.
  • the two support bodies of the support-equipped panel z4 are subjected to a peeling step in the above-described panel manufacturing method of the present invention and peeled off. And it uses for the removal process in the panel manufacturing method of this invention.
  • the panel thus obtained is also referred to as “panel w4” below.
  • the liquid crystal injection hole of the panel w4 After removing the temporary sealing of the liquid crystal injection hole of the panel w4, the liquid crystal is injected into the cell of the panel w4 and then sealed.
  • an LCD 4 can be obtained by attaching a polarizing plate and forming a backlight and the like.
  • the thin glass substrate when the thin glass substrate is large, for example, even if it is 730 ⁇ 920 mm, the thin glass substrate can be easily peeled off.
  • the manufacturing method of the display device of the present invention is a manufacturing method including the panel manufacturing method of the present invention. After obtaining the panel for display devices by the panel manufacturing method of the present invention, the display device can be obtained by subjecting the panel to further known processes.
  • the method for manufacturing a display device of the present invention is suitable for manufacturing a small display device used for a mobile terminal such as a mobile phone or a PDA.
  • the display device is mainly an LCD or an OLED, and the LCD includes a TN type, STN type, FE type, TFT type, MIM type, IPS type, VA type, and the like.
  • the present invention can be applied to both passive drive type and active drive type display devices.
  • the display device panel having the display device member on the surface (second main surface) of the substrate has been described as a representative example of the electronic device of the present invention.
  • the present invention is not limited to this.
  • the solar cell having the surface (second main surface) of the substrate, the member for a solar cell, the member for a thin film secondary battery, and the member for an electronic device such as an electronic component circuit, the thin film 2 Of course, it may be an electronic device such as a secondary battery or an electronic component.
  • a transparent electrode such as positive electrode tin oxide, a silicon layer represented by p layer / i layer / n layer, a metal of the negative electrode, and the like can be cited.
  • a transparent electrode such as a metal or a metal oxide of a positive electrode and a negative electrode, a lithium compound of an electrolyte layer, a metal of a current collecting layer, a resin as a sealing layer, etc.
  • various members corresponding to nickel hydrogen type, polymer type, ceramic electrolyte type and the like can be mentioned.
  • a circuit for an electronic component in a CCD or CMOS, a metal of a conductive part, a silicon oxide or a silicon nitride of an insulating part, and the like, various sensors such as a pressure sensor and an acceleration sensor, a rigid printed board, a flexible printed board And various members corresponding to a rigid flexible printed circuit board.
  • the thin glass substrate (Asahi Glass Co., Ltd., AN100, non-alkali glass) having a length of 720 mm, a width of 600 mm, a thickness of 0.3 mm, and a linear expansion coefficient of 38 ⁇ 10 ⁇ 7 / ° C. is contacted with the silicone resin layer.
  • the silicone resin layer and the thin glass substrate are bonded together by a vacuum press at room temperature to form a thin glass laminate (hereinafter also referred to as “thin glass laminate A1”). Obtained.
  • the formation of the resin layer and the lamination of the thin glass substrates were performed so that a gap portion having a depth of 15 mm was formed at the end of the thin glass laminate A1.
  • both glass substrates were in close contact with the silicone resin layer without generating bubbles, and there was no distortion defect and smoothness was good.
  • the thin glass laminate A1 was heat-treated at 250 ° C. for 2 hours in the air.
  • the resin layer of the thin glass laminate A1 was not deteriorated by heat, and it was confirmed that the heat resistance was good.
  • the second main surface of the thin glass substrate in the thin glass laminate A1 was fixed on a fixed base. Moreover, it adsorb
  • the thin glass substrate obtained by peeling is also referred to as “thin glass substrate a1”.
  • a polarizing film manufactured by Nitto Denko Corporation, acrylic adhesive
  • the measuring method is 90 ° peeling at the end of the film after a polarizing film having a width of 25 mm or a film with an adhesive is pasted on the glass substrate surface.
  • the adhesive strength was 0.20 N / 25 mm.
  • the first main surface of the thin glass substrate a1 was irradiated with plasma using an atmospheric pressure remote plasma apparatus (manufactured by Sekisui Chemical Co., Ltd.).
  • the surface temperature of the thin glass substrate a at the time of plasma irradiation was 50 ° C. or less.
  • the same polarizing film as before the plasma irradiation was attached to the first main surface of the thin glass substrate a1 after the plasma irradiation, and the adhesive strength of the polarizing film was measured by the same method.
  • the adhesive strength was 4.7 N / 25 mm after 90 ° peeling.
  • the adhesive strength in the 1st main surface of the thin glass substrate before forming thin glass laminated body A1 was 3.9 N / 25mm.
  • Example 1b On the first main surface of the supporting glass substrate, linear polyorganosiloxane having a vinyl group at both ends (trade name “8500”, manufactured by Arakawa Chemical Industries, Ltd.) and methylhydro having a hydrosilyl group in the molecule Example 1a, except that a mixture of Genpolysiloxane (Arakawa Chemical Industries, trade name “12031”) and a platinum-based catalyst (Arakawa Chemical Industries, trade name “CAT12070”) was used. After obtaining a thin glass laminate (hereinafter also referred to as “thin glass laminate A2”) by the above method, heat treatment was performed in the atmosphere.
  • the thin glass substrate and the support were peeled off in the same manner as in Example 1a.
  • the thin glass substrate obtained by peeling is also referred to as “thin glass substrate a2”.
  • the polarizing film is once peeled off, and the thin glass substrate a2 is immersed in a resist stripping solution (manufactured by Parker Corporation, containing 20% by mass of potassium hydroxide as a main component) for 10 minutes at 50 ° C. Then, washing with water and air blowing were performed.
  • a resist stripping solution manufactured by Parker Corporation, containing 20% by mass of potassium hydroxide as a main component
  • Example 1c After obtaining a thin glass laminate (hereinafter also referred to as “thin glass laminate A3”) in the same manner as in Example 1b, heat treatment was performed in the air. Next, the thin glass substrate and the support (support glass substrate having a resin layer) were peeled off in the same manner as in Example 1b. The thin glass substrate obtained by peeling is also referred to as “thin glass substrate a3”. Next, the thin glass substrate a3 was immersed in a resist stripping solution. Here, the temperature of the stripping solution was 50 ° C., and immersion was performed for 5 minutes. In addition, ultrasonic vibration was applied to the thin glass substrate a3 using an ultrasonic vibration plate installed in the liquid tank. Next, as a result of measuring the adhesive strength of the polarizing film on the first main surface of the thin glass substrate a3, it was 4.0 N / 25 mm.
  • Example 1d After a thin glass laminate (hereinafter also referred to as “thin glass laminate A4”) was obtained in the same manner as in Example 1b, heat treatment was performed in the air. Next, the thin glass substrate and the support (support glass substrate having a resin layer) were peeled off in the same manner as in Example 1b. The thin glass substrate obtained by peeling is also referred to as “thin glass substrate a4”. Next, on the first main surface of the thin glass substrate a4, the surface temperature of the thin glass substrate is changed by a frame processing machine (manufactured by Alcotech) at the edge of the oxygen burner flame four times at a scanning speed of 10 m / min. The treatment was performed under conditions of 100 ° C. or lower. Next, the result of measuring the adhesive strength of the polarizing film on the first main surface of the thin glass substrate a4 was 4.0 N / 25 mm.
  • a frame processing machine manufactured by Alcotech
  • Example 1e In Example 1e, except that the thin glass substrate was changed to a polyimide resin substrate having a thickness of 0.05 mm (manufactured by Toray DuPont, Kapton 200HV), a device substrate laminate (hereinafter, “ Device substrate laminate A5 ”) was also obtained.
  • a surface that is in close contact with the peelable surface of the resin layer is a first main surface
  • a main surface that forms the electronic device member is a second main surface.
  • the heat resistance of the resin layer of the device substrate laminate A5 was evaluated by the same method as in Example 1a, it was confirmed that there was no deterioration due to heat and the heat resistance was good.
  • polyimide resin substrate a5 The polyimide resin substrate obtained by peeling is also referred to as “polyimide resin substrate a5”.
  • a polarizing film was attached to the first main surface of the polyimide resin substrate a5 in the same manner as in Example 1a in the same manner as in Example 1a.
  • the adhesive strength of the polarizing film in the 1st main surface of the polyimide resin substrate a5 was measured.
  • the adhesive strength of the polarizing film was 0.50 N / 25 mm.
  • plasma was irradiated to the 1st main surface of the polyimide resin board
  • substrate laminated body A5 for devices was 1.5 N / 25mm.
  • Example 1f In Example 1f, except that the thin glass substrate was changed to a stainless steel (SUS304) substrate having a mirror finish of 0.1 mm in thickness, a device substrate laminate (hereinafter “device substrate” was used in the same manner as in Example 1a. Also referred to as “laminate A6”). Of the two main surfaces of the stainless steel substrate, the surface that is in close contact with the peelable surface of the resin layer is the first main surface, and the main surface that forms the electronic device member is the second main surface. The heat resistance of the resin layer of the device substrate laminate A6 was evaluated in the same manner as in Example 1a, but it was confirmed that the heat resistance was good and there was no deterioration due to heat.
  • Example 1a The stainless steel substrate obtained by peeling is also referred to as “stainless steel substrate a6”.
  • a polarizing film was attached to the first main surface of the stainless steel substrate a6 in the same manner as in Example 1a in the same manner as in Example 1a. And the adhesive strength of the polarizing film in the 1st main surface of the stainless steel substrate a6 was measured. The adhesive strength of the polarizing film was 0.40 N / 25 mm.
  • Example 1g First, a glass film (Asahi Glass Co., Ltd., AN100, non-alkali glass) having a length of 350 mm, a width of 300 mm, a plate thickness of 0.08 mm, and a linear expansion coefficient of 38 ⁇ 10 ⁇ 7 / ° C. was washed with an alkaline detergent, The film surface was cleaned. Further, a 0.1% methanol solution of ⁇ -mercaptopropyltrimethoxysilane was sprayed on the surface of the glass film and dried at 80 ° C. for 3 minutes.
  • a glass film Asahi Glass Co., Ltd., AN100, non-alkali glass
  • the surface of a polyimide resin substrate (manufactured by Toray DuPont, Kapton 200HV) having a length of 350 mm, a width of 300 mm, and a thickness of 0.05 mm was plasma-treated. Then, a glass / resin laminated substrate was formed using a press apparatus in which a glass film and a polyimide resin substrate were superposed and heated to 320 ° C. Of the two main surfaces of the glass / resin laminated substrate, the main surface on the polyimide resin substrate side that is in close contact with the peelable surface of the resin layer is the first main surface, and the main surface on the opposite glass film side is the second main surface. .
  • Example 1g a device substrate laminate (hereinafter also referred to as “device substrate laminate A7”) was obtained in the same manner as in Example 1a, except that the thin glass substrate was changed to the glass / resin laminate substrate. .
  • the heat resistance of the resin layer of the device substrate laminate A7 was evaluated in the same manner as in Example 1a, but it was confirmed that the heat resistance was good and there was no deterioration due to heat.
  • the glass / resin laminated substrate and the support (supporting glass substrate having a resin layer) were peeled off in the same manner as in Example 1a.
  • the glass / resin laminated substrate obtained by peeling is also referred to as “glass / resin laminated substrate a7”.
  • the polarizing film was stuck on the 1st main surface of the glass / resin laminated substrate a7 by the method similar to Example 1a by the method similar to Example 1a. And the adhesive strength of the polarizing film in the 1st main surface of glass / resin laminated substrate a7 was measured. The adhesive strength of the polarizing film was 0.40 N / 25 mm. Next, plasma was irradiated to the 1st main surface of the glass / resin laminated substrate a7 by the method similar to Example 1a using a normal pressure remote plasma apparatus, and the polarizing film was stuck.
  • Example 1h In Example 1h, a device substrate laminate A51 was obtained in the same manner as in Example 1e. Next, the polyimide resin substrate and the support (support glass substrate having a resin layer) were peeled off in the same manner as in Example 1e. Next, a polarizing film was attached to the first main surface of the polyimide resin substrate in the device substrate laminate A51 in the same manner as in Example 1a in the same manner as in Example 1a. And the adhesive strength of the polarizing film in the 1st main surface of a polyimide resin substrate was measured. The adhesive strength of the polarizing film was 0.40 N / 25 mm.
  • Example 2 First, a supporting glass substrate (Asahi Glass Co., Ltd., AN100, non-alkali glass) having a length of 720 mm, a width of 600 mm, a thickness of 0.6 mm, and a linear expansion coefficient of 38 ⁇ 10 ⁇ 7 / ° C. is cleaned with pure water and UV cleaning. Turned into.
  • a supporting glass substrate Asahi Glass Co., Ltd., AN100, non-alkali glass
  • linear polyorganosiloxane having vinyl groups at both ends (trade name “8500”, manufactured by Arakawa Chemical Industries, Ltd.), and hydrosilyl group in the molecule
  • a mixture of methylhydrogenpolysiloxane (trade name “12031” manufactured by Arakawa Chemical Industries, Ltd.) and a platinum-based catalyst (trade name “CAT12070” manufactured by Arakawa Chemical Industries, Ltd.) is 705 mm long and 595 mm wide. The size was applied by a screen printing machine (coating amount 20 g / m 2 ).
  • the mixing ratio of the linear polyorganosiloxane and the methylhydrogen polysiloxane was adjusted so that the molar ratio of hydrosilyl group to vinyl group was 1/1.
  • the platinum catalyst was 5 parts by mass with respect to 100 parts by mass in total of the linear polyorganosiloxane and methyl hydrogen polysiloxane.
  • this was heat-cured at 180 ° C. for 30 minutes in the air to form a 20 ⁇ m thick silicone resin layer on the first main surface of the supporting glass substrate.
  • the thin glass substrate (Asahi Glass Co., Ltd., AN100, non-alkali glass) having a length of 720 mm, a width of 600 mm, a thickness of 0.1 mm, and a linear expansion coefficient of 50 ⁇ 10 ⁇ 7 / ° C. is contacted with the silicone resin layer.
  • the silicone resin layer and the thin glass substrate are bonded together by a vacuum press at room temperature to form a thin glass laminate (hereinafter also referred to as “thin glass laminate B”). Obtained.
  • the formation of the resin layer and the lamination of the thin glass substrates were performed so that a gap portion having a depth of 15 mm was formed at the end of the thin glass laminate B.
  • both glass substrates were in close contact with the silicone resin layer without generating bubbles, and there was no distortion defect and smoothness was good.
  • thin glass laminate B1 an array is formed on the second main surface of the thin glass substrate of one thin glass laminate B (referred to as “thin glass laminate B1”).
  • the insulating layer and the amorphous silicon layer are formed by a CVD method, the electrode layer is formed by a sputtering method, and each patterning is performed by a method called photolithography.
  • a color filter is formed on the second main surface of the thin glass substrate of the other thin glass laminate B (referred to as “thin glass laminate B2”).
  • a black matrix and RGB pixels are formed by a coating and baking method, an electrode layer is formed by a sputtering method, and each color pattern is formed by a method called photolithography.
  • the array formation surface in thin glass laminated body B1 and the color filter formation surface in thin glass laminated body B2 are made to oppose, and it bonds together using the ultraviolet curing sealing agent for cell formation, and is a panel for display apparatuses with a support body. (Hereinafter also referred to as “panel C with support”).
  • the second main surface of the supporting glass substrate which was a part of the thin glass laminate B1 in the panel C with the supporting body, is fixed on the fixing base. Moreover, the 2nd main surface of the support glass substrate which was a part of thin glass laminated body B2 in the panel C with a support body is adsorb
  • the panel C with a support body Comprising: At the interface of the thin glass substrate which was a part of thin glass laminated body B2, and a resin layer, thickness 0.1mm The knife glass is inserted, the thin glass substrate and the support (support glass substrate having the resin layer) are slightly peeled off, and then the suction pad is moved away from the fixing base, so that the first main surface of the thin glass substrate And the support are peeled off. What was obtained by peeling the support of the thin glass laminate B2 from the panel C with support is also referred to as “panel Cx with support”.
  • the first main surface of the thin glass substrate that was a part of the thin glass laminate B2 in the support-equipped panel Cx is fixed on a fixed base.
  • the 2nd main surface of the support glass substrate which was a part of thin glass laminated body B1 in the panel Cx with a support body is adsorb
  • a polarizing film manufactured by Nitto Denko Corporation, acrylic adhesive
  • the adhesive strength of the said polarizing film was measured.
  • the measuring method is the same as in Example 1a. As a result, the adhesive strength becomes 0.78 N / 25 mm and 0.59 N / 25 mm at 90 ° peeling.
  • the film is once peeled off, and the panel C is cut to obtain 168 cells of 51 mm long ⁇ 38 mm wide. Then, liquid crystal injection and injection hole sealing are performed on each, thereby forming a liquid crystal cell. Thereafter, the liquid crystal cell is immersed in a resist stripping solution (manufactured by Parker Corporation, containing 20% by mass of potassium hydroxide as a main component) at 20 ° C. for 10 minutes, washed with water and air blown. Thereafter, the first main surface of the thin glass substrate on which the array of liquid crystal cells is formed is fixed on the fixing base, and the first main surface of the thin glass substrate on which the color filter is formed is adsorbed by the suction pad, and from the fixing base. When pulled away at 20 N / 25 mm, there is no peeling of the sealant and destruction of the cell.
  • a resist stripping solution manufactured by Parker Corporation, containing 20% by mass of potassium hydroxide as a main component
  • the same polarizing film as that before immersing in the resist stripping solution is applied to the first main surface of the thin glass substrate in the liquid crystal cell after being immersed in the resist stripping solution, and the adhesive strength of the polarizing film is measured by the same method. .
  • the adhesive strength is 4.4 N / 25 mm after 90 ° peeling.
  • an LCD can be obtained by performing a module forming process.
  • the LCD obtained in this way does not suffer from characteristic problems, that is, deterioration of array performance or color filter chromaticity.
  • a liquid crystal display device having a total thickness of about 0.2 mm between the outer surfaces of the two opposing thin glass substrates of the LCD can be obtained.
  • Example 3 A thin glass laminate B formed in Example 2 and a non-alkali glass substrate having a thickness of 0.7 mm (Asahi Glass Co., Ltd., AN100, non-alkali glass) were prepared (the thin glass laminate B used here) “Thin glass laminate B3”). And the color filter was formed in the 2nd main surface of the thin glass substrate of thin glass laminated body B3 by the method similar to Example 2, and the array was formed in one main surface of an alkali free glass substrate.
  • Example 2 the array-forming surface of the alkali-free glass substrate and the color filter forming surface of the thin glass laminate B3 are opposed to each other, liquid crystal is sealed, and an ultraviolet curable sealing agent for cell formation is added.
  • a panel for a display device with a support hereinafter also referred to as “panel D with a support”.
  • the liquid crystal injection hole is sealed.
  • the support of the thin glass laminate B3 can be peeled by the same method as in Example 2. What was obtained here, ie, what was obtained by peeling a support body from panel D with a support body, is set as "panel D.”
  • Example 2 After the panel D is cut and 168 cells are obtained in the same manner as in Example 2, a liquid crystal cell is formed. Then, the obtained liquid crystal cell is immersed in the same resist stripping solution as in Example 2. Here, the temperature of the stripping solution is 50 ° C., and the immersion is performed for 5 minutes. In addition, ultrasonic vibration is applied to the liquid crystal cell using an ultrasonic vibration plate installed in the liquid tank.
  • a polarizing film is attached to the first main surface of the thin glass substrate of the liquid crystal cell after being immersed in the resist stripping solution, and the adhesive strength of the polarizing film is measured.
  • the type of polarizing film used and the method for measuring the adhesive strength are the same as in Example 1. As a result, the adhesive strength is 4.3 N / 25 mm after 90 ° peeling.
  • an LCD can be obtained by performing a module forming process.
  • the LCD obtained in this way does not suffer from characteristic problems, that is, deterioration of array performance or color filter chromaticity.
  • a liquid crystal display device having a total thickness of about 0.8 mm between the outer surfaces of the two opposing thin glass substrates of the LCD can be obtained.
  • Example 4 Two thin glass laminates B formed in Example 2 are prepared. Then, an array is formed on the second main surface of the thin glass substrate of one thin glass laminate B (referred to as “thin glass laminate B4”) in the same manner as in Example 2. Further, an organic EL structure is formed on the second main surface of the thin glass substrate of the other thin glass laminate B (referred to as “thin glass laminate B5”). Specifically, a step of forming a transparent electrode, a step of forming an auxiliary electrode, a step of depositing a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and the like, and a step of sealing them, An organic EL structure is formed on the thin glass substrate of the thin glass laminate B5.
  • a panel E with a support is obtained by combining the thin glass laminate B4 and the thin glass laminate B5.
  • the support of the thin glass laminate B4 and the thin glass laminate B5 can be peeled by the same method as in Example 2.
  • the product obtained here that is, the product obtained by peeling the support from the support-equipped panel E is referred to as “panel E”.
  • panel E On the surface of the thin glass substrate in panel E, there is no damage that leads to a decrease in strength.
  • the first main surface of the thin glass substrate on which the organic EL structure is formed is irradiated with plasma using an atmospheric pressure remote plasma apparatus (manufactured by Sekisui Chemical Co., Ltd.).
  • the surface temperature of the thin glass substrate at the time of plasma irradiation is 50 ° C. or less.
  • the panel E was cut using a laser cutter or a scribe-break method, and divided into 288 cells of 41 mm in length and 30 mm in width, and then a PET film (manufactured by Nitto Denko Corporation, acrylic as a protective film) on the cell surface. Adhesive). The adhesive strength at that time is 3.9 N / 25 mm. Then, a module formation process is implemented and OLED is produced. The OLED obtained in this way does not have a problem in characteristics.
  • the support is peeled off before being divided into display panel units. However, a structure in which a plurality of panels are connected to each other can be processed as a unit. In addition to the above example, the support can be peeled off after being divided into display panel units.
  • the substrate for the electronic device without causing thermal, electromagnetic, mechanical and chemical damage to the substrate and the member for the electronic device (for example, thin film transistor, organic EL element, color filter)
  • the member for the electronic device for example, thin film transistor, organic EL element, color filter

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Electroluminescent Light Sources (AREA)
  • Liquid Crystal (AREA)

Abstract

Provided is a manufacturing method for an electronic device, wherein an electronic device (10) with a support comprises a substrate (12) having a first main surface and a second main surface on which an electronic device member (14) is provided and a support substrate (19) having a first main surface and a second main surface. A resin layer (18) having a releasable surface secured to the first main surface of the support substrate is closely connected to the first main surface of the substrate (12). The manufacturing method comprises a step of separating a support consisting of the support substrate (19) and the resin layer (18) from the electronic device (10) with a support to obtain an electronic device including the electronic device member (14) and the substrate (12), and a step of removing a foreign matter adhered to the first main surface of the substrate (12) in the electronic device.

Description

電子デバイスの製造方法Manufacturing method of electronic device
 本発明は、電子デバイスの製造方法、支持体付き電子デバイスに関する。 The present invention relates to an electronic device manufacturing method and an electronic device with a support.
 近年、液晶表示装置(LCD)、有機EL表示装置(OLED)が表示装置として広く利用されている。特にモバイルや携帯電話等の携帯型表示装置の分野では、表示装置の軽量化、薄型化が求められている。
 同様に、太陽電池、薄膜2次電池、表面に回路が形成された半導体ウェハなどの電子デバイスも軽量化、薄型化が求められている。
 これらの要求に対応するため、表示装置など電子デバイスに用いるガラス、樹脂、金属などの基板の薄板化が進んでいる。
 ガラス基板の場合、板厚を薄くする方法としては、一般に、表示装置用部材をガラス基板の表面に形成し、表示装置用パネルを形成した後に、化学エッチングを用いて表示装置用パネルの両外側表面をエッチング処理し、表示装置用パネルの厚さを薄くする方法が用いられている。
In recent years, liquid crystal display devices (LCD) and organic EL display devices (OLED) have been widely used as display devices. In particular, in the field of mobile display devices such as mobile phones and mobile phones, there is a demand for lighter and thinner display devices.
Similarly, electronic devices such as solar cells, thin film secondary batteries, and semiconductor wafers having a circuit formed on the surface are also required to be lighter and thinner.
In order to meet these demands, thinning of substrates such as glass, resin, and metal used for electronic devices such as display devices has been progressing.
In the case of a glass substrate, as a method of reducing the plate thickness, generally, after forming a display device member on the surface of the glass substrate and forming a display device panel, both outer sides of the display device panel are formed using chemical etching. A method of etching the surface to reduce the thickness of the display device panel is used.
 この化学エッチングによる基板薄化の手法では、例えば、1枚のガラス基板の板厚を0.7mmから0.2mmや0.1mmに薄化加工する場合、元々のガラス基板の材料の大半をエッチング液で削り落とすことになるので、生産性や原材料の使用効率という観点では好ましくない。これに対して当初から板厚が薄いガラス基板を採用して、TFTアレイ基板やカラーフィルタ基板を製造しようとすると、製造時におけるガラス基板の強度が不足し、たわみ量も大きくなる。そのため既存の製造ラインで処理することができないという問題が生じる。
 また、上記の化学エッチングによる基板薄化法においては、表示装置用部材をガラス基板の表面に形成した後に化学エッチング処理等をしてガラス基板を薄くするので、ガラス基板の表面に形成された微細な傷が顕在化する問題、すなわちエッチピットの発生という問題が生じることがある。
In this method of thinning the substrate by chemical etching, for example, when thinning the thickness of one glass substrate from 0.7 mm to 0.2 mm or 0.1 mm, most of the original glass substrate material is etched. Since it will be scraped off by the liquid, it is not preferable from the viewpoint of productivity and efficiency of use of raw materials. On the other hand, if a glass substrate having a thin plate thickness is adopted from the beginning to manufacture a TFT array substrate or a color filter substrate, the strength of the glass substrate at the time of manufacture becomes insufficient and the amount of deflection increases. Therefore, the problem that it cannot process in the existing manufacturing line arises.
In the substrate thinning method by chemical etching, the glass substrate is thinned by performing chemical etching after forming the display device member on the surface of the glass substrate. There is a case in which a problem that an obvious scratch appears, that is, a problem of generation of etch pits may occur.
 そこで、このような問題を解決することを目的として、板厚が0.7mm未満の薄いガラス基板(「薄板ガラス基板」ともいう。)を他の支持ガラス基板と貼り合わせて積層体とし、その状態で表示装置を製造するための所定の処理を実施し、その後、薄板ガラス基板と支持ガラス基板とを分離する方法等が提案されている。 Therefore, for the purpose of solving such problems, a thin glass substrate having a thickness of less than 0.7 mm (also referred to as “thin glass substrate”) is bonded to another supporting glass substrate to form a laminate, A method of performing a predetermined process for manufacturing the display device in a state and then separating the thin glass substrate and the supporting glass substrate has been proposed.
 例えば、特許文献1には、製品用のガラス基板と補強用ガラス基板とを、ガラス基板同士の静電気吸着力または真空吸着力を利用して張り合わせて一体化し、製品用のガラス基板を用いた表示装置を製造する方法が記載されている。
 また、特許文献2には、液晶表示装置の基板と支持体との端部をガラスフリット系の接着剤を用いて接着して、その後、電極パターン等を形成する液晶表示装置の製造方法が記載されている。
 特許文献3には、2枚のガラス基板の少なくとも周縁部の端面近傍にレーザ光を照射して前記2枚のガラス基板を融合させる工程を有する表示装置用基板の製造方法が記載されている。
For example, in Patent Document 1, a product glass substrate and a reinforcing glass substrate are bonded and integrated using an electrostatic adsorption force or a vacuum adsorption force between glass substrates, and a display using the product glass substrate is used. A method of manufacturing the device is described.
Further, Patent Document 2 describes a method for manufacturing a liquid crystal display device in which end portions of a substrate and a support of a liquid crystal display device are bonded using a glass frit adhesive, and thereafter an electrode pattern or the like is formed. Has been.
Patent Document 3 describes a method for manufacturing a substrate for a display device, which includes a step of irradiating laser light to at least the vicinity of the edge surface of two glass substrates to fuse the two glass substrates.
 特許文献4には、粘着剤層が支持体上に設けられている基板搬送用治具に基板を貼り付け、液晶表示素子の製造工程を通して基板搬送用治具を搬送することにより、基板搬送用治具に貼り付いている基板に対して液晶表示素子形成処理を順次行い、所定の工程を終了後、基板搬送用治具から基板を剥離する液晶表示装置の製造方法が記載されている。
 特許文献5には、液晶表示素子用電極基板を紫外線硬化型粘着剤が支持体上に設けられた治具を用いて、液晶表示素子用電極基板に所定の加工を施した後、紫外線硬化型粘着剤に紫外線を照射することにより、前記紫外線硬化型粘着剤の粘着力を低下させ、前記液晶表示素子用電極基板を前記治具から剥離することを特徴とする液晶表示素子の製造方法が記載されている。
 特許文献6には、粘着剤によって薄板を支持板に仮固定し、前記粘着剤の周縁部をシール剤によって封止し、薄板を仮固定した支持板を搬送する搬送方法が記載されている。
In Patent Document 4, a substrate is attached to a substrate transport jig having an adhesive layer provided on a support, and the substrate transport jig is transported through a manufacturing process of a liquid crystal display element. A liquid crystal display device manufacturing method is described in which liquid crystal display element formation processing is sequentially performed on a substrate attached to a jig, and the substrate is peeled off from the substrate carrying jig after a predetermined process is completed.
In Patent Document 5, an electrode substrate for a liquid crystal display element is subjected to a predetermined processing on the electrode substrate for a liquid crystal display element using a jig in which an ultraviolet curable adhesive is provided on a support, and then an ultraviolet curable type is used. A method for producing a liquid crystal display device, comprising: irradiating an adhesive with ultraviolet rays to reduce the adhesive strength of the ultraviolet curable adhesive and peeling the electrode substrate for a liquid crystal display element from the jig. Has been.
Patent Document 6 describes a transport method in which a thin plate is temporarily fixed to a support plate with an adhesive, a peripheral portion of the adhesive is sealed with a sealant, and the support plate on which the thin plate is temporarily fixed is transported.
 特許文献7には、薄板ガラス基板と、支持ガラス基板と、を積層させてなる薄板ガラス積層体であって、前記薄板ガラス基板と、前記支持ガラス基板と、が剥離性および非粘着性を有するシリコーン樹脂層を介して積層されていることを特徴とする薄板ガラス積層体が記載されている。そして、薄板ガラス基板と支持ガラス基板とを分離するには、薄板ガラス基板を支持ガラス基板から垂直方向に引き離す力を与えればよく、剃刀の刃等で端部に剥離のきっかけを与えたり、積層界面へエアーを注入したりすることによって、より容易に剥離することが可能であることが記載されている。
 また、特許文献8には、シリコーンを用いた半導体製造用の両面密着シートが記載されている。
Patent Document 7 discloses a thin glass laminate obtained by laminating a thin glass substrate and a supporting glass substrate, and the thin glass substrate and the supporting glass substrate have peelability and non-adhesiveness. A thin glass laminate characterized by being laminated via a silicone resin layer is described. Then, in order to separate the thin glass substrate and the supporting glass substrate, it is only necessary to apply a force to separate the thin glass substrate from the supporting glass substrate in the vertical direction. It is described that it can be more easily peeled off by injecting air into the interface.
Patent Document 8 describes a double-sided adhesive sheet for manufacturing semiconductors using silicone.
日本国特開2000-241804号公報Japanese Unexamined Patent Publication No. 2000-241804 日本国特開昭58-54316号公報Japanese Unexamined Patent Publication No. 58-54316 日本国特開2003-216068号公報Japanese Unexamined Patent Publication No. 2003-216068 日本国特開平8-86993号公報Japanese Patent Laid-Open No. 8-86993 日本国特開平9-105896号公報Japanese Unexamined Patent Publication No. 9-105896 日本国特開2000-252342号公報Japanese Unexamined Patent Publication No. 2000-252342 国際公開第2007/018028号パンフレットInternational Publication No. 2007/018028 Pamphlet 日本国特開2004-26950号公報Japanese Unexamined Patent Publication No. 2004-26950
 しかしながら、特許文献1に記載のガラス基板同士を静電吸着力や真空吸着力を利用して固定する方法、特許文献2に記載のガラス基板の両端をガラスフリットによって固定する方法、または特許文献3に記載の周縁部の端面近傍にレーザ光を照射して2枚のガラス基板を融合させる方法では、ガラス基板同士を何らの中間層を介さず積層密着させるので、ガラス基板間へ混入した気泡や塵介等の異物によってガラス基板にゆがみ欠陥が生じる。そのため、表面が平滑なガラス基板積層体を得ることは困難である。 However, a method for fixing glass substrates described in Patent Document 1 using electrostatic adsorption force or vacuum adsorption force, a method for fixing both ends of a glass substrate described in Patent Document 2 with glass frit, or Patent Document 3 In the method of merging two glass substrates by irradiating laser light near the end face of the peripheral portion described in the above, the glass substrates are laminated and adhered without any intermediate layer. Distortion defects occur in the glass substrate due to foreign matters such as dust. Therefore, it is difficult to obtain a glass substrate laminate having a smooth surface.
 また、特許文献4~6に記載のガラス基板間に粘着剤層等を配置する方法では、上記のようなガラス基板間への気泡等の混入によるゆがみ欠陥の発生を回避し得るものの、両ガラス基板を分離することが困難であり、分離する際に薄板ガラス基板が破損するおそれがある。また分離後の薄板ガラス基板への粘着剤の残存も問題となる。 In addition, in the method of disposing an adhesive layer or the like between glass substrates described in Patent Documents 4 to 6, although the occurrence of distortion defects due to mixing of bubbles or the like between the glass substrates as described above can be avoided, both glasses It is difficult to separate the substrate, and the thin glass substrate may be damaged during the separation. Further, the remaining adhesive on the thin glass substrate after separation also becomes a problem.
 これに対して特許文献7に記載の薄板ガラス基板積層体によれば、上記のようなガラス基板間への気泡等の混入によるゆがみ欠陥は発生し難い。また、薄板ガラス基板と支持ガラス基板とを剥離することも可能である。さらに剥離後の薄板ガラス基板への粘着剤の残存の問題は解決される。しかし、剥離後の薄板ガラス基板における樹脂層が付いていた面に偏光フィルムや位相差フィルム等の粘着剤付きフィルムを貼付しても、粘着強度が弱く、剥離してしまう場合があった。特に偏光フィルム等における粘着剤がアクリル系の場合に剥離しやすかった。本発明者がこの原因について鋭意検討したところ、特許文献7に記載の積層体の場合、剥離後の薄板ガラス基板にシリコーン樹脂層は残存していないように見えるものの、当該樹脂層に由来する何らかの物質(例えば化合物が挙げられる。また例えば樹脂層を形成する物質の一部であって、前記樹脂層の表面に析出して存在している低分子化合物等が挙げられる。以下「転写物」ともいう。)、空気中に飛散する塵介、製造工程に起因する金属片や機械油等の異物が前記薄板ガラス基板の表面に、極僅かに付いていることが原因であること考えられた。さらに、本発明者は前記異物を、薄板ガラス基板およびそれに付いている表示装置用部材等に熱的、電磁的、機械的および化学的な損傷を与えずに除去する方法を見出した。薄板ガラス基板が表示装置用パネルの一部の場合、薄板ガラス基板の分離面とは反対側の面に薄膜トランジスタ、有機EL素子、またはカラーフィルタなどの表示装置用部材が形成されており、また、シール剤で二枚の薄板ガラス基板がセル化された状態の場合もあり、これらに上記のような損傷を与えないようにする必要があるからである。 On the other hand, according to the thin glass substrate laminate described in Patent Document 7, distortion defects due to mixing of bubbles or the like between the glass substrates as described above are unlikely to occur. It is also possible to peel the thin glass substrate and the supporting glass substrate. Furthermore, the problem of remaining adhesive on the thin glass substrate after peeling is solved. However, even if a film with an adhesive such as a polarizing film or a retardation film is attached to the surface of the thin glass substrate after peeling, the adhesive strength is weak and the film may peel off. In particular, it was easy to peel off when the pressure sensitive adhesive in the polarizing film or the like was acrylic. When the present inventor diligently investigated the cause, in the case of the laminated body described in Patent Document 7, it seems that the silicone resin layer does not remain on the thin glass substrate after peeling, but some sort of origin derived from the resin layer. Substance (for example, a compound. Also, for example, a low molecular weight compound that is a part of a substance that forms a resin layer and is deposited on the surface of the resin layer). It was thought that this was caused by a slight amount of foreign matter such as dust scattered in the air, metal pieces or machine oil resulting from the manufacturing process on the surface of the thin glass substrate. Furthermore, the present inventor has found a method for removing the foreign matter without causing thermal, electromagnetic, mechanical and chemical damage to the thin glass substrate and the display device member attached thereto. When the thin glass substrate is a part of the display device panel, a display device member such as a thin film transistor, an organic EL element, or a color filter is formed on the surface opposite to the separation surface of the thin glass substrate. This is because there are cases where the two thin glass substrates are made into cells by the sealing agent, and it is necessary to prevent them from being damaged as described above.
 本発明は上記のような問題点に鑑みてなされたものである。すなわち、本発明は、電子デバイス用部材を有する基板、樹脂層および支持基板が積層されている支持体付き電子デバイスから、前記樹脂層および前記支持基板からなる支持体を剥離し、電子デバイスを得た後、基板および電子デバイス用部材等(例えば薄膜トランジスタ、有機EL素子、カラーフィルタ)に熱的、電磁的、機械的および化学的な損傷を与えずに、前記電子デバイス用の基板の主面に付いた異物を除去し、その結果、剥離後の基板における樹脂層が付いていた面に、偏光フィルムや位相差フィルム等の粘着剤付きフィルムを強固に貼付することができる、電子デバイスの製造方法を提供することを目的とする。 The present invention has been made in view of the above problems. That is, the present invention provides an electronic device by peeling a support made of the resin layer and the support substrate from an electronic device with a support in which a substrate having a member for an electronic device, a resin layer, and a support substrate are laminated. After that, the main surface of the electronic device substrate is not damaged without causing thermal, electromagnetic, mechanical and chemical damage to the substrate and the electronic device member (eg, thin film transistor, organic EL element, color filter). A method of manufacturing an electronic device that can remove attached foreign matter and, as a result, can firmly adhere a film with an adhesive such as a polarizing film or a retardation film to the surface of the substrate after peeling with a resin layer attached The purpose is to provide.
 本発明者は上記課題を解決するために鋭意検討を重ね、本発明を完成した。
 本発明は以下の(1)~(8)に関する。
The present inventor has intensively studied in order to solve the above problems, and has completed the present invention.
The present invention relates to the following (1) to (8).
(1)第1主面および第2主面を有し第2主面に電子デバイス用部材を有する基板の第1主面に、第1主面および第2主面を有する支持基板の第1主面に固定された剥離性表面を有する樹脂層が密着している支持体付き電子デバイスから、前記支持基板および前記樹脂層からなる支持体を剥離し、前記電子デバイス用部材および前記基板を含む電子デバイスを得る剥離工程と、前記電子デバイスにおける前記基板の第1主面に付いた、異物を除去する除去工程とを具備する、電子デバイスの製造方法。 (1) The first of the support substrate having the first main surface and the second main surface on the first main surface of the substrate having the first main surface and the second main surface and having the electronic device member on the second main surface. A support comprising the support substrate and the resin layer is peeled from an electronic device with a support to which a resin layer having a peelable surface fixed to the main surface is in close contact, and includes the electronic device member and the substrate. The manufacturing method of an electronic device which comprises the peeling process which obtains an electronic device, and the removal process which removes the foreign material attached to the 1st main surface of the said board | substrate in the said electronic device.
(2)前記樹脂層がシリコーン樹脂層である、上記(1)に記載の電子デバイスの製造方法。 (2) The method for manufacturing an electronic device according to (1), wherein the resin layer is a silicone resin layer.
(3)前記樹脂層の剥離性表面を前記基板の第1主面に密着する前における前記基板の第1主面の粘着強度をfとし、前記除去工程の後に得られる電子デバイスにおける前記基板の第1主面の粘着強度をfとした場合に、f≧fとなる、上記(1)または(2)に記載の電子デバイスの製造方法。 (3) the adhesive strength of the first main surface of the substrate before the releasing surface of the resin layer in close contact with the first main surface of the substrate and f 0, the in an electronic device obtained after the removing step board The manufacturing method of the electronic device according to (1) or (2), wherein f ≧ f 0 when the adhesive strength of the first main surface is f.
(4)前記除去工程が、前記基板の第1主面にプラズマを照射して、前記異物を除去する工程である、上記(1)~(3)のいずれかに記載の電子デバイスの製造方法。 (4) The method for manufacturing an electronic device according to any one of (1) to (3), wherein the removing step is a step of irradiating the first main surface of the substrate with plasma to remove the foreign matter. .
(5)前記除去工程が、酸またはアルカリを含む薬液を用いて前記異物を除去する工程である、上記(1)~(3)のいずれかに記載の電子デバイスの製造方法。 (5) The method for manufacturing an electronic device according to any one of (1) to (3), wherein the removing step is a step of removing the foreign matter using a chemical solution containing an acid or an alkali.
(6)前記除去工程が、溶解度パラメータが7~15である溶剤を含む薬液を用いて前記異物を除去する工程である、上記(1)~(3)のいずれかに記載の電子デバイスの製造方法。 (6) Manufacture of an electronic device according to any one of (1) to (3), wherein the removing step is a step of removing the foreign matter using a chemical solution containing a solvent having a solubility parameter of 7 to 15. Method.
(7)さらに超音波振動を用いて前記異物を除去する工程である、上記(5)または(6)に記載の電子デバイスの製造方法。 (7) The method for manufacturing an electronic device according to (5) or (6), which is a step of further removing the foreign matter using ultrasonic vibration.
(8)前記除去工程を2以上有する、上記(1)~(7)のいずれかに記載の電子デバイスの製造方法。 (8) The method of manufacturing an electronic device according to any one of (1) to (7), wherein the electronic device has two or more removal steps.
 本発明によれば、表示装置などの電子デバイス用部材を有する基板、樹脂層および支持基板が積層されている支持体付き電子デバイスから、前記樹脂層および前記支持基板からなる支持体を剥離し、電子デバイスを得た後、基板および電子デバイス用部材等(例えば薄膜トランジスタ、有機EL素子、カラーフィルタ)に熱的、電磁的、機械的および化学的な損傷を与えずに、前記電子デバイス用の基板の主面に付いた異物を除去し、その結果、剥離後の基板における樹脂層が付いていた面に、偏光フィルムや位相差フィルム等の粘着剤付きフィルムを強固に貼付することができる、電子デバイスの製造方法を提供することができる。 According to the present invention, a substrate having a member for an electronic device such as a display device, an electronic device with a support in which a resin layer and a support substrate are laminated, a support made of the resin layer and the support substrate is peeled off, After obtaining the electronic device, the substrate for the electronic device without causing thermal, electromagnetic, mechanical and chemical damage to the substrate and the member for the electronic device (for example, thin film transistor, organic EL element, color filter) As a result, it is possible to firmly adhere a film with an adhesive such as a polarizing film or a retardation film to the surface of the substrate after the peeling, to which the resin layer is attached. A device manufacturing method can be provided.
図1は、本発明の支持体付きパネルの一態様を示す概略断面図である。FIG. 1 is a schematic cross-sectional view showing one embodiment of the panel with a support of the present invention. 図2は、本発明の支持体付きパネルの別の一態様を示す概略正面図である。FIG. 2: is a schematic front view which shows another one aspect | mode of the panel with a support body of this invention. 図3は、本発明の支持体付きパネルの別の一態様を示す概略断面図である。FIG. 3 is a schematic cross-sectional view showing another embodiment of the panel with a support of the present invention. 図4は、本発明の支持体付きパネルの別の一態様を示す概略正面図である。FIG. 4 is a schematic front view showing another embodiment of the panel with a support of the present invention. 図5は、本発明の支持体付きパネルの別の一態様を示す概略正面図である。FIG. 5: is a schematic front view which shows another one aspect | mode of the panel with a support body of this invention. 図6は、本発明の支持体付きパネルの別の一態様を示す概略断面図である。FIG. 6 is a schematic cross-sectional view showing another embodiment of the panel with a support of the present invention. 図7は、本発明のパネル製造方法の除去工程において用いることができる常圧リモートプラズマ装置の例を説明する模式的図である。FIG. 7 is a schematic diagram for explaining an example of an atmospheric pressure remote plasma apparatus that can be used in the removing step of the panel manufacturing method of the present invention.
 本発明について説明する。
 本発明の電子デバイス製造方法(以下「本発明の電子デバイス製造方法」ともいう)は、第1主面および第2主面を有し第2主面に電子デバイス用部材を有する基板の第1主面に、第1主面および第2主面を有する支持基板の第1主面に固定された剥離性表面を有する樹脂層が密着している支持体付き電子デバイスから、前記支持基板および前記樹脂層からなる支持体を剥離し、前記電子デバイス用部材および前記基板を含む電子デバイスを得る剥離工程と、前記電子デバイスにおける前記基板の第1主面に付いた、異物を除去する除去工程とを具備する、電子デバイスの製造方法である。
The present invention will be described.
The electronic device manufacturing method of the present invention (hereinafter also referred to as “the electronic device manufacturing method of the present invention”) is a first substrate having a first main surface and a second main surface and an electronic device member on the second main surface. From the electronic device with a support, in which the resin layer having a peelable surface fixed to the first main surface of the support substrate having the first main surface and the second main surface is in close contact with the main surface, the support substrate and the A peeling step of peeling a support made of a resin layer to obtain an electronic device including the electronic device member and the substrate; and a removing step of removing foreign substances attached to the first main surface of the substrate in the electronic device; An electronic device manufacturing method comprising:
 また、本発明の電子デバイス製造方法における剥離工程に供する支持体付き電子デバイス、すなわち、第1主面および第2主面を有する前記基板の第1主面に、第1主面および第2主面を有する支持基板の第1主面に固定された剥離性表面を有する樹脂層が密着している支持体付き電子デバイスを、以下では「本発明の支持体付き電子デバイス」ともいう。 Moreover, the electronic device with a support used for the peeling step in the electronic device manufacturing method of the present invention, that is, the first main surface and the second main surface on the first main surface of the substrate having the first main surface and the second main surface. The electronic device with a support in which the resin layer having a peelable surface fixed to the first main surface of the support substrate having a surface is in close contact is also referred to as “the electronic device with a support of the present invention” below.
 なお、詳細については後述するが、本発明において用いる支持体付き電子デバイスは、第1主面および第2主面を有し第2主面に電子デバイス用部材を有する基板の第1主面に、第1主面および第2主面を有する支持基板の第1主面に固定された剥離性表面を有する樹脂層が密着しているものである。
 すなわち、支持体付き電子デバイスは、電子デバイス用部材、基板、樹脂層および支持基板を有し、これらはこの順に積層されている。また、電子デバイスは電子デバイス用部材および基板を有し、電子デバイス用部材は基板の第2主面上に形成されている。
 また、支持体付き電子デバイスは、基板、樹脂層および支持基板がこの順に積層された積層体が電子デバイス用部材を介して2つ積層されたもの、すなわち、支持基板、樹脂層、基板、電子デバイス用部材、基板、樹脂層および支持基板がこの順に積層されたものであってもよい。
 ここで、電子デバイスとは、表示装置用パネル、太陽電池、薄膜2次電池、表面に回路が形成された半導体ウェハ等の電子部品をいう。表示装置用パネルとは、液晶パネル、有機ELパネル、プラズマディスプレイパネル、フィールドエミッションパネル等を含んでいる。
 以下、本発明における電子デバイスの一つとして、基板および支持基板がガラスからなる表示装置用パネルについて詳述する。以下では、表示装置用パネルの製造方法を「本発明のパネル製造方法」と呼び、支持体付き表示装置用パネルを「本発明の支持体付きパネル」と呼ぶ。
Although details will be described later, the electronic device with a support used in the present invention is provided on the first main surface of the substrate having the first main surface and the second main surface and the electronic device member on the second main surface. The resin layer having a peelable surface fixed to the first main surface of the support substrate having the first main surface and the second main surface is in close contact.
That is, the electronic device with a support has an electronic device member, a substrate, a resin layer, and a support substrate, which are laminated in this order. The electronic device has an electronic device member and a substrate, and the electronic device member is formed on the second main surface of the substrate.
Moreover, the electronic device with a support body is one in which a laminate in which a substrate, a resin layer, and a support substrate are laminated in this order is laminated via an electronic device member, that is, a support substrate, a resin layer, a substrate, an electron A device member, a substrate, a resin layer, and a support substrate may be laminated in this order.
Here, the electronic device refers to an electronic component such as a display panel, a solar cell, a thin film secondary battery, or a semiconductor wafer having a circuit formed on the surface. The display device panel includes a liquid crystal panel, an organic EL panel, a plasma display panel, a field emission panel, and the like.
Hereinafter, as one of the electronic devices in the present invention, a panel for a display device in which a substrate and a supporting substrate are made of glass will be described in detail. Below, the manufacturing method of the panel for display apparatuses is called "the panel manufacturing method of this invention", and the panel for display apparatuses with a support body is called "the panel with a support body of this invention."
 初めに、本発明の支持体付きパネルにおける薄板ガラス基板について説明する。
 薄板ガラス基板は、その厚さ、形状、大きさ、物性(熱収縮率、表面形状、耐薬品性等)、組成等は特に限定されず、例えば従来のLCD、OLED等の表示装置用のガラス基板と同様であってよい。
First, the thin glass substrate in the panel with a support of the present invention will be described.
The thickness, shape, size, physical properties (heat shrinkage rate, surface shape, chemical resistance, etc.), composition, etc. of the thin glass substrate are not particularly limited. For example, conventional glass for display devices such as LCD and OLED It may be the same as the substrate.
 薄板ガラス基板の厚さは0.7mm未満であることが好ましく、0.5mm以下であることがより好ましく、0.4mm以下であることがさらに好ましい。また、薄板ガラス基板の厚さは0.05mm以上であることが好ましく、0.07mm以上であることがより好ましく、0.1mm以上であることがさらに好ましい。 The thickness of the thin glass substrate is preferably less than 0.7 mm, more preferably 0.5 mm or less, and further preferably 0.4 mm or less. Further, the thickness of the thin glass substrate is preferably 0.05 mm or more, more preferably 0.07 mm or more, and further preferably 0.1 mm or more.
 薄板ガラス基板の形状は限定されないが、矩形であることが好ましい。ここで、矩形とは、実質的に略矩形であり、周辺部の角を切り落とした(コーナーカットした)形状をも含む。 The shape of the thin glass substrate is not limited, but is preferably rectangular. Here, the rectangle is substantially a rectangle and includes a shape obtained by cutting off the corners of the peripheral portion (corner cut).
 薄板ガラス基板の大きさは限定されないが、例えば矩形の場合は100~2000mm×100~2000mmであってよく、500~1000mm×500~1000mmであることがより好ましい。
 このような厚さおよび大きさであっても、本発明においては、薄板ガラス基板と支持体とを容易に剥離することができる。
Although the size of the thin glass substrate is not limited, for example, in the case of a rectangle, it may be 100 to 2000 mm × 100 to 2000 mm, and more preferably 500 to 1000 mm × 500 to 1000 mm.
Even with such a thickness and size, in the present invention, the thin glass substrate and the support can be easily peeled off.
 薄板ガラス基板の熱収縮率、表面形状、耐薬品性等の特性も特に限定されず、製造する表示装置の種類により異なる。
 熱収縮率は小さいことが好ましい。具体的には熱収縮率の指標である線膨張係数が500×10-7/℃以下であることが好ましく、300×10-7/℃以下であることがより好ましく、200×10-7/℃以下であることがより好ましく、100×10-7/℃以下であることがより好ましく、45×10-7/℃以下であることがさらに好ましい。
 なお、本発明において線膨張係数はJIS  R3102(1995年)に規定のものを意味する。
Properties of the thin glass substrate such as thermal shrinkage, surface shape, chemical resistance, etc. are not particularly limited, and vary depending on the type of display device to be manufactured.
The heat shrinkage rate is preferably small. Specifically, the linear expansion coefficient, which is an index of the thermal shrinkage rate, is preferably 500 × 10 −7 / ° C. or less, more preferably 300 × 10 −7 / ° C. or less, and 200 × 10 −7 / ° C. More preferably, it is 100 ° C. −7 / ° C. or less, and further preferably 45 × 10 −7 / ° C. or less.
In addition, in this invention, a linear expansion coefficient means a thing prescribed | regulated to JISR3102 (1995).
 薄板ガラス基板のガラス材料の組成は、例えば従来知られているアルカリ金属酸化物を含有するアルカリガラスや無アルカリガラスと同様であってよい。中でも、熱収縮率が小さいことから無アルカリガラスであることが好ましい。 The composition of the glass material of the thin glass substrate may be the same as that of alkali glass or alkali-free glass containing an alkali metal oxide that is conventionally known, for example. Among these, alkali-free glass is preferable because of its low thermal shrinkage rate.
 本発明の支持体付きパネルは、前記薄板ガラス基板の第2主面に表示装置用部材を有する。
 表示装置用部材とは、従来のLCD、OLED等の表示装置用のガラス基板がその表面上に有する発光層、保護層、TFTアレイ(以下、アレイという。)、カラーフィルタ、液晶、ITOからなる透明電極等、各種回路パターン等を意味する。前記薄板ガラス基板の第2主面上の表示装置用部材の種類は特に限定されない。
 このような表示装置用部材と前記薄板ガラス基板とから、表示装置用パネルがなる。
The panel with a support of the present invention has a display device member on the second main surface of the thin glass substrate.
The display device member is composed of a light emitting layer, a protective layer, a TFT array (hereinafter referred to as an array), a color filter, a liquid crystal, and ITO that are provided on the surface of a conventional glass substrate for a display device such as an LCD or OLED. It means various circuit patterns such as transparent electrodes. The kind of member for display apparatuses on the 2nd main surface of the said thin glass substrate is not specifically limited.
A panel for a display device is composed of such a member for a display device and the thin glass substrate.
 次に、本発明の支持体付きパネルにおける支持ガラス基板について説明する。
 本発明の支持体付きパネルは、前記薄板ガラス基板の第1主面に、支持体として、樹脂層が固定された支持ガラス基板を有する。支持ガラス基板は樹脂層を介して薄板ガラス基板と密着して、薄板ガラス基板の強度を補強する。
Next, the support glass substrate in the panel with a support of the present invention will be described.
The panel with a support of the present invention has a support glass substrate on which a resin layer is fixed as a support on the first main surface of the thin glass substrate. The supporting glass substrate is in close contact with the thin glass substrate through the resin layer, and reinforces the strength of the thin glass substrate.
 支持ガラス基板の厚さ、形状、大きさ、物性(熱収縮率、表面形状、耐薬品性等)、組成等は特に限定されない。
 支持ガラス基板の厚さは特に限定されないが、本発明の支持体付きパネルが現行の製造ラインで処理できるような厚さであることが必要である。
 例えば0.1~1.1mmの厚さであることが好ましく、0.3~0.8mmであることがより好ましく、0.4~0.7mmであることがさらに好ましい。
 例えば、現行の製造ラインが厚さ0.5mmの基板を処理するように設計されたものであって、薄板ガラス基板の厚さが0.1mmである場合、支持ガラス基板の厚さと樹脂層の厚さとあわせて0.4mmである。また、現行の製造ラインは厚さが0.7mmのガラス基板を処理するように設計されているものが最も一般的であるが、例えば薄板ガラス基板の厚さが0.4mmならば、樹脂層の厚さとあわせて0.3mmとする。
 支持ガラス基板の厚さと前記薄板ガラス基板との相対的な厚さの関係は限定されず、支持ガラス基板の厚さが薄板ガラス基板の厚さよりも厚くてもよく、支持ガラス基板の厚さが薄板ガラス基板の厚さよりも薄くてもよい。
The thickness, shape, size, physical properties (heat shrinkage rate, surface shape, chemical resistance, etc.), composition, etc. of the supporting glass substrate are not particularly limited.
The thickness of the supporting glass substrate is not particularly limited, but it is necessary that the supporting glass panel of the present invention has such a thickness that can be processed in the current production line.
For example, the thickness is preferably 0.1 to 1.1 mm, more preferably 0.3 to 0.8 mm, and still more preferably 0.4 to 0.7 mm.
For example, when the current production line is designed to process a substrate having a thickness of 0.5 mm and the thickness of the thin glass substrate is 0.1 mm, the thickness of the supporting glass substrate and the resin layer Together with the thickness, it is 0.4 mm. In addition, the current production line is most commonly designed to process a glass substrate having a thickness of 0.7 mm. For example, if the thickness of a thin glass substrate is 0.4 mm, the resin layer The thickness is 0.3 mm.
The relationship between the thickness of the supporting glass substrate and the relative thickness of the thin glass substrate is not limited, and the thickness of the supporting glass substrate may be larger than the thickness of the thin glass substrate. It may be thinner than the thickness of the thin glass substrate.
 支持ガラス基板の形状は限定されないが、矩形であることが好ましい。ここで、矩形とは、実質的に略矩形であり、周辺部の角を切り落とした(コーナーカットした)形状をも含む。 The shape of the supporting glass substrate is not limited, but is preferably rectangular. Here, the rectangle is substantially a rectangle and includes a shape obtained by cutting off the corners of the peripheral portion (corner cut).
 支持ガラス基板の大きさは限定されないが、前記薄板ガラス基板と同程度であることが好ましく、前記薄板ガラス基板よりもやや大きいことが好ましい。例えば、具体的には縦方向または横方向の各々が0.05~10mm程度大きいことが好ましい。理由は、表示装置用パネル製造時の位置決めピン等のアライメント装置の接触から前記薄板ガラス基板の端部を保護しやすいこと、および薄板ガラス基板と支持ガラス基板との剥離をより容易に行うことができるからである。 Although the size of the supporting glass substrate is not limited, it is preferably about the same as the thin glass substrate, and slightly larger than the thin glass substrate. For example, specifically, it is preferable that the longitudinal direction or the lateral direction is larger by about 0.05 to 10 mm. The reason is that it is easy to protect the end portion of the thin glass substrate from the contact of an alignment device such as a positioning pin at the time of manufacturing a panel for a display device, and that the thin glass substrate and the supporting glass substrate are more easily separated. Because it can.
 支持ガラス基板は線膨張係数が前記薄板ガラス基板と実質的に同一であってよく、異なってもよい。実質的に同一であると、本発明のパネル製造方法で処理した際に、薄板ガラス基板または支持ガラス基板に反りが発生し難い点で好ましい。
 薄板ガラス基板と支持ガラス基板との線膨張係数の差は300×10-7/℃以下であることが好ましく、100×10-7/℃以下であることがより好ましく、50×10-7/℃以下であることがさらに好ましい。
The supporting glass substrate may have a linear expansion coefficient that is substantially the same as or different from that of the thin glass substrate. Substantially the same is preferable in that the thin glass substrate or the supporting glass substrate is less likely to warp when processed by the panel manufacturing method of the present invention.
The difference in linear expansion coefficient between the thin glass substrate and the supporting glass substrate is preferably 300 × 10 −7 / ° C. or less, more preferably 100 × 10 −7 / ° C. or less, and 50 × 10 −7 / ° C. More preferably, it is not higher than ° C.
 支持ガラス基板のガラス材料の組成は、例えばアルカリガラス、無アルカリガラスと同様であってよい。中でも、熱収縮率が小さいことから無アルカリガラスであることが好ましい。 The composition of the glass material of the supporting glass substrate may be the same as that of alkali glass or non-alkali glass, for example. Among these, alkali-free glass is preferable because of its low thermal shrinkage rate.
 本発明の実施の形態において、基板は、薄板ガラス基板としたが、本発明はこれに限定されない。工業的な入手の容易性の観点より、ガラス板、シリコンウェハ、金属板、プラスチック板等が好適な例として示される。
 基板として板厚が薄いガラス板(薄板ガラス基板)を採用する場合、薄板ガラス基板の組成は、例えばアルカリガラスや無アルカリガラスと同様であってよい。中でも、熱収縮率が小さいことから無アルカリガラスであることが好ましい。
 基板としてプラスチック板を採用する場合、その種類は特に制限されず、例えば、透明な基板の場合、ポリエチレンテレフタレート樹脂、ポリカーボネート樹脂、ポリエーテルスルホン樹脂、ポリエチレンナフタレート樹脂、ポリアクリル樹脂、ポリシリコーン樹脂、透明フッ素樹脂などが例示される。不透明な基板の場合、ポリイミド樹脂、フッ素樹脂、ポリアミド樹脂、ポリアラミド樹脂、ポリエーテルケトン樹脂、ポリエーテルエーテルケトン樹脂、各種液晶ポリマー樹脂などが例示される。
 基板として金属板を採用する場合、その種類は特に制限されず、例えば、ステンレス鋼板、銅板等が例示される。
 基板の耐熱性は特に制限されないが、表示装置用部材のTFTアレイなどを形成する場合は耐熱性が高いことが好ましい。具体的には上記5%加熱重量減温度が300℃以上であることが好ましい。更に350℃以上であることがより好ましい。
 この場合、耐熱性の点では上記したガラス板はどれも当てはまる。
 耐熱性の観点より、好ましいプラスチック板としては、ポリイミド樹脂、フッ素樹脂、ポリアミド樹脂、ポリアラミド樹脂、ポリエーテルスルホン樹脂、ポリエーテルケトン樹脂、ポリエーテルエーテルケトン樹脂、ポリエチレンナフタレート樹脂、各種液晶ポリマー樹脂等が例示される。
 また、基板は、ガラス板、シリコンウェハ、金属板、プラスチック板等、異なる材質を積層した積層体であってもよい。例えば、ガラス板、樹脂層、プラスチック板の順に積層した積層体のように、異なる種類の基板を、樹脂層を介して積層する積層体、あるいは、ガラス板、プラスチック、ガラス板の順に積層したものを基板として使用するように、異なる種類の板で複層化したものを基板として使用する積層体が挙げられる。
 さらに、2枚以上のガラス板同士、あるいは2枚以上のプラスチック板同士を基板として使用するように、同一種類の板を複層化したもの基板として使用する積層体などでもよい。
In the embodiment of the present invention, the substrate is a thin glass substrate, but the present invention is not limited to this. From the viewpoint of industrial availability, glass plates, silicon wafers, metal plates, plastic plates and the like are preferable examples.
When a thin glass plate (thin glass substrate) is employed as the substrate, the composition of the thin glass substrate may be the same as that of alkali glass or non-alkali glass, for example. Among these, alkali-free glass is preferable because of its low thermal shrinkage rate.
When adopting a plastic plate as the substrate, the type is not particularly limited, for example, in the case of a transparent substrate, polyethylene terephthalate resin, polycarbonate resin, polyethersulfone resin, polyethylene naphthalate resin, polyacrylic resin, polysilicone resin, Examples thereof include transparent fluororesins. In the case of an opaque substrate, polyimide resin, fluorine resin, polyamide resin, polyaramid resin, polyether ketone resin, polyether ether ketone resin, various liquid crystal polymer resins, and the like are exemplified.
When a metal plate is employed as the substrate, the type is not particularly limited, and examples thereof include a stainless steel plate and a copper plate.
The heat resistance of the substrate is not particularly limited, but it is preferable that the heat resistance is high when forming a TFT array of a display device member. Specifically, the 5% heating weight loss temperature is preferably 300 ° C. or higher. Furthermore, it is more preferable that it is 350 degreeC or more.
In this case, any of the above glass plates is applicable in terms of heat resistance.
From the viewpoint of heat resistance, preferable plastic plates include polyimide resin, fluororesin, polyamide resin, polyaramid resin, polyethersulfone resin, polyetherketone resin, polyetheretherketone resin, polyethylene naphthalate resin, various liquid crystal polymer resins, etc. Is exemplified.
The substrate may be a laminate in which different materials are laminated, such as a glass plate, a silicon wafer, a metal plate, and a plastic plate. For example, a laminate in which different types of substrates are laminated via a resin layer, such as a laminate in which a glass plate, a resin layer, and a plastic plate are laminated in this order, or a laminate in which a glass plate, a plastic, and a glass plate are laminated in this order. The laminated body which uses what was multilayered with the board | substrate of a different kind so that it may be used as a board | substrate is mentioned.
Furthermore, the laminated body etc. which use as a board | substrate what laminated | stacked the same kind board so that two or more glass plates or two or more plastic plates may be used as a board | substrate may be sufficient.
 また、本発明の実施の形態において、支持基板は、ガラス板を用いた支持ガラス基板としたが、本発明はこれに限定されない。工業的な入手の容易性の観点より、ガラス板、シリコンウェハ、金属板、プラスチック板等が好適な例として示される。
 支持基板としてガラス板を採用する場合、支持ガラス基板の厚さ、形状、大きさ、物性(熱収縮率、表面形状、耐薬品性等)、組成等は特に限定されない。
 支持ガラス基板の厚さは特に限定されないが、支持体付き表示装置用パネルが現行の製造ラインで処理できるような厚さであることが必要である。
 例えば0.1~1.1mmの厚さであることが好ましく、0.3~0.8mmであることがより好ましく、0.4~0.7mmであることがさらに好ましい。
 例えば、現行の製造ラインが厚さ0.5mmの基板を処理するように設計されたものであって、薄板ガラス基板の厚さが0.1mmである場合、支持ガラス基板の厚さと樹脂層の厚さとあわせて0.4mmである。また、現行の製造ラインは厚さが0.7mmのガラス基板を処理するように設計されているものが最も一般的であるが、例えば薄板ガラス基板の厚さが0.4mmならば、樹脂層の厚さとあわせて0.3mmとする。
 支持ガラス基板の厚さは、前記薄板ガラス基板よりも厚いことが好ましい。
In the embodiment of the present invention, the support substrate is a support glass substrate using a glass plate, but the present invention is not limited to this. From the viewpoint of industrial availability, glass plates, silicon wafers, metal plates, plastic plates and the like are preferable examples.
When a glass plate is employed as the support substrate, the thickness, shape, size, physical properties (thermal shrinkage, surface shape, chemical resistance, etc.), composition, etc. of the support glass substrate are not particularly limited.
The thickness of the supporting glass substrate is not particularly limited, but it is necessary that the supporting glass substrate has a thickness that can be processed by the current production line.
For example, the thickness is preferably 0.1 to 1.1 mm, more preferably 0.3 to 0.8 mm, and still more preferably 0.4 to 0.7 mm.
For example, when the current production line is designed to process a substrate having a thickness of 0.5 mm and the thickness of the thin glass substrate is 0.1 mm, the thickness of the supporting glass substrate and the resin layer Together with the thickness, it is 0.4 mm. In addition, the current production line is most commonly designed to process a glass substrate having a thickness of 0.7 mm. For example, if the thickness of a thin glass substrate is 0.4 mm, the resin layer The thickness is 0.3 mm.
The thickness of the supporting glass substrate is preferably thicker than that of the thin glass substrate.
 次に、本発明の支持体付きパネルにおける樹脂層について説明する。
 樹脂層は前記支持ガラス基板の第1主面に固定されている。そして、樹脂層は前記薄板ガラス基板の第1主面に密着しているが、容易に剥離することができる。すなわち樹脂層は、前記薄板ガラス基板の第1主面に対してある程度の結合力で結合しているが、剥離に際しては、薄板ガラス基板を破壊することがなく、容易に剥離できる程度の結合力で結合している。本発明では、樹脂層表面の容易に剥離できる性質を剥離性という。
 本発明の支持体付きパネルにおいて、樹脂層と薄板ガラス基板の第1主面とは粘着剤が有するような粘着力によっては付いておらず、固体分子間におけるファンデルワールス力に起因する力、すなわち、密着力によって付いていることが好ましい。
 一方、樹脂層の前記支持ガラス基板の第1主面に対する結合力は、前記薄板ガラス基板の第1主面に対する結合力よりも相対的に高い。本発明では薄板ガラス基板の第1主面に対する結合を密着といい、支持ガラス基板の第1主面に対する結合を固定という。
Next, the resin layer in the panel with a support of the present invention will be described.
The resin layer is fixed to the first main surface of the support glass substrate. And although the resin layer is closely_contact | adhered to the 1st main surface of the said thin glass substrate, it can peel easily. That is, the resin layer is bonded to the first main surface of the thin glass substrate with a certain degree of bonding force, but when peeling, the bonding force is such that the thin glass substrate can be easily peeled without breaking. It is combined with. In this invention, the property which can peel easily on the surface of a resin layer is called peelability.
In the panel with a support of the present invention, the resin layer and the first main surface of the thin glass substrate are not attached by the adhesive force that the adhesive has, the force due to van der Waals force between solid molecules, That is, it is preferable that it is attached by adhesion.
On the other hand, the bonding force of the resin layer to the first main surface of the supporting glass substrate is relatively higher than the bonding force of the thin glass substrate to the first main surface. In this invention, the coupling | bonding with respect to the 1st main surface of a thin glass substrate is called close_contact | adherence, and the coupling | bonding with respect to the 1st main surface of a support glass substrate is called fixation.
 樹脂層の厚さは特に限定されない。1~100μmであることが好ましく、5~30μmであることがより好ましく、7~20μmであることがさらに好ましい。樹脂層の厚さがこのような範囲であると、薄板ガラス基板の第1主面と樹脂層との密着が十分になるからである。
 また、気泡や異物が介在しても、薄板ガラス基板のゆがみ欠陥の発生を抑制することができるからである。また、樹脂層の厚さが厚すぎると、形成するのに時間および材料を要するため経済的ではない。
The thickness of the resin layer is not particularly limited. The thickness is preferably 1 to 100 μm, more preferably 5 to 30 μm, and even more preferably 7 to 20 μm. This is because when the thickness of the resin layer is within such a range, the first main surface of the thin glass substrate and the resin layer are sufficiently adhered.
Moreover, even if bubbles or foreign substances are present, it is possible to suppress the occurrence of distortion defects in the thin glass substrate. On the other hand, if the resin layer is too thick, it takes time and materials to form the resin layer, which is not economical.
 なお、樹脂層は2層以上からなっていてもよい。その場合、「樹脂層の厚さ」は全ての層の合計の厚さを意味するものとする。
 また、樹脂層が2層以上からなる場合は、各々の層を形成する樹脂の種類が異なってもよい。
In addition, the resin layer may consist of two or more layers. In this case, “the thickness of the resin layer” means the total thickness of all the layers.
Moreover, when a resin layer consists of two or more layers, the kind of resin which forms each layer may differ.
 樹脂層は、前記薄板ガラス基板の第1主面に対する樹脂層の剥離性表面の表面張力が30mN/m以下であることが好ましく、25mN/m以下であることがより好ましく、22mN/m以下あることがさらに好ましい。このような表面張力であると、より容易に薄板ガラス基板の第1主面と剥離することができ、同時に薄板ガラス基板の第1主面との密着も十分になるからである。
 また、樹脂層は、ガラス転移点が室温(25℃程度)よりも低いまたはガラス転移点を有しない材料からなることが好ましい。非粘着性の樹脂層となり、より高い剥離性を有し、より容易に薄板ガラス基板の第1主面と剥離することができ、同時に薄板ガラス基板の第1主面との密着も十分になるからである。
 また、樹脂層が耐熱性を有していることが好ましい。本発明のパネル製造方法では、例えば前記薄板ガラス基板の第2主面上に表示装置用部材を形成する場合に、薄板ガラス基板と樹脂層と支持ガラス基板とのガラス積層体を熱処理に供し得るからである。
 また、樹脂層の弾性率が高すぎると薄板ガラス基板の第1主面との密着性が低くなるので好ましくない。また弾性率が低すぎると剥離性が低くなるので好ましくない。
In the resin layer, the surface tension of the peelable surface of the resin layer with respect to the first main surface of the thin glass substrate is preferably 30 mN / m or less, more preferably 25 mN / m or less, and 22 mN / m or less. More preferably. This is because such surface tension can be more easily peeled off from the first main surface of the thin glass substrate, and at the same time, the close contact with the first main surface of the thin glass substrate becomes sufficient.
Moreover, it is preferable that a resin layer consists of a material whose glass transition point is lower than room temperature (about 25 degreeC) or does not have a glass transition point. It becomes a non-adhesive resin layer, has higher releasability, can be more easily peeled off from the first main surface of the thin glass substrate, and at the same time, is sufficiently adhered to the first main surface of the thin glass substrate Because.
Moreover, it is preferable that the resin layer has heat resistance. In the panel manufacturing method of the present invention, for example, when a member for a display device is formed on the second main surface of the thin glass substrate, the glass laminate of the thin glass substrate, the resin layer, and the supporting glass substrate can be subjected to heat treatment. Because.
Moreover, since the adhesiveness with the 1st main surface of a thin glass substrate will become low when the elasticity modulus of a resin layer is too high, it is unpreferable. Moreover, since an exfoliation property will become low when an elasticity modulus is too low, it is unpreferable.
 樹脂層を形成する樹脂の種類は特に限定されない。例えばアクリル樹脂、ポリオレフィン系樹脂、ポリウレタン樹脂およびシリコーン樹脂が挙げられる。いくつかの種類の樹脂を混合して用いることもできる。前記樹脂の群の中では、シリコーン樹脂が好ましい。シリコーン樹脂は耐熱性に優れかつ薄板ガラス基板に対する剥離性の程度が好ましいからである。また、支持ガラス基板の第1主面で硬化性シリコーン樹脂を硬化させてシリコーン樹脂層を形成する場合、支持ガラス基板の第1主面のシラノール基との縮合反応によって、支持ガラス基板に固定し易いからである。シリコーン樹脂層は、例えば300~400℃程度で1時間程度処理しても、剥離性がほぼ劣化しない点も好ましい。 The type of resin forming the resin layer is not particularly limited. For example, acrylic resin, polyolefin resin, polyurethane resin, and silicone resin can be used. Several types of resins can be mixed and used. Of the group of resins, silicone resins are preferred. This is because the silicone resin is excellent in heat resistance and preferably has a degree of peelability from the thin glass substrate. In addition, when a curable silicone resin is cured on the first main surface of the support glass substrate to form a silicone resin layer, it is fixed to the support glass substrate by a condensation reaction with the silanol groups on the first main surface of the support glass substrate. It is easy. The silicone resin layer is also preferable in that the peelability does not substantially deteriorate even when it is treated at, for example, about 300 to 400 ° C. for about 1 hour.
 また、樹脂層はシリコーン樹脂の中でも剥離紙用の硬化性シリコーンの硬化物であることが好ましい。剥離紙用シリコーンは直鎖状のジメチルポリシロキサンを分子内に含むシリコーンを主剤とするものである。この主剤と架橋剤とを含む組成物を、触媒、光重合開始剤等を用いて前記支持ガラス基板の表面(第1主面)で硬化させて形成した樹脂層は、優れた剥離性を有するので好ましい。また、前記樹脂層は柔軟性が高いので、薄板ガラス基板と樹脂層との間へ気泡や塵介等の異物が混入しても、薄板ガラス基板のゆがみ欠陥の発生を抑制することができる。 The resin layer is preferably a cured product of curable silicone for release paper among silicone resins. The silicone for release paper is mainly composed of silicone containing linear dimethylpolysiloxane in the molecule. The resin layer formed by curing the composition containing the main agent and the crosslinking agent on the surface (first main surface) of the supporting glass substrate using a catalyst, a photopolymerization initiator or the like has excellent peelability. Therefore, it is preferable. Further, since the resin layer has high flexibility, even if foreign matter such as bubbles or dust is mixed between the thin glass substrate and the resin layer, the occurrence of distortion defects of the thin glass substrate can be suppressed.
 このような剥離紙用シリコーンは、その硬化機構により縮合反応型シリコーン、付加反応型シリコーン、紫外線硬化型シリコーンまたは電子線硬化型シリコーンに分類されるが、いずれも使用することができる。これらの中でも付加反応型シリコーンが好ましい。硬化反応のし易さ、樹脂層を形成した際に剥離性の程度が良好で、耐熱性も高いからである。 Such silicone for release paper is classified into a condensation reaction type silicone, an addition reaction type silicone, an ultraviolet curable type silicone, or an electron beam curable type silicone depending on the curing mechanism, and any of them can be used. Among these, addition reaction type silicone is preferable. This is because the curing reaction is easy, the degree of peelability is good when the resin layer is formed, and the heat resistance is also high.
 また、剥離紙用シリコーンは形態的に溶剤型、エマルジョン型および無溶剤型があり、いずれの型も使用可能である。これらの中でも無溶剤型が好ましい。生産性、安全性、環境特性の面が優れるからである。また、樹脂層を形成する際の硬化時、すなわち、加熱硬化、紫外線硬化または電子線硬化の時に発泡を生じる溶剤を含まないため、樹脂層中に気泡が残留しにくいからである。 Moreover, the silicone for release paper is classified into a solvent type, an emulsion type, and a solventless type, and any type can be used. Among these, a solventless type is preferable. This is because productivity, safety, and environmental characteristics are excellent. Further, since a solvent that causes foaming is not included at the time of curing when forming the resin layer, that is, at the time of heat curing, ultraviolet curing, or electron beam curing, bubbles are unlikely to remain in the resin layer.
 また、剥離紙用シリコーンとして、具体的には、一般市販されている商品名または型番として、KNS-320A,KS-847(いずれも信越シリコーン社製)、TPR6700(GE東芝シリコーン社製)、ビニルシリコーン「8500」(荒川化学工業株式会社製)とメチルハイドロジェンポリシロキサン「12031」(荒川化学工業株式会社製)との組み合わせ、ビニルシリコーン「11364」(荒川化学工業株式会社製)とメチルハイドロジェンポリシロキサン「12031」(荒川化学工業株式会社製)との組み合わせ、ビニルシリコーン「11365」(荒川化学工業株式会社製)とメチルハイドロジェンポリシロキサン「12031」(荒川化学工業株式会社製)との組み合わせ等が挙げられる。なお、KNS-320A、KS-847およびTPR6700は、あらかじめ主剤と架橋剤とを含有しているシリコーンである。 As release paper silicone, specifically, commercially available product names or model numbers are KNS-320A, KS-847 (both manufactured by Shin-Etsu Silicone), TPR6700 (GE Toshiba Silicone), vinyl Combination of silicone “8500” (Arakawa Chemical Industries, Ltd.) and methyl hydrogen polysiloxane “12031” (Arakawa Chemical Industries, Ltd.), vinyl silicone “11364” (Arakawa Chemical Industries, Ltd.) and methyl hydrogen Combination with polysiloxane "12031" (manufactured by Arakawa Chemical Co., Ltd.), combination of vinyl silicone "11365" (manufactured by Arakawa Chemical Industries, Ltd.) and methylhydrogen polysiloxane "12031" (manufactured by Arakawa Chemical Industries, Ltd.) Etc. KNS-320A, KS-847, and TPR6700 are silicones that contain a main agent and a crosslinking agent in advance.
 また、樹脂層を形成するシリコーン樹脂は、シリコーン樹脂中の成分が薄板ガラス基板に移行しにくい性質、すなわち低シリコーン移行性を有することが好ましい。 Further, it is preferable that the silicone resin forming the resin layer has a property that the components in the silicone resin do not easily migrate to the thin glass substrate, that is, low silicone migration.
 次に、本発明の支持体付きパネルを、図を用いて説明する。
 図1は、本発明の支持体付きパネルの一態様を示す概略断面図である。
 図1において表示装置用パネル16は、層状の表示装置用部材14および薄板ガラス基板12からなり、これらは積層されている。ここで表示装置用部材14は薄板ガラス基板12の第2主面上に形成されている。そして、薄板ガラス基板12の第1主面と、支持ガラス基板19の第1主面に固定された樹脂層18の表面とが密着して付いて、本発明の支持体付きパネル10を形成している。
 図1に示す態様の本発明の支持体付きパネル10は、薄板ガラス基板12と樹脂層18と支持ガラス基板19とが、面方向においてほぼ同じ大きさである。
Next, the support-equipped panel of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic cross-sectional view showing one embodiment of the panel with a support of the present invention.
In FIG. 1, the display device panel 16 includes a layered display device member 14 and a thin glass substrate 12, which are laminated. Here, the display device member 14 is formed on the second main surface of the thin glass substrate 12. And the 1st main surface of the thin glass substrate 12 and the surface of the resin layer 18 fixed to the 1st main surface of the support glass substrate 19 adhere closely, and the panel 10 with a support body of this invention is formed. ing.
In the panel 10 with a support of the present invention shown in FIG. 1, the thin glass substrate 12, the resin layer 18, and the support glass substrate 19 have substantially the same size in the surface direction.
 図2は、本発明の支持体付きパネルの別の態様を示す概略正面図であり、図3はそのA-A’断面図(概略断面図)である。
 図2および図3において、表示装置用パネル26は、層状の表示装置用部材24および薄板ガラス基板22からなり、これらは積層されている。ここで表示装置用部材24は薄板ガラス基板22の第2主面上に形成されている。そして、薄板ガラス基板22の第1主面と、支持ガラス基板29の第1主面に固定された樹脂層28とが密着して付いており、本発明の支持体付きパネル20を形成している。
 図2および図3に示す態様の本発明の支持体付きパネル20は、薄板ガラス基板22よりも支持ガラス基板29の主面面積が大きく、かつ、薄板ガラス基板22の面方向の外縁は支持ガラス基板29の外縁からはみ出ていない。
FIG. 2 is a schematic front view showing another embodiment of the panel with a support of the present invention, and FIG. 3 is a cross-sectional view (schematic cross-sectional view) taken along line AA ′.
2 and 3, the display device panel 26 includes a layered display device member 24 and a thin glass substrate 22, which are laminated. Here, the display device member 24 is formed on the second main surface of the thin glass substrate 22. And the 1st main surface of the thin glass substrate 22 and the resin layer 28 fixed to the 1st main surface of the support glass substrate 29 have adhered, and the panel 20 with a support body of this invention is formed. Yes.
The panel 20 with a support of the present invention of the embodiment shown in FIGS. 2 and 3 has a major surface area of the support glass substrate 29 larger than that of the thin glass substrate 22, and the outer edge in the surface direction of the thin glass substrate 22 is support glass. It does not protrude from the outer edge of the substrate 29.
 また、図2および図3に示す態様の本発明の支持体付きパネル20は、樹脂層28の表面(薄板ガラス基板22の第1主面と接する面)の面積(以下、樹脂層における「表面面積」ともいう。)よりも薄板ガラス基板22の第1主面の面積の方が大きい。後述する隙間部25が形成されている分、樹脂層28の表面面積は薄板ガラス基板22の第一主面の面積よりも小さい。そして、薄板ガラス基板22の第1主面における樹脂層28と接していない部分αと、それに対向する支持ガラス基板29の一部分βとが、本発明の支持体付きパネル20の端面(γ1、γ2)と繋がる隙間部25を形成している。
 このような隙間部25が形成されていると、後述する本発明のパネル製造方法における剥離工程において、薄板ガラス基板と樹脂層とをより容易に剥離できるので好ましい。
2 and 3, the panel 20 with a support of the present invention has an area (hereinafter referred to as “surface” in the resin layer) of the surface of the resin layer 28 (surface contacting the first main surface of the thin glass substrate 22). The area of the first main surface of the thin glass substrate 22 is larger than the area. The surface area of the resin layer 28 is smaller than the area of the first main surface of the thin glass substrate 22 due to the formation of gaps 25 described later. A portion α of the first main surface of the thin glass substrate 22 that is not in contact with the resin layer 28 and a portion β of the supporting glass substrate 29 facing the end α of the support-equipped panel 20 of the present invention (γ1, γ2). ) Is formed.
It is preferable that such a gap portion 25 is formed because the thin glass substrate and the resin layer can be more easily peeled in the peeling step in the panel manufacturing method of the present invention described later.
 また、隙間部25の深さが1mm以上であることが好ましく、3mm以上であることがより好ましく、5mm以上であることがさらに好ましい。また、15mm以下であることが好ましく、10mm以下であることがより好ましい。後述する本発明のパネル製造方法における剥離工程において、薄板ガラス基板と樹脂層とをより容易に剥離できるからである。
 なお、「隙間部の深さ」とは薄板ガラス基板の端面(γ2)から、当該端面の垂直方向に、樹脂層の端面までの長さを意味する。図2、図3に示す場合であれば、αで示す部分の長さを意味する。なお、後述する図5に示す態様のように、薄板ガラス基板の端面から樹脂層の端面までのその端面に垂直方向の長さが、起点となる薄板ガラス基板の端面の箇所によって異なる場合、最大の長さを「隙間部の深さ」とする。
Further, the depth of the gap portion 25 is preferably 1 mm or more, more preferably 3 mm or more, and further preferably 5 mm or more. Moreover, it is preferable that it is 15 mm or less, and it is more preferable that it is 10 mm or less. This is because the thin glass substrate and the resin layer can be more easily peeled in the peeling step in the panel manufacturing method of the present invention described later.
The “depth of the gap” means the length from the end surface (γ2) of the thin glass substrate to the end surface of the resin layer in the direction perpendicular to the end surface. In the case shown in FIGS. 2 and 3, it means the length of the portion indicated by α. As shown in FIG. 5 to be described later, when the length in the direction perpendicular to the end surface from the end surface of the thin glass substrate to the end surface of the resin layer varies depending on the location of the end surface of the thin glass substrate as the starting point, the maximum Is the “depth of the gap”.
 また、隙間部25の位置は、図2に示すような矩形の薄板ガラス基板22の一辺の中心部分であってよく、図4に示すような矩形の薄板ガラス基板22の一辺の全てであってよい。また、図5に示すような矩形の薄板ガラス基板22が有する角のうちの1つを、大きくコーナーカットされたものであってもよい。なお、図4、図5は、各々、本発明の支持体付きパネルのさらに別の態様を示す概略正面図である。 Further, the position of the gap portion 25 may be the central portion of one side of the rectangular thin glass substrate 22 as shown in FIG. 2, or all of one side of the rectangular thin glass substrate 22 as shown in FIG. Good. Further, one of the corners of the rectangular thin glass substrate 22 as shown in FIG. 5 may be a large corner cut. 4 and 5 are schematic front views showing still another aspect of the panel with a support according to the present invention.
 また、本発明の支持体付きパネルは図6に概略断面図を示すように、表示装置用部材34の両主面を、薄板ガラス基板(32a、32b)と樹脂層(38a、38b)と支持ガラス基板(39a、39b)との積層体で挟み込む態様であってもよい。このような態様であっても、本発明のパネル製造方法で処理できる本発明の支持体付きパネルである。 Further, as shown in the schematic sectional view of FIG. 6, the panel with a support of the present invention supports both main surfaces of the display device member 34 with the thin glass substrates (32a, 32b) and the resin layers (38a, 38b). A mode of sandwiching with a laminated body with glass substrates (39a, 39b) may be employed. Even if it is such an aspect, it is a panel with a support body of this invention which can be processed with the panel manufacturing method of this invention.
 次に、本発明の支持体付きパネルの製造方法を説明する。
 本発明の支持体付きパネルの製造方法は特に限定されないが、前記支持ガラス基板の第1主面に剥離性表面を有する樹脂層を形成する樹脂層形成工程と、前記薄板ガラス基板と前記支持ガラス基板とを積層して、前記薄板ガラス基板の第1主面に前記樹脂層の剥離性表面を密着させる密着工程と、前記薄板ガラス基板の第2主面に表示装置用部材を形成する表示装置用部材形成工程と、を具備する支持体付きパネルの製造方法であることが好ましい。
Next, the manufacturing method of the panel with a support of this invention is demonstrated.
Although the manufacturing method of the panel with a support body of this invention is not specifically limited, The resin layer formation process which forms the resin layer which has a peelable surface in the 1st main surface of the said support glass substrate, The said thin glass substrate, and the said support glass An adhesion process for laminating a substrate and bringing the peelable surface of the resin layer into close contact with the first main surface of the thin glass substrate; and a display device for forming a display device member on the second main surface of the thin glass substrate It is preferable that it is a manufacturing method of the panel with a support which comprises for a member formation process.
 本発明の支持体付きパネルの製造方法における薄板ガラス基板および支持ガラス基板の製造方法は特に限定されない。例えば従来公知の方法で製造することができる。例えば従来公知のガラス原料を溶解し溶融ガラスとした後、フロート法、フュージョン法、スロット法、リドロー法等によって板状に成形して得ることができる。 The manufacturing method of the thin glass substrate and the supporting glass substrate in the manufacturing method of the panel with a support of the present invention is not particularly limited. For example, it can be produced by a conventionally known method. For example, it can be obtained by melting a conventionally known glass raw material to form a molten glass, and then forming it into a plate shape by a float method, a fusion method, a slot method, a redraw method or the like.
 本発明の支持体付きパネルの製造方法における樹脂層形成工程について説明する。
 支持ガラス基板の表面(第1主面)に樹脂層を形成する方法も特に限定されない。
 例えばフィルム状の樹脂を支持ガラス基板の表面に接着する方法が挙げられる。具体的にはフィルムの表面に高い接着力を付与するために表面改質の処理を行いし、支持ガラス基板の第1主面に接着する方法が挙げられる。表面改質の処理方法としては、シランカップリング剤のような化学的に密着力を向上させる化学的方法(プライマー処理)や、フレーム(火炎)処理のように表面活性基を増加させる物理的方法、サンドブラスト処理のように表面の粗度を増加させることにより引っかかりを増加させる機械的方法などが例示される。
The resin layer formation process in the manufacturing method of the panel with a support of this invention is demonstrated.
The method for forming the resin layer on the surface (first main surface) of the supporting glass substrate is not particularly limited.
For example, a method of adhering a film-like resin to the surface of a supporting glass substrate can be mentioned. Specifically, a method of performing a surface modification treatment to give a high adhesive force to the surface of the film and adhering to the first main surface of the supporting glass substrate can be mentioned. Treatment methods for surface modification include chemical methods (primer treatment) that chemically improve adhesion, such as silane coupling agents, and physical methods that increase surface active groups, such as flame (flame) treatment. Examples thereof include a mechanical method for increasing the catch by increasing the surface roughness, such as sandblasting.
 また、例えば公知の方法によって樹脂層となる樹脂組成物を支持ガラス基板の第1主面上にコートする方法が挙げられる。公知の方法としてはスプレーコート法、ダイコート法、スピンコート法、ディップコート法、ロールコート法、バーコート法、スクリーン印刷法、グラビアコート法が挙げられる。このような方法の中から、樹脂組成物の種類に応じて適宜選択することができる。
 例えば、無溶剤型の剥離紙用シリコーンを樹脂組成物として用いた場合、ダイコート法、スピンコート法またはスクリーン印刷法が好ましい。
Moreover, the method of coating the resin composition used as a resin layer on the 1st main surface of a support glass substrate by a well-known method, for example is mentioned. Known methods include spray coating, die coating, spin coating, dip coating, roll coating, bar coating, screen printing, and gravure coating. From such a method, it can select suitably according to the kind of resin composition.
For example, when a solventless release paper silicone is used as the resin composition, a die coating method, a spin coating method or a screen printing method is preferred.
 なお、図2~5を用いて説明したような隙間部を有する本発明の支持体付きパネルを製造する場合、隙間部を形成する箇所に予めマスキングしておき、その上で樹脂組成物をコートすることが好ましい。マスキングとは樹脂組成物をコートする際にあらかじめ隙間部を形成する箇所に再剥離可能なフィルム等を貼っておき樹脂組成物がその箇所にコートされないようにしておき、後にそのフィルムを剥離するという方法である。 When manufacturing the panel with a support of the present invention having a gap as described with reference to FIGS. 2 to 5, mask the portions where the gap is to be formed in advance, and coat the resin composition thereon. It is preferable to do. Masking means that when a resin composition is coated, a removable film or the like is pasted on a portion where a gap is formed in advance so that the resin composition is not coated on that portion, and the film is peeled off later. Is the method.
 また、樹脂組成物を支持ガラス基板の第1主面上にコートする場合、その塗工量は1~100g/mであることが好ましく、5~20g/mであることがより好ましい。 When the resin composition is coated on the first main surface of the supporting glass substrate, the coating amount is preferably 1 to 100 g / m 2 , and more preferably 5 to 20 g / m 2 .
 また、他の方法としては、例えば付加反応型シリコーンから樹脂層を形成する場合、直鎖状のジメチルポリシロキサンを分子内に含むシリコーン(主剤)、架橋剤および触媒を含む樹脂組成物を、上記のスプレーコート法等の公知の方法により支持ガラス基板の第1主面上に塗工し、その後に加熱硬化させる。加熱硬化条件は、触媒の配合量によっても異なるが、例えば、主剤および架橋剤の合計量100質量部に対して、白金系触媒を2質量部配合した場合、大気中で50℃~250℃、好ましくは100℃~200℃で反応させる。また、この場合の反応時間は5~60分間、好ましくは10~30分間とする。低シリコーン移行性を有するシリコーン樹脂層とするためには、シリコーン樹脂層中に未反応のシリコーン成分が残らないように硬化反応をできるだけ進行させることが好ましいが、このような反応温度および反応時間であると、シリコーン樹脂層中に未反応のシリコーン成分が残らないようにすることができるので好ましい。上記した反応時間よりも長すぎる場合や反応温度が高すぎる場合には、シリコーン樹脂の酸化分解が同時に起こり低分子量のシリコーン成分が生成するため、シリコーン移行性が高くなる可能性がある。シリコーン樹脂層中に未反応のシリコーン成分が残らないように硬化反応をできるだけ進行させることは、加熱処理後の剥離性を良好にするためにも好ましい。 As another method, for example, when a resin layer is formed from an addition reaction type silicone, a resin composition containing a silicone (main agent) containing linear dimethylpolysiloxane in the molecule, a crosslinking agent and a catalyst, The coating is performed on the first main surface of the supporting glass substrate by a known method such as the spray coating method, followed by heat curing. The heating and curing conditions vary depending on the blending amount of the catalyst. For example, when 2 parts by weight of a platinum-based catalyst is blended with respect to 100 parts by weight of the total amount of the main agent and the cross-linking agent, The reaction is preferably carried out at 100 ° C to 200 ° C. In this case, the reaction time is 5 to 60 minutes, preferably 10 to 30 minutes. In order to obtain a silicone resin layer having a low silicone migration property, it is preferable to allow the curing reaction to proceed as much as possible so that an unreacted silicone component does not remain in the silicone resin layer, but at such a reaction temperature and reaction time. When it exists, it is possible to prevent an unreacted silicone component from remaining in the silicone resin layer, which is preferable. If the reaction time is too long or the reaction temperature is too high, the silicone resin is simultaneously oxidized and decomposed to produce a low molecular weight silicone component, which may increase the silicone transferability. It is preferable to allow the curing reaction to proceed as much as possible so that an unreacted silicone component does not remain in the silicone resin layer in order to improve the peelability after the heat treatment.
 このような方法で支持ガラス基板の第1主面上に樹脂層を形成した後、樹脂層の表面に薄板ガラス基板を積層する。
 また、例えば、剥離紙用シリコーンを用いて樹脂層を製造した場合、支持ガラス基板の第1主面上に塗工した剥離紙用シリコーンを加熱硬化してシリコーン樹脂層を形成した後、密着工程で支持ガラス基板のシリコーン樹脂形成面に薄板ガラス基板を積層させる。剥離紙用シリコーンを加熱硬化させることによって、シリコーン樹脂硬化物が支持ガラス基板と化学的に結合する。また、効果によってシリコーン樹脂層が支持ガラス基板と結合する。これらの作用によって、シリコーン樹脂層が支持ガラス基板の第1主面に強固に固定される。
After the resin layer is formed on the first main surface of the supporting glass substrate by such a method, a thin glass substrate is laminated on the surface of the resin layer.
Also, for example, when a resin layer is manufactured using silicone for release paper, the silicone resin layer is formed by heating and curing the silicone for release paper coated on the first main surface of the supporting glass substrate, and then the adhesion step The thin glass substrate is laminated on the silicone resin-formed surface of the supporting glass substrate. By curing the release paper silicone with heat, the cured silicone resin is chemically bonded to the supporting glass substrate. Moreover, a silicone resin layer couple | bonds with a support glass substrate by an effect. By these actions, the silicone resin layer is firmly fixed to the first main surface of the supporting glass substrate.
 本発明の支持体付きパネルの製造方法における密着工程について説明する。
 密着工程は、前記薄板ガラス基板の第1主面と、前記樹脂層が第1主面に形成された前記支持ガラス基板とを積層して、前記薄板ガラス基板の第1主面に前記樹脂層の剥離性表面を密着させる工程である。
 薄板ガラス基板の第1主面と樹脂層の剥離性表面とは、非常に近接した、相対する固体分子間におけるファンデルワールス力に起因する力、すなわち、密着力によって結合させることが好ましい。この場合、支持ガラス基板と薄板ガラス基板とを積層させた状態に保持することができる。
The contact | adherence process in the manufacturing method of the panel with a support body of this invention is demonstrated.
The adhesion step includes laminating the first main surface of the thin glass substrate and the support glass substrate on which the resin layer is formed on the first main surface, and the resin layer on the first main surface of the thin glass substrate. It is the process of closely attaching the peelable surface.
The first main surface of the thin glass substrate and the peelable surface of the resin layer are preferably bonded by a force caused by van der Waals force between the solid molecules facing each other, that is, an adhesion force. In this case, the supporting glass substrate and the thin glass substrate can be held in a laminated state.
 前記薄板ガラス基板と前記樹脂層が第1主面に固定された前記支持ガラス基板とを積層させる方法は特に限定されない。例えば公知の方法を用いて実施することができる。例えば、常圧環境下で樹脂層の表面に薄板ガラス基板を重ねた後、ロールやプレスを用いて樹脂層と薄板ガラス基板とを圧着させる方法が挙げられる。ロールやプレスで圧着することにより樹脂層と薄板ガラス基板とがより密着するので好ましい。また、ロールまたはプレスによる圧着により、樹脂層と薄板ガラス基板との間に混入している気泡を容易に除去することができるので好ましい。
 真空ラミネート法や真空プレス法により圧着すると気泡の混入の抑制や良好な密着の確保がより好ましく行われるのでより好ましい。真空下で圧着することにより、微少な気泡が残存した場合でも加熱により気泡が成長することがなく、薄板ガラス基板のゆがみ欠陥につながりにくいという利点もある。
A method for laminating the thin glass substrate and the supporting glass substrate in which the resin layer is fixed to the first main surface is not particularly limited. For example, it can implement using a well-known method. For example, after laminating a thin glass substrate on the surface of the resin layer under a normal pressure environment, a method of pressure bonding the resin layer and the thin glass substrate using a roll or a press can be mentioned. It is preferable because the resin layer and the thin glass substrate are more closely adhered by pressure bonding with a roll or a press. Further, it is preferable because bubbles mixed between the resin layer and the thin glass substrate can be easily removed by pressure bonding with a roll or a press.
When pressure bonding is performed by a vacuum laminating method or a vacuum pressing method, it is more preferable because suppression of bubble mixing and securing of good adhesion are more preferably performed. By pressure bonding under vacuum, there is an advantage that even if a minute bubble remains, the bubble does not grow by heating, and it is difficult to cause a distortion defect of the thin glass substrate.
 密着工程では、支持ガラス基板の樹脂層の剥離性表面に薄板ガラス基板を積層させる際には、薄板ガラス基板の表面を十分に洗浄し、クリーン度の高い環境で積層することが好ましい。樹脂層と薄板ガラス基板との間に異物が混入しても、樹脂層が変形することにより薄板ガラス基板の表面の平坦性に影響を与えることはないが、クリーン度が高いほどその平坦性は良好となるので好ましい。 In the adhesion step, when the thin glass substrate is laminated on the peelable surface of the resin layer of the supporting glass substrate, it is preferable that the surface of the thin glass substrate is sufficiently washed and laminated in a clean environment. Even if a foreign substance is mixed between the resin layer and the thin glass substrate, the resin layer is not deformed and does not affect the flatness of the surface of the thin glass substrate. Since it becomes favorable, it is preferable.
 このようにして薄板ガラス基板と樹脂層と支持ガラス基板とが積層したガラス積層体(以下、「薄板ガラス積層体」ともいう。)を得た後、この薄板ガラス積層体における薄板ガラス基板の第2主面上に表示装置用部材を形成する。
 表示装置用部材を形成するに当たり、必要に応じて薄板ガラス基板の第2主面を研磨することによりその平坦度を向上させることも好ましい。
 表示装置用部材は特に限定されない。例えばLCDが有するアレイやカラーフィルタが挙げられる。また、例えばOLEDが有する透明電極、ホール注入層、ホール輸送層、発光層、電子輸送層が挙げられる。
Thus, after obtaining the glass laminated body (henceforth "thin glass laminated body") which laminated | stacked the thin glass substrate, the resin layer, and the support glass substrate, it is the 1st of the thin glass substrate in this thin glass laminated body. (2) A display device member is formed on the main surface.
In forming the display device member, it is also preferable to improve the flatness by polishing the second main surface of the thin glass substrate as necessary.
The display device member is not particularly limited. For example, an array or a color filter included in the LCD can be mentioned. Further, for example, a transparent electrode, a hole injection layer, a hole transport layer, a light emitting layer, and an electron transport layer included in the OLED can be given.
 本発明の支持体付きパネルの製造方法における表示装置用部材形成工程について説明する。
 表示装置用部材形成工程は、前記薄板ガラス積層体の前記薄板ガラス基板の第2主面に表示装置用部材を形成する工程である。
 前記表示装置用部材を前記薄板ガラス積層体の前記薄板ガラス基板の第2主面に形成する方法も特に限定されず、従来公知の方法と同様であってよい。
 例えば表示装置としてLCDを製造する場合、従来公知のガラス基板上にアレイを形成する工程、カラーフィルタを形成する工程、アレイが形成されたガラス基板とカラーフィルタが形成されたガラス基板とをシール剤等を介して貼り合わせる工程(アレイ・カラーフィルタ貼り合わせ工程)等の各種工程と同様であってよい。より具体的には、これらの工程で実施される処理として、例えば純水洗浄、乾燥、成膜、レジスト塗布、露光、現像、エッチングおよびレジスト除去が挙げられる。さらに、アレイ・カラーフィルタ貼り合わせ工程を実施した後に行われる工程として、液晶注入工程および該処理の実施後に行われる注入口の封止工程があり、これらの工程で実施される処理が挙げられる。
The member formation process for display apparatuses in the manufacturing method of the panel with a support of the present invention is explained.
The display device member forming step is a step of forming a display device member on the second main surface of the thin glass substrate of the thin glass laminate.
A method of forming the display device member on the second main surface of the thin glass substrate of the thin glass laminate is not particularly limited, and may be the same as a conventionally known method.
For example, when manufacturing an LCD as a display device, a process for forming an array on a conventionally known glass substrate, a process for forming a color filter, a glass substrate on which the array is formed, and a glass substrate on which the color filter is formed are used as a sealing agent. It may be the same as various processes such as a process of bonding via an array (coloring process of array / color filter). More specifically, examples of the processing performed in these steps include pure water cleaning, drying, film formation, resist coating, exposure, development, etching, and resist removal. Furthermore, as a process performed after implementing an array color filter bonding process, there exists a liquid-crystal injection | pouring process and the sealing process of the injection port performed after implementation of this process, The process implemented by these processes is mentioned.
 また、OLEDを製造する場合を例にとると、薄板ガラス基板の第2主面上に有機EL構造体を形成するための工程として、透明電極を形成する工程、ホール注入層・ホール輸送層・発光層・電子輸送層等を蒸着する工程、封止工程等の各種工程を含み、これらの工程で実施される処理として、具体的には例えば、成膜処理、蒸着処理、封止板の接着処理等が挙げられる。 Taking the case of manufacturing an OLED as an example, as a process for forming an organic EL structure on the second main surface of a thin glass substrate, a process of forming a transparent electrode, a hole injection layer, a hole transport layer, Various processes such as a process for depositing a light emitting layer / electron transport layer and the like, a sealing process, and the like are performed. Specifically, for example, a film forming process, a vapor deposition process, and an adhesion of a sealing plate are performed. Processing and the like.
 このようにして本発明の支持体付きパネルを製造することができる。 Thus, the panel with a support of the present invention can be produced.
 次に、本発明のパネル製造方法について説明する。
 本発明のパネル製造方法は特に限定されないが、前記支持体付きパネルから、前記支持ガラス基板および前記樹脂層からなる支持体を剥離する剥離工程と、該剥離工程を経て得た表示装置用パネルにおける薄板ガラス基板の第1主面に付いた、前記樹脂層に由来する転写物等の異物を除去する除去工程と、を具備するパネル製造方法であることが好ましい。
Next, the panel manufacturing method of the present invention will be described.
Although the panel manufacturing method of this invention is not specifically limited, In the panel for display apparatuses obtained through the peeling process which peels the support body which consists of the said support glass substrate and the said resin layer from the said panel with a support body, and this peeling process It is preferable that it is a panel manufacturing method which comprises the removal process of removing foreign materials, such as a transcription | transfer material originating in the said resin layer, attached to the 1st main surface of a thin glass substrate.
 本発明のパネル製造方法における剥離工程について説明する。
 剥離工程は、前記支持体付き表示装置用パネルから、前記支持ガラス基板および前記樹脂層からなる支持体を剥離する工程である。
 剥離方法は、薄板ガラス基板、その第2主面上に形成された表示装置用部材およびシール剤への熱的、電磁的、機械的および化学的な損傷を与えることなく剥離できる方法であれば、特に制限されるものでない。さらに支持ガラス基板に損傷のない方法が好ましく、さらに支持ガラス基板の第1主面に固定された剥離性を有する樹脂層に損傷のない方法がさらに好ましい。
The peeling process in the panel manufacturing method of this invention is demonstrated.
A peeling process is a process of peeling the support body which consists of the said support glass substrate and the said resin layer from the said panel for display apparatuses with a support body.
As long as the peeling method is a method capable of peeling without causing thermal, electromagnetic, mechanical and chemical damage to the thin glass substrate, the display device member formed on the second main surface, and the sealant. There is no particular limitation. Further, a method in which the supporting glass substrate is not damaged is preferable, and a method in which the resin layer having peelability fixed to the first main surface of the supporting glass substrate is not damaged is more preferable.
 具体的な剥離方法としては、例えば薄板ガラス基板と樹脂層との界面に鋭利な刃物状のものを差込んだり、水と圧縮空気との混合流体を吹き付けたりして剥離することができる。好ましくは、前記支持体付きパネルの支持ガラス基板側が上側、表示装置用パネル側が下側となるように定盤上に設置し、表示装置用パネル側基板を定盤上に真空吸着し(両面に支持ガラス基板が積層されている場合は順次行う)、この状態で支持体付きパネルの薄板ガラス基板と樹脂層との境界に水と圧縮空気の混合流体を噴きつけ、支持ガラス基板の端部を垂直上方へ引っ張り上げる。そうすると、前記境界に空気層が順次形成され、その空気層が前記境界の全面に広がり、支持体を容易に剥離することができる(支持体付きパネルの両主面に、支持ガラス基板が積層されている場合は、前記剥離工程を片面ずつ繰り返す)。 As a specific peeling method, for example, a sharp blade-like object can be inserted into the interface between the thin glass substrate and the resin layer, or a mixed fluid of water and compressed air can be blown off. Preferably, the panel with support is placed on the surface plate so that the supporting glass substrate side is on the upper side and the display device panel side is on the lower side, and the display device panel side substrate is vacuum-adsorbed on the surface plate (on both sides). In this state, the support glass substrate is laminated sequentially.) In this state, a mixed fluid of water and compressed air is sprayed on the boundary between the thin glass substrate and the resin layer of the panel with support, and the end of the support glass substrate is Pull up vertically. Then, an air layer is sequentially formed at the boundary, the air layer spreads over the entire boundary, and the support can be easily peeled off (support glass substrates are laminated on both main surfaces of the panel with the support). If it is, repeat the peeling step one side at a time).
 このような剥離工程によって剥離した支持体は、再利用することができる。例えば、前記樹脂層がシリコーン樹脂層である場合、剥離後の支持体におけるシリコーン樹脂層が低シリコーン移行性を有するほど、前記ガラス積層体が加熱工程を経た場合の剥離強度上昇による剥離不良が抑制される傾向がある。よって、より好ましく再利用することができる。 The support that has been peeled off by such a peeling step can be reused. For example, when the resin layer is a silicone resin layer, the lower the silicone resin layer in the support after peeling, the lower the silicone transferability, so that the poor peeling due to the increase in peel strength when the glass laminate is subjected to the heating step is suppressed. Tend to be. Therefore, it can be reused more preferably.
 本発明のパネル製造方法における除去工程について説明する。
 除去工程は、前記表示装置用パネルにおける前記薄板ガラス基板の第1主面に付いた、異物を除去する工程である。
 前述のように、前記剥離工程に供した後に得られる表示装置用パネルにおける薄板ガラス基板の第1主面(樹脂層と密着していた面)に偏光フィルムや位相差フィルム等の粘着剤付きフィルムを貼付しても、粘着強度が弱く、剥離してしまう場合があった。本発明者がこの原因について検討したところ、当該第1主面に樹脂層に由来する転写物、空気中に飛散する塵介、製造工程に起因する金属片や機械油等の異物が極僅かに付いていることが原因であると考えられた。そして、本発明者は前記異物を薄板ガラス基板および該薄板ガラス基板の第2主面に形成された表示装置用部材等に熱的、電磁的、機械的および化学的な損傷を与えずに除去する方法を見出した。
The removal process in the panel manufacturing method of the present invention will be described.
The removing step is a step of removing foreign matter attached to the first main surface of the thin glass substrate in the display device panel.
As described above, a film with an adhesive such as a polarizing film or a retardation film on the first main surface (the surface in close contact with the resin layer) of the thin glass substrate in the display device panel obtained after being subjected to the peeling step. Even if affixed, the adhesive strength was weak and sometimes peeled off. When the present inventor examined the cause of this, the transferred material derived from the resin layer on the first main surface, dust particles scattered in the air, and foreign matters such as metal pieces and machine oil resulting from the manufacturing process were very little. It was thought that the cause was attached. Then, the inventor removes the foreign matter without causing thermal, electromagnetic, mechanical and chemical damage to the thin glass substrate and the display device member formed on the second main surface of the thin glass substrate. I found a way to do it.
 前述のように、異物とは前記樹脂層に由来する何らかの物質(すなわち転写物)、空気中に飛散する塵介、製造工程に起因する金属片や機械油等を含む、薄板ガラス基板の第1主面に付いた薄板ガラス基板以外のものを意味する。前記転写物としては、例えば樹脂層を形成する化合物であって、薄板ガラス基板の第1主面と密着することで、当該第1主面に付いたものが挙げられる。また、例えば樹脂層を形成する物質の一部であって、前記樹脂層の表面に析出して存在している低分子化合物等が挙げられる。
 前記転写物について具体的に説明する。例えば樹脂層がシリコーンからなる場合、薄板ガラス基板の第1主面と支持ガラス基板の第1主面に固定されたシリコーン樹脂層との密着により、薄板ガラス基板の第1主面上に、比較的低分子量のシリコーン化合物が樹脂層内における拡散効果によって付くと考えられる。ここで、ガラス積層体が加熱工程を経る場合、シリコーン化合物を溶解し得る溶剤等を用いて薄板ガラス基板の第1主面からシリコーン化合物を除去することは困難である。一方、基板が薄板ガラス基板ではなくポリイミドなどの樹脂からなる基板(以下、樹脂基板ともいう。)のとき、支持体から樹脂基板を剥離後、シリコーン化合物を溶解し得る溶剤等を用いて、樹脂基板の第1主面に付着しているシリコーン化合物を除去できる。一般に、偏光フィルム等における粘着剤はアクリル系が用いられており、親水性であるガラス基板表面への適度な粘着強度が得られるよう調整されている。これに対して撥水性であるシリコーン化合物がガラス基板表面に付くと、アクリル系粘着剤のガラス基板表面への粘着強度が低下し、リワーク性は増す一方、外力によって偏光板が剥離してしまうことがある。
 なお、偏光フィルムのガラス基板表面への粘着強度を決める因子として、ガラス基板表面の親水性すなわち水接触角に加え、フィルムの弾性、粘着剤の粘性などが挙げられるが、本発明において粘着強度は、25mm幅の偏光フィルム、または粘着剤付きフィルムをガラス基板表面に貼付したのち90°剥離するという方法で測定して得た値を意味するものとする。
As described above, the foreign matter is the first of the thin glass substrate including any substance derived from the resin layer (that is, a transfer product), dust particles scattered in the air, metal pieces or machine oil resulting from the manufacturing process, and the like. It means something other than a thin glass substrate attached to the main surface. Examples of the transferred material include compounds that form a resin layer, and those attached to the first main surface by being in close contact with the first main surface of the thin glass substrate. Further, for example, a low molecular compound that is a part of the substance forming the resin layer and is deposited on the surface of the resin layer can be used.
The transferred material will be specifically described. For example, when the resin layer is made of silicone, a comparison is made on the first main surface of the thin glass substrate due to the close contact between the first main surface of the thin glass substrate and the silicone resin layer fixed to the first main surface of the supporting glass substrate. It is considered that a low molecular weight silicone compound is attached by a diffusion effect in the resin layer. Here, when a glass laminated body passes through a heating process, it is difficult to remove a silicone compound from the 1st main surface of a thin glass substrate using the solvent etc. which can melt | dissolve a silicone compound. On the other hand, when the substrate is not a thin glass substrate but a substrate made of a resin such as polyimide (hereinafter also referred to as a resin substrate), the resin substrate is peeled off from the support, and then a resin that can dissolve the silicone compound is used to The silicone compound adhering to the first main surface of the substrate can be removed. In general, an acrylic adhesive is used in a polarizing film or the like, and is adjusted so as to obtain an appropriate adhesive strength to a hydrophilic glass substrate surface. On the other hand, when a silicone compound that is water repellent adheres to the glass substrate surface, the adhesive strength of the acrylic adhesive to the glass substrate surface decreases and the rework property increases, but the polarizing plate peels off due to external force. There is.
The factors that determine the adhesive strength of the polarizing film to the glass substrate surface include the hydrophilicity of the glass substrate surface, that is, the water contact angle, the elasticity of the film, the viscosity of the adhesive, etc. , And a 25 mm width polarizing film or a film with an adhesive attached to the glass substrate surface, and then measured by a method of peeling by 90 °.
 前記表示装置用パネルなどの電子デバイスにおける前記薄板ガラス基板などの基板の第1主面に付いた前記異物を除去する方法は、特に限定されないが、上記のように樹脂層、または基板の種類によっては溶剤を用いても除去することは困難であり、異物を熱的または化学的に分解する方法を適用することが好ましい。例えば樹脂層がシリコーン樹脂層であり、基板が薄板ガラス基板である場合、異物はシリコーン化合物が主成分であると考えられるが、薄板ガラス基板の第1主面に付いたシリコーン化合物を、シリカ、水および二酸化炭素へ熱的に分解する方法や、酸またはアルカリを用いて化学的に分解する方法が挙げられる。一方、樹脂層がシリコーン樹脂層であり、基板が樹脂基板である場合、樹脂基板に付着しているシリコーン化合物を、熱的または化学的に分解する他に、溶剤による溶解によっても除去できる。 The method for removing the foreign matter attached to the first main surface of the substrate such as the thin glass substrate in the electronic device such as the display device panel is not particularly limited, but depends on the type of the resin layer or the substrate as described above. It is difficult to remove even if a solvent is used, and it is preferable to apply a method of thermally or chemically decomposing foreign matter. For example, when the resin layer is a silicone resin layer and the substrate is a thin glass substrate, the foreign substance is considered to be mainly composed of a silicone compound, but the silicone compound attached to the first main surface of the thin glass substrate is silica, Examples thereof include a method of thermally decomposing into water and carbon dioxide, and a method of chemically decomposing using acid or alkali. On the other hand, when the resin layer is a silicone resin layer and the substrate is a resin substrate, the silicone compound adhering to the resin substrate can be removed not only by thermal or chemical decomposition but also by dissolution with a solvent.
 また、除去工程に供する表示装置用パネルは、薄板ガラス基板の第2主面上にアレイ、有機EL素子またはカラーフィルタなど電子デバイス用部材が形成されている態様であり、または二枚の薄板ガラス基板がシール剤にて張り合わされ、さらに張り合わされた二枚の薄板ガラス基板の間に液晶が注入されている態様であるため、いずれにも損傷なく前記異物を除去する必要がある。すなわち、除去工程は、前記薄板ガラス基板、前記表示装置用部材およびシール剤への熱的、電磁的、機械的および化学的な損傷を与えることなく前記異物を除去する工程であることが好ましい。 Moreover, the panel for display apparatuses used for a removal process is the aspect by which members for electronic devices, such as an array, an organic EL element, or a color filter, are formed on the 2nd main surface of a thin glass substrate, or two thin glass plates Since the substrate is bonded with a sealant and liquid crystal is injected between the two laminated thin glass substrates, it is necessary to remove the foreign matter without damaging them. That is, the removing step is preferably a step of removing the foreign matter without causing thermal, electromagnetic, mechanical, and chemical damage to the thin glass substrate, the display device member, and the sealant.
 また、前記樹脂層を密着する前における前記薄板ガラス基板の第1主面の粘着強度をfとし、前記除去工程の後に得られる表示装置用パネルにおける前記薄板ガラス基板の第1主面の粘着強度をfとした場合に、f≧fとなることが好ましい。剥離工程および除去工程における処理を最適に行うことで、これを実現できる。 Further, the adhesive strength of the first main surface of the thin glass substrate before adhering the resin layer is f 0, and the first main surface of the thin glass substrate in the display device panel obtained after the removing step is adhered. It is preferable that f ≧ f 0 when the strength is f. This can be realized by optimally performing the processes in the peeling step and the removing step.
 前記薄板ガラス基板の第1主面に付いたシリコーン化合物等の異物を除去する方法として、プラズマ照射処理が好適例として挙げられる。なかでも、いわゆるリモートプラズマ法で電界シールドを備えた、表示装置用パネルへの熱的や電磁的な影響のない方式が好ましい。また、プラズマアッシング法など高真空を要する方式に比べて、常圧リモートプラズマ法が好ましく、また低コストでの異物除去が可能であるので好ましい。
 このようなプラズマ照射処理により、当該薄板ガラス基板の第1主面への偏光板など粘着剤付きフィルムの粘着強度は、樹脂層との密着前に比べて同等またはそれ以上にすることが可能であり(すなわち、粘着強度f≧粘着強度fとなり)、好ましい。
 前記薄板ガラス基板の第1主面にプラズマ照射する回数は特に限定されず、該薄板ガラス基板の第1主面が所望の粘着強度を得られれば、1回または複数回プラズマを照射してよい。
 また、プラズマ照射時の前記薄板ガラス基板表面温度は100℃以下が好ましい。理由は表示装置用パネルのシール剤や液晶などの部材に劣化や損傷等を起こさせることなく、表示性能を維持できるためである。
As a method for removing foreign substances such as a silicone compound attached to the first main surface of the thin glass substrate, a plasma irradiation treatment is a preferred example. In particular, a method that has an electric field shield by a so-called remote plasma method and that does not have a thermal or electromagnetic influence on the display device panel is preferable. Further, the atmospheric pressure remote plasma method is preferable compared to a method requiring high vacuum such as a plasma ashing method, and it is preferable because foreign matter can be removed at low cost.
By such plasma irradiation treatment, the adhesive strength of a film with an adhesive such as a polarizing plate on the first main surface of the thin glass substrate can be made equal to or higher than that before adhering to the resin layer. Yes (i.e., adhesive strength f ≧ adhesive strength f 0 becomes), it preferred.
The number of times of plasma irradiation on the first main surface of the thin glass substrate is not particularly limited, and the plasma may be irradiated once or plural times as long as the first main surface of the thin glass substrate can obtain a desired adhesive strength. .
The surface temperature of the thin glass substrate at the time of plasma irradiation is preferably 100 ° C. or lower. The reason is that the display performance can be maintained without causing deterioration or damage to a member such as a sealant or a liquid crystal of the display device panel.
 常圧リモートプラズマ法の具体例を示す。
 常圧リモートプラズマ法を施すために利用できる装置を、図7を用いて説明する。
 図7は、本発明のパネル製造方法の除去工程において、リモートプラズマ法によって前記異物を除去するために用いることができるプラズマ放電装置の模式的装置図である。
 図7において、電圧印加電極42と接地電極43は、対向して設置され、基材に対向する面は、それぞれ固体誘電体46で被覆されている。処理ガスは、矢印方向に電圧印加電極42と接地電極43で形成される放電空間44に導入され、プラズマ化され、プラズマ吹き出し口45から表示装置用パネル50に向かって吹き出される。
 ここで表示装置用パネル50の搬送速度は0.1~5m/minであることが好ましく、0.5~2m/minであることがより好ましく、1m/min程度であることが好ましい。
A specific example of the atmospheric pressure remote plasma method is shown.
An apparatus that can be used for performing the atmospheric pressure remote plasma method will be described with reference to FIG.
FIG. 7 is a schematic diagram of a plasma discharge apparatus that can be used to remove the foreign matter by a remote plasma method in the removing step of the panel manufacturing method of the present invention.
In FIG. 7, the voltage application electrode 42 and the ground electrode 43 are installed to face each other, and the surfaces facing the base material are each covered with a solid dielectric 46. The processing gas is introduced into the discharge space 44 formed by the voltage application electrode 42 and the ground electrode 43 in the direction of the arrow, is converted into plasma, and is blown out from the plasma blowing port 45 toward the display device panel 50.
Here, the conveyance speed of the display device panel 50 is preferably 0.1 to 5 m / min, more preferably 0.5 to 2 m / min, and preferably about 1 m / min.
 前記表示装置用パネルにおける前記薄板ガラス基板の第1主面に付いたシリコーン化合物等の異物を除去する方法として、酸またはアルカリを含む薬液を用いて前記異物を除去することが好ましい。処理装置の腐食防止など保全の観点から、アルカリを含む薬液を用いた処理がより好ましい。また、酸またはアルカリを含む薬液を用いた処理では、接液の関係で、シャワー洗浄よりバット浸漬洗浄が望ましく、適切な濃度、温度、処理時間を選定することにより、特にシール剤への影響なくシリコーン化合物等の異物を除去することができる。例えば、30~70℃(好ましくは40~60℃)に調整した10~30質量%(好ましくは15~25質量%)の酸またはアルカリを含む薬液を用いて、1~20分間(好ましくは5~15分間)処理する方法を例示できる。また、表示装置用パネルを酸またはアルカリの薬液に浸漬する際には、表示装置用部材における薬液と接触しない方が好ましい部材は、適宜、シーリングやマスキング処理することが好ましい。例えば表示装置用部材が液晶注入孔を有すると、表示装置内に薬液が進入する可能性があるので、適宜シーリングやマスキング処理を施しておくことが好ましい。 As a method for removing foreign substances such as a silicone compound attached to the first main surface of the thin glass substrate in the display device panel, it is preferable to remove the foreign substances using a chemical solution containing acid or alkali. From the viewpoint of maintenance such as prevention of corrosion of the treatment apparatus, treatment using a chemical solution containing an alkali is more preferable. Also, in treatments using chemicals containing acids or alkalis, butt dipping cleaning is preferable to shower cleaning because of contact with the liquid, and there is no particular effect on the sealant by selecting an appropriate concentration, temperature, and processing time. Foreign substances such as silicone compounds can be removed. For example, a chemical solution containing 10 to 30% by mass (preferably 15 to 25% by mass) acid or alkali adjusted to 30 to 70 ° C. (preferably 40 to 60 ° C.) is used for 1 to 20 minutes (preferably 5 (~ 15 minutes) The method of processing can be illustrated. In addition, when the display device panel is immersed in an acid or alkaline chemical solution, a member that is preferably not in contact with the chemical solution in the display device member is preferably appropriately sealed or masked. For example, if the display device member has a liquid crystal injection hole, there is a possibility that a chemical solution may enter the display device, so that it is preferable to appropriately perform sealing or masking treatment.
 前記薄板ガラス基板の第1主面に付いたシリコーン化合物等の異物を除去する方法として、前記薄板ガラス基板、前記表示装置用部材およびシール剤への熱的、電磁的、機械的および化学的な損傷を与えることのない処理条件の範囲内において、コロナ放電や、フレーム(すなわち火炎処理)を挙げることができる。
 前記処理条件としては、例えば、コロナ放電時や火炎処理時の前記薄板ガラス基板表面温度は100℃以下が好ましい。理由は表示装置用パネルのシール剤や液晶などの部材に劣化や損傷等を起こさせることなく、表示性能を維持できるためである。
As a method of removing foreign substances such as silicone compounds attached to the first main surface of the thin glass substrate, thermal, electromagnetic, mechanical and chemical to the thin glass substrate, the display member and the sealant Corona discharge and flame (that is, flame treatment) can be mentioned within the range of treatment conditions that do not cause damage.
As the treatment conditions, for example, the surface temperature of the thin glass substrate during corona discharge or flame treatment is preferably 100 ° C. or less. The reason is that the display performance can be maintained without causing deterioration or damage to a member such as a sealant or a liquid crystal of the display device panel.
 前記薄板ガラス基板の第1主面に付いたシリコーン化合物等の異物を除去する方法として、前記薄板ガラス基板、前記表示装置用部材およびシール剤への熱的、電磁的、機械的または化学的な損傷を与えることのない処理条件の範囲内において、sp値、すなわち溶解度パラメータが7~15(単位:cal1/2cm-3/2)の溶剤を含む薬液を用いて異物を除去することが好ましい。溶解度パラメータが7~15の範囲外であると、液体と樹脂層との親和性が低いので、液体が樹脂層に対して濡れ難い。例えば、メタノール、エタノール、プロパノール、アセトン、キシレン、ヘキサン等を含む薬液を用いて前記異物を除去することが好ましい。さらに、環境負荷の観点からアルコール系洗浄液、例えばメタノール、エタノール、プロパノール等を含有する洗浄液を用いることが好ましい。洗浄液の適切な濃度、温度、処理時間を選定することにより、特にシール剤へ損傷を抑えて、基板表面に付着したシリコーン化合物等の異物を除去できる。これらの溶剤は、単独で、または、組み合わせて用いられる。また、表示装置用パネルを、前記溶剤を含む薬液に接液するとき、薬液と接触しない方が好ましい表示装置用部材については、適宜、シーリングやマスキング処理することが好ましい。例えば、表示装置用パネルが液晶注入孔を有するとき、液晶注入孔から表示装置用パネル内部に薬液が進入する恐れがあるので、液晶注入孔にシーリングやマスキング処理を施しておくことが好ましい。 As a method for removing a foreign substance such as a silicone compound attached to the first main surface of the thin glass substrate, thermal, electromagnetic, mechanical or chemical to the thin glass substrate, the display device member and the sealant Foreign substances can be removed using a chemical solution containing a solvent having an sp value, that is, a solubility parameter of 7 to 15 (unit: cal 1/2 cm −3/2 ) within a range of processing conditions that do not cause damage. preferable. When the solubility parameter is outside the range of 7 to 15, since the affinity between the liquid and the resin layer is low, the liquid is difficult to get wet with the resin layer. For example, it is preferable to remove the foreign substances using a chemical solution containing methanol, ethanol, propanol, acetone, xylene, hexane, or the like. Furthermore, from the viewpoint of environmental load, it is preferable to use an alcohol-based cleaning liquid, for example, a cleaning liquid containing methanol, ethanol, propanol or the like. By selecting an appropriate concentration, temperature, and treatment time for the cleaning liquid, it is possible to remove foreign substances such as a silicone compound attached to the substrate surface while suppressing damage to the sealing agent. These solvents are used alone or in combination. In addition, when the display device panel is in contact with the chemical solution containing the solvent, the display device member that is preferably not in contact with the chemical solution is preferably appropriately sealed or masked. For example, when the display device panel has a liquid crystal injection hole, there is a risk that a chemical solution may enter the display device panel from the liquid crystal injection hole. Therefore, it is preferable to perform sealing or masking treatment on the liquid crystal injection hole.
 本発明のパネル製造方法では、上記のような除去工程を2以上有することが好ましい。
 すなわち、単一種類の除去工程を複数回実施することで前記異物を除去したり、複数種類の除去工程を組み合わせて前記異物を除去したりすることが好ましい。例えば、上記のようなプラズマを用いた方法と酸等の薬液を用いた方法とを組み合わせて前記異物を除去することが挙げられる。また、除去工程において、さらに超音波振動を用いて前記異物を除去することが好ましい。
In the panel manufacturing method of this invention, it is preferable to have two or more such removal processes.
That is, it is preferable that the foreign matter is removed by performing a single type of removing step a plurality of times, or the foreign matter is removed by combining a plurality of types of removing steps. For example, the above-described method using plasma and a method using a chemical solution such as an acid may be combined to remove the foreign matter. In the removing step, it is preferable to further remove the foreign matter using ultrasonic vibration.
 このように本発明のパネル製造方法では、さらに所望の工程に供することで、表示装置用パネルを得ることができる。所望の工程とは、例えばLCDの場合であれば、複数枚のセルが存在する大型のセルを所望の大きさのセルに分断する工程、前記分断されたセルに液晶を注入しその後注入口を封止する工程、前記注入口を封止されたセルに偏光板を貼付する工程、モジュール形成工程が挙げられる。また、例えばOLEDの場合であれば、これらの工程に加えて、有機EL構造体が形成された薄板ガラス基板と対向基板とを組み立てる工程が挙げられる。なお、所望の大きさのセルに分断する工程は、切断処理によって薄板ガラス基板の強度が低下せず、またカレットも出ないことからレーザカッタによる切断が好ましい。 Thus, in the panel manufacturing method of the present invention, a panel for a display device can be obtained by further subjecting it to a desired process. For example, in the case of an LCD, the desired process is a process of dividing a large cell having a plurality of cells into cells of a desired size, injecting liquid crystal into the divided cell, and then setting the injection port. The process of sealing, the process of sticking a polarizing plate to the cell with which the said inlet was sealed, and a module formation process are mentioned. For example, in the case of OLED, in addition to these steps, a step of assembling a thin glass substrate on which an organic EL structure is formed and a counter substrate may be mentioned. Note that the step of dividing into cells of a desired size is preferably performed by a laser cutter because the strength of the thin glass substrate is not reduced by the cutting process and no cullet is produced.
 本発明のパネル製造方法の具体例を説明する。 Specific examples of the panel manufacturing method of the present invention will be described.
 初めに、本発明のパネル製造方法における本発明の支持体付きパネルの製造方法を説明する。
 まず、薄板ガラス基板および支持ガラス基板を用意し、これらの表面を洗浄する。洗浄としては、例えば純水洗浄、UV洗浄が挙げられる。
 次に、支持ガラス基板の第1主面上に樹脂層を形成する。例えば、支持ガラス基板の第1主面上にスクリーン印刷機を用いてシリコーン樹脂を塗工する。そして、加熱硬化して、支持ガラス基板の第1主面上に樹脂層を形成し、樹脂層が固定された支持ガラス基板を得る。
 次に、樹脂層の剥離性表面と薄板ガラス基板の第1主面とを付けて貼り合せる。例えば、樹脂層と薄板ガラス基板とを室温下真空プレスして貼り合わせることができる。そして支持ガラス基板と樹脂層と薄板ガラス基板との積層体である薄板ガラス積層体を得ることができる。
 次に、必要に応じて、薄板ガラス積層体における薄板ガラス基板の第2主面を研磨してもよく、洗浄してもよい。洗浄としては例えば純水洗浄、UV洗浄が挙げられる。
 このような方法で薄板ガラス積層体を2個製造した後、各々の薄板ガラス積層体における薄板ガラス基板の第2主面に表示装置用部材を形成する。1個の薄板ガラス積層体は、公知のカラーフィルタ形成工程に供することで、その薄板ガラス基板の第2主面にカラーフィルタを形成する。そして、もう1個の薄板ガラス積層体は、公知のアレイ形成工程に供することで、その薄板ガラス基板の第2主面にアレイを形成する。
 このような方法によって、本発明の支持体付きパネルを2個製造することができる。
 なお、以下では、ここで得られたカラーフィルタを有する本発明の支持体付きパネルを「支持体付きパネルx」、アレイを有する本発明の支持体付きパネルを「支持体付きパネルy」ともいう。
First, the manufacturing method of the panel with a support of the present invention in the panel manufacturing method of the present invention will be described.
First, a thin glass substrate and a supporting glass substrate are prepared, and these surfaces are cleaned. Examples of cleaning include pure water cleaning and UV cleaning.
Next, a resin layer is formed on the first main surface of the supporting glass substrate. For example, a silicone resin is coated on the first main surface of the supporting glass substrate using a screen printer. And it heat-hardens, forms a resin layer on the 1st main surface of a support glass substrate, and obtains the support glass substrate to which the resin layer was fixed.
Next, the peelable surface of the resin layer and the first main surface of the thin glass substrate are attached and bonded together. For example, the resin layer and the thin glass substrate can be bonded together by vacuum pressing at room temperature. And the thin glass laminated body which is a laminated body of a support glass substrate, a resin layer, and a thin glass substrate can be obtained.
Next, if necessary, the second main surface of the thin glass substrate in the thin glass laminate may be polished or washed. Examples of cleaning include pure water cleaning and UV cleaning.
After manufacturing two thin glass laminated bodies by such a method, the member for display apparatuses is formed in the 2nd main surface of the thin glass substrate in each thin glass laminated body. One thin glass laminate is subjected to a known color filter forming step to form a color filter on the second main surface of the thin glass substrate. And another thin glass laminated body forms an array in the 2nd main surface of the thin glass substrate by using for a well-known array formation process.
Two panels with a support of the present invention can be manufactured by such a method.
Hereinafter, the panel with a support of the present invention having the color filter obtained here is also referred to as “panel x with support”, and the panel with a support of the present invention having an array is also referred to as “panel y with support”. .
 本発明のパネル製造方法では、このようにして製造した支持体付きパネルxおよび支持体付きパネルyを、例えば次に示すケース1~ケース4の方法でさらに処理して、表示装置用パネルを製造する。 In the panel manufacturing method of the present invention, the panel x with support and the panel y with support manufactured as described above are further processed by, for example, the following methods 1 to 4 to manufacture a panel for a display device. To do.
(ケース1)
 ケース1では、上記のようにして支持体付きパネルxおよび支持体付きパネルyの各々におけるカラーフィルタ形成面とアレイ形成面とを対向させ、セル形成用紫外線硬化型シール剤等のシール剤を用いて貼り合わせる。ここで得られた本発明の支持体付きパネルを、以下では「支持体付きパネルz1」ともいう。支持体付きパネルz1は、未だ液晶を封入されていない状態のもの、いわゆる空セルの状態である。
 次に、薬液による除去工程を実施する場合、支持体付きパネルz1の液晶注入孔を仮封止する。例えば紫外線硬化型シール剤等を用いて、該注入口の外側をさらに封止してもよい。
 そして、シールした後の支持体付きパネルz1の2つの支持体を、前述の本発明のパネル製造方法における剥離工程に供して剥離する。そして、本発明のパネル製造方法における除去工程に供する。このようにして得られたパネルを、以下では「パネルw1」ともいう。剥離した2つの支持体は別の支持体付パネルの製造に再利用する。
 次に、パネルw1の液晶注入孔の仮封止を除去した後、該パネルw1を個別セルに切断する。
 次に、切断した個別セルに前記注入孔から液晶を注入し、その後、該注入孔を封止して液晶セルを形成する。
 そして、さらに前記液晶セルに偏光板を貼り付け、バックライト等を形成して、LCD1を得ることができる。
 なお、このケースでの本発明のパネル製造方法における除去工程は、支持体付きパネルから支持体の剥離後または個別セル切断し液晶セル形成後のいずれでもよい。但し、支持体の剥離後の薬液処理の場合は、空セル内への薬液の浸透を防止するため、前記注入孔の仮封止を施すことが望ましい。
(Case 1)
In case 1, as described above, the color filter forming surface and the array forming surface of each of the support-equipped panel x and the support-equipped panel y are opposed to each other, and a sealant such as an ultraviolet curable sealant for cell formation is used. And paste them together. The panel with support of the present invention obtained here is also referred to as “panel with support z1” below. The support-equipped panel z1 is in a state in which liquid crystal is not yet sealed, that is, a so-called empty cell.
Next, when performing the removal process by a chemical | medical solution, the liquid crystal injection hole of the panel z1 with a support body is temporarily sealed. For example, the outside of the inlet may be further sealed using an ultraviolet curable sealant or the like.
And the two support bodies of panel z1 with a support body after sealing are used for the peeling process in the above-mentioned panel manufacturing method of this invention, and are peeled. And it uses for the removal process in the panel manufacturing method of this invention. The panel thus obtained is also referred to as “panel w1” below. The two separated substrates are reused for the production of another panel with a substrate.
Next, after removing the temporary sealing of the liquid crystal injection hole of the panel w1, the panel w1 is cut into individual cells.
Next, liquid crystal is injected into the cut individual cell from the injection hole, and then the injection hole is sealed to form a liquid crystal cell.
Further, a polarizing plate is attached to the liquid crystal cell, and a backlight or the like is formed, whereby the LCD 1 can be obtained.
In this case, the removing step in the panel manufacturing method of the present invention may be performed after the support is peeled from the panel with the support or after the individual cells are cut and the liquid crystal cells are formed. However, in the case of chemical treatment after peeling off the support, it is desirable to temporarily seal the injection hole in order to prevent penetration of the chemical into the empty cell.
(ケース2)
 ケース2では、従来知られている液晶滴下工法(ODF)を用いて液晶セルを製造する。支持体付きパネルxおよび支持体付きパネルyの各々におけるカラーフィルタ形成面とアレイ形成面のどちらか一方に液晶を垂らしておき、該液晶を垂らした形成面上に他方の形成面を対向させ、セル形成用紫外線硬化型シール剤等のシール剤を用いて貼り合わせる。ここで得られた本発明の支持体付きパネルを、以下では「支持体付きパネルz2」ともいう。
 次に、支持体付きパネルz2の2つの支持体を、前述の本発明のパネル製造方法における剥離工程に供して剥離する。そして、本発明のパネル製造方法における除去工程に供する。このようにして得られたパネルを、以下では「パネルw2」ともいう。剥離した2つの支持体は別の支持体付パネルの製造に再利用する。
 次に、パネルw2を個別セルに切断する。
 そして、さらに個別セルに切断されたパネルw2に偏光板を貼り付け、バックライト等を形成して、LCD2を得ることができる。
 なお、このケースでの本発明の除去工程は、支持ガラス基板の剥離後または個別にセル切断し液晶セル形成後のいずれでもよい。但し、支持体の剥離後の薬液処理の場合は、空セル内への薬液の浸透を防止するため、前記注入孔の仮封止を施すことが望ましい。
(Case 2)
In Case 2, a liquid crystal cell is manufactured using a conventionally known liquid crystal dropping method (ODF). Liquid crystal is suspended on either the color filter forming surface or the array forming surface in each of the panel with support x and the panel with support y, and the other formation surface is opposed to the surface on which the liquid crystal is suspended, Bonding is performed using a sealant such as an ultraviolet curable sealant for cell formation. The panel with support of the present invention obtained here is also referred to as “panel with support z2” below.
Next, the two support bodies of the support-equipped panel z2 are subjected to a peeling step in the above-described panel manufacturing method of the present invention and peeled off. And it uses for the removal process in the panel manufacturing method of this invention. The panel thus obtained is also referred to as “panel w2” below. The two separated substrates are reused for the production of another panel with a substrate.
Next, the panel w2 is cut into individual cells.
Further, a polarizing plate is attached to the panel w2 cut into individual cells, and a backlight or the like is formed, whereby the LCD 2 can be obtained.
In this case, the removal step of the present invention in this case may be either after the support glass substrate is peeled off or after the cells are individually cut and the liquid crystal cell is formed. However, in the case of chemical treatment after peeling off the support, it is desirable to temporarily seal the injection hole in order to prevent penetration of the chemical into the empty cell.
(ケース3)
 ケース3では、ODFを用いて液晶セルを製造する。支持体付きパネルxおよび支持体付きパネルyの各々におけるカラーフィルタ形成面とアレイ形成面のどちらか一方に液晶を垂らしておき、該液晶を垂らした形成面上に他方の形成面を対向させ、セル形成用紫外線硬化型シール剤等のシール剤を用いて貼り合わせる。そして、前記貼り合わされた支持体付きパネルxおよび支持体付きパネルyは、支持体とともに個別セルに切断する。ここで切断して得られた本発明の支持体付きパネルを、以下では「支持体付きパネルz3」ともいう。
 次に、支持体付きパネルz3の2つの支持体を、前述の本発明のパネル製造方法における剥離工程に供して剥離する。そして、本発明のパネル製造方法における除去工程に供する。このようにして得られたパネルを、以下では「パネルw3」ともいう。
 そして、パネルw3に偏光板を付け、バックライト等を形成して、LCD3を得ることができる。
(Case 3)
In case 3, a liquid crystal cell is manufactured using ODF. Liquid crystal is suspended on either the color filter forming surface or the array forming surface in each of the panel with support x and the panel with support y, and the other formation surface is opposed to the surface on which the liquid crystal is suspended, Bonding is performed using a sealant such as an ultraviolet curable sealant for cell formation. The bonded panel x with support and panel y with support are cut into individual cells together with the support. The panel with support of the present invention obtained by cutting here is also referred to as “panel with support z3” below.
Next, two support bodies of the panel z3 with a support body are peeled in the peeling process in the above-mentioned panel manufacturing method of this invention. And it uses for the removal process in the panel manufacturing method of this invention. The panel thus obtained is also referred to as “panel w3” below.
And LCD3 can be obtained by attaching a polarizing plate to the panel w3 and forming a backlight or the like.
(ケース4)
 ケース4では、上記のようにして支持体付きパネルxおよび支持体付きパネルyの各々におけるカラーフィルタ形成面とアレイ形成面とを対向させ、セル形成用紫外線硬化型シール剤等のシール剤を用いて貼り合わせる。そして、支持体とともに個別セルに切断する。ここで切断して得られた本発明の支持体付きパネルを、以下では「支持体付きパネルz4」ともいう。支持体付きパネルz4は、未だ液晶を封入されていない状態のもの、いわゆる空セルの状態である。
 次に、薬液による除去工程を実施する場合、支持体付きパネルz4の液晶注入孔を仮封止する。
 次に、支持体付きパネルz4の2つの支持体を、前述の本発明のパネル製造方法における剥離工程に供して剥離する。そして、本発明のパネル製造方法における除去工程に供する。このようにして得られたパネルを、以下では「パネルw4」ともいう。
 次に、パネルw4の液晶注入孔の仮封止を除去した後、該パネルw4のセルに液晶を注入し、その後封止する。
 そして、さらに偏光板を付け、バックライトその他を形成して、LCD4を得ることができる。
 但し、支持体の剥離後の薬液処理の場合は、空セル内への薬液の浸透を防止するため、前記注入孔の仮封止を施すことが望ましい。
(Case 4)
In the case 4, as described above, the color filter forming surface and the array forming surface of each of the support-equipped panel x and the support-equipped panel y are opposed to each other, and a sealant such as an ultraviolet curable sealant for cell formation is used. And paste them together. And it cut | disconnects to an individual cell with a support body. The panel with a support of the present invention obtained by cutting here is also referred to as “panel with support z4” below. The support-attached panel z4 is in a state in which liquid crystal is not yet sealed, that is, a so-called empty cell state.
Next, when implementing the removal process by a chemical | medical solution, the liquid crystal injection hole of panel z4 with a support body is temporarily sealed.
Next, the two support bodies of the support-equipped panel z4 are subjected to a peeling step in the above-described panel manufacturing method of the present invention and peeled off. And it uses for the removal process in the panel manufacturing method of this invention. The panel thus obtained is also referred to as “panel w4” below.
Next, after removing the temporary sealing of the liquid crystal injection hole of the panel w4, the liquid crystal is injected into the cell of the panel w4 and then sealed.
Further, an LCD 4 can be obtained by attaching a polarizing plate and forming a backlight and the like.
However, in the case of chemical treatment after peeling off the support, it is desirable to temporarily seal the injection hole in order to prevent penetration of the chemical into the empty cell.
 本発明のパネル製造方法によれば、薄板ガラス基板が大きい場合、例えば730×920mmであっても、前記薄板ガラス基板を容易に剥離することができる。 According to the panel manufacturing method of the present invention, when the thin glass substrate is large, for example, even if it is 730 × 920 mm, the thin glass substrate can be easily peeled off.
 次に、本発明の表示装置の製造方法について説明する。
 本発明の表示装置の製造方法は、本発明のパネル製造方法を含む製造方法である。
 本発明のパネル製造方法によって表示装置用パネルを得た後、さらに従来公知の工程に供することで、表示装置を得ることができる。
Next, a method for manufacturing the display device of the present invention will be described.
The manufacturing method of the display device of the present invention is a manufacturing method including the panel manufacturing method of the present invention.
After obtaining the panel for display devices by the panel manufacturing method of the present invention, the display device can be obtained by subjecting the panel to further known processes.
 本発明の表示装置の製造方法は、携帯電話やPDAのようなモバイル端末に使用される小型の表示装置の製造に好適である。表示装置は主としてLCDまたはOLEDであり、LCDとしては、TN型、STN型、FE型、TFT型、MIM型、IPS型、VA型等を含む。基本的に、本発明はパッシブ駆動型、アクティブ駆動型のいずれの表示装置の場合でも適用することができる。 The method for manufacturing a display device of the present invention is suitable for manufacturing a small display device used for a mobile terminal such as a mobile phone or a PDA. The display device is mainly an LCD or an OLED, and the LCD includes a TN type, STN type, FE type, TFT type, MIM type, IPS type, VA type, and the like. Basically, the present invention can be applied to both passive drive type and active drive type display devices.
 以上、本発明の電子デバイスとして、基板の表面(第2主面)に表示装置用部材を有する表示装置用パネルを代表例として説明したが、上述したように、本発明はこれに限定されず、表示装置用部材の代わりに、基板の表面(第2主面)に、太陽電池用部材、薄膜2次電池用部材および電子部品用回路などの電子デバイス用部材をそれぞれ有する太陽電池、薄膜2次電池および電子部品等の電子デバイスであっても良いことはもちろんである。
 例えば、太陽電池用部材としては、シリコン型では、正極の酸化スズなど透明電極、p層/i層/n層で表されるシリコン層、および負極の金属等が挙げられ、その他に、化合物型、色素増感型、量子ドット型などに対応する各種部材等を挙げることができる。
 また、薄膜2次電池用部材としては、リチウムイオン型では、正極および負極の金属または金属酸化物等の透明電極、電解質層のリチウム化合物、集電層の金属、封止層としての樹脂等が挙げられ、その他に、ニッケル水素型、ポリマー型、セラミックス電解質型などに対応する各種部材等を挙げることができる。
 また、電子部品用回路としては、CCDやCMOSでは、導電部の金属、絶縁部の酸化ケイ素や窒化珪素等が挙げられ、その他に圧力センサ・加速度センサなど各種センサやリジッドプリント基板、フレキシブルプリント基板、リジッドフレキシブルプリント基板などに対応する各種部材等を挙げることができる。
As described above, the display device panel having the display device member on the surface (second main surface) of the substrate has been described as a representative example of the electronic device of the present invention. However, as described above, the present invention is not limited to this. In addition to the display device member, the solar cell having the surface (second main surface) of the substrate, the member for a solar cell, the member for a thin film secondary battery, and the member for an electronic device such as an electronic component circuit, the thin film 2 Of course, it may be an electronic device such as a secondary battery or an electronic component.
For example, as the solar cell member, in the silicon type, a transparent electrode such as positive electrode tin oxide, a silicon layer represented by p layer / i layer / n layer, a metal of the negative electrode, and the like can be cited. And various members corresponding to the dye-sensitized type, the quantum dot type, and the like.
Moreover, as a member for a thin film secondary battery, in the lithium ion type, a transparent electrode such as a metal or a metal oxide of a positive electrode and a negative electrode, a lithium compound of an electrolyte layer, a metal of a current collecting layer, a resin as a sealing layer, etc. In addition, various members corresponding to nickel hydrogen type, polymer type, ceramic electrolyte type and the like can be mentioned.
In addition, as a circuit for an electronic component, in a CCD or CMOS, a metal of a conductive part, a silicon oxide or a silicon nitride of an insulating part, and the like, various sensors such as a pressure sensor and an acceleration sensor, a rigid printed board, a flexible printed board And various members corresponding to a rigid flexible printed circuit board.
(実施例1a)
 初めに、縦720mm、横600mm、板厚0.4mm、線膨張係数38×10-7/℃の支持ガラス基板(旭硝子株式会社製、AN100、無アルカリガラス)を純水洗浄、UV洗浄して清浄化した。
 次に、支持ガラス基板の第1主面上に、無溶剤付加反応型剥離紙用シリコーン(信越シリコーン社製、KNS-320A、粘度:0.40Pa・s、溶解パラメータ(SP値)=7.3)100質量部と白金系触媒(信越シリコーン社製、CAT-PL-56)2質量部との混合物を、縦705mm、横595mmの大きさで長方形にスクリーン印刷機にて塗工した(塗工量30g/m)。
 次に、これを180℃にて30分間大気中で加熱硬化して、支持ガラス基板の第1主面に厚さ20μmのシリコーン樹脂層を形成した。
Example 1a
First, a supporting glass substrate (Asahi Glass Co., Ltd., AN100, non-alkali glass) having a length of 720 mm, a width of 600 mm, a thickness of 0.4 mm, and a linear expansion coefficient of 38 × 10 −7 / ° C. was washed with pure water and UV washed. Cleaned.
Next, on the first main surface of the supporting glass substrate, solvent-free addition reaction type release paper silicone (manufactured by Shin-Etsu Silicone Co., Ltd., KNS-320A, viscosity: 0.40 Pa · s, solubility parameter (SP value) = 7. 3) A mixture of 100 parts by mass and 2 parts by mass of a platinum-based catalyst (CAT-PL-56, manufactured by Shin-Etsu Silicone Co., Ltd.) was applied to a rectangle with a size of 705 mm in length and 595 mm in width by a screen printer (coating) Work rate 30 g / m 2 ).
Next, this was heat-cured at 180 ° C. for 30 minutes in the air to form a 20 μm thick silicone resin layer on the first main surface of the supporting glass substrate.
 次に、縦720mm、横600mm、板厚0.3mm、線膨張係数38×10-7/℃の薄板ガラス基板(旭硝子株式会社製、AN100、無アルカリガラス)のシリコーン樹脂層と接触させる側の面を純水洗浄、UV洗浄して清浄化した後、シリコーン樹脂層と薄板ガラス基板とを室温下真空プレスにて貼り合わせ、薄板ガラス積層体(以下「薄板ガラス積層体A1」ともいう)を得た。
 なお、樹脂層の形成および薄板ガラス基板の積層は、薄板ガラス積層体A1の端部に深さ15mmの隙間部が形成されるように行った。
 得られた薄板ガラス積層体A1において、両ガラス基板は、シリコーン樹脂層と気泡を発生することなく密着しており、ゆがみ状欠点もなく平滑性も良好であった。
Next, the thin glass substrate (Asahi Glass Co., Ltd., AN100, non-alkali glass) having a length of 720 mm, a width of 600 mm, a thickness of 0.3 mm, and a linear expansion coefficient of 38 × 10 −7 / ° C. is contacted with the silicone resin layer. After cleaning the surface with pure water and UV cleaning, the silicone resin layer and the thin glass substrate are bonded together by a vacuum press at room temperature to form a thin glass laminate (hereinafter also referred to as “thin glass laminate A1”). Obtained.
The formation of the resin layer and the lamination of the thin glass substrates were performed so that a gap portion having a depth of 15 mm was formed at the end of the thin glass laminate A1.
In the obtained thin glass laminate A1, both glass substrates were in close contact with the silicone resin layer without generating bubbles, and there was no distortion defect and smoothness was good.
 次に、薄板ガラス積層体A1を大気中で250℃で2時間加熱処理をおこなった。薄板ガラス積層体A1の樹脂層の熱による劣化はなく、耐熱性が良好であることが確認できた。 Next, the thin glass laminate A1 was heat-treated at 250 ° C. for 2 hours in the air. The resin layer of the thin glass laminate A1 was not deteriorated by heat, and it was confirmed that the heat resistance was good.
 次に、薄板ガラス積層体A1における薄板ガラス基板の第2主面を固定台上に固定した。また、支持ガラス基板の第2主面に吸着パッドで吸着した。そして、薄板ガラス積層体A1が有する4つの角部のうちの1つであって薄板ガラス基板と樹脂層との界面に、厚さ0.4mmのナイフを挿入してわずかに剥離し、次いで吸着パッドを固定台から離れる方向へ移動させて、薄板ガラス基板と支持体(樹脂層を有する支持ガラス基板)とを剥離した。剥離して得られた薄板ガラス基板を「薄板ガラス基板a1」ともいう。 Next, the second main surface of the thin glass substrate in the thin glass laminate A1 was fixed on a fixed base. Moreover, it adsorb | sucked to the 2nd main surface of the support glass substrate with the suction pad. Then, a 0.4 mm thick knife is inserted into the interface between the thin glass substrate and the resin layer, which is one of the four corners of the thin glass laminate A1, and then adsorbed slightly. The pad was moved in a direction away from the fixed base, and the thin glass substrate and the support (supporting glass substrate having a resin layer) were peeled off. The thin glass substrate obtained by peeling is also referred to as “thin glass substrate a1”.
 次に、薄板ガラス基板a1における第1主面(樹脂層が密着していた面)に偏光フィルム(日東電工社製、アクリル系粘着剤)を貼付した。そして、当該偏光フィルムの粘着強度を測定した。測定方法は、25mm幅の偏光フィルム、または粘着剤付きフィルムをガラス基板表面に貼付したのち、フィルム端部の90°剥離である。その結果、粘着強度は0.20N/25mmであった。 Next, a polarizing film (manufactured by Nitto Denko Corporation, acrylic adhesive) was attached to the first main surface (surface on which the resin layer was in close contact) in the thin glass substrate a1. And the adhesive strength of the said polarizing film was measured. The measuring method is 90 ° peeling at the end of the film after a polarizing film having a width of 25 mm or a film with an adhesive is pasted on the glass substrate surface. As a result, the adhesive strength was 0.20 N / 25 mm.
 次に、偏光フィルムを一旦剥離した後、薄板ガラス基板a1の第1主面に、常圧リモートプラズマ装置(積水化学社製)を用いてプラズマを照射した。ここで処理条件は、出力3kw、窒素/空気流量比=600slm/750sccm、搬送速度1m/min.とした。プラズマ照射時の薄板ガラス基板aの表面温度は50℃以下であった。 Next, after once peeling off the polarizing film, the first main surface of the thin glass substrate a1 was irradiated with plasma using an atmospheric pressure remote plasma apparatus (manufactured by Sekisui Chemical Co., Ltd.). Here, the processing conditions are: output 3 kW, nitrogen / air flow ratio = 600 slm / 750 sccm, conveyance speed 1 m / min. It was. The surface temperature of the thin glass substrate a at the time of plasma irradiation was 50 ° C. or less.
 次に、プラズマを照射した後の薄板ガラス基板a1における第1主面に、プラズマを照射する前と同じ偏光フィルムを貼付し、同じ方法で偏光フィルムの粘着強度を測定した。
その結果、粘着強度は90°剥離で4.7N/25mmであった。また、薄板ガラス基板a1の第1主面を光学顕微鏡で観察したところ、異物付着やワレ、カケは見当たらなかった。
 なお、薄板ガラス積層体A1を形成する前における薄板ガラス基板の第1主面における粘着強度は3.9N/25mmであった。
Next, the same polarizing film as before the plasma irradiation was attached to the first main surface of the thin glass substrate a1 after the plasma irradiation, and the adhesive strength of the polarizing film was measured by the same method.
As a result, the adhesive strength was 4.7 N / 25 mm after 90 ° peeling. Moreover, when the 1st main surface of the thin glass substrate a1 was observed with the optical microscope, foreign material adhesion, cracking, and chipping were not found.
In addition, the adhesive strength in the 1st main surface of the thin glass substrate before forming thin glass laminated body A1 was 3.9 N / 25mm.
(実施例1b)
 支持ガラス基板の第1主面上に、両末端にビニル基を有する直鎖状ポリオルガノシロキサン(荒川化学工業株式会社製、商品名「8500」)と、分子内にハイドロシリル基を有するメチルハイドロジェンポリシロキサン(荒川化学工業株式会社製、商品名「12031」)と、白金系触媒(荒川化学工業株式会社製、商品名「CAT12070」)との混合物を用いた以外は、実施例1aと同様の方法で、薄型ガラス積層体(以下「薄板ガラス積層体A2」ともいう)を得た後、大気中で加熱処理をおこなった。
 次に、実施例1aと同様の方法で薄板ガラス基板と支持体(樹脂層を有する支持ガラス基板)とを剥離した。剥離して得られた薄板ガラス基板を「薄板ガラス基板a2」ともいう。
 次に、実施例1aと同様の方法で薄板ガラス基板a2の第1主面における偏光フィルムの粘着強度を測定した結果、0.60N/25mmであった。
 次に、一旦偏光フィルムを剥離し、当該薄型ガラス基板a2を、20重量%に希釈したレジスト剥離液(パーカーコーポレーション社製、主成分として水酸化カリウム20質量%を含む)に50℃10分浸漬し、水洗およびエアブローを行った。
 次に、当該薄板ガラス基板a2の第1主面における偏光フィルムの粘着強度を測定した結果、4.5N/25mmであった。
(Example 1b)
On the first main surface of the supporting glass substrate, linear polyorganosiloxane having a vinyl group at both ends (trade name “8500”, manufactured by Arakawa Chemical Industries, Ltd.) and methylhydro having a hydrosilyl group in the molecule Example 1a, except that a mixture of Genpolysiloxane (Arakawa Chemical Industries, trade name “12031”) and a platinum-based catalyst (Arakawa Chemical Industries, trade name “CAT12070”) was used. After obtaining a thin glass laminate (hereinafter also referred to as “thin glass laminate A2”) by the above method, heat treatment was performed in the atmosphere.
Next, the thin glass substrate and the support (supporting glass substrate having a resin layer) were peeled off in the same manner as in Example 1a. The thin glass substrate obtained by peeling is also referred to as “thin glass substrate a2”.
Next, as a result of measuring the adhesive strength of the polarizing film on the first main surface of the thin glass substrate a2 by the same method as in Example 1a, it was 0.60 N / 25 mm.
Next, the polarizing film is once peeled off, and the thin glass substrate a2 is immersed in a resist stripping solution (manufactured by Parker Corporation, containing 20% by mass of potassium hydroxide as a main component) for 10 minutes at 50 ° C. Then, washing with water and air blowing were performed.
Next, as a result of measuring the adhesive strength of the polarizing film on the first main surface of the thin glass substrate a2, it was 4.5 N / 25 mm.
(実施例1c)
 実施例1bと同様の方法で、薄型ガラス積層体(以下「薄板ガラス積層体A3」ともいう)を得た後、大気中で加熱処理をおこなった。
 次に、実施例1bと同様の方法で、薄板ガラス基板と支持体(樹脂層を有する支持ガラス基板)とを剥離した。剥離して得られた薄板ガラス基板を「薄板ガラス基板a3」ともいう。
 次に、当該薄板ガラス基板a3をレジスト剥離液に浸漬した。ここで剥離液の温度は50℃とし、浸漬は5分間行った。また、液槽内に設置した超音波振動板を用いて、薄板ガラス基板a3に超音波振動を加えた。
 次に、当該薄板ガラス基板a3の第1主面における偏光フィルムの粘着強度を測定した結果、4.0N/25mmであった。
(Example 1c)
After obtaining a thin glass laminate (hereinafter also referred to as “thin glass laminate A3”) in the same manner as in Example 1b, heat treatment was performed in the air.
Next, the thin glass substrate and the support (support glass substrate having a resin layer) were peeled off in the same manner as in Example 1b. The thin glass substrate obtained by peeling is also referred to as “thin glass substrate a3”.
Next, the thin glass substrate a3 was immersed in a resist stripping solution. Here, the temperature of the stripping solution was 50 ° C., and immersion was performed for 5 minutes. In addition, ultrasonic vibration was applied to the thin glass substrate a3 using an ultrasonic vibration plate installed in the liquid tank.
Next, as a result of measuring the adhesive strength of the polarizing film on the first main surface of the thin glass substrate a3, it was 4.0 N / 25 mm.
(実施例1d)
 実施例1bと同様の方法で、薄型ガラス積層体(以下「薄板ガラス積層体A4」ともいう)を得た後、大気中で加熱処理をおこなった。
 次に、実施例1bと同様の方法で、薄板ガラス基板と支持体(樹脂層を有する支持ガラス基板)とを剥離した。剥離して得られた薄板ガラス基板を「薄板ガラス基板a4」ともいう。
 次に、当該薄板ガラス基板a4の第1主面を、フレーム処理機(アルコテック社製)で、酸素バーナー火炎の縁部を10m/minのスキャン速度で4回、薄板ガラス基板の表面温度が100℃以下の条件で処理を行った。
 次に、当該薄板ガラス基板a4の第1主面における偏光フィルムの粘着強度を測定した結果、4.0N/25mmであった。
Example 1d
After a thin glass laminate (hereinafter also referred to as “thin glass laminate A4”) was obtained in the same manner as in Example 1b, heat treatment was performed in the air.
Next, the thin glass substrate and the support (support glass substrate having a resin layer) were peeled off in the same manner as in Example 1b. The thin glass substrate obtained by peeling is also referred to as “thin glass substrate a4”.
Next, on the first main surface of the thin glass substrate a4, the surface temperature of the thin glass substrate is changed by a frame processing machine (manufactured by Alcotech) at the edge of the oxygen burner flame four times at a scanning speed of 10 m / min. The treatment was performed under conditions of 100 ° C. or lower.
Next, the result of measuring the adhesive strength of the polarizing film on the first main surface of the thin glass substrate a4 was 4.0 N / 25 mm.
(実施例1e)
 実施1eでは、薄板ガラス基板を、厚さ0.05mmのポリイミド樹脂基板(東レ・デュポン社製、カプトン200HV)に変更した以外は、実施例1aと同様の方法でデバイス用基板積層体(以下「デバイス用基板積層体A5」ともいう)を得た。ポリイミド樹脂基板の両主面のうち、樹脂層の剥離性表面と密着する面を第1主面とし、電子デバイス用部材を形成する主面を第2主面とする。実施例1aと同様の方法で、デバイス用基板積層体A5の樹脂層の耐熱性を評価したが、熱による劣化はなく、耐熱性が良好であることが確認できた。
 次に、実施例1aと同様の方法でポリイミド樹脂基板と支持体(樹脂層を有する支持ガラス基板)とを剥離した。剥離して得られたポリイミド樹脂基板を「ポリイミド樹脂基板a5」ともいう。
 次に、実施例1aと同様の方法でポリイミド樹脂基板a5の第1主面に、実施例1aと同様の方法で偏光フィルムを貼付した。そして、ポリイミド樹脂基板a5の第1主面における偏光フィルムの粘着強度を測定した。偏光フィルムの粘着強度は、0.50N/25mmであった。
 次に、実施例1aと同様の方法でポリイミド樹脂基板a5の第1主面に、常圧リモートプラズマ装置を用いてプラズマを照射し、偏光フィルムを貼付した。ポリイミド樹脂基板a5の第1主面における偏光フィルムの粘着強度を測定した結果、3.0N/25mmであった。
 なお、デバイス用基板積層体A5形成前のポリイミド樹脂基板の第1主面における粘着強度は1.5N/25mmであった。
Example 1e
In Example 1e, except that the thin glass substrate was changed to a polyimide resin substrate having a thickness of 0.05 mm (manufactured by Toray DuPont, Kapton 200HV), a device substrate laminate (hereinafter, “ Device substrate laminate A5 ”) was also obtained. Of the two main surfaces of the polyimide resin substrate, a surface that is in close contact with the peelable surface of the resin layer is a first main surface, and a main surface that forms the electronic device member is a second main surface. Although the heat resistance of the resin layer of the device substrate laminate A5 was evaluated by the same method as in Example 1a, it was confirmed that there was no deterioration due to heat and the heat resistance was good.
Next, the polyimide resin substrate and the support (supporting glass substrate having a resin layer) were peeled off in the same manner as in Example 1a. The polyimide resin substrate obtained by peeling is also referred to as “polyimide resin substrate a5”.
Next, a polarizing film was attached to the first main surface of the polyimide resin substrate a5 in the same manner as in Example 1a in the same manner as in Example 1a. And the adhesive strength of the polarizing film in the 1st main surface of the polyimide resin substrate a5 was measured. The adhesive strength of the polarizing film was 0.50 N / 25 mm.
Next, plasma was irradiated to the 1st main surface of the polyimide resin board | substrate a5 by the method similar to Example 1a using a normal pressure remote plasma apparatus, and the polarizing film was stuck. It was 3.0 N / 25mm as a result of measuring the adhesive strength of the polarizing film in the 1st main surface of the polyimide resin substrate a5.
In addition, the adhesive strength in the 1st main surface of the polyimide resin substrate before board | substrate laminated body A5 for devices was 1.5 N / 25mm.
(実施例1f)
 実施1fでは、薄板ガラス基板を、厚さ0.1mmの鏡面処理を施したステンレス(SUS304)基板に変更した以外は、実施例1aと同様の方法でデバイス用基板積層体(以下「デバイス用基板積層体A6」ともいう)を得た。ステンレス基板の両主面のうち、樹脂層の剥離性表面と密着する面を第1主面とし、電子デバイス用部材を形成する主面を第2主面とする。実施例1aと同様の方法で、デバイス用基板積層体A6の樹脂層の耐熱性を評価したが、熱による劣化はなく、耐熱性が良好であることが確認できた。
 次に、実施例1aと同様の方法でステンレス基板と支持体(樹脂層を有する支持ガラス基板)とを剥離した。剥離して得られたステンレス基板を「ステンレス基板a6」ともいう。
 次に、実施例1aと同様の方法でステンレス基板a6の第1主面に、実施例1aと同様の方法で偏光フィルムを貼付した。そして、ステンレス基板a6の第1主面における偏光フィルムの粘着強度を測定した。偏光フィルムの粘着強度は、0.40N/25mmであった。
 次に、実施例1aと同様の方法でステンレス基板a6の第1主面に、常圧リモートプラズマ装置を用いてプラズマを照射し、偏光フィルムを貼付した。ステンレス基板a6の第1主面における偏光フィルムの粘着強度を測定した結果、1.5N/25mmであった。
 なお、デバイス用基板積層体A6形成前のステンレス基板の第1主面における粘着強度は1.0N/25mmであった。
(Example 1f)
In Example 1f, except that the thin glass substrate was changed to a stainless steel (SUS304) substrate having a mirror finish of 0.1 mm in thickness, a device substrate laminate (hereinafter “device substrate” was used in the same manner as in Example 1a. Also referred to as “laminate A6”). Of the two main surfaces of the stainless steel substrate, the surface that is in close contact with the peelable surface of the resin layer is the first main surface, and the main surface that forms the electronic device member is the second main surface. The heat resistance of the resin layer of the device substrate laminate A6 was evaluated in the same manner as in Example 1a, but it was confirmed that the heat resistance was good and there was no deterioration due to heat.
Next, the stainless steel substrate and the support (supporting glass substrate having a resin layer) were peeled off in the same manner as in Example 1a. The stainless steel substrate obtained by peeling is also referred to as “stainless steel substrate a6”.
Next, a polarizing film was attached to the first main surface of the stainless steel substrate a6 in the same manner as in Example 1a in the same manner as in Example 1a. And the adhesive strength of the polarizing film in the 1st main surface of the stainless steel substrate a6 was measured. The adhesive strength of the polarizing film was 0.40 N / 25 mm.
Next, plasma was irradiated to the 1st main surface of the stainless steel substrate a6 by the same method as Example 1a using a normal pressure remote plasma apparatus, and the polarizing film was stuck. It was 1.5 N / 25mm as a result of measuring the adhesive strength of the polarizing film in the 1st main surface of the stainless steel substrate a6.
In addition, the adhesive strength in the 1st main surface of the stainless steel substrate before board | substrate laminated body for device A6 formation was 1.0 N / 25mm.
(実施例1g)
 初めに、縦350mm、横300mm、板厚0.08mm、線膨張係数38×10-7/℃のガラスフィルム(旭硝子株式会社製、AN100、無アルカリガラス)を、アルカリ洗剤による洗浄を行い、ガラスフィルムの表面を清浄化した。さらに、ガラスフィルムの表面に、γ-メルカプトプロピルトリメトキシシランの0.1%メタノール溶液を噴霧し、80℃で3分乾燥させた。一方で、縦350mm、横300mm、板厚0.05mmのポリイミド樹脂基板(東レ・デュポン社製、カプトン200HV)の表面をプラズマ処理した。そして、ガラスフィルムとポリイミド樹脂基板とを重ね合わせ、320℃に加熱したプレス装置を用いて、ガラス/樹脂積層基板とした。ガラス/樹脂積層基板の両主面のうち、樹脂層の剥離性表面と密着するポリイミド樹脂基板側の主面を第1主面とし、対向するガラスフィルム側の主面を第2主面とする。
 実施例1gでは、薄板ガラス基板を前記ガラス/樹脂積層基板に変更した以外は、実施例1aと同様の方法でデバイス用基板積層体(以下「デバイス用基板積層体A7」ともいう)を得た。実施例1aと同様の方法で、デバイス用基板積層体A7の樹脂層の耐熱性を評価したが、熱による劣化はなく、耐熱性が良好であることが確認できた。
 次に、実施例1aと同様の方法でガラス/樹脂積層基板と支持体(樹脂層を有する支持ガラス基板)とを剥離した。剥離して得られたガラス/樹脂積層基板を「ガラス/樹脂積層基板a7」ともいう。
 次に、実施例1aと同様の方法でガラス/樹脂積層基板a7の第1主面に、実施例1aと同様の方法で偏光フィルムを貼付した。そして、ガラス/樹脂積層基板a7の第1主面における偏光フィルムの粘着強度を測定した。偏光フィルムの粘着強度は、0.40N/25mmであった。
 次に、実施例1aと同様の方法でガラス/樹脂積層基板a7の第1主面に、常圧リモートプラズマ装置を用いてプラズマを照射し、偏光フィルムを貼付した。ガラス/樹脂積層基板a7の第1主面における偏光フィルムの粘着強度を測定した結果、3.0N/25mmであった。
 なお、デバイス用基板積層体A7形成前におけるガラス/樹脂積層基板の第1主面における粘着強度は1.5N/25mmであった。
(Example 1g)
First, a glass film (Asahi Glass Co., Ltd., AN100, non-alkali glass) having a length of 350 mm, a width of 300 mm, a plate thickness of 0.08 mm, and a linear expansion coefficient of 38 × 10 −7 / ° C. was washed with an alkaline detergent, The film surface was cleaned. Further, a 0.1% methanol solution of γ-mercaptopropyltrimethoxysilane was sprayed on the surface of the glass film and dried at 80 ° C. for 3 minutes. On the other hand, the surface of a polyimide resin substrate (manufactured by Toray DuPont, Kapton 200HV) having a length of 350 mm, a width of 300 mm, and a thickness of 0.05 mm was plasma-treated. Then, a glass / resin laminated substrate was formed using a press apparatus in which a glass film and a polyimide resin substrate were superposed and heated to 320 ° C. Of the two main surfaces of the glass / resin laminated substrate, the main surface on the polyimide resin substrate side that is in close contact with the peelable surface of the resin layer is the first main surface, and the main surface on the opposite glass film side is the second main surface. .
In Example 1g, a device substrate laminate (hereinafter also referred to as “device substrate laminate A7”) was obtained in the same manner as in Example 1a, except that the thin glass substrate was changed to the glass / resin laminate substrate. . The heat resistance of the resin layer of the device substrate laminate A7 was evaluated in the same manner as in Example 1a, but it was confirmed that the heat resistance was good and there was no deterioration due to heat.
Next, the glass / resin laminated substrate and the support (supporting glass substrate having a resin layer) were peeled off in the same manner as in Example 1a. The glass / resin laminated substrate obtained by peeling is also referred to as “glass / resin laminated substrate a7”.
Next, the polarizing film was stuck on the 1st main surface of the glass / resin laminated substrate a7 by the method similar to Example 1a by the method similar to Example 1a. And the adhesive strength of the polarizing film in the 1st main surface of glass / resin laminated substrate a7 was measured. The adhesive strength of the polarizing film was 0.40 N / 25 mm.
Next, plasma was irradiated to the 1st main surface of the glass / resin laminated substrate a7 by the method similar to Example 1a using a normal pressure remote plasma apparatus, and the polarizing film was stuck. It was 3.0 N / 25mm as a result of measuring the adhesive strength of the polarizing film in the 1st main surface of the glass / resin laminated substrate a7.
In addition, the adhesive strength in the 1st main surface of the glass / resin laminated substrate before formation of substrate laminated body A7 for devices was 1.5 N / 25mm.
(実施例1h)
 実施例1hでは、実施例1eと同様の方法でデバイス用基板積層体A51を得た。
 次に、実施例1eと同様の方法でポリイミド樹脂基板と支持体(樹脂層を有する支持ガラス基板)とを剥離した。
 次に、実施例1aと同様の方法でデバイス用基板積層体A51におけるポリイミド樹脂基板の第1主面に、実施例1aと同様の方法で偏光フィルムを貼付した。そして、ポリイミド樹脂基板の第1主面における偏光フィルムの粘着強度を測定した。偏光フィルムの粘着強度は、0.40N/25mmであった。
 次に、ポリイミド樹脂基板の第1主面に、アルコール系洗浄剤(ネオコールR7、日本アルコール販売社製)を吹き付けながらブラシ洗浄する。エアブローによって、ポリイミド樹脂基板の第1主面から洗浄剤を除去した後に、実施例1aと同様の方法で偏光フィルムを貼付した。ポリイミド樹脂基板の第1主面における偏光フィルムの粘着強度を測定した結果、2.8N/25mmであった。
(Example 1h)
In Example 1h, a device substrate laminate A51 was obtained in the same manner as in Example 1e.
Next, the polyimide resin substrate and the support (support glass substrate having a resin layer) were peeled off in the same manner as in Example 1e.
Next, a polarizing film was attached to the first main surface of the polyimide resin substrate in the device substrate laminate A51 in the same manner as in Example 1a in the same manner as in Example 1a. And the adhesive strength of the polarizing film in the 1st main surface of a polyimide resin substrate was measured. The adhesive strength of the polarizing film was 0.40 N / 25 mm.
Next, brush cleaning is performed while spraying an alcohol-based cleaning agent (Neocol R7, manufactured by Nippon Alcohol Sales Co., Ltd.) on the first main surface of the polyimide resin substrate. After removing the cleaning agent from the first main surface of the polyimide resin substrate by air blowing, a polarizing film was attached in the same manner as in Example 1a. It was 2.8 N / 25mm as a result of measuring the adhesive strength of the polarizing film in the 1st main surface of a polyimide resin board | substrate.
(実施例2)
 初めに、縦720mm、横600mm、板厚0.6mm、線膨張係数38×10-7/℃の支持ガラス基板(旭硝子株式会社製、AN100、無アルカリガラス)を純水洗浄、UV洗浄で清浄化した。
 次に、支持ガラス基板の第1主面上に、両末端にビニル基を有する直鎖状ポリオルガノシロキサン(荒川化学工業株式会社製、商品名「8500」)と、分子内にハイドロシリル基を有するメチルハイドロジェンポリシロキサン(荒川化学工業株式会社製、商品名「12031」)と、白金系触媒(荒川化学工業株式会社製、商品名「CAT12070」)との混合物を、縦705mm、横595mmの大きさで、スクリーン印刷機にて塗工した(塗工量20g/m)。ここで、ハイドロシリル基とビニル基とのモル比が1/1となるように、直鎖状ポリオルガノシロキサンとメチルハイドロジェンポリシロキサンとの混合比を調整した。白金系触媒は、直鎖状ポリオルガノシロキサンとメチルハイドロジェンポリシロキサンとの合計100質量部に対して5質量部とした。
 次に、これを180℃にて30分間大気中で加熱硬化して、支持ガラス基板の第1主面に厚さ20μmのシリコーン樹脂層を形成した。
(Example 2)
First, a supporting glass substrate (Asahi Glass Co., Ltd., AN100, non-alkali glass) having a length of 720 mm, a width of 600 mm, a thickness of 0.6 mm, and a linear expansion coefficient of 38 × 10 −7 / ° C. is cleaned with pure water and UV cleaning. Turned into.
Next, on the first main surface of the supporting glass substrate, linear polyorganosiloxane having vinyl groups at both ends (trade name “8500”, manufactured by Arakawa Chemical Industries, Ltd.), and hydrosilyl group in the molecule A mixture of methylhydrogenpolysiloxane (trade name “12031” manufactured by Arakawa Chemical Industries, Ltd.) and a platinum-based catalyst (trade name “CAT12070” manufactured by Arakawa Chemical Industries, Ltd.) is 705 mm long and 595 mm wide. The size was applied by a screen printing machine (coating amount 20 g / m 2 ). Here, the mixing ratio of the linear polyorganosiloxane and the methylhydrogen polysiloxane was adjusted so that the molar ratio of hydrosilyl group to vinyl group was 1/1. The platinum catalyst was 5 parts by mass with respect to 100 parts by mass in total of the linear polyorganosiloxane and methyl hydrogen polysiloxane.
Next, this was heat-cured at 180 ° C. for 30 minutes in the air to form a 20 μm thick silicone resin layer on the first main surface of the supporting glass substrate.
 次に、縦720mm、横600mm、厚さ0.1mm、線膨張係数50×10-7/℃の薄板ガラス基板(旭硝子株式会社製、AN100、無アルカリガラス)のシリコーン樹脂層と接触させる側の面を純水洗浄、UV洗浄で清浄化した後、シリコーン樹脂層と薄板ガラス基板とを室温下で真空プレスにて貼り合わせ、薄板ガラス積層体(以下「薄板ガラス積層体B」ともいう)を得た。
 なお、樹脂層の形成および薄板ガラス基板の積層は、薄板ガラス積層体Bの端部に深さ15mmの隙間部が形成されるように行った。
 得られた薄板ガラス積層体Bにおいて、両ガラス基板は、シリコーン樹脂層と気泡を発生することなく密着しており、ゆがみ状欠点もなく平滑性も良好であった。
Next, the thin glass substrate (Asahi Glass Co., Ltd., AN100, non-alkali glass) having a length of 720 mm, a width of 600 mm, a thickness of 0.1 mm, and a linear expansion coefficient of 50 × 10 −7 / ° C. is contacted with the silicone resin layer. After the surface is cleaned with pure water and UV cleaning, the silicone resin layer and the thin glass substrate are bonded together by a vacuum press at room temperature to form a thin glass laminate (hereinafter also referred to as “thin glass laminate B”). Obtained.
The formation of the resin layer and the lamination of the thin glass substrates were performed so that a gap portion having a depth of 15 mm was formed at the end of the thin glass laminate B.
In the obtained thin glass laminate B, both glass substrates were in close contact with the silicone resin layer without generating bubbles, and there was no distortion defect and smoothness was good.
 次に、薄板ガラス積層体Bを2つ用意した。そして、一方の薄板ガラス積層体B(「薄板ガラス積層体B1」という)の薄板ガラス基板の第2主面にアレイを形成する。具体的には、絶縁層およびアモルファスシリコン層はCVD法で、電極層はスパッタリング法で形成し、それぞれのパターニングはフォトリソグラフィという方法でアレイを形成する。
また、他方の薄板ガラス積層体B(「薄板ガラス積層体B2」という)の薄板ガラス基板の第2主面にカラーフィルタを形成する。具体的には、ブラックマトリックスおよびRGB画素は塗布およびベーク法で、電極層はスパッタリング法で形成し、それぞれのパターニングはフォトリソグラフィという方法でカラーフィルタを形成する。
Next, two thin glass laminates B were prepared. Then, an array is formed on the second main surface of the thin glass substrate of one thin glass laminate B (referred to as “thin glass laminate B1”). Specifically, the insulating layer and the amorphous silicon layer are formed by a CVD method, the electrode layer is formed by a sputtering method, and each patterning is performed by a method called photolithography.
Further, a color filter is formed on the second main surface of the thin glass substrate of the other thin glass laminate B (referred to as “thin glass laminate B2”). Specifically, a black matrix and RGB pixels are formed by a coating and baking method, an electrode layer is formed by a sputtering method, and each color pattern is formed by a method called photolithography.
 そして、薄板ガラス積層体B1におけるアレイ形成面と、薄板ガラス積層体B2におけるカラーフィルタ形成面とを対向させ、セル形成用紫外線硬化型シール剤を用いて貼り合わせて、支持体付き表示装置用パネル(以下「支持体付きパネルC」ともいう)を得る。 And the array formation surface in thin glass laminated body B1 and the color filter formation surface in thin glass laminated body B2 are made to oppose, and it bonds together using the ultraviolet curing sealing agent for cell formation, and is a panel for display apparatuses with a support body. (Hereinafter also referred to as “panel C with support”).
 次に、支持体付きパネルCにおける薄板ガラス積層体B1の一部であった支持ガラス基板の第2主面を、固定台上に固定する。また、支持体付きパネルCにおける薄板ガラス積層体B2の一部であった支持ガラス基板の第2主面を、吸着パッドで吸着する。そして、支持体付きパネルCが有する4つの角部のうちの1つであって、薄板ガラス積層体B2の一部であった薄板ガラス基板と樹脂層との界面に、厚さ0.1mmのナイフを挿入して、薄板ガラス基板と支持体(樹脂層を有する支持ガラス基板)とがわずかに剥離し、次いで吸着パッドを固定台から離れる方向へ移動させて、薄板ガラス基板の第1主面と支持体とを剥離する。支持体付きパネルCから薄板ガラス積層体B2の支持体を剥離して得られたものを「支持体付きパネルCx」ともいう。 Next, the second main surface of the supporting glass substrate, which was a part of the thin glass laminate B1 in the panel C with the supporting body, is fixed on the fixing base. Moreover, the 2nd main surface of the support glass substrate which was a part of thin glass laminated body B2 in the panel C with a support body is adsorb | sucked with an adsorption pad. And it is one of the four corner | angular parts which the panel C with a support body is, Comprising: At the interface of the thin glass substrate which was a part of thin glass laminated body B2, and a resin layer, thickness 0.1mm The knife glass is inserted, the thin glass substrate and the support (support glass substrate having the resin layer) are slightly peeled off, and then the suction pad is moved away from the fixing base, so that the first main surface of the thin glass substrate And the support are peeled off. What was obtained by peeling the support of the thin glass laminate B2 from the panel C with support is also referred to as “panel Cx with support”.
 次に、支持体付きパネルCxにおける薄板ガラス積層体B2の一部であった薄板ガラス基板の第1主面を、固定台上に固定する。また、支持体付きパネルCxにおける薄板ガラス積層体B1の一部であった支持ガラス基板の第2主面を、吸着パッドで吸着する。そして、支持体付きパネルCxが有する4つの角部のうちの1つであって、薄板ガラス積層体B1の一部であった薄板ガラス基板と樹脂層との界面に、厚さ0.1mmのナイフを挿入して、薄板ガラス基板と支持体(樹脂層を有する支持ガラス基板)とがわずかに剥離し、次いで吸着パッドを固定台から離れる方向へ移動させて、薄板ガラス基板と支持体とを剥離する。ここで得られたもの、すなわち支持体付きパネルCから2つの支持体を剥離して得られたものを「パネルC」とする。 Next, the first main surface of the thin glass substrate that was a part of the thin glass laminate B2 in the support-equipped panel Cx is fixed on a fixed base. Moreover, the 2nd main surface of the support glass substrate which was a part of thin glass laminated body B1 in the panel Cx with a support body is adsorb | sucked with an adsorption pad. And it is one of four corner | angular parts which panel Cx with a support body has, Comprising: At the interface of the thin glass substrate which was a part of thin glass laminated body B1, and a resin layer, thickness 0.1mm A knife is inserted, the thin glass substrate and the support (support glass substrate having a resin layer) are slightly peeled off, and then the suction pad is moved away from the fixing base, so that the thin glass substrate and the support are moved. Peel off. The product obtained here, that is, the product obtained by peeling the two supports from the support-equipped panel C is referred to as “panel C”.
 次に、パネルCが有する2つの薄板ガラス基板の各々の第1主面に偏光フィルム(日東電工社製、アクリル系粘着剤)を貼付する。そして、当該偏光フィルムの粘着強度を測定した。測定方法は実施例1aと同様である。その結果、粘着強度は90°剥離で0.78N/25mmおよび0.59N/25mmとなる。 Next, a polarizing film (manufactured by Nitto Denko Corporation, acrylic adhesive) is attached to the first main surface of each of the two thin glass substrates of the panel C. And the adhesive strength of the said polarizing film was measured. The measuring method is the same as in Example 1a. As a result, the adhesive strength becomes 0.78 N / 25 mm and 0.59 N / 25 mm at 90 ° peeling.
 次に、一旦前記フィルムを剥離し、パネルCを切断し、縦51mm×横38mmの168個のセルを得る。そして、各々に液晶注入および注入孔の封止を行い、液晶セルを形成する。その後、液晶セルを20重量%に希釈したレジスト剥離液(パーカーコーポレーション社製、主成分として水酸化カリウム20質量%を含む)に50℃10分浸漬し、水洗およびエアブローを行う。その後、液晶セルのアレイが形成された薄板ガラス基板の第1主面を固定台上に固定し、カラーフィルタが形成された薄板ガラス基板の第1主面を吸着パッドで吸着し、固定台から離れる方向へ20N/25mmで引っ張ったところ、シール剤の剥離およびセルの破壊はない。 Next, the film is once peeled off, and the panel C is cut to obtain 168 cells of 51 mm long × 38 mm wide. Then, liquid crystal injection and injection hole sealing are performed on each, thereby forming a liquid crystal cell. Thereafter, the liquid crystal cell is immersed in a resist stripping solution (manufactured by Parker Corporation, containing 20% by mass of potassium hydroxide as a main component) at 20 ° C. for 10 minutes, washed with water and air blown. Thereafter, the first main surface of the thin glass substrate on which the array of liquid crystal cells is formed is fixed on the fixing base, and the first main surface of the thin glass substrate on which the color filter is formed is adsorbed by the suction pad, and from the fixing base. When pulled away at 20 N / 25 mm, there is no peeling of the sealant and destruction of the cell.
 次に、レジスト剥離液に浸漬した後の液晶セルにおける薄板ガラス基板の第1主面に、レジスト剥離液に浸漬する前と同じ偏光フィルムを貼付し、同じ方法で偏光フィルムの粘着強度を測定する。その結果、粘着強度は90°剥離で4.4N/25mmとなる。 Next, the same polarizing film as that before immersing in the resist stripping solution is applied to the first main surface of the thin glass substrate in the liquid crystal cell after being immersed in the resist stripping solution, and the adhesive strength of the polarizing film is measured by the same method. . As a result, the adhesive strength is 4.4 N / 25 mm after 90 ° peeling.
 そして、モジュール形成工程を実施してLCDを得ることができる。こうして得られるLCDは特性上の問題、すなわちアレイ性能やカラーフィルタの色度の劣化などは生じない。この結果、前記LCDの対向する二つの薄板ガラス基板のそれぞれの外表面の間の総厚が約0.2mmの液晶表示装置を得ることができる。 Then, an LCD can be obtained by performing a module forming process. The LCD obtained in this way does not suffer from characteristic problems, that is, deterioration of array performance or color filter chromaticity. As a result, a liquid crystal display device having a total thickness of about 0.2 mm between the outer surfaces of the two opposing thin glass substrates of the LCD can be obtained.
(実施例3)
 実施例2で形成した薄板ガラス積層体Bと、厚さ0.7mmの無アルカリガラス基板(旭硝子株式会社製、AN100、無アルカリガラス)とを用意した(ここで用いる薄板ガラス積層体Bを、「薄板ガラス積層体B3」とする)。そして、実施例2と同様の方法で、薄板ガラス積層体B3の薄板ガラス基板の第2主面にカラーフィルタを形成し、無アルカリガラス基板の一方の主面に、アレイを形成した。
(Example 3)
A thin glass laminate B formed in Example 2 and a non-alkali glass substrate having a thickness of 0.7 mm (Asahi Glass Co., Ltd., AN100, non-alkali glass) were prepared (the thin glass laminate B used here) “Thin glass laminate B3”). And the color filter was formed in the 2nd main surface of the thin glass substrate of thin glass laminated body B3 by the method similar to Example 2, and the array was formed in one main surface of an alkali free glass substrate.
 そして、実施例2の場合と同様に、無アルカリガラス基板のアレイ形成面と、薄板ガラス積層体B3のカラーフィルタ形成面とを対向させ、液晶を封入し、セル形成用紫外線硬化型シール剤を用いて貼り合わせて、支持体付き表示装置用パネル(以下「支持体付きパネルD」ともいう)を得る。ここで、液晶注入孔をシールする。 Then, as in Example 2, the array-forming surface of the alkali-free glass substrate and the color filter forming surface of the thin glass laminate B3 are opposed to each other, liquid crystal is sealed, and an ultraviolet curable sealing agent for cell formation is added. A panel for a display device with a support (hereinafter also referred to as “panel D with a support”) is obtained. Here, the liquid crystal injection hole is sealed.
 次に、実施例2と同様の方法で、薄板ガラス積層体B3の支持体を剥離することができる。ここで得られたもの、すなわち支持体付きパネルDから支持体を剥離して得られたものを「パネルD」とする。 Next, the support of the thin glass laminate B3 can be peeled by the same method as in Example 2. What was obtained here, ie, what was obtained by peeling a support body from panel D with a support body, is set as "panel D."
 次に、実施例2と同様の方法で、パネルDを切断し168個のセルを得た後、液晶セルを形成する。
 そして、得られた液晶セルを実施例2と同様のレジスト剥離液に浸漬する。ここで剥離液の温度は50℃とし、浸漬は5分間行う。また、液槽内に設置した超音波振動板を用いて、液晶セルに超音波振動を加える。
Next, after the panel D is cut and 168 cells are obtained in the same manner as in Example 2, a liquid crystal cell is formed.
Then, the obtained liquid crystal cell is immersed in the same resist stripping solution as in Example 2. Here, the temperature of the stripping solution is 50 ° C., and the immersion is performed for 5 minutes. In addition, ultrasonic vibration is applied to the liquid crystal cell using an ultrasonic vibration plate installed in the liquid tank.
 次に、レジスト剥離液に浸漬した後の液晶セルの薄板ガラス基板の第1主面に、偏光フィルムを貼付し、当該偏光フィルムの粘着強度を測定する。用いた偏光フィルムの種類および粘着強度の測定方法は、実施例1と同様である。その結果、粘着強度は90°剥離で4.3N/25mmとなる。 Next, a polarizing film is attached to the first main surface of the thin glass substrate of the liquid crystal cell after being immersed in the resist stripping solution, and the adhesive strength of the polarizing film is measured. The type of polarizing film used and the method for measuring the adhesive strength are the same as in Example 1. As a result, the adhesive strength is 4.3 N / 25 mm after 90 ° peeling.
 そして、モジュール形成工程を実施してLCDを得ることができる。こうして得られるLCDは特性上の問題、すなわちアレイ性能やカラーフィルタの色度の劣化などは生じない。この結果、前記LCDの対向する二つの薄板ガラス基板のそれぞれの外表面の間の総厚が約0.8mmの液晶表示装置を得ることができる。 Then, an LCD can be obtained by performing a module forming process. The LCD obtained in this way does not suffer from characteristic problems, that is, deterioration of array performance or color filter chromaticity. As a result, a liquid crystal display device having a total thickness of about 0.8 mm between the outer surfaces of the two opposing thin glass substrates of the LCD can be obtained.
(実施例4)
 実施例2で形成した薄板ガラス積層体Bを2つ用意する。そして、実施例2と同様の方法で、一方の薄板ガラス積層体B(「薄板ガラス積層体B4」という)の薄板ガラス基板の第2主面にアレイを形成する。また、他方の薄板ガラス積層体B(「薄板ガラス積層体B5」という)の薄板ガラス基板の第2主面に有機EL構造体を形成する。具体的には、透明電極を形成する工程、補助電極を形成する工程、ホール注入層・ホール輸送層・発光層・電子輸送層等を蒸着する工程、これらを封止する工程を実施して、薄板ガラス積層体B5の薄板ガラス基板上に、有機EL構造体を形成する。
Example 4
Two thin glass laminates B formed in Example 2 are prepared. Then, an array is formed on the second main surface of the thin glass substrate of one thin glass laminate B (referred to as “thin glass laminate B4”) in the same manner as in Example 2. Further, an organic EL structure is formed on the second main surface of the thin glass substrate of the other thin glass laminate B (referred to as “thin glass laminate B5”). Specifically, a step of forming a transparent electrode, a step of forming an auxiliary electrode, a step of depositing a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and the like, and a step of sealing them, An organic EL structure is formed on the thin glass substrate of the thin glass laminate B5.
 そして、薄板ガラス積層体B4および薄板ガラス積層体B5を組み合わせて、支持体付きパネルEを得る。 Then, a panel E with a support is obtained by combining the thin glass laminate B4 and the thin glass laminate B5.
 次に、実施例2と同様の方法で、薄板ガラス積層体B4および薄板ガラス積層体B5の支持体を剥離することができる。ここで得られたもの、すなわち支持体付きパネルEから支持体を剥離して得られたものを「パネルE」とする。パネルEにおける薄板ガラス基板の表面には、強度低下につながるような傷はみられない。 Next, the support of the thin glass laminate B4 and the thin glass laminate B5 can be peeled by the same method as in Example 2. The product obtained here, that is, the product obtained by peeling the support from the support-equipped panel E is referred to as “panel E”. On the surface of the thin glass substrate in panel E, there is no damage that leads to a decrease in strength.
 次に、有機EL構造体が形成された薄板ガラス基板の第1主面に、常圧リモートプラズマ装置(積水化学社製)を用いてプラズマを照射する。ここで処理条件は、出力3kw、窒素/空気流量比=600slm/750sccm、搬送速度1m/min.とする。プラズマ照射時の薄板ガラス基板の表面温度は50℃以下である。 Next, the first main surface of the thin glass substrate on which the organic EL structure is formed is irradiated with plasma using an atmospheric pressure remote plasma apparatus (manufactured by Sekisui Chemical Co., Ltd.). Here, the processing conditions are: output 3 kW, nitrogen / air flow ratio = 600 slm / 750 sccm, conveyance speed 1 m / min. And The surface temperature of the thin glass substrate at the time of plasma irradiation is 50 ° C. or less.
 次に、パネルEをレーザカッタまたはスクライブ-ブレイク法を用いて切断し、縦41mm×横30mmの288個のセルに分断した後、セル表面に保護フィルムとして、PETフィルム(日東電工社製、アクリル系粘着剤)を貼付する。そのときの粘着強度は、3.9N/25mmとなる。その後、モジュール形成工程を実施してOLEDを作製する。
こうして得られるOLEDは、特性上問題は生じない。
 上記の例では、表示のパネル単位に分断する前に、支持体を剥離するが、複数のパネル同士が繋がった構造を単位として処理することもできる。
 上記の例の他に、表示のパネル単位に分断した後に、支持体を剥離することもできる。
Next, the panel E was cut using a laser cutter or a scribe-break method, and divided into 288 cells of 41 mm in length and 30 mm in width, and then a PET film (manufactured by Nitto Denko Corporation, acrylic as a protective film) on the cell surface. Adhesive). The adhesive strength at that time is 3.9 N / 25 mm. Then, a module formation process is implemented and OLED is produced.
The OLED obtained in this way does not have a problem in characteristics.
In the above example, the support is peeled off before being divided into display panel units. However, a structure in which a plurality of panels are connected to each other can be processed as a unit.
In addition to the above example, the support can be peeled off after being divided into display panel units.
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは、当業者にとって明らかである。
 本出願は、2009年3月24日出願の日本特許出願2009-072282に基づくものであり、その内容はここに参照として取り込まれる。
Although the invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
This application is based on Japanese Patent Application No. 2009-072282 filed on Mar. 24, 2009, the contents of which are incorporated herein by reference.
 本発明によれば、表示装置などの電子デバイス用部材を有する基板、樹脂層および支持基板が積層されている支持体付き電子デバイスから、前記樹脂層および前記支持基板からなる支持体を剥離し、電子デバイスを得た後、基板および電子デバイス用部材等(例えば薄膜トランジスタ、有機EL素子、カラーフィルタ)に熱的、電磁的、機械的および化学的な損傷を与えずに、前記電子デバイス用の基板の主面に付いた異物を除去し、その結果、剥離後の基板における樹脂層が付いていた面に、偏光フィルムや位相差フィルム等の粘着剤付きフィルムを強固に貼付することができる、電子デバイスの製造方法を提供することができる。 According to the present invention, a substrate having a member for an electronic device such as a display device, an electronic device with a support in which a resin layer and a support substrate are laminated, a support made of the resin layer and the support substrate is peeled off, After obtaining the electronic device, the substrate for the electronic device without causing thermal, electromagnetic, mechanical and chemical damage to the substrate and the member for the electronic device (for example, thin film transistor, organic EL element, color filter) As a result, it is possible to firmly adhere a film with an adhesive such as a polarizing film or a retardation film to the surface of the substrate after the peeling, to which the resin layer is attached. A device manufacturing method can be provided.
10、20、30 本発明の支持体付きパネル
12、22、32 薄板ガラス基板
14、24、34 表示装置用部材
16、26 表示装置用パネル
18、28、38 樹脂層
19、29、39 支持ガラス基板
25 隙間部
41 電源(高電圧パルス電源)
42 電圧印加電極
43 設置電極
44 放電空間
45 プラズマ吹き出し口
46 固体誘電体
50 剥離工程後の表示装置用パネル
10, 20, 30 Panels 12, 22, and 32 with support of the present invention Thin glass substrates 14, 24, 34 Display device members 16, 26 Display device panels 18, 28, 38 Resin layers 19, 29, 39 Support glass Substrate 25 Gap 41 Power supply (High voltage pulse power supply)
42 Voltage Application Electrode 43 Installation Electrode 44 Discharge Space 45 Plasma Blowout Port 46 Solid Dielectric 50 Display Device Panel After Stripping Process

Claims (8)

  1.  第1主面および第2主面を有し第2主面に電子デバイス用部材を有する基板の第1主面に、第1主面および第2主面を有する支持基板の第1主面に固定された剥離性表面を有する樹脂層が密着している支持体付き電子デバイスから、前記支持基板および前記樹脂層からなる支持体を剥離し、前記電子デバイス用部材および基板を含む電子デバイスを得る剥離工程と、
     前記電子デバイスにおける前記基板の第1主面に付いた、異物を除去する除去工程と
    を具備する、電子デバイスの製造方法。
    On the first main surface of the substrate having the first main surface and the second main surface and having the electronic device member on the second main surface, on the first main surface of the support substrate having the first main surface and the second main surface An electronic device including the electronic device member and the substrate is obtained by peeling the support substrate and the support made of the resin layer from the electronic device with a support to which the resin layer having a fixed peelable surface is in close contact. Peeling process;
    A method of manufacturing an electronic device, comprising: a removing step of removing foreign matter attached to the first main surface of the substrate in the electronic device.
  2.  前記樹脂層がシリコーン樹脂層である、請求項1に記載の電子デバイスの製造方法。 The method for manufacturing an electronic device according to claim 1, wherein the resin layer is a silicone resin layer.
  3.  前記樹脂層の剥離性表面を前記基板の第1主面に密着する前における前記基板の第1主面の粘着強度をfとし、前記除去工程の後に得られる電子デバイスにおける前記基板の第1主面の粘着強度をfとした場合に、f≧fとなる、請求項1または2に記載の電子デバイスの製造方法。 The adhesive strength of the first main surface of the substrate before adhering the peelable surface of the resin layer to the first main surface of the substrate is defined as f 0, and the first of the substrates in the electronic device obtained after the removing step. The method for manufacturing an electronic device according to claim 1, wherein f ≧ f 0 when the adhesive strength of the main surface is f.
  4.  前記除去工程が、前記基板の第1主面にプラズマを照射して、前記異物を除去する工程である、請求項1~3のいずれかに記載の電子デバイスの製造方法。 4. The method of manufacturing an electronic device according to claim 1, wherein the removing step is a step of irradiating the first main surface of the substrate with plasma to remove the foreign matter.
  5.  前記除去工程が、酸またはアルカリを含む薬液を用いて前記異物を除去する工程である、請求項1~3のいずれかに記載の電子デバイスの製造方法。 The method of manufacturing an electronic device according to any one of claims 1 to 3, wherein the removing step is a step of removing the foreign matter using a chemical solution containing an acid or an alkali.
  6.  前記除去工程が、溶解度パラメータが7~15である溶剤を含む薬液を用いて、前記異物を除去する工程である、請求項1~3のいずれかに記載の電子デバイスの製造方法。 The method of manufacturing an electronic device according to any one of claims 1 to 3, wherein the removing step is a step of removing the foreign matter using a chemical solution containing a solvent having a solubility parameter of 7 to 15.
  7.  さらに超音波振動を用いて前記異物を除去する工程である、請求項5または6に記載の電子デバイスの製造方法。 Furthermore, the manufacturing method of the electronic device of Claim 5 or 6 which is the process of removing the said foreign material using ultrasonic vibration.
  8.  前記除去工程を2以上有する、請求項1~7のいずれかに記載の電子デバイスの製造方法。 The method for manufacturing an electronic device according to any one of claims 1 to 7, comprising two or more removing steps.
PCT/JP2010/054154 2009-03-24 2010-03-11 Manufacturing method for electronic device WO2010110087A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201080013547.5A CN102362305B (en) 2009-03-24 2010-03-11 Manufacturing method for electronic device
JP2011505975A JPWO2010110087A1 (en) 2009-03-24 2010-03-11 Manufacturing method of electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009072282 2009-03-24
JP2009-072282 2009-03-24

Publications (1)

Publication Number Publication Date
WO2010110087A1 true WO2010110087A1 (en) 2010-09-30

Family

ID=42780780

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/054154 WO2010110087A1 (en) 2009-03-24 2010-03-11 Manufacturing method for electronic device

Country Status (5)

Country Link
JP (1) JPWO2010110087A1 (en)
KR (1) KR20110131223A (en)
CN (1) CN102362305B (en)
TW (1) TWI480165B (en)
WO (1) WO2010110087A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012146448A (en) * 2011-01-11 2012-08-02 Nitto Denko Corp Method of manufacturing organic el device and substrate for manufacturing organic el device
JP2013130888A (en) * 2012-08-17 2013-07-04 Asahi Glass Co Ltd Method of manufacturing electronic device member and electronic device, and electronic device member
WO2014073455A1 (en) * 2012-11-09 2014-05-15 日本電気硝子株式会社 Glass film laminate and method for producing electronic/electric device
US9500890B2 (en) 2013-11-15 2016-11-22 Samsung Display Co., Ltd. Method of manufacturing device substrate and display device manufactured using the same

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6252490B2 (en) * 2012-12-28 2017-12-27 旭硝子株式会社 GLASS LAMINATE, PROCESS FOR PRODUCING THE SAME, AND SUPPORT SUBSTRATE WITH SILICONE RESIN LAYER
KR20140146523A (en) 2013-06-17 2014-12-26 엘지디스플레이 주식회사 Liquid crystal display apparatus, and method of manufacturing the same
JP6260441B2 (en) * 2014-04-30 2018-01-17 旭硝子株式会社 Removal method of resin layer
JP6573544B2 (en) * 2015-12-21 2019-09-11 日東電工株式会社 Peeling method
CN111201560B (en) * 2017-11-10 2022-02-18 深圳市柔宇科技股份有限公司 Flexible display screen and cutting and trimming method thereof
CN109461844B (en) * 2018-10-09 2020-02-18 深圳市华星光电技术有限公司 Method for manufacturing flexible substrate
KR20210035382A (en) 2019-09-23 2021-04-01 삼성디스플레이 주식회사 Display device and carrier panel
CN112103319A (en) * 2020-09-22 2020-12-18 京东方科技集团股份有限公司 Display panel, display device and manufacturing method of display panel
CN115967759A (en) * 2021-10-09 2023-04-14 荣耀终端有限公司 Shell assembly, preparation method thereof and terminal

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000176388A (en) * 1998-12-21 2000-06-27 Sharp Corp Method and apparatus for cleaning liquid crystal display panel
JP2006098454A (en) * 2004-09-28 2006-04-13 Seiko Epson Corp Manufacturing method for electrooptical apparatus, electrooptical apparatus, and electronic device
WO2007018028A1 (en) * 2005-08-09 2007-02-15 Asahi Glass Company, Limited Thin sheet glass laminate and method for manufacturing display using thin sheet glass laminate
JP2007187962A (en) * 2006-01-16 2007-07-26 Epson Imaging Devices Corp Method for manufacturing liquid crystal device
JP2007304562A (en) * 2006-05-12 2007-11-22 Samsung Electronics Co Ltd Method and apparatus for manufacturing protective member for display device, and method of manufacturing display device using same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4273193B2 (en) * 2002-06-24 2009-06-03 フジコピアン株式会社 Double-sided adhesive sheet
KR20070109772A (en) * 2006-05-12 2007-11-15 삼성전자주식회사 Method and apparatus of fabricating protecting member for display apparatus and method of fabricating display apparatus using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000176388A (en) * 1998-12-21 2000-06-27 Sharp Corp Method and apparatus for cleaning liquid crystal display panel
JP2006098454A (en) * 2004-09-28 2006-04-13 Seiko Epson Corp Manufacturing method for electrooptical apparatus, electrooptical apparatus, and electronic device
WO2007018028A1 (en) * 2005-08-09 2007-02-15 Asahi Glass Company, Limited Thin sheet glass laminate and method for manufacturing display using thin sheet glass laminate
JP2007187962A (en) * 2006-01-16 2007-07-26 Epson Imaging Devices Corp Method for manufacturing liquid crystal device
JP2007304562A (en) * 2006-05-12 2007-11-22 Samsung Electronics Co Ltd Method and apparatus for manufacturing protective member for display device, and method of manufacturing display device using same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012146448A (en) * 2011-01-11 2012-08-02 Nitto Denko Corp Method of manufacturing organic el device and substrate for manufacturing organic el device
JP2013130888A (en) * 2012-08-17 2013-07-04 Asahi Glass Co Ltd Method of manufacturing electronic device member and electronic device, and electronic device member
WO2014073455A1 (en) * 2012-11-09 2014-05-15 日本電気硝子株式会社 Glass film laminate and method for producing electronic/electric device
US9500890B2 (en) 2013-11-15 2016-11-22 Samsung Display Co., Ltd. Method of manufacturing device substrate and display device manufactured using the same

Also Published As

Publication number Publication date
TWI480165B (en) 2015-04-11
KR20110131223A (en) 2011-12-06
CN102362305A (en) 2012-02-22
CN102362305B (en) 2015-04-01
TW201113155A (en) 2011-04-16
JPWO2010110087A1 (en) 2012-09-27

Similar Documents

Publication Publication Date Title
WO2010110087A1 (en) Manufacturing method for electronic device
WO2010079688A1 (en) Glass laminate and manufacturing method therefor
JP5796449B2 (en) Manufacturing method of electronic device, manufacturing method of carrier substrate with resin layer
JP5716678B2 (en) LAMINATE MANUFACTURING METHOD AND LAMINATE
JP5790392B2 (en) Manufacturing method of electronic device
JP5024087B2 (en) GLASS LAMINATE, PANEL FOR DISPLAY DEVICE WITH SUPPORT AND METHOD FOR PRODUCING THEM
JP5200538B2 (en) Thin glass laminate and method for manufacturing display device using thin glass laminate
KR101486601B1 (en) Glass substrate provided with protection glass and method for manufacturing display device using glass substrate provided with protection glass
JP5360073B2 (en) Manufacturing method of electronic device and peeling apparatus used therefor
US8303754B2 (en) Glass substrate with protective glass, process for producing display device using glass substrate with protective glass, and silicone for release paper
JP2009186916A (en) Method of manufacturing display device panel
WO2009128359A1 (en) Glass laminate, display panel with support, method for producing glass laminate and method for manufacturing display panel with support
WO2014092015A1 (en) Electronic device manufacturing method, and glass laminate manufacturing method
WO2013058217A1 (en) Laminate, method for producing laminate, and method for producing glass substrate having member for electronic devices attached thereto
JP5842821B2 (en) LAMINATE, DISPLAY DEVICE PANEL WITH SUPPORT PLATE, DISPLAY DEVICE PANEL, AND DISPLAY DEVICE
WO2013054792A1 (en) Method for manufacturing electronic device with adherent resin layer

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080013547.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10755887

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011505975

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20117022244

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10755887

Country of ref document: EP

Kind code of ref document: A1