WO2001045478A1 - Multilayered printed wiring board and production method therefor - Google Patents

Multilayered printed wiring board and production method therefor Download PDF

Info

Publication number
WO2001045478A1
WO2001045478A1 PCT/JP2000/008803 JP0008803W WO0145478A1 WO 2001045478 A1 WO2001045478 A1 WO 2001045478A1 JP 0008803 W JP0008803 W JP 0008803W WO 0145478 A1 WO0145478 A1 WO 0145478A1
Authority
WO
WIPO (PCT)
Prior art keywords
inner layer
metal foil
hole
resin
printed wiring
Prior art date
Application number
PCT/JP2000/008803
Other languages
French (fr)
Japanese (ja)
Inventor
Satoshi Maezawa
Masashi Tachibana
Kazuya Oishi
Original Assignee
Matsushita Electric Industrial Co. Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co. Ltd. filed Critical Matsushita Electric Industrial Co. Ltd.
Priority to EP00981675A priority Critical patent/EP1194023A4/en
Priority to US09/913,372 priority patent/US6630630B1/en
Publication of WO2001045478A1 publication Critical patent/WO2001045478A1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/4038Through-connections; Vertical interconnect access [VIA] connections
    • H05K3/4053Through-connections; Vertical interconnect access [VIA] connections by thick-film techniques
    • H05K3/4069Through-connections; Vertical interconnect access [VIA] connections by thick-film techniques for via connections in organic insulating substrates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4602Manufacturing multilayer circuits characterized by a special circuit board as base or central core whereon additional circuit layers are built or additional circuit boards are laminated
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0332Structure of the conductor
    • H05K2201/0335Layered conductors or foils
    • H05K2201/0355Metal foils
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/095Conductive through-holes or vias
    • H05K2201/09509Blind vias, i.e. vias having one side closed
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/095Conductive through-holes or vias
    • H05K2201/096Vertically aligned vias, holes or stacked vias
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/11Treatments characterised by their effect, e.g. heating, cooling, roughening
    • H05K2203/1189Pressing leads, bumps or a die through an insulating layer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/14Related to the order of processing steps
    • H05K2203/1461Applying or finishing the circuit pattern after another process, e.g. after filling of vias with conductive paste, after making printed resistors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4611Manufacturing multilayer circuits by laminating two or more circuit boards
    • H05K3/4614Manufacturing multilayer circuits by laminating two or more circuit boards the electrical connections between the circuit boards being made during lamination
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
    • H05K3/4652Adding a circuit layer by laminating a metal foil or a preformed metal foil pattern
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/49126Assembling bases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/49128Assembling formed circuit to base
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/49155Manufacturing circuit on or in base
    • Y10T29/49165Manufacturing circuit on or in base by forming conductive walled aperture in base

Definitions

  • the present invention relates to a multilayer printed wiring board used for various electronic devices and a method for manufacturing the same.
  • multilayer printed wiring boards require an improvement in wiring accommodation and surface mounting density. Furthermore, as the diameter of the soldering land becomes smaller, there is a demand for improved reliability of the joining strength between the component and the substrate. More specifically, mounting with both high-density and small-diameter land with a diameter of 0.3 mm or less, as typified by a 0.5 mm pitch pole griddle (hereinafter referred to as BGA). There is a demand for printed wiring boards that can cope with such problems. For example, printed wiring boards that have excellent performance against mechanical stress such as drop impact have been demanded.
  • Conventional multilayer printed wiring board Includes an inner layer material and a photosensitive resin or film-like insulating layer provided on both sides of the inner layer material.
  • the inner layer material has a resin multilayer printed wiring board, and each layer in the multilayer printed wiring board is electrically connected by an interstitial via hole (IVH).
  • IVH interstitial via hole
  • the photosensitive resin or the insulating layer is formed by coating or laminating on both surfaces of the inner layer material. Non-through holes are formed in the inner layer material, and the layers are electrically connected by metal plating.
  • FIG. 3 shows a conventional method for manufacturing a multilayer printed wiring board.
  • an insulating layer 12 such as a photosensitive type resin is provided on the outermost layer, and the insulating layer 12 is provided by coating or laminating.
  • This conventional multilayer printed wiring board 15 has a conductive pattern 11 for an outer layer, a resin insulating layer 12, an inner layer material 13, a non-through hole 12 a, a surface via hole (SVH) 11. a.
  • the inner layer material 13 has an insulating substrate 14, a conductive pattern 14 a for the inner layer material, a copper foil 14 d, and a conductive base 14 b for the inner layer material.
  • the insulating substrate 14 is made from a pre-predator 14c force.
  • the self-via hole 11 a is formed by metal plating the non-through hole 12 a formed in the resin insulating layer 12.
  • the non-through hole 12a is formed on the resin insulating layer 12 by an exposure-to-development method, a laser irradiation method, or the like to form a surface via hole 11a.
  • Multi-layer pre The printed wiring board 15 has conductive patterns inside and outside the multilayer printed wiring board 15. A method for manufacturing the multilayer printed wiring board configured as described above will be described below.
  • a hole is formed in the pre-preparer 14c. Fill the formed holes with conductive paste 14b. Thereafter, the copper foil is overlaid on the pre-preparer 14c, and then hot-pressed, whereby the copper foil is bonded to the pre-preparer 14c filled with the conductive paste 14b. In this way, a copper-clad laminate having copper foil on both sides of the insulating substrate 14 is formed. Thereafter, a conductive pattern 14a for the inner layer material is formed by using a known screen printing method or a photographic method. In this way, an insulating substrate 14 having conductive patterns 14a on both sides is formed.
  • a pre-preparer 14c in which holes are filled with a conductive paste 14b is prepared.
  • a pre-predeer 14c filled with the conductive paste 14b is laminated on both sides of an insulating substrate 14 having a conductive pattern 14a on both sides.
  • a copper foil 14d is laminated on the surface of the pre-preparer 14c filled with the conductive paste 14b. Thereafter, these laminates are heated by a hot press and then pressurized.
  • a resin insulating layer 12 such as a photosensitive type resin is applied on the inner layer material 13 in a semi-cured state.
  • the resin insulation layer 12 is laminated on the inner layer material 13.
  • a non-through hole 12a is formed at a predetermined position by an exposure and development step or a laser irradiation step.
  • a conductive pattern 11 on the resin insulating layer 12 is formed by metal plating, and a surface by-pass is formed in the non-through hole 12a.
  • a hole 11a is formed.
  • the surface via hole 11a has a function of electrically connecting the inner conductive pattern to the outer conductive pattern.
  • the formation of the solder resist and the processing of the outer shape are performed by a known method such as a photographic method.
  • the inner layer material has an interstitial via hole (IVH) at an arbitrary position in all layers, and the outer layer has a thickness of about 50 m or more. It has about 100 small non-through holes.
  • IVH interstitial via hole
  • the conventional multilayer printed wiring board has excellent wiring accommodating properties and excellent surface high-density mounting.
  • the adhesive strength between the outer conductive pattern 14a and the resin insulating layer 12 was weak.
  • pitch balls As the grid array becomes more highly integrated and denser, the diameter of the soldering land becomes smaller and the bonding strength between the outer conductive pattern 14a and the insulating substrate 14 is required. Have been.
  • this conventional multilayer printed wiring board 15 has a conductive pattern formed on the resin insulating layer 12 by metal plating.
  • the plating layer formed on the resin by plating has a weak adhesive strength. Therefore, the conductive pattern 11 placed on the resin insulating layer 12 has a weak adhesive force to the resin insulating layer 12. Therefore, when a high-density component is mounted, for example, when soldering is performed on a small-diameter land, the conductor pattern 11 is peeled off from the resin insulating layer 12 due to mechanical stress. There was a risk of separation.
  • the curing process of the insulating substrate 14 forming the inner layer material 13 is different from that of the insulating layer 12 forming the outermost layer. Therefore, a large difference in physical characteristics between the insulating substrate 14 and the resin insulating layer 12 occurs. Therefore, the adhesion between the inner layer material and the outermost layer is weakened. Alternatively, heat generated during soldering in the component mounting process may cause cracks due to differences in thermal expansion coefficients and peeling between the inner layer material and the outermost layer. .
  • the present invention improves the bonding strength between the outer conductive pattern and the insulating layer while maintaining the conventional features of the wiring accommodating property and the surface high-density mounting, and improves the 0.5 mm pitch pole grid array (BGA). High integration and high density parts are good for mechanical stress Provide multilayer printed wiring boards with any features that have mounting reliability. Disclosure of the invention
  • the multilayer printed wiring board of the present invention is the multilayer printed wiring board of the present invention.
  • the interstitial via hole electrically connects each inner layer conductive pattern of the plurality of inner layer conductive patterns
  • the outer layer conductive pattern is formed from the metal foil out of the metal foil with the insulating resin having the insulating resin and the metal foil bonded to the insulating resin.
  • the method for manufacturing a multilayer printed wiring board according to the present invention includes:
  • the insulating resin is adhered to the inner layer material, and (d) forming a non-through hole in the metal foil with the insulating resin by processing the metal foil with the insulating resin, (e) Processing the metal foil exposed on the surface to form an outer layer conductive pattern;
  • FIG. 1 shows a multi-layer print arrangement according to an exemplary embodiment of the present invention.
  • FIG. 3 shows a cross-sectional view of the manufacturing process of the wire plate.
  • FIG. 2 is a cross-sectional view showing a process of manufacturing a multilayer printed wiring board according to another exemplary embodiment of the present invention.
  • FIG. 3 is a cross-sectional view showing a process of manufacturing a conventional multilayer printed wiring board.
  • the inner layer material has an insulating substrate and a conductive pattern for the inner layer material provided on both sides of the insulating substrate.
  • the conductive pattern for the inner layer material of each layer is electrically connected by an interstitial via hole (IVH).
  • IVH interstitial via hole
  • a metal foil with an insulating resin having a metal foil and an insulating resin having strong adhesiveness to the metal foil is bonded in advance, and these laminates are heated and pressed. Thereafter, a non-through hole is formed in the metal foil with insulating resin. Then, the conductive pattern for the inner layer material and the conductive pattern for the outer layer are electrically connected by metal plating or the like.
  • a multilayer printed wiring board having remarkably high wiring accommodation capacity can be obtained. Furthermore, since the above-described metal foil with insulating resin is used as the outer layer material, the bonding strength between the insulating resin and the metal foil is dramatically improved. Therefore, good component mounting strength can be maintained even if the outer conductor pattern has a small diameter.
  • the multilayer printed wiring board comprises: (a) a base material impregnated with a resin having a through hole, and a conductive material filled in the through hole.
  • An inner layer material having a paste and a conductive pattern for the inner layer material formed by a metal foil bonded to both sides of the base material; and (b) a metal with an insulating resin provided on both sides of the inner layer material.
  • a conductive pattern for the outer layer formed from the metal foil of the foil and (c) a non-penetrating hole formed in the metal foil with insulating resin for connecting the conductive pattern for the outer layer and the conductive pattern for the inner layer material. And a face-by-hole.
  • Each of the conductive patterns for the inner layer material provided on both surfaces of the base material is connected to each other by an interstage via hole formed in the through hole. According to this configuration, a remarkably high wiring accommodating property can be obtained. Furthermore, the adhesive strength between the outer layer conductive pattern and the substrate becomes extremely high. As a result, high mounting reliability can be obtained even for small diameter land.
  • a method for manufacturing a multilayer printed wiring board includes: (a) a step of forming a through hole in a sheet-like resin-impregnated base material; and (b) a conductive paste in the through hole. Filling step,
  • the non-through holes are formed by laser machining.
  • a metal plating is provided in the non-through hole, and the metal plating electrically connects the conductive pattern for the inner layer material and the conductive pattern for the outer layer.
  • the insulating resin used for the metal foil with the insulating resin an insulating resin having strong adhesiveness to metal is used.
  • the metal foil with an insulating resin includes a metal foil and an insulating resin applied to the metal foil. With this configuration, the adhesive strength between the outer layer conductor pattern and the insulating resin is improved.
  • the through holes and non-through holes are formed by laser machining.
  • a small diameter non-through hole can be formed with higher productivity than conventional drilling.
  • a portion of the metal foil where the non-through hole is formed is removed in advance. According to this method, it is possible to perform processing with a laser diameter larger than the diameter of the non-through hole. Therefore, it is not necessary to control the positional accuracy of laser processing for each non-through hole, and a small-diameter non-through hole can be formed with high productivity.
  • the conductive pattern for the inner layer material and the conductive pattern for the outer layer has a step of applying metal plating. This metal plating reduces the resistance value and improves reliability.
  • a portion of the metal foil where the non-through hole is formed is removed in advance, and a laser beam having a diameter larger than the hole diameter is removed.
  • a hole is formed by laser machining with
  • the resin impregnated in the base material is the same material as the insulating resin of the metal foil with the insulating resin.
  • these resins are epoxy resins.
  • the substrate included in the insulating substrate has a compressible porous substrate made of an aromatic polyamide.
  • the resin impregnated in the base material has a thermosetting resin.
  • the multilayer printed wiring board is reduced in weight.
  • high heat resistance is improved. Therefore, the reliability of the multilayer printed wiring board is improved.
  • the use of the compressible porous substrate improves the reliability of the connection between the conductor protrusion and the metal foil.
  • the multi-layer printed wiring board of the present invention is characterized in that: (a) an insulating substrate and a metal foil provided on both sides of the insulating substrate; An inner layer material having a conductive pattern for a layer material and an interstitial via hole provided on the insulating substrate; (b) an insulating resin provided on both sides of the inner material; and (c) an insulating resin provided on both sides of the inner material. And (d) a surface via hole for electrically connecting the conductive pattern for the inner layer and the conductive pattern for the outer layer.
  • the outer layer conductive pattern is formed from a metal foil with an insulating resin having the insulating resin and a metal foil adhered to the insulating resin
  • the inner layer material conductive pattern further comprises:
  • a conductor protrusion is electrically connected to the inner layer material wiring pattern, and the conductor protrusion penetrates the insulating substrate and is connected to the outer layer conductive pattern.
  • the conductor protrusion has the function of the interstitial via hole.
  • the insulating substrate is formed by curing a sheet-like resin pre-predeer having a base material and a resin impregnated in the base material.
  • the conductor projection penetrates through the inside of the resin pre-spreader.
  • the insulating resin has a non-through hole. The surface via hole is formed in the non-through hole.
  • a method of manufacturing a multilayer printed wiring board comprising: (a) forming a conical or pyramid-shaped conductor projection at a predetermined position on a metal foil; and (b) having the conductor projection.
  • the surface and the sheet-like base material impregnated with resin are overlapped, and the metal foil and the resin-impregnated base material are laminated while being heated and pressurized while being heated.
  • the conductor protrusion has a function of an interstitial via hole.
  • a multilayer printed wiring board can be manufactured by a simple manufacturing process according to the required specifications.
  • the non-through holes are formed by laser machining.
  • a metal plating is provided in the non-through hole, and the metal plating electrically connects the conductive pattern for the inner layer material and the conductive pattern for the outer layer.
  • the outer surface surface hole can be easily formed on the land of the inner vial in the inner vial vial.
  • a remarkably high wiring capacity can be obtained.
  • a remarkably high wiring capacity can be obtained.
  • the adhesive strength between the outer layer conductive pattern and the substrate is extremely high, and high mounting reliability can be realized even in a small-diameter land.
  • conductive protrusions are formed by curing the conductive paste. Is done. With this configuration, a large number of conductor projections can be easily formed by a simple process. Therefore, the projection shape becomes uniform and stable. As a result, a multilayer printed wiring board having stable interstitial via holes can be obtained.
  • the insulating resin used for the metal foil with the insulating resin an insulating resin having strong adhesiveness to metal is used.
  • the metal foil with insulating resin has a metal foil and an insulating resin applied to the metal foil. With this configuration, the adhesive strength between the outer layer conductor pattern and the insulating resin is improved.
  • FIG. 1 is a cross-sectional view illustrating a method for manufacturing a multilayer printed wiring board according to Exemplary Embodiment 1 of the present invention.
  • a multilayer printed wiring board 9 includes an inner layer material 1, a metal foil with insulating resin 5, a conductive pattern 8 for an outer layer, and a surface via hole (SVH) 7.
  • the inner layer material 1 has an inner layer material insulating substrate 3, an inner layer material conductive pattern 2, and an inner layer material conductive paste 4.
  • the metal foil 5 with an insulating resin has an insulating resin 5b and a metal foil 5a.
  • the metal foil with insulating resin 5 has a non-through hole 6, and the non-through hole 6 is formed on the metal foil with insulating resin 5 by laser processing.
  • the surface via hole (SVH) 7 has a metal plating formed in the non-through hole 6. Interstitial Jalva Hall (IVH) is formed in inner layer material 1. The surface via hole (SVH) 7 is formed in the outer layer. Each of the layers has a conductive pattern 2.
  • a resin pre-paeder 3 as an insulating substrate for an inner layer material is prepared.
  • the resin pre-printer 3 has an aramide non-woven fabric base material and an epoxy resin impregnated in the aramide non-woven fabric base material.
  • This resin prepreg has a sheet shape, is in a semi-cured state, and has compressibility. That is, the base material is porous and has compressibility.
  • Aramid fibers are fibers made from aromatic polyamides.
  • a through hole is formed in the resin pre-paeder 3a by a carbon dioxide laser process.
  • the conductive paste 4 a is filled in the through hole.
  • the through hole filled with the conductive paste forms an interstitial via hole.
  • copper foil is superimposed on both sides of the resin pre-reader 3a.
  • the pre-cured copper-clad laminate is pressurized while being heated by a hot press to bond the copper foil to the resin pre-paider 3a and to cure the resin pre-paeder 3a.
  • a copper-clad laminate having the inner layer insulating substrate 3a and the copper foil bonded to both sides of the insulating substrate 3a is prepared.
  • screw the copper foil of the copper-clad laminate To form the first conductive pattern 2a for the inner layer material.
  • the conductive patterns 2a for the first inner layer material formed on both sides of the insulating substrate 3a are electrically connected to each other by an in-situ via hole having a conductive base.
  • the other uncured copper-clad laminate has a resin pre-breg 3 having a through-hole, a conductive paste 4 b filled in the through-hole, and a copper foil superimposed on the resin pre-breg 3 b. Then, the other uncured copper-clad laminate is hot-pressed to bond the copper foil to the resin pre-paider 3b and to cure the resin pre-paeder 3b. Next, the copper foil placed outside is processed by a processing method such as a screen printing method or a photographic method to form the second inner layer material conductive pattern 2b. In this way, an inner layer material 1 as shown in FIG.
  • the plurality of conductive patterns such as the first inner layer material conductive pattern 2a and the second inner layer material conductive pattern 2b, are electrically connected to each other by an in-situ stationary via hole having a conductive base. Connected.
  • a metal foil 5 with an insulating resin is laminated on both sides of the inner layer material 1.
  • the metal foil with insulating resin 5 has a metal foil 5a and an insulating resin 5b.
  • the metal foil 5 with an insulating resin has a metal foil 5a and a semi-cured insulating resin 5b applied to the metal foil 5a.
  • Absolute The edge resin 5b has a strong adhesive strength to the metal foil 5a.
  • the laminated inner layer material 1 and the metal foil 5 with insulating resin are pressurized while being heated by a hot press. In this manner, the metal foil 5 with the insulating resin is bonded to the inner layer material 1 and the insulating resin 5b is cured.
  • the surface of the first inner layer material conductive pattern 2a of the inner layer material 1 or the copper foil in the previous step is replaced with the surface. It is desirable to apply a surface treatment such as a roughening treatment, a protection treatment, or a baking treatment. As the surface roughening treatment, soft etching or the like is used. As a result, the adhesion between the first inner layer material conductive pattern 2a and the metal foil 5 with insulating resin is significantly improved. Furthermore, the internal stress caused by the difference in thermal shrinkage between the inner layer material 1 and the outermost metal foil with insulating resin 5 is reduced. As a result, the occurrence of cracks is prevented. Further, separation of the inner layer material 1 and the metal foil 5 with insulating resin is prevented.
  • a surface treatment such as a roughening treatment, a protection treatment, or a baking treatment.
  • the insulating resin 5b of the metal foil with insulating resin 5 has the same resin material as the resin material used for the above-described insulating substrates 3a and 3b for the inner layer material. That is, the insulating resin 5b has the same epoxy resin. With this configuration, the difference in the internal stress described above is significantly reduced, and as a result, the effect of preventing the occurrence of cracks and peeling is significantly improved.
  • amide fibers are used as the base material of the insulating substrates 2a and 2b for the inner layer material.
  • the reason is as follows. (1) When a conventional paper base and phenolic resin, epoxy resin or polyester are used as the substrate for the inner layer material, a laser processing step for forming through holes In this case, it is difficult to accurately form a desired small hole of about 30 / zm to about 100 m. Therefore, the use of paper base is not practical from the viewpoint of productivity.
  • Aramid nonwoven fabric has excellent laser processability. That is, compared to an insulating substrate using paper or a glass fiber non-woven fabric or a glass fiber woven fabric, the insulating substrate using the non-woven fabric base material has a force of about 30 m by laser processing.
  • a small through hole having a diameter of about 100 m can be accurately formed, and the filling operation can be stably performed in the step of filling the through hole with the conductive paste.
  • the insulating substrate using the aramide non-woven fabric substrate has a smaller diameter hole of about 30 m to about 100 m than the insulating substrate using the glass fiber woven fabric substrate.
  • the conductive paste can be filled accurately.
  • the base material of the insulating substrates 3a and 3b must be made of an aluminum substrate.
  • a non-woven fabric made of fiber it is possible to accurately form a small diameter hole of about 30 to about 100, and to fill the through hole with a conductive paste accurately. Can be.
  • the metal foil 5 with insulating resin is provided as the outermost layer, it is necessary to reduce the effect of thermal stress generated at the boundary between the outermost layer and the inner layer material. Since the aramide fiber has high mechanical strength, high heat resistance temperature, excellent physical properties, and excellent compressibility, it is used as the base material of the inner layer material. Thus, the effect of thermal stress generated at the boundary between the outermost layer and the inner layer material is reduced. As a result, a multilayer printed wiring board suitable for practical use is obtained.
  • the nonwoven fabric of amide fiber has excellent compressibility.
  • the inner layer material is formed by applying pressure while heating, and thereafter, the metal foil 5 with insulating resin is laminated on both surfaces of the inner layer material, and further heated. Internal stress is generated in the process of repeating the heating and pressurizing heat press processes multiple times such as pressurizing.
  • the internal stress is reduced even in a plurality of compression steps such as heating and pressing. It becomes possible to do. Further, the conduction resistance between the conductive pastes 4a and 4b of the inner layer material 1 and the conductive patterns 2a and 2b of the copper foil can be reduced.
  • a photosensitive etching resist is applied to the entire surface of the metal foil 5 with an insulating resin, exposed, developed, and developed.
  • the photosensitive etching resist in the portion where the non-through hole is to be formed is removed.
  • the metal foil 5 where the outermost non-through hole is formed is etched with an etchant such as cupric chloride. Remove with a cleaning solution in advance.
  • a hole having a diameter 5 to 10% larger than a desired diameter of the hole is formed by a laser beam. In this way, a non-through hole 6 is obtained.
  • the inside of the non-through hole 6 is treated with a permanganic acid solution or the like to remove the exposed resin on the surface of the metal foil of the inner layer material 1. This process is performed a plurality of times as necessary.
  • a metal plating layer such as an electroless plating or an electric plating is provided on the entire surface of the metal foil 5 a having the non-through holes 6. At this time, the metal plating is also formed in the non-through holes 6. Thereafter, a surface via hole (SVH) 7 and an outer layer conductive pattern 8 are formed by a method such as a screen printing method or a photographic method. Thus, the multilayer printed wiring board 9 is obtained. Further, the inner layer material conductive patterns 2a and 2b and the outer layer conductive pattern 8 are electrically connected by the metal plating layer. In this way, a surface via hole (SVH) 7 is formed.
  • a surface via hole (SVH) 7 is formed.
  • the metal plating layer 5c installed in the non-through hole is formed by the metal plating layer itself. It is also possible to bury it.
  • the diameter of the non-through hole is 50 to 100 mm, about 50% of the inside of the non-through hole is buried.
  • the adhesive strength between the surface via hole 7 and the insulating resin layer 5b can be increased.
  • the surface via hole (SVH) 7 is used to form a soldering land for component mounting. It can also be used as a body pattern. As a result, the density of component mounting is increased.
  • the inner layer material includes a plurality of insulating substrates and a plurality of conductive patterns for the inner layer material.
  • the present invention is not limited to this configuration, and the inner layer material may include one insulating substrate and its insulating substrate. It is also possible to have a configuration having the conductive pattern for the inner layer material installed on both sides. Typical Example 2
  • the interstitial via hole (IVH) formed in the inner layer material has a conductive base instead of a metal plating. Therefore, the land formed in the interstitial vial portion has excellent smoothness. Therefore, through the non-through hole 6 of the metal foil 5 with insulating resin from the outer layer, the surface by hole metal (SVH) 7 made of metal plating can be easily placed on this smooth land. Can be formed. Epoxy resin was used as the insulating resin 5b in the metal foil 5 with the insulating resin.
  • a comparative example an insulating layer as an outermost layer was formed on both sides of the inner layer material, and then a non-through-hole surface via hole (SVH) and a conductive pattern for the outer layer were formed on a metal sheet. Formed by g. In this way, a multilayer printed wiring board of a comparative example was prepared. Created according to this exemplary embodiment Between the insulating layer 5b and the metal plating 5c at the surface via hole (SVH) between the multilayer printed wiring board prepared and the multilayer printed wiring board prepared by the method of the comparative example. The adhesive strength of the sample and the adhesive strength between the insulating layer 5b and the outer layer conductive pattern 8 were measured and compared. The results are shown in Table 1.
  • the adhesive strength of the multilayer printed wiring board produced by the method of the present exemplary embodiment is determined by comparing the insulation layer 5b and the metal plating of the surface via hole (SVH). With The adhesive strength between the insulating layer 5b and the conductive pattern 8 for the outer layer is about the same as that of the multilayer printed wiring board prepared by the method according to the comparative example. It has an intensity ranging from 2 to about 5 times.
  • the method of applying pressure while heating the semi-cured insulating resin by heating with a hot press is to apply or laminate the conventional insulating resin on the surface of the inner layer material. It has less variation in the outermost layer coating process than the method and excellent surface flatness.
  • the resin is an epoxy resin.
  • the multilayer printed wiring board of the present exemplary embodiment has remarkably excellent wiring accommodating properties. Further, the adhesive strength between the insulating layer and the surf-aspire hole (SVH) and the adhesive strength between the insulating layer and the outer layer conductive pattern are significantly improved. Furthermore, in component mounting in a small-diameter land, accurate component mounting can be performed, and high reliability can be obtained.
  • Typical Example 3
  • Figure 2 shows the process. In particular, a method of forming an inner layer material different from the above-described exemplary embodiment 1 will be described.
  • a conical or pyramid-shaped conductor projection 22 is formed at a predetermined position of the copper foil 2la as a conductive metal foil by a printing method or a transfer method.
  • the conductor protrusion 22 is formed of a conductive base.
  • a resin pre-bleg 23 as an insulating substrate for the inner layer material is prepared.
  • the resin pre-bleg 23 has a nonwoven fabric base material of an amide fiber and an epoxy resin impregnated in the base material.
  • This resin pre-breg 23 is in a semi-cured state.
  • the first copper foil 21 b is superimposed on the front surface of the resin pre-breg 23, and the first copper foil 21 a having the conductor protrusion 22 is superimposed on the back surface of the resin pre-breg 23.
  • step (d) of FIG. 2 the first copper foil 2 la is added to form the first inner layer conductive pattern 25 a, and the second copper foil 21 b is processed.
  • a conductive pattern 25b for the inner layer material is formed.
  • the conductive pattern 25a for the first inner layer material is the conductor for the first inner layer material.
  • Circuit 25a, and the second inner layer material conductive pattern 25b is a second inner layer material conductor circuit 25b. In this way, the inner layer conductor circuit 25 is formed on the inner layer laminated board 24.
  • the metal foil with insulating resin 5 is laminated by the same method as the step (b) in FIG. 1 of the typical embodiment 1.
  • the metal foil with insulating resin 5 has a metal foil 5a and a semi-hardened insulating resin 5b applied to the metal foil 5a.
  • the inner layer laminate 24 and the metal foil with insulating resin 5 are pressurized while being heated by a hot press. In this way, the metal foil 5 with insulating resin is bonded to the inner layer laminated plate 24 and the insulating resin 5b is cured.
  • the same processes as (d) and (d) are added to the process shown in Fig. 1. In this way, a multilayer printed wiring board is formed.
  • the multilayer printed wiring board of this exemplary embodiment 3 is composed of the first inner layer conductive pattern 25a and the second inner layer material conductive pattern, which are provided on both sides of one inner layer laminate 24.
  • the present invention is not limited to this configuration, and a multilayer printed wiring board having a plurality of inner layer material laminates 24 can also be manufactured. That is, an inner layer material having a plurality of inner layer material laminated plates 24 is prepared by the same method as the step (a) in FIG. 1 shown in the typical example 1. Further, by repeating the steps (b) and (c) in FIG. 2, the inner laminate can have a multilayer structure.
  • the method of the typical embodiment 1 to the typical embodiment 3 By adopting the method of the typical embodiment 1 to the typical embodiment 3, a simple manufacturing process can be performed in accordance with the required specifications, and thus, many processes can be performed. It becomes possible to build a multilayer printed wiring board. Further, the multilayer printed wiring board of the present exemplary embodiment has remarkably excellent wiring capacity. Furthermore, the contact strength between the outer layer conductive pattern and the substrate is significantly improved. Therefore, high mounting reliability can be realized even in a multilayer printed wiring board having a small diameter land. Industrial applications
  • the inner layer material has an interstitial via hole (IVH) formed by the conductive paste
  • the land of the inner layer material interstitial via hole (IVH) is reduced.
  • a land portion can be formed so as to have smoothness.
  • the surface via holes (SVH) can be easily formed on the land by the metal plating from the outer layer, so that the wiring accommodating property is significantly improved.
  • the insulating resin used in the metal foil with the insulating resin has strong adhesiveness to the metal, so that the adhesive strength between the insulating resin and the metal foil is dramatically improved. Good component mounting strength can be maintained even if the conductive pattern has a small diameter.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

A multilayered printed wiring board comprising an insulation substrate (3), an inner layer material (1) having inner layer material-use conductive patterns (2) disposed on the opposite sides of the insulation substrate and formed of metal foils, and interstitial via holes (4) disposed in the insulation substrate, insulation resins (5b) disposed on the opposite sides of the inner layer material, outer layer-use conductive patterns (8) disposed on the surfaces of the insulation resins, and surface via holes (7) for electrically connecting the inner layer material-use conductive patterns with the outer layer-use conductive patterns, wherein the outer layer-use conductive patterns are formed of insulation resin-carrying metal foils (5) having the insulation resins and metal foils (5a) bonded to the insulation resins, whereby providing an excellent wiring housing capability, and dramatically improving the bonding strength between the insulation resins and the outer layer-use conductive patterns to thereby retain an excellent parts-mounting strength even if the outer layer-use conductive patterns are reduced in diameter.

Description

明 細 書 多層プリ ン ト配線板およびその製造方法 技術分野  Description Multilayer printed wiring board and method of manufacturing the same
本発明は、 各種の電子機器に用い られる多層プリ ン ト配線 版とその製造方法に関する。 背景技術  The present invention relates to a multilayer printed wiring board used for various electronic devices and a method for manufacturing the same. Background art
近年、 パソ コ ン、 移動体通信用電話機、 及び、 ビデオカ メ ラ等の電子機器の高機能化、 及び、 高密度化に伴っ て、 電子 部品とその中枢となる半導体は、 小型化、 高集積化、 高速化、 又は、 多ピン化を必要とする。  In recent years, as electronic devices such as personal computers, mobile communication telephones, and video cameras have become more sophisticated and denser, electronic components and their core semiconductors have become smaller and more highly integrated. Requires higher speed, higher speed, or more pins.
それに伴い、 多層プリ ン ト配線板は、 配線収容性及び表面 実装密度の向上を必要とする。 さ ら に、 半田付けラ ン ドの小 径化に伴って、 部品 と基板との接合強度の信頼性の向上が要 求されてきている。 具体的には、 0 . 5 m mピ ッ チポールグ リ ツ ドア レイ (以下 B G A と称す) に代表される よ う な、 高 密度と φ 0 . 3 m m以下の小径ラ ン ド との双方を有する実装 に対応できるよ う な、 プリ ン ト配線板が要求されてきている。 例えば、 落下衝撃な どの機械的ス ト レス に対して優れた性能 を持つ、 プリ ン ト配線板が要求されてきている。  Along with this, multilayer printed wiring boards require an improvement in wiring accommodation and surface mounting density. Furthermore, as the diameter of the soldering land becomes smaller, there is a demand for improved reliability of the joining strength between the component and the substrate. More specifically, mounting with both high-density and small-diameter land with a diameter of 0.3 mm or less, as typified by a 0.5 mm pitch pole griddle (hereinafter referred to as BGA). There is a demand for printed wiring boards that can cope with such problems. For example, printed wiring boards that have excellent performance against mechanical stress such as drop impact have been demanded.
これら の要求を満足するために、 次のよ う な従来の多層プ リ ン ト配線板が提案されている。 従来の多層プリ ン ト配線板 は、 内層材と、 こ の内層材の両面に設置された感光性樹脂又 はフィルム状の絶縁層 と を備える。 その内層材は樹脂多層プ リ ン ト配線板を有 し、 その多層プリ ン ト配線板の中のそれぞ れの層はイ ンタースティ シャルバイ ァホール ( I V H ) によ り 電気的に接続されている。 感光性樹脂又は絶縁層は、 内層 材の両面に塗布またはラ ミ ネ一 ト されて形成される。 内層材 に非貫通孔が形成され、 金属メ ツキによ り 、 層間が電気的に 接続されている。 In order to satisfy these requirements, the following conventional multilayer printed wiring boards have been proposed. Conventional multilayer printed wiring board Includes an inner layer material and a photosensitive resin or film-like insulating layer provided on both sides of the inner layer material. The inner layer material has a resin multilayer printed wiring board, and each layer in the multilayer printed wiring board is electrically connected by an interstitial via hole (IVH). . The photosensitive resin or the insulating layer is formed by coating or laminating on both surfaces of the inner layer material. Non-through holes are formed in the inner layer material, and the layers are electrically connected by metal plating.
こ の従来の多層プリ ン ト配線板の製造方法について、 以下 に説明する。  The method of manufacturing this conventional multilayer printed wiring board will be described below.
第 3 図は、 従来の多層プリ ン ト配線板の製造方法を示す。 第 3 図において、 感光性タイ プの樹脂な どの絶縁層 1 2 が最 外層に設置され、 こ の絶縁層 1 2 は、 塗布またはラ ミ ネー ト によ り 設置される。 この従来の多層プリ ン ト配線板 1 5 は、 外層用の導電パター ン 1 1 、 樹脂絶縁層 1 2 、 内層材 1 3 、 非貫通穴 1 2 a 、 サーフ ェイ スバイ ァホール ( S V H ) 1 1 a を備える。 内層材 1 3 は、 絶縁基板 1 4 、 内層材用の 導電パターン 1 4 a 、 銅はく 1 4 d 、 内層材用の導電性べ一 ス ト 1 4 b を有する。 絶縁基板 1 4 はプリ プレダ 1 4 c 力、 ら 作成される。 サ一フ ヱイ スバイ ァホール 1 1 a は、 樹脂絶縁 層 1 2 に形成された非貫通穴 1 2 a を金属メ ツキする こ と に よ り 形成される。 非貫通穴 1 2 a は、 サ一フ ェイ スバイ ァホ —ル 1 1 a を形成するために、 樹脂絶縁層 1 2 に露光 ' 現像 方法、 又はレーザ照射方法な どによ り 形成される。 多層プリ ン ト配線板 1 5 は、 その多層プリ ン ト配線板 1 5 の内部と外 部に導電パター ンを有する。 以上のよ う に構成された多層プ リ ン ト配線板の製造方法について、 以下に説明する。 FIG. 3 shows a conventional method for manufacturing a multilayer printed wiring board. In FIG. 3, an insulating layer 12 such as a photosensitive type resin is provided on the outermost layer, and the insulating layer 12 is provided by coating or laminating. This conventional multilayer printed wiring board 15 has a conductive pattern 11 for an outer layer, a resin insulating layer 12, an inner layer material 13, a non-through hole 12 a, a surface via hole (SVH) 11. a. The inner layer material 13 has an insulating substrate 14, a conductive pattern 14 a for the inner layer material, a copper foil 14 d, and a conductive base 14 b for the inner layer material. The insulating substrate 14 is made from a pre-predator 14c force. The self-via hole 11 a is formed by metal plating the non-through hole 12 a formed in the resin insulating layer 12. The non-through hole 12a is formed on the resin insulating layer 12 by an exposure-to-development method, a laser irradiation method, or the like to form a surface via hole 11a. . Multi-layer pre The printed wiring board 15 has conductive patterns inside and outside the multilayer printed wiring board 15. A method for manufacturing the multilayer printed wiring board configured as described above will be described below.
まず、 第 3 図の ( a ) 工程において、 プリ プレダ 1 4 c に 穴加工を施す。 形成された穴の内に、 導電性ペース ト 1 4 b を充填する。 その後、 銅箔をプリ プレダ 1 4 c に重ねて、 そ して、 熱プレス し、 これによ り 、 導電性ペース ト 1 4 b を充 填したプリ プレダ 1 4 c に銅箔を接着する。 このよ う に して、 絶縁基板 1 4 の両側に銅箔を有する銅張積層板を形成する。 その後、 公知のス ク リ ーン印刷法又は写真法な どの方法を用 いて、 内層材用の導電パター ン 1 4 a を形成する。 こ のよ う に して、 両側に導電パター ン 1 4 a を持つ絶縁基板 1 4 を作 成する。  First, in the step (a) in FIG. 3, a hole is formed in the pre-preparer 14c. Fill the formed holes with conductive paste 14b. Thereafter, the copper foil is overlaid on the pre-preparer 14c, and then hot-pressed, whereby the copper foil is bonded to the pre-preparer 14c filled with the conductive paste 14b. In this way, a copper-clad laminate having copper foil on both sides of the insulating substrate 14 is formed. Thereafter, a conductive pattern 14a for the inner layer material is formed by using a known screen printing method or a photographic method. In this way, an insulating substrate 14 having conductive patterns 14a on both sides is formed.
次に、 第 3 図の ( b ) 工程において、 穴に導電性ペース ト 1 4 b を充填したプリ プレダ 1 4 c を作成する。 その導電性 ペース ト 1 4 b を充填したプリ プレダ 1 4 c を、 両面に導電 パター ン 1 4 a を持つ絶縁基板 1 4 の両側に積層する。 さ ら に、 導電性ペース ト 1 4 b を充填したプリ プレダ 1 4 c の表 面に、 銅箔 1 4 d を積層する。 その後、 これら の積層物を熱 プレス によ り 加熱 し、 そして、 加圧する。  Next, in a step (b) of FIG. 3, a pre-preparer 14c in which holes are filled with a conductive paste 14b is prepared. A pre-predeer 14c filled with the conductive paste 14b is laminated on both sides of an insulating substrate 14 having a conductive pattern 14a on both sides. In addition, a copper foil 14d is laminated on the surface of the pre-preparer 14c filled with the conductive paste 14b. Thereafter, these laminates are heated by a hot press and then pressurized.
次に、 第 3 図の ( c ) 工程において、 前述の ( b ) 工程に おいて設置された銅箔 1 4 d に、 公知のス ク リ ーン印刷法又 は写真法な どを施す。 これによ り 、 両面に、 さ ら に、 導体パ ター ン 1 4 a を形成する。 こ のよ う に して、 第 3 図の ( c ) に示されるよ う な内層材 1 3 を得る。 Next, in the step (c) of FIG. 3, a known screen printing method or a photographic method is applied to the copper foil 14d set in the step (b). Thus, a conductor pattern 14a is formed on both sides. Thus, (c) of Fig. 3 An inner layer material 13 as shown in FIG.
次に、 第 3 図の ( d ) 工程において、 内層材 1 3 の上に、 感光性タイ プの樹脂などの樹脂絶縁層 1 2 を、 半硬化状態で 塗布する。 又は、 内層材 1 3 の上に、 樹脂絶縁層 1 2 を ラ ミ ネー トする。  Next, in step (d) of FIG. 3, a resin insulating layer 12 such as a photosensitive type resin is applied on the inner layer material 13 in a semi-cured state. Alternatively, the resin insulation layer 12 is laminated on the inner layer material 13.
その後、 第 3 図の ( e ) 工程において、 の所定の位置に、 非貫通穴 1 2 a を、 露光と現像工程、 又はレーザ照射工程な どによ り 形成する。  Thereafter, in the step (e) of FIG. 3, a non-through hole 12a is formed at a predetermined position by an exposure and development step or a laser irradiation step.
次に、 第 3 図の ( f ) 工程において、 金属メ ツ キによ り 、 樹脂絶縁層 1 2 の上な導電パターン 1 1 を形成し、 そ して、 非貫通穴 1 2 a にサーフェイ スバイ ァホール 1 1 a を形成す る。 サ一フェイ スバイ ァホール 1 1 a は内層の導電パター ン と外層の導電パターンを電気的に接続する機能を持つ。 こ の よ う にして、 多層プリ ン ト配線板 1 5 を得る。  Next, in step (f) of FIG. 3, a conductive pattern 11 on the resin insulating layer 12 is formed by metal plating, and a surface by-pass is formed in the non-through hole 12a. A hole 11a is formed. The surface via hole 11a has a function of electrically connecting the inner conductive pattern to the outer conductive pattern. Thus, a multilayer printed wiring board 15 is obtained.
その後、 写真法などの公知の方法によ り 、 ソルダレジス ト の形成、 及び、 外形の加工などが実施される。  After that, the formation of the solder resist and the processing of the outer shape are performed by a known method such as a photographic method.
上記の従来の多層プリ ン ト配線板において、 内層材は、 全 ての層の任意の位置に、 イ ンタースティ シャルバィ ァホール ( I V H ) を有し、 さ ら に、 外層は、 約 5 0 m〜約 1 0 0 の小さ い非貫通穴を有する。 こ のよ う に、 従来の多層プ リ ン ト配線板は、 優れた配線の収容性および優れた表面高密 度実装を有 していた。 しか しながら、 こ のよ う な従来の多層 プリ ン ト配線板において、 外層用の導電パターン 1 4 a と樹 脂絶縁層 1 2 と の接着強度が弱かっ た。 近年、 ピ ッチボール グリ ッ ド ア レイ の高集積化と高密度化に伴っ て、 半田付けラ ン ドの小径化が進行し、 外層用の導電パターン 1 4 a と絶縁 基板 1 4 との接着強度の向上が要求されている。 すなわち、 こ の従来の多層プリ ン ト配線板 1 5 は樹脂絶縁 層 1 2 の上に金属メ ツキによ り 形成された導電パター ンを有 する。 樹脂の上にメ ツキによ り 形成されたメ ツキ層は、 弱い 接着力を有する。 したがっ て、 樹脂絶縁層 1 2 の上に設置さ れた導電パターン 1 1 は、 樹脂絶縁層 1 2 に対して、 弱い接 着力 を有する。 そのため、 高密度部品を実装 した場合、 例え ば、 小径ラ ン ド上に半田付けを施した場合、 特に機械的ス 卜 レス によ り 、 この導体パターン 1 1 が樹脂絶縁層 1 2 か ら剥 離する恐れがあっ た。 In the above-mentioned conventional multilayer printed wiring board, the inner layer material has an interstitial via hole (IVH) at an arbitrary position in all layers, and the outer layer has a thickness of about 50 m or more. It has about 100 small non-through holes. As described above, the conventional multilayer printed wiring board has excellent wiring accommodating properties and excellent surface high-density mounting. However, in such a conventional multilayer printed wiring board, the adhesive strength between the outer conductive pattern 14a and the resin insulating layer 12 was weak. In recent years, pitch balls As the grid array becomes more highly integrated and denser, the diameter of the soldering land becomes smaller and the bonding strength between the outer conductive pattern 14a and the insulating substrate 14 is required. Have been. That is, this conventional multilayer printed wiring board 15 has a conductive pattern formed on the resin insulating layer 12 by metal plating. The plating layer formed on the resin by plating has a weak adhesive strength. Therefore, the conductive pattern 11 placed on the resin insulating layer 12 has a weak adhesive force to the resin insulating layer 12. Therefore, when a high-density component is mounted, for example, when soldering is performed on a small-diameter land, the conductor pattern 11 is peeled off from the resin insulating layer 12 due to mechanical stress. There was a risk of separation.
また、 内層材 1 3 を形成する絶縁基板 1 4 は最外層を形成 する絶縁層 1 2 と比べて、 硬化プロセスが異なる。 そのため、 その絶縁基板 1 4 と樹脂絶縁層 1 2 との物理的特性の差が大 き く 発生する。 そのため、 内層材と最外層との密着が弱 く な る。 又は、 部品実装工程の半田付け時に発生する熱によっ て、 熱膨張係数の違いに起因する ク ラ ッ ク 、 及び、 内層材と最外 層 との層間に剥離などが発生する恐れもあっ た。  Further, the curing process of the insulating substrate 14 forming the inner layer material 13 is different from that of the insulating layer 12 forming the outermost layer. Therefore, a large difference in physical characteristics between the insulating substrate 14 and the resin insulating layer 12 occurs. Therefore, the adhesion between the inner layer material and the outermost layer is weakened. Alternatively, heat generated during soldering in the component mounting process may cause cracks due to differences in thermal expansion coefficients and peeling between the inner layer material and the outermost layer. .
本発明は、 配線収容性および表面高密度実装が従来の特長 を維持する と と も に、 外層導電パター ン と絶縁層の接着強度 が向上し、 0 . 5 m mピ ッチポールグリ ッ ドア レイ ( B G A ) な どの高集積 · 高密度部品が機械的ス ト レス に対して良好な 実装信頼性を有する どの特徴を持つ多層プリ ン ト配線板を 提供する。 発明の開示 The present invention improves the bonding strength between the outer conductive pattern and the insulating layer while maintaining the conventional features of the wiring accommodating property and the surface high-density mounting, and improves the 0.5 mm pitch pole grid array (BGA). High integration and high density parts are good for mechanical stress Provide multilayer printed wiring boards with any features that have mounting reliability. Disclosure of the invention
本発明の多層プリ ン ト配線板は、  The multilayer printed wiring board of the present invention
( a ) 絶縁基板と、 前記絶縁基板の両側に設置された金 属箔によ り形成された内層材用導電パターンと、 前記絶縁基板に設置されたィ ンタースティ シャル バイ ァホールとを有する内層材と、  (a) An inner layer material having an insulating substrate, a conductive pattern for an inner layer material formed by metal foils provided on both sides of the insulating substrate, and an interstitial via hole provided on the insulating substrate When,
( b ) 前記内層材の両側に設置された絶縁樹脂と、 (b) an insulating resin installed on both sides of the inner layer material,
( c ) 前記絶縁樹脂の表面に設置された外層用導電バタ —ンと、 (c) an outer layer conductive pattern provided on the surface of the insulating resin;
( d ) 前記内層材用導電パターンと前記外層用導電パ夕 —ンとを電気的に接続するサーフェイ スバイ ァホ —ルと  (d) a surface via hole for electrically connecting the conductive pattern for the inner layer material and the conductive pattern for the outer layer;
を備え、  With
前記イ ンターステイ シャルバイ ァホ一ルは、 前記複数の 内層材導電パターンのう ち のそれぞれの内層材導電バタ ーンを電気的に接続し、  The interstitial via hole electrically connects each inner layer conductive pattern of the plurality of inner layer conductive patterns;
前記外層用導電パターンは、 前記絶縁樹脂と前記絶縁樹 脂に接着された金属箔と を有する絶縁樹脂付き金属箔の う ちの前記金属箔か ら形成されている。  The outer layer conductive pattern is formed from the metal foil out of the metal foil with the insulating resin having the insulating resin and the metal foil bonded to the insulating resin.
本発明の多層プリ ン ト配線板の製造方法は、  The method for manufacturing a multilayer printed wiring board according to the present invention includes:
( a ) 絶縁基板と、 前記絶縁基板の両側に設置された金属箔 によ り 形成された内層材用導電パターンと、 前記絶縁 基板に設置されたィ ン夕一スティ シャルバィ ァホール と を有する内層材を作成する工程、 (a) an insulating substrate, and metal foil placed on both sides of the insulating substrate Forming an inner layer material having an inner layer material conductive pattern formed by the above, and an instantaneous via hole provided on the insulating substrate;
( b ) 前記内層材の両面に、 絶縁樹脂と前記絶縁樹脂に接着 された金属箔とを有する絶縁樹脂付き金属箔を重ね合 わせる工程、  (b) laminating a metal foil with an insulating resin having an insulating resin and a metal foil bonded to the insulating resin on both surfaces of the inner layer material,
( C ) 前記内層材と前記内層材の両面に重ね られた前記絶縁 樹脂付き金属箔を加熱しながら加圧する工程、  (C) a step of pressing the inner layer material and the metal foil with insulating resin superposed on both surfaces of the inner layer material while heating,
こ こで、 前記絶縁樹脂が前記内層材に接着され、 ( d ) 前記絶縁樹脂付き金属箔を加工する こ と によ り 、 前記 絶縁樹脂付き金属箔に非貫通穴を形成する工程、 ( e ) 表面に露出する前記金属箔を加工 して、 外層用導電パ ターンを形成する工程、  Here, the insulating resin is adhered to the inner layer material, and (d) forming a non-through hole in the metal foil with the insulating resin by processing the metal foil with the insulating resin, (e) Processing the metal foil exposed on the surface to form an outer layer conductive pattern;
( f ) 前記外層用導電パターンと前記内層材用導電パターン と を電気的に接続する工程  (f) electrically connecting the outer layer conductive pattern and the inner layer material conductive pattern
を備える。 Is provided.
こ の構成によ り 、 著し く 優れた配線収容性を有する多層プ リ ン ト配線板が得られる。 さ ら に、 外層用導電パターン と基 材との接強度が著し く 向上する。 そのため、 小径ラ ン ド を持 つ多層プリ ン ト配線板においても、 高度な実装信頼性が実現 でき る。 図面の簡単な説明  With this configuration, a multilayer printed wiring board having remarkably excellent wiring accommodation properties can be obtained. Furthermore, the contact strength between the outer layer conductive pattern and the base material is significantly improved. Therefore, high mounting reliability can be realized even in a multilayer printed wiring board having a small diameter land. BRIEF DESCRIPTION OF THE FIGURES
第 1 図は、 本発明の典型的実施例における多層プリ ン ト配 線板の製造過程の断面図を示す。 . 第 2 図は、 本発明の他の典型的実施例における多層プリ ン ト配線板の製造過程の断面図を記す。 FIG. 1 shows a multi-layer print arrangement according to an exemplary embodiment of the present invention. FIG. 3 shows a cross-sectional view of the manufacturing process of the wire plate. FIG. 2 is a cross-sectional view showing a process of manufacturing a multilayer printed wiring board according to another exemplary embodiment of the present invention.
第 3 図は、 従来の多層プリ ン ト配線板の製造過程の断面図 を示す。 発明を実施するための最良の形態  FIG. 3 is a cross-sectional view showing a process of manufacturing a conventional multilayer printed wiring board. BEST MODE FOR CARRYING OUT THE INVENTION
本発明の一実施例の多層プリ ン ト配線板において、 内層材 は、 絶縁基板とその絶縁基板の両側に設置された内層材用導 電パターンを有する。 それぞれの層の内層材用導電パターン がイ ンタースティ シャルバイ ァホール ( I V H ) によ り電気 的に接続されている。 その内層材の両面に、 予め、 金属箔と その金属箔に対し強い接着性を有する絶縁樹脂とを有する絶 縁樹脂付き金属箔が張 り 合わされ、 これらの積層体が加熱加 圧される。 その後、 絶縁樹脂付き金属箔に、 非貫通穴が形成 される。 そして、 金属メ ツ キな どによ り 、 内層材用導電パ夕 ーンと外層用導電パターンとが電気的に接続される。 こ の構 成によれば、 著し く 高い配線収容性を有する多層プリ ン ト配 線板が得 られる。 さ ら に、 上記のよ う な絶縁樹脂付き金属箔 を外層材料と して使用 しているため、 絶縁樹脂と金属箔の接 着強度が飛躍的に向上する。 したがっ て、 外層用導体パター ンが小径になっ ても良好な部品実装強度が保持できる。  In the multilayer printed wiring board according to one embodiment of the present invention, the inner layer material has an insulating substrate and a conductive pattern for the inner layer material provided on both sides of the insulating substrate. The conductive pattern for the inner layer material of each layer is electrically connected by an interstitial via hole (IVH). On both surfaces of the inner layer material, a metal foil with an insulating resin having a metal foil and an insulating resin having strong adhesiveness to the metal foil is bonded in advance, and these laminates are heated and pressed. Thereafter, a non-through hole is formed in the metal foil with insulating resin. Then, the conductive pattern for the inner layer material and the conductive pattern for the outer layer are electrically connected by metal plating or the like. According to this configuration, a multilayer printed wiring board having remarkably high wiring accommodation capacity can be obtained. Furthermore, since the above-described metal foil with insulating resin is used as the outer layer material, the bonding strength between the insulating resin and the metal foil is dramatically improved. Therefore, good component mounting strength can be maintained even if the outer conductor pattern has a small diameter.
本発明の一実施例の多層プリ ン ト配線板は、 ( a ) 貫通穴を 持つ樹脂を含浸 した基材と、 その貫通穴に充填された導電性 ペース ト と、 その基材の両面に張 り 合わされた金属箔によ り 形成された内層材用導電パターンと を有する内層材と、 ( b ) こ の内層材の両面に設置され絶縁樹脂付き金属箔の金属箔か ら形成された外層用導電パターンと、 ( c ) 絶縁樹脂付き金属 箔に形成された非貫通穴に設置され、 外層用導電パターン と 内層材用導電パターンと を接続するサ一フェイ スバイ ァホー ルと を備える。 基材の両面に設置されたそれぞれの内層材用 導電パターンは、 貫通穴の中に形成されたイ ンタ一ステシャ ルバィ ァホールによ り 互いに接続されている。 こ の構成によ り 、 著し く 高い配線収容性が得られる。 さ ら に、 外層用導電 パターンと基材との接着強度が極めて強く なる。 そのため、 小径ラ ン ド においても高度な実装信頼性が得 られる。 The multilayer printed wiring board according to one embodiment of the present invention comprises: (a) a base material impregnated with a resin having a through hole, and a conductive material filled in the through hole. An inner layer material having a paste and a conductive pattern for the inner layer material formed by a metal foil bonded to both sides of the base material; and (b) a metal with an insulating resin provided on both sides of the inner layer material. A conductive pattern for the outer layer formed from the metal foil of the foil and (c) a non-penetrating hole formed in the metal foil with insulating resin for connecting the conductive pattern for the outer layer and the conductive pattern for the inner layer material. And a face-by-hole. Each of the conductive patterns for the inner layer material provided on both surfaces of the base material is connected to each other by an interstage via hole formed in the through hole. According to this configuration, a remarkably high wiring accommodating property can be obtained. Furthermore, the adhesive strength between the outer layer conductive pattern and the substrate becomes extremely high. As a result, high mounting reliability can be obtained even for small diameter land.
本発明の他の実施例の多層プリ ン ト配線板の製造方法は、 ( a ) シー ト状の樹脂含浸基材に貫通穴を形成する工程と、 ( b ) この貫通穴に導電性ペース ト を充填する工程と、 A method for manufacturing a multilayer printed wiring board according to another embodiment of the present invention includes: (a) a step of forming a through hole in a sheet-like resin-impregnated base material; and (b) a conductive paste in the through hole. Filling step,
( c ) 前記樹脂含浸基材の両面に金属箔を張 り 合わせて、 加 熱しながら加圧する工程と、 ( d ) 前記金属箔の加工によ り 回 路を形成 して、 前記機材の両面に内層材用導電パター ンを形 成し、 これによ り 、 内層材を形成する工程と、 ( e ) こ の内層 材の両面の最外層に絶縁樹脂付き金属箔を張 り 合わせて、 加 熱しながら加圧する工程と、 ( f ) 前記最外層の絶縁樹脂付き 金属箔に非貫通穴を設ける工程と、 ( g ) 内層材用導電パター ン と最外層金属箔を、 前記非貫通穴を介して電気的に接続す る工程と を備える。 こ の方法によ り 、 基材の両面に設置され たそれぞれの内層材用導電パター ンの間が貫通穴に形成され た導電性ペース ト によ電気的に接続される。 (c) laminating a metal foil on both sides of the resin-impregnated base material and pressing while heating, and (d) forming a circuit by processing the metal foil, and forming a circuit on both sides of the equipment. A conductive pattern for the inner layer material is formed, whereby the step of forming the inner layer material is performed, and (e) a metal foil with an insulating resin is bonded to the outermost layers on both sides of the inner layer material and heated. (F) providing a non-through hole in the outermost metal foil with insulating resin; and (g) connecting the inner layer material conductive pattern and the outermost metal foil through the non-through hole. Electrically connecting. By this method, it is installed on both sides of the substrate The conductive patterns for the inner layer material are electrically connected by conductive paste formed in the through holes.
望ま し く は、 非貫通穴がレーザ一加工によ り 形成される。 望ま し く は、 非貫通穴に金属メ ツキが設置され、 その金属 メ ツキによ り 、 内層材用導電パターン と外層用導電パターン とが電気的に接続される。 こ の構成によ り 、 内層材のイ ンタ —ステシャルバィ ァホールのラ ン ド上に、 外層のサーフェイ スバイ ァホールを、 容易に形成できる。 そのため、 著 し く 高 い配線収容性が得 られる。  Preferably, the non-through holes are formed by laser machining. Desirably, a metal plating is provided in the non-through hole, and the metal plating electrically connects the conductive pattern for the inner layer material and the conductive pattern for the outer layer. With this configuration, the surface via hole of the outer layer can be easily formed on the land of the inner-stear via hole of the inner layer material. Therefore, a remarkably high wiring accommodating property can be obtained.
望ま し く は、 絶縁樹脂付き金属箔に使用される絶縁樹脂と しては、 金属に対し強い接着性を有する絶縁樹脂が使用 され る。 特に望ま し く は、 絶縁樹脂付き金属箔は、 金属箔と、 こ の金属箔に塗布された絶縁樹脂とを有する。 こ の構成によ り 、 外層用導体パターン と絶縁樹脂との接着強度が向上する。  Desirably, as the insulating resin used for the metal foil with the insulating resin, an insulating resin having strong adhesiveness to metal is used. Particularly desirably, the metal foil with an insulating resin includes a metal foil and an insulating resin applied to the metal foil. With this configuration, the adhesive strength between the outer layer conductor pattern and the insulating resin is improved.
望ま し く は、 貫通穴と非貫通穴はレーザ加工によ り 形成さ れる。 こ の方法によって、 従来の ド リ ル加工に比べて小径の 非貫通穴を高い生産性で形成する こ とができる。  Desirably, the through holes and non-through holes are formed by laser machining. With this method, a small diameter non-through hole can be formed with higher productivity than conventional drilling.
望ま し く は、 最外層の絶縁樹脂付き金属箔に非貫通穴を形 成する時に、 その非貫通穴を形成する部分の金属箔を予め除 去してお く 。 この方法によっ て、 非貫通穴径よ り も も大きい レーザ径によ り 加工できる。 そのため、 レーザ加工の位置精 度の管理を各非貫通穴でする必要がな く 、 小径の非貫通穴を 高い生産性で形成する こ とができる。  Desirably, when a non-through hole is formed in the outermost metal foil with insulating resin, a portion of the metal foil where the non-through hole is formed is removed in advance. According to this method, it is possible to perform processing with a laser diameter larger than the diameter of the non-through hole. Therefore, it is not necessary to control the positional accuracy of laser processing for each non-through hole, and a small-diameter non-through hole can be formed with high productivity.
望ま し く は、 内層材用導電パターン と外層用導電パターン と を電気的に接続する工程は、 金属メ ツ キを施す工程を有す る。 この金属メ ツ キによって、 抵抗値が低く な り 、 信頼性が 向上する。 Preferably, the conductive pattern for the inner layer material and the conductive pattern for the outer layer The step of electrically connecting and has a step of applying metal plating. This metal plating reduces the resistance value and improves reliability.
望ま し く は、 最外層の絶縁樹脂付き金属箔に非貫通穴を設 ける工程は、 その非貫通穴を形成する部分の金属箔を予め除 去し、 その穴径よ り 大きい径の レーザー ビームを有する レー ザ一加工によ り 穴を形成する。 こ の方法によ り 、 レーザ一 ビ 一ム径を大き く する こ と によって、 金属箔に予め除去した位 置に対する レーザ一加工のズレが吸収補正される。 そのため、 非貫通穴が正確に、 確実に形成される。  Desirably, in the step of forming a non-through hole in the outermost metal foil with insulating resin, a portion of the metal foil where the non-through hole is formed is removed in advance, and a laser beam having a diameter larger than the hole diameter is removed. A hole is formed by laser machining with By increasing the diameter of the laser beam by this method, the deviation of the laser processing from the position previously removed from the metal foil is corrected by absorption. Therefore, the non-through hole is accurately and reliably formed.
望ま し く は、 基材に含浸された樹脂は、 絶縁樹脂付き金属 箔の絶縁樹脂と同一材料である。 特に望ま し く は、 これ ら の 樹脂と してはエポキシ樹脂である。 こ の構成によ り 、 半田付 けにおける リ フ ロー後のそ り が防止される。 さ ら に、 層間剥 離が防止される。 さ らに、 耐熱性も向上する。  Desirably, the resin impregnated in the base material is the same material as the insulating resin of the metal foil with the insulating resin. Particularly preferably, these resins are epoxy resins. With this configuration, warping after reflow in soldering is prevented. Furthermore, delamination is prevented. In addition, heat resistance is improved.
望ま し く は、 絶縁基板に含まれる基材が、 芳香族ポ リ ア ミ ドか らなる被圧縮性の多孔質基材を有する。 また、 その基材 に含浸される樹脂は、 熱硬化性樹脂を有する。 こ の構成によ り 、 多層プリ ン ト配線板が軽量になる。 さ ら に、 高耐熱性が 向上する。 そのため、 多層プリ ン ト配線板の信頼性が向上す る。 さ ら に、 被圧縮性の多孔質基材を用 いる こ と によ り 、 導 体突起と金属箔との接続の信頼性が向上する。  Desirably, the substrate included in the insulating substrate has a compressible porous substrate made of an aromatic polyamide. The resin impregnated in the base material has a thermosetting resin. According to this configuration, the multilayer printed wiring board is reduced in weight. In addition, high heat resistance is improved. Therefore, the reliability of the multilayer printed wiring board is improved. Further, the use of the compressible porous substrate improves the reliability of the connection between the conductor protrusion and the metal foil.
本発明の多の多層プリ ン ト配線板は、 . ( a ) 絶縁基板と、 前記絶縁基板の両側に設置さ れた金属箔によ り 形成された内 層材用導電パターン と、 前記絶縁基板に設置されたイ ンター ステイ シャルバイ ァホールと を有する内層材と、 ( b ) 前記内 層材の両側に設置された絶縁樹脂と、 ( c ) 前記絶縁樹脂の表 面に設置された外層用導電パターンと、 ( d ) 前記内層材用導 電パターンと前記外層用導電パターン と を電気的に接続する サーフェイ スバイ ァホールと を備える。 前記外層用導電パ夕 —ンは、 前記絶縁樹脂と前記絶縁樹脂に接着された金属箔と を有する絶縁樹脂付き金属箔か ら形成され、 前記内層材用導 電パターンは、 さ ら に、 前記内層材用配線パターンに電気的 に接続された導体突起を有し、 前記導体突起は、 前記絶縁基 板を貫通して、 前記外層用導電パターンに接続されている。 導体突起は前記イ ンタ一ステイ シャルバィ ァホールの機能を 有する。 The multi-layer printed wiring board of the present invention is characterized in that: (a) an insulating substrate and a metal foil provided on both sides of the insulating substrate; An inner layer material having a conductive pattern for a layer material and an interstitial via hole provided on the insulating substrate; (b) an insulating resin provided on both sides of the inner material; and (c) an insulating resin provided on both sides of the inner material. And (d) a surface via hole for electrically connecting the conductive pattern for the inner layer and the conductive pattern for the outer layer. The outer layer conductive pattern is formed from a metal foil with an insulating resin having the insulating resin and a metal foil adhered to the insulating resin, and the inner layer material conductive pattern further comprises: A conductor protrusion is electrically connected to the inner layer material wiring pattern, and the conductor protrusion penetrates the insulating substrate and is connected to the outer layer conductive pattern. The conductor protrusion has the function of the interstitial via hole.
望ま し く は、 前記絶縁基板は、 基材と前記基材に含浸され た樹脂と を有する シー ト状の樹脂プリ プレダの硬化によ り 形 成される。 前記導体突起は前記樹脂プリ プレダの中 を貫通す る。 前記絶縁樹脂は非貫通穴を有する。 前記サ一フ ェイ スバ ィ ァホールは前記非貫通穴に形成されている。  Desirably, the insulating substrate is formed by curing a sheet-like resin pre-predeer having a base material and a resin impregnated in the base material. The conductor projection penetrates through the inside of the resin pre-spreader. The insulating resin has a non-through hole. The surface via hole is formed in the non-through hole.
本発明の他の実施例の多層プリ ン ト は配線板の製造方法 は、 ( a ) 金属箔の所定位置に円錐または角錐状の導体突起を 形成する工程と、 ( b ) 前記導体突起を持つ面と、 樹脂を含浸 したシー ト状基材と を重ねて、 金属箔と樹脂含浸基材と を加 熱しながら加圧して積層 し、 これによ り 、 前記導体突起を前 記樹脂含浸基材の中 に貫通させ、 基材の両側に設置された金 属箔を電気的に互いに導通させる工程と、 ( c ) 前記金属箔を 加工 して内層材用導電パターンと しての内層導体回路を形成 して、 内層材を形成する工程と、 ( d ) その内層材に、 絶縁樹 脂付き金属箔を積層する工程と、 ( e ) 絶縁樹脂付き金属箔の 金属箔を加工して、 外層用導電パターンを形成する工程と、 ( f ) 前記絶縁樹脂付き金属箔層に レーザ加工によ り 非貫通 穴を形成する工程と、 ( g ) 外層用導電パターン と内層材用導 電パターンとを接続するためのサ一フェイ スバイ ァホールを 設置する工程とを備える。 前記導体突起は、 イ ンタースティ シャルバィ ァホールの機能を持つ。 According to another embodiment of the present invention, there is provided a method of manufacturing a multilayer printed wiring board, comprising: (a) forming a conical or pyramid-shaped conductor projection at a predetermined position on a metal foil; and (b) having the conductor projection. The surface and the sheet-like base material impregnated with resin are overlapped, and the metal foil and the resin-impregnated base material are laminated while being heated and pressurized while being heated. And the gold placed on both sides of the substrate (C) processing the metal foil to form an inner-layer conductor circuit as a conductive pattern for the inner-layer material to form an inner-layer material; (d) A step of laminating a metal foil with an insulating resin on the inner layer material; (e) a step of processing a metal foil of the metal foil with an insulating resin to form a conductive pattern for an outer layer; A step of forming a non-through hole in the metal foil layer by laser processing; and (g) a step of installing a surface via hole for connecting the outer layer conductive pattern and the inner layer material conductive pattern. . The conductor protrusion has a function of an interstitial via hole.
上記の構成によ り 、 多層プリ ン ト配線板の設計の 自 由度が 拡大できる。 そのため、 要求仕様に応じて、 簡易な製造プロ セスで多層プリ ン ト配線板を製造できる。  With the above configuration, the degree of freedom in designing a multilayer printed wiring board can be increased. Therefore, a multilayer printed wiring board can be manufactured by a simple manufacturing process according to the required specifications.
望ま し く は、 非貫通穴がレーザ一加工によ り 形成される。 望ま し く は、 非貫通穴に金属メ ツキが設置され、 その金属 メ ツキによ り 、 内層材用導電パターンと外層用導電パターン とが電気的に接続される。  Preferably, the non-through holes are formed by laser machining. Desirably, a metal plating is provided in the non-through hole, and the metal plating electrically connects the conductive pattern for the inner layer material and the conductive pattern for the outer layer.
この構成によ り 、 内層材のイ ン夕一ステシャルバイ ァホ一 ルのラ ン ド上に、 外層のサーフェイ スゾ ィ ァホールを、 容易 に形成できる。 そのため、 著し く 高い配線収容性が得 られる。 さ ら に、 著し く 高い配線収容性が得られる。 さ ら に、 外層用 導電パターンと基材の接着強度が極めて強く な り 、 小径ラ ン ド においても高度な実装信頼性が実現できる。  With this configuration, the outer surface surface hole can be easily formed on the land of the inner vial in the inner vial vial. As a result, a remarkably high wiring capacity can be obtained. In addition, a remarkably high wiring capacity can be obtained. Furthermore, the adhesive strength between the outer layer conductive pattern and the substrate is extremely high, and high mounting reliability can be realized even in a small-diameter land.
望ま し く は、 導体突起が導電性ペース ト の硬化によ り 形成 される。 この構成によ り 、 簡易なプロセスによ り 、 多数の導 体突起が容易に形成できる。 そのため、 突起形状が均一かつ 安定なる。 その結果、 安定したイ ンタ一スティ シャルバイ ァ ホールを持つ多層プリ ン ト配線板が得 られる。 Desirably, conductive protrusions are formed by curing the conductive paste. Is done. With this configuration, a large number of conductor projections can be easily formed by a simple process. Therefore, the projection shape becomes uniform and stable. As a result, a multilayer printed wiring board having stable interstitial via holes can be obtained.
望ま し く は、 絶縁樹脂付き金属箔に使用 される絶縁樹脂と しては、 金属に対し強い接着性を有する絶縁樹脂が使用され る。 特に望ま し く は、 絶縁樹脂付き金属箔は、 金属箔と、 こ の金属箔に塗布された絶縁樹脂と を有する。 こ の構成によ り 、 外層用導体パターンと絶縁樹脂との接着強度が向上する。  Desirably, as the insulating resin used for the metal foil with the insulating resin, an insulating resin having strong adhesiveness to metal is used. Particularly desirably, the metal foil with insulating resin has a metal foil and an insulating resin applied to the metal foil. With this configuration, the adhesive strength between the outer layer conductor pattern and the insulating resin is improved.
以下に、 本発明の典型的実施例について、 図面を参照 しな がら説明する。 典型的実施例 1  Hereinafter, typical embodiments of the present invention will be described with reference to the drawings. Typical Example 1
第 1 図は、 本発明の典型的実施例 1 における多層プリ ン ト 配線板の製造方法を示す断面図である。 第 1 図において、 多 層プリ ン ト配線板 9 は、 内層材 1 と、 絶縁樹脂付き金属箔 5 と、 外層用導電パター ン 8 と、 サ一フ ェイ スバイ ァホール ( S V H ) 7 と備える。 内層材 1 は、 内層材用絶縁基板 3 と、 内 層材用導電パターン 2 と、 内層材用導電性ペース ト 4 と を有 する。 絶縁樹脂付き金属箔 5 は、 絶縁樹脂 5 b と金属箔 5 a とを有する。 絶縁樹脂付き金属箔 5 は非貫通穴 6 を有 し、 そ の非貫通穴 6 は絶縁樹脂付き金属箔 5 に レーザ加工によ り 形 成される。 サ一フ ェイ スバイ ァホール ( S V H ) 7 は、 非貫 通穴 6 に形成された金属メ ツ キを有する。 イ ンタースティ シ ャルバィ ァホール ( I V H ) は内層材 1 に形成されている。 サーフェイ スバイ ァホール ( S V H ) 7 は外層に形成されて いる。 全ての層の う ち のそれぞれの層は導電パターン 2 を有 する。 FIG. 1 is a cross-sectional view illustrating a method for manufacturing a multilayer printed wiring board according to Exemplary Embodiment 1 of the present invention. In FIG. 1, a multilayer printed wiring board 9 includes an inner layer material 1, a metal foil with insulating resin 5, a conductive pattern 8 for an outer layer, and a surface via hole (SVH) 7. The inner layer material 1 has an inner layer material insulating substrate 3, an inner layer material conductive pattern 2, and an inner layer material conductive paste 4. The metal foil 5 with an insulating resin has an insulating resin 5b and a metal foil 5a. The metal foil with insulating resin 5 has a non-through hole 6, and the non-through hole 6 is formed on the metal foil with insulating resin 5 by laser processing. The surface via hole (SVH) 7 has a metal plating formed in the non-through hole 6. Interstitial Jalva Hall (IVH) is formed in inner layer material 1. The surface via hole (SVH) 7 is formed in the outer layer. Each of the layers has a conductive pattern 2.
以上のよ う に構成された多層プリ ン ト配線板の製造方法に ついて以下説明する。  A method for manufacturing the multilayer printed wiring board configured as described above will be described below.
まず、 内層材用絶縁基板と しての樹脂プリ プレダ 3 を準備 する。 樹脂プリ プレダ 3 は、 ァラ ミ ド不織布基材と、 そのァ ラ ミ ド不織布基材に含浸されたエポキシ樹脂を有する。 こ の 樹脂プリ プレダはシー ト状を有し、 半硬化状態であ り 、 被圧 縮性を有する。 すなわち、 基材は、 多孔質を有し、 被圧縮性 を有する。 ァ ラ ミ ド繊維は、 芳香族ポ リ アミ ドか ら作 られた 繊維である。  First, a resin pre-paeder 3 as an insulating substrate for an inner layer material is prepared. The resin pre-printer 3 has an aramide non-woven fabric base material and an epoxy resin impregnated in the aramide non-woven fabric base material. This resin prepreg has a sheet shape, is in a semi-cured state, and has compressibility. That is, the base material is porous and has compressibility. Aramid fibers are fibers made from aromatic polyamides.
次に、 第 1 図の ( a ) において、 樹脂プリ プレダ 3 a に炭 酸ガス レーザ一加工によ り貫通穴を形成する。 その貫通穴内 に導電性ペース ト 4 a を充填する 。 こ の導電性ペース ト を充 填した貫通穴は、 イ ンターステシャルバイ アスホールを形成 する。 その後、 樹脂プリ プレダ 3 a の両側に銅箔を重ね合わ す。 このよ う に して、 硬化前銅張積層板を作成する。 その後、 その硬化前銅張積層板を、 熱プレス によ り 加熱しながら加圧 して、 銅箔を樹脂プリ プレダ 3 a に接着する と共に、 樹脂プ リ プレダ 3 a を硬化する。 こ のよ う に して、 内層材用絶縁基 板 3 a とその絶縁基板 3 a の両側に接着された銅箔と を有す る銅張積層板を作成する。 次に、 銅張積層板の銅箔をス ク リ ーン印刷法又は写真法な どの加工方法によ り 加工して、 第一 内層材用導電パターン 2 a を形成する。 絶縁基板 3 a の両側 に形成された第一内層材用導電パターン 2 a は、 導電性べ一 ス ト を持つィ ン夕一ステシャルバイ アスホールによ り 互いに 電気的に接続される。 Next, as shown in FIG. 1 (a), a through hole is formed in the resin pre-paeder 3a by a carbon dioxide laser process. The conductive paste 4 a is filled in the through hole. The through hole filled with the conductive paste forms an interstitial via hole. After that, copper foil is superimposed on both sides of the resin pre-reader 3a. In this way, a copper-clad laminate before hardening is prepared. Thereafter, the pre-cured copper-clad laminate is pressurized while being heated by a hot press to bond the copper foil to the resin pre-paider 3a and to cure the resin pre-paeder 3a. In this way, a copper-clad laminate having the inner layer insulating substrate 3a and the copper foil bonded to both sides of the insulating substrate 3a is prepared. Next, screw the copper foil of the copper-clad laminate To form the first conductive pattern 2a for the inner layer material. The conductive patterns 2a for the first inner layer material formed on both sides of the insulating substrate 3a are electrically connected to each other by an in-situ via hole having a conductive base.
次に、 その第一内層材用導電パターン 2 a を有する絶縁基 板 3 a に、 他の硬化前銅張積層板を重ね合わす。 他の硬化前 銅張積層板は、 貫通穴を持つ樹脂プレブレグ 3 と、 その貫 通穴に充填された導電性ペース ト 4 b と、 樹脂プレブレグ 3 b に重ね られた銅箔と を有する。 その後、 他の硬化前銅張積 層板を熱プレス して、 銅箔を樹脂プリ プレダ 3 b に接着する と共に、 樹脂プリ プレダ 3 b を硬化する。 次に、 外側に設置 された銅箔を、 ス ク リ ーン印刷法又は写真法などの加工方法 によ り加工して、 第二内層材用導電パターン 2 b を形成する。 このよ う に して、 第 1 図の ( a ) に示される よ う な内層材 1 が作成される。 第一内層材用導電パターン 2 a と第二内層材 用導電パターン 2 b な との複数の導電パターンは、 導電性べ —ス ト を持つィ ン夕一ステシャルバイ アスホールによ り 互い に電気的に接続される。  Next, another uncured copper-clad laminate is superimposed on the insulating substrate 3a having the first inner layer material conductive pattern 2a. The other uncured copper-clad laminate has a resin pre-breg 3 having a through-hole, a conductive paste 4 b filled in the through-hole, and a copper foil superimposed on the resin pre-breg 3 b. Then, the other uncured copper-clad laminate is hot-pressed to bond the copper foil to the resin pre-paider 3b and to cure the resin pre-paeder 3b. Next, the copper foil placed outside is processed by a processing method such as a screen printing method or a photographic method to form the second inner layer material conductive pattern 2b. In this way, an inner layer material 1 as shown in FIG. 1 (a) is prepared. The plurality of conductive patterns, such as the first inner layer material conductive pattern 2a and the second inner layer material conductive pattern 2b, are electrically connected to each other by an in-situ stationary via hole having a conductive base. Connected.
次に第 1 図の ( b ) において、 内層材 1 の両側に、 絶縁樹 脂付き金属箔 5 を積層する。 望ま し く は、 絶縁樹脂付き金属 箔 5 は、 金属箔 5 a と、 絶縁樹脂 5 b と を有する。 望ま し く は、 絶縁樹脂付き金属箔 5 は、 金属箔 5 a と、 その金属箔 5 a に塗布された半硬化状態の絶縁樹脂 5 b と を有する。 絶 縁樹脂 5 b は金属箔 5 a に対して強い接着力 を有する。 こ の 積層された内層材 1 と絶縁樹脂付き金属箔 5 と を熱プレスに よ り 、 加熱しながら加圧する。 このよ う に して、 絶縁樹脂付 き金属箔 5 を内層材 1 に接着する と と もに、 絶縁樹脂 5 b を 硬化する。 Next, in (b) of FIG. 1, a metal foil 5 with an insulating resin is laminated on both sides of the inner layer material 1. Desirably, the metal foil with insulating resin 5 has a metal foil 5a and an insulating resin 5b. Desirably, the metal foil 5 with an insulating resin has a metal foil 5a and a semi-cured insulating resin 5b applied to the metal foil 5a. Absolute The edge resin 5b has a strong adhesive strength to the metal foil 5a. The laminated inner layer material 1 and the metal foil 5 with insulating resin are pressurized while being heated by a hot press. In this manner, the metal foil 5 with the insulating resin is bonded to the inner layer material 1 and the insulating resin 5b is cured.
本工程において、 内層材 1 と絶縁樹脂付き金属箔 5 との積 層に先立って、 内層材 1 の第一内層材用導電パター ン 2 a 又 はその前の工程における銅箔の表面を、 表面粗化処理、 防錡 処理、 又はべ一キング処理な どの表面処理を施すこ とが望ま しい。 表面粗化処理と しては、 ソ フ トエ ッチング等が利用 さ れる。 これによ り 、 第一内層材用導電パターン 2 a と絶縁樹 脂付き金属箔 5 と の密着性が著し く 向上する。 さ ら に、 内層 材 1 と最外層の絶縁樹脂付き金属箔 5 との熱収縮の差に起因 する内部応力が低減される。 その結果、 ク ラ ッ ク の発生が防 止される。 さ ら に、 内層材 1 と絶縁樹脂付き金属箔 5 と の剥 離が防止される。  In this step, prior to the lamination of the inner layer material 1 and the metal foil 5 with insulating resin, the surface of the first inner layer material conductive pattern 2a of the inner layer material 1 or the copper foil in the previous step is replaced with the surface. It is desirable to apply a surface treatment such as a roughening treatment, a protection treatment, or a baking treatment. As the surface roughening treatment, soft etching or the like is used. As a result, the adhesion between the first inner layer material conductive pattern 2a and the metal foil 5 with insulating resin is significantly improved. Furthermore, the internal stress caused by the difference in thermal shrinkage between the inner layer material 1 and the outermost metal foil with insulating resin 5 is reduced. As a result, the occurrence of cracks is prevented. Further, separation of the inner layer material 1 and the metal foil 5 with insulating resin is prevented.
さ ら に望ま し く は、 絶縁樹脂付き金属箔 5 の絶縁樹脂 5 b は前述の内層材用絶縁基板 3 a , 3 b に使用 された樹脂材料 と同 じ樹脂材料を有する。 すなわち、 絶縁樹脂 5 b は、 同 じ エポキシ樹脂を有する。 この構成によ り 、 前述の内部応力の 差が著し く 低減され、 その結果、 ク ラ ッ クや剥がれな どの発 生が防止される効果が著し く 向上する。  More desirably, the insulating resin 5b of the metal foil with insulating resin 5 has the same resin material as the resin material used for the above-described insulating substrates 3a and 3b for the inner layer material. That is, the insulating resin 5b has the same epoxy resin. With this configuration, the difference in the internal stress described above is significantly reduced, and as a result, the effect of preventing the occurrence of cracks and peeling is significantly improved.
望ま し く は、 内層材用絶縁基板 2 a , 2 b の基材 と して、 ァ ラ ミ ド繊維が使用 される。 その理由は、 次の通 り である。 ( 1 ) 内層材用絶 基板と して、 従来の紙基材と、 フ エ ノ —ル樹脂、 エポキシ樹脂又はポ リ エステルな どが使用 された 場合、 貫通穴を形成するための レーザー加工工程において、 所望の約 3 0 /z mか ら約 1 0 0 mの小径の穴を正確に形成 する こ とが困難である。 したがって、 紙基材の使用は、 生産 性の観点において、 実用的ではない。 Desirably, amide fibers are used as the base material of the insulating substrates 2a and 2b for the inner layer material. The reason is as follows. (1) When a conventional paper base and phenolic resin, epoxy resin or polyester are used as the substrate for the inner layer material, a laser processing step for forming through holes In this case, it is difficult to accurately form a desired small hole of about 30 / zm to about 100 m. Therefore, the use of paper base is not practical from the viewpoint of productivity.
( 2 ) ァ ラ ミ ド不織布は優れた レーザー加工性を有する。 すなわち、 ァ ラ ミ ド不織布基材を使用 した絶縁基板は、 紙、 又はガラス繊維不織布又はガラス繊維織布を使用 した絶縁基 板と比較して、 レーザー加工によ り 、 約 3 0 m力 ら  (2) Aramid nonwoven fabric has excellent laser processability. That is, compared to an insulating substrate using paper or a glass fiber non-woven fabric or a glass fiber woven fabric, the insulating substrate using the non-woven fabric base material has a force of about 30 m by laser processing.
約 1 0 0 mの小径の貫通穴を正確に形成する こ とができる さ ら に、 貫通穴に導電性ペース ト を充填する工程において、 その充填作業を安定して行う こ とができる。 また、 ァ ラ ミ ド 不織布基材を使用 した絶縁基板は、 ガラス繊維織布基材を使 用 した絶縁基板に比較して、 約 3 0 mか ら約 1 0 0 mの 小径穴へに、 導電性ペース ト を正確に充填する こ とができる。 A small through hole having a diameter of about 100 m can be accurately formed, and the filling operation can be stably performed in the step of filling the through hole with the conductive paste. In addition, the insulating substrate using the aramide non-woven fabric substrate has a smaller diameter hole of about 30 m to about 100 m than the insulating substrate using the glass fiber woven fabric substrate. The conductive paste can be filled accurately.
( 3 ) も し、 直径 3 0 〜 5 0 i mの小径の非貫通穴を表層 の最外層に形成する こ とが可能であっ た と しても、 内層材に 直径 3 0 〜 5 0 mの小径の貫通穴を形成できないな ら ば、 多層プリ ン ト配線板の配線収容性を向上する こ とができない これに対して、 絶縁基板 3 a , 3 b の基材と して、 ァ ラ ミ ド 繊維の不織布が使用 された場合、 約 3 0 か ら約 1 0 0 の小径穴を正確に形成可能であ り 、 さ ら に、 その貫通穴 に導電性ペース ト を正確に充填する こ とができる。 ( 4 ) 最外層 と して絶縁樹脂付き金属箔 5 が設置されてい るため、 最外層 と内層材との境界に発生する熱応力の影響を 低下させる必要がある。 ァラ ミ ド繊維は、 高い機械的強度と、 高い耐熱温度と、 優れた物理的性質、 優れた被圧縮性とを有 するため、 内層材の基材と してァ ラ ミ ド繊維を用いる こ と に' よって、 最外層 と内層材との境界に発生する熱応力の影響が 低減される。 その結果、 実用化に適 した多層プリ ン ト配線板 が得られる。 (3) Even if it was possible to form a small non-through hole with a diameter of 30 to 50 im in the outermost layer of the surface layer, even if the inner layer material had a diameter of 30 to 50 m, If a small-diameter through hole cannot be formed, the wiring accommodation of the multilayer printed wiring board cannot be improved. On the other hand, the base material of the insulating substrates 3a and 3b must be made of an aluminum substrate. When a non-woven fabric made of fiber is used, it is possible to accurately form a small diameter hole of about 30 to about 100, and to fill the through hole with a conductive paste accurately. Can be. (4) Since the metal foil 5 with insulating resin is provided as the outermost layer, it is necessary to reduce the effect of thermal stress generated at the boundary between the outermost layer and the inner layer material. Since the aramide fiber has high mechanical strength, high heat resistance temperature, excellent physical properties, and excellent compressibility, it is used as the base material of the inner layer material. Thus, the effect of thermal stress generated at the boundary between the outermost layer and the inner layer material is reduced. As a result, a multilayer printed wiring board suitable for practical use is obtained.
( 5 ) ァ ラ ミ ド繊維の不織布は優れた被圧縮性を有する。 通常、 本典型的実施例のよ う に、 加熱しなが ら加圧 して内層 材を形成し、 その後、 前記内層材の両面に絶縁樹脂付き金属 箔 5 を積層 して、 さ ら に加熱しながに加圧する と い う よ う な 複数回の加熱と加圧の加熱プレス工程を繰 り 返す工程におい て、 内部応力が発生する。 しか しながら 、 本典型的実施例の よ う に、 ァ ラ ミ ド不織布基材基材を有する プリ プレダを使用 した場合、 複数回の加熱と加圧な どの圧縮工程においても、 内部応力 を緩和する こ とが可能になる。 さ ら に、 内層材 1 の 導電性ペース ト 4 a , 4 b と銅箔の導電パター ン 2 a , 2 b との導通抵抗が小さ く できる。  (5) The nonwoven fabric of amide fiber has excellent compressibility. Usually, as in the present exemplary embodiment, the inner layer material is formed by applying pressure while heating, and thereafter, the metal foil 5 with insulating resin is laminated on both surfaces of the inner layer material, and further heated. Internal stress is generated in the process of repeating the heating and pressurizing heat press processes multiple times such as pressurizing. However, when a pre-preda having an aramide non-woven fabric substrate is used as in the present exemplary embodiment, the internal stress is reduced even in a plurality of compression steps such as heating and pressing. It becomes possible to do. Further, the conduction resistance between the conductive pastes 4a and 4b of the inner layer material 1 and the conductive patterns 2a and 2b of the copper foil can be reduced.
次に、 第 1 図の ( c ) において、 絶縁樹脂付き金属箔 5 の 全表面面に、 感光性エッ チングレジス ト を塗布し、 露光し、 そ して、 現像する。 これによ り 、 非貫通穴を形成する部分の 感光性エッチング レジス ト を除去する。 その後、 最外層の非 貫通穴を形成する部分の金属箔 5 を、 塩化第 2 銅等のエ ッチ ング液によ り 予め除去してお く 。 そ して、 その穴の所望する 口径よ り も 5 〜 1 0 %大きい径を持つ穴を、 レーザビームに よ り 形成する。 このよ う に して、 非貫通穴 6 を得る。 Next, in (c) of FIG. 1, a photosensitive etching resist is applied to the entire surface of the metal foil 5 with an insulating resin, exposed, developed, and developed. As a result, the photosensitive etching resist in the portion where the non-through hole is to be formed is removed. Then, the metal foil 5 where the outermost non-through hole is formed is etched with an etchant such as cupric chloride. Remove with a cleaning solution in advance. Then, a hole having a diameter 5 to 10% larger than a desired diameter of the hole is formed by a laser beam. In this way, a non-through hole 6 is obtained.
その後、 前記非貫通穴 6 の内部を過マ ンガン酸溶液等で処 理し、 露出 した内層材 1 の金属箔の表面の樹脂を除去する。 この処理は、 必要に応じて、 複数回行う 。  Thereafter, the inside of the non-through hole 6 is treated with a permanganic acid solution or the like to remove the exposed resin on the surface of the metal foil of the inner layer material 1. This process is performed a plurality of times as necessary.
次に、 第 1 図の ( d ) において、 非貫通穴 6 を有する金属 箔 5 a の全表面に、 無電解メ ツキ又は電気メ ツキなどの金属 メ ツキ層を設置する。 この と き、 非貫通穴 6 に も、 金属メ ッ キが形成される。 その後、 ス ク リ ーン印刷法や写真法などの 方法によ り 、 サ一フェイ スバイ ァホール ( S V H ) 7 、 及び、 外層用導電パターン 8 を形成する。 このよ う に して、 多層プ リ ン ト配線板 9 が得 られる。 さ ら に、 内層材用導電パターン 2 a , 2 b と外層用導電パターン 8 とが、 金属メ ツ キ層によ り電気的に接続される。 このよ う に して、 サ一フェイ スバイ ァホ一ル ( S V H ) 7 が形成される。  Next, in (d) of FIG. 1, a metal plating layer such as an electroless plating or an electric plating is provided on the entire surface of the metal foil 5 a having the non-through holes 6. At this time, the metal plating is also formed in the non-through holes 6. Thereafter, a surface via hole (SVH) 7 and an outer layer conductive pattern 8 are formed by a method such as a screen printing method or a photographic method. Thus, the multilayer printed wiring board 9 is obtained. Further, the inner layer material conductive patterns 2a and 2b and the outer layer conductive pattern 8 are electrically connected by the metal plating layer. In this way, a surface via hole (SVH) 7 is formed.
なお、 本典型的実施例において、 非貫通穴の穴径が 3 0 〜 5 0 ^ mである場合、 非貫通穴に設置される金属メ ツ キ層 5 c は、 その金属メ ツ キ層自身によ り 埋設する こ と も可能であ る。 また、 非貫通穴の穴径が 5 0 ~ 1 0 0 ΠΊの場合、 非貫 通穴の内部の う ちの約 5 0 % を埋設する。 これによ り 、 サー フェイ スバイ ァホール 7 と絶縁樹脂層 5 b との接着強度を高 める こ とができる。 さ ら に、 サーフェイ スバイ ァホール ( S V H ) 7 を、 部品実装用の半田付け用の ラ ン ド を構成する導 体パターンと して使用する こ と も可能である。 これによ り 、 部品実装の密度が高 く なる。 In the present exemplary embodiment, when the hole diameter of the non-through hole is 30 to 50 ^ m, the metal plating layer 5c installed in the non-through hole is formed by the metal plating layer itself. It is also possible to bury it. When the diameter of the non-through hole is 50 to 100 mm, about 50% of the inside of the non-through hole is buried. Thereby, the adhesive strength between the surface via hole 7 and the insulating resin layer 5b can be increased. In addition, the surface via hole (SVH) 7 is used to form a soldering land for component mounting. It can also be used as a body pattern. As a result, the density of component mounting is increased.
本典型的実施例において、 内層材は複数の絶縁基板と複数 の内層材用導電パターン と を有するが、 この構成に限定され る こ とな く 、 内層材は、 一つの絶縁基板とその絶縁基板の両 側に設置された内層材用導電パターンと を有する構成も可能 である。 典型的実施例 2  In the present exemplary embodiment, the inner layer material includes a plurality of insulating substrates and a plurality of conductive patterns for the inner layer material. However, the present invention is not limited to this configuration, and the inner layer material may include one insulating substrate and its insulating substrate. It is also possible to have a configuration having the conductive pattern for the inner layer material installed on both sides. Typical Example 2
前述の典型的実施例 1 で説明 した第 1 図を使用 して、 本発 明のさ ら に具体的な実施例について、 以下に説明する。  A more specific embodiment of the present invention will be described below with reference to FIG. 1 described in the first exemplary embodiment.
第 1 図において、 内層材に形成されたイ ンタ一スティ シャ ルバィ ァホール ( I V H ) は、 金属メ ツキではな く 、 導電べ 一ス ト を有する。 そのため、 イ ンターステイ シャルバィ ァホ ール部に形成されたラ ン ド は、 優れた平滑を有する。 そのた め、 外層か ら絶縁樹脂付き金属箔 5 の非貫通穴 6 を通 じて、 この平滑性を持つ ラ ン ド上に、 金属メ ツキによるサ一フェイ スバイ ァホーリレ ( S V H ) 7 を、 容易に形成する こ とができ る。 絶縁樹脂付き金属箔 5 における絶縁樹脂 5 b と して、 ェ ポキシ樹脂が使用 された。 他方、 比較例 と して、 内層材の両 面に、 最外層 と しての絶縁層 を形成し、 その後、 非貫通穴の サーフェイ スバイ ァホール ( S V H ) と外層用導電パター ン を、 金属メ ツ キによ り 形成した。 こ のよ う に して、 比較例の 多層プリ ン ト配線板を作成 した。 本典型的実施例によ り 作成 した多層プリ ン ト配線板と比較例の方法によ り 作成された多 層プリ ン ト配線板と について、 絶縁層 5 b とサーフェイ スバ ィ ァホール ( S V H) 部の金属メ ツ キ 5 c と間のの接着強度、 及び、 絶縁層 5 b と外層用導電パターン 8 との間の接着強度 を測定して、 比較した。 その結果を第 1 表に示した。 In FIG. 1, the interstitial via hole (IVH) formed in the inner layer material has a conductive base instead of a metal plating. Therefore, the land formed in the interstitial vial portion has excellent smoothness. Therefore, through the non-through hole 6 of the metal foil 5 with insulating resin from the outer layer, the surface by hole metal (SVH) 7 made of metal plating can be easily placed on this smooth land. Can be formed. Epoxy resin was used as the insulating resin 5b in the metal foil 5 with the insulating resin. On the other hand, as a comparative example, an insulating layer as an outermost layer was formed on both sides of the inner layer material, and then a non-through-hole surface via hole (SVH) and a conductive pattern for the outer layer were formed on a metal sheet. Formed by g. In this way, a multilayer printed wiring board of a comparative example was prepared. Created according to this exemplary embodiment Between the insulating layer 5b and the metal plating 5c at the surface via hole (SVH) between the multilayer printed wiring board prepared and the multilayer printed wiring board prepared by the method of the comparative example. The adhesive strength of the sample and the adhesive strength between the insulating layer 5b and the outer layer conductive pattern 8 were measured and compared. The results are shown in Table 1.
なお、 試験に使用 した試料の数と して、 5個の本実施例の試 料を作成し、 5個の比較例の試料作成した。 そして、 試験方 法と しては、 指定のラ ン ド部に、 半田ボールを熔融して、 そ して、 急冷し、 その後、 2 0 0 ;a mZ s e c の移動速度で、 半田ポールを引っ張 り 、 この状態における引っ張 り 強度を測 定した。 In addition, five samples of this example were prepared as the number of samples used for the test, and five samples of comparative examples were prepared. As a test method, a solder ball is melted in a designated land portion, and then rapidly cooled. Then, a solder pole is pulled at a moving speed of 200; amZ sec. In this state, the tensile strength was measured.
Figure imgf000024_0001
第 1 表において、 本典型的実施例の方法によ り 作成された 発多層プリ ン ト配線板における接着強度は、 絶縁層 5 b とサ 一フェイ スバイ ァホール ( S V H ) 部の金属メ ツキ 5 じ との 間の接着強度、 及び、 絶縁層 5 b と外層用導電パター ン 8 と の間の接着強度は、 いずれも、 比較例による方法によ り 作成 された発多層プリ ン ト配線板よも、 約 2 倍か ら約 5 倍までの 範囲の強度を有する。
Figure imgf000024_0001
In Table 1, the adhesive strength of the multilayer printed wiring board produced by the method of the present exemplary embodiment is determined by comparing the insulation layer 5b and the metal plating of the surface via hole (SVH). With The adhesive strength between the insulating layer 5b and the conductive pattern 8 for the outer layer is about the same as that of the multilayer printed wiring board prepared by the method according to the comparative example. It has an intensity ranging from 2 to about 5 times.
さ ら に、 本典型的実施例において、 半硬化状態の絶縁樹脂 を熱プレス によ り 加熱しなが ら加圧する方法は、 従来の絶縁 樹脂を内層材の表面に塗布またはラ ミ ネー 卜する方法よ り も 最外層の塗布工程時における少ないバラ ツキ、 及び、 優れた 表面の平坦性を有する。  Further, in the present exemplary embodiment, the method of applying pressure while heating the semi-cured insulating resin by heating with a hot press is to apply or laminate the conventional insulating resin on the surface of the inner layer material. It has less variation in the outermost layer coating process than the method and excellent surface flatness.
さ ら に、 絶縁樹脂付き金属箔 5 の絶縁樹脂 5 b と して、 絶 縁基板の樹脂プリ プレダの樹脂と同 じ樹脂を使用 した場合、 多層プリ ン ト配線基板の リ フ ロー後におけるそ り 、 及び、 耐 熱性、 層間剥離などの発生は全く 認め られなかっ た。 特に望 ま し く は、 この樹脂と しては、 エポキシ樹脂が望ま しい。  Furthermore, if the same resin as that of the resin pre-paider of the insulating board is used as the insulating resin 5b of the metal foil 5 with the insulating resin, the post-reflow of the multi-layer printed wiring board is not required. No heat resistance, delamination, etc. were observed at all. Particularly preferably, the resin is an epoxy resin.
以上のよ う に、 本典型的実施例の多層プリ ン ト配線板は、 著し く 優れた配線収容性を有する。 さ ら に、 絶縁層 とサーフ エイ スパイ ァホール ( S V H ) 部との間の接着強度、 及び、 絶縁層 と外層用導電性パター ンとの間の接着強度が、 著 し く 向上する。 さ ら に、 小径のラ ン ド における部品実装において、 正確に部品実装する こ とが可能であ り 、 高い信頼性が得 られ る。 典型的実施例 3  As described above, the multilayer printed wiring board of the present exemplary embodiment has remarkably excellent wiring accommodating properties. Further, the adhesive strength between the insulating layer and the surf-aspire hole (SVH) and the adhesive strength between the insulating layer and the outer layer conductive pattern are significantly improved. Furthermore, in component mounting in a small-diameter land, accurate component mounting can be performed, and high reliability can be obtained. Typical Example 3
本発明の他の典型的実施例の多層プリ ン ト配線板の製造ェ 程を第 2 図に示す。 特に、 前述の典型的実施例 1 と異なる内 層材の形成方法について説明する。 Manufacturing method of multilayer printed wiring board according to another exemplary embodiment of the present invention Figure 2 shows the process. In particular, a method of forming an inner layer material different from the above-described exemplary embodiment 1 will be described.
第 2 図の ( a ) 工程において、 導電性金属箔と しての銅箔 2 l aの所定位置に、 円錐または角錐状の導体突起 2 2 を、 印 刷法または転写法の方法で形成する。 望ま し く は、 その導体 突起 2 2 は導電性べ一ス ト によ り形成される。  In the step (a) of FIG. 2, a conical or pyramid-shaped conductor projection 22 is formed at a predetermined position of the copper foil 2la as a conductive metal foil by a printing method or a transfer method. Desirably, the conductor protrusion 22 is formed of a conductive base.
第 2 図の (b )工程において、 内層材用絶縁基板と しての樹脂 プレブレグ 2 3 を準備する。 樹脂プレブレグ 2 3 は、 ァ ラ ミ ド繊維の不織布基材と、 その基材に含浸されたェポキシ樹脂 とを有する。 こ の樹脂プレブレグ 2 3 は半硬化状態であ る。 樹脂プレブレグ 2 3 の表面に第一銅箔 2 1 b を重ね、 そ して、 樹脂プレブレグ 2 3 の裏面に、 導体突起 2 2 を持つ第一銅箔 2 1 aを重ねる。  In step (b) of FIG. 2, a resin pre-bleg 23 as an insulating substrate for the inner layer material is prepared. The resin pre-bleg 23 has a nonwoven fabric base material of an amide fiber and an epoxy resin impregnated in the base material. This resin pre-breg 23 is in a semi-cured state. The first copper foil 21 b is superimposed on the front surface of the resin pre-breg 23, and the first copper foil 21 a having the conductor protrusion 22 is superimposed on the back surface of the resin pre-breg 23.
第 2 図の ( c ) において、 上記の導体突起 2 2 を持つ第一 銅箔 2 l aと樹脂プレブレグ 2 3 と第二銅箔 2 l b と を加熱 状態でプレスする。 これによ り 、 導体突起 2 2 が樹脂プリ プ レグ 2 3 を貫通する と と もに、 第一銅箔 2 l aと樹脂プレブレ グ 2 3 と第二銅箔 2 l b とが互いに接着され、 そ して、 樹脂 プレブレグ 2 3 が硬化されて、 絶縁基板 2 3 を形成する。 こ のよ う に して、 内層用積層板 2 4 を作成する。  In (c) of FIG. 2, the first copper foil 2la having the above-mentioned conductor protrusion 22, the resin pre-breg 23 and the second copper foil 2lb are pressed in a heated state. As a result, the conductor protrusion 22 penetrates the resin pre-preg 23, and the first copper foil 2la, the resin pre-preg 23 and the second copper foil 2lb are adhered to each other. Then, the resin prepreg 23 is cured to form the insulating substrate 23. In this way, an inner layer laminate 24 is prepared.
その後、 第 2 図の ( d ) 工程において、 第一銅箔 2 l aを加 ェ して、 第一内層用導電パターン 2 5 a を形成 し、 第二銅箔 2 1 b を加工 して、 第二内層材用導電パターン 2 5 b を形成 する。 第一内層材用導電パターン 2 5 a は第一内層材用導体 回路 2 5 a であ り 、 第二内層材用導電パターン 2 5 b は第二 内層材用導体回路 2 5 b である。 こ のよ う に して、 内層用積 層板 2 4 に内層材用導体回路 2 5 を形成する。 Then, in step (d) of FIG. 2, the first copper foil 2 la is added to form the first inner layer conductive pattern 25 a, and the second copper foil 21 b is processed. A conductive pattern 25b for the inner layer material is formed. The conductive pattern 25a for the first inner layer material is the conductor for the first inner layer material. Circuit 25a, and the second inner layer material conductive pattern 25b is a second inner layer material conductor circuit 25b. In this way, the inner layer conductor circuit 25 is formed on the inner layer laminated board 24.
その後、 典型的実施例 1 の第 1 図の ( b ) 工程と 同 じ方法 によ り 、 絶縁樹脂付き金属箔 5 を積層する。 絶縁樹脂付き金 属箔 5 は、 金属箔 5 a と、 その金属箔 5 a に塗布された半硬 化状態の絶縁樹脂 5 b と を有する。 こ の内層用積層板 2 4 と 絶縁樹脂付き金属箔 5 とを熱プレス によ り 、 加熱しながら加 圧する。 このよ う に して、 絶縁樹脂付き金属箔 5 を内層用積 層板 2 4 に接着する と と もに、 絶縁樹脂 5 b を硬化する。 その後、 第 1 図の ( c ) 工程か ら ( d ) 工程と同 じ工程を加 ェする。 このよ う に して、 多層プリ ン ト配線板を形成する。  Thereafter, the metal foil with insulating resin 5 is laminated by the same method as the step (b) in FIG. 1 of the typical embodiment 1. The metal foil with insulating resin 5 has a metal foil 5a and a semi-hardened insulating resin 5b applied to the metal foil 5a. The inner layer laminate 24 and the metal foil with insulating resin 5 are pressurized while being heated by a hot press. In this way, the metal foil 5 with insulating resin is bonded to the inner layer laminated plate 24 and the insulating resin 5b is cured. Then, the same processes as (d) and (d) are added to the process shown in Fig. 1. In this way, a multilayer printed wiring board is formed.
尚、 本典型的実施例 3 の多層プリ ン ト配線板は、 一つの内 層用積層板 2 4 の両面に設置された第一内層用導電パター ン 2 5 a と第二内層材用導電パターン 2 5 b と を有するが、 こ の構成に限定される こ とな く 、 複数の内層材用積層板 2 4 を 有する多層プリ ン ト配線板も製造可能である。 すなわち 、 典 型的実施例 1 で示した第 1 図の ( a ) 工程と同 じ方法によ り 、 複数の内層材用積層板 2 4 を持つ内層材を作成する。 さ ら に、 第 2 図の ( b ) 工程と ( c ) の工程を繰 り 返す こ と によ っ て 内層積層板を多層構造とする こ と もできる。 典型的実施例 1 か ら典型的実施例 3 の方法を採用する こ と によっ て、 要求仕様に応じて簡易な製造プロセス によ り 、 多 層プリ ン ト配線板を 造する こ とが可能になる。 さ ら に、 本 典型的実施例の多層プリ ン ト配線板は、 著し く 優れた配線収 容性を有する。 さ ら に、 外層用導電パターン と基材との接強 度が著し く 向上する。 そのため、 小径ラ ン ド を持つ多層プリ ン ト配線板においても、 高度な実装信頼性が実現できる。 産業上の利用分野 Note that the multilayer printed wiring board of this exemplary embodiment 3 is composed of the first inner layer conductive pattern 25a and the second inner layer material conductive pattern, which are provided on both sides of one inner layer laminate 24. However, the present invention is not limited to this configuration, and a multilayer printed wiring board having a plurality of inner layer material laminates 24 can also be manufactured. That is, an inner layer material having a plurality of inner layer material laminated plates 24 is prepared by the same method as the step (a) in FIG. 1 shown in the typical example 1. Further, by repeating the steps (b) and (c) in FIG. 2, the inner laminate can have a multilayer structure. By adopting the method of the typical embodiment 1 to the typical embodiment 3, a simple manufacturing process can be performed in accordance with the required specifications, and thus, many processes can be performed. It becomes possible to build a multilayer printed wiring board. Further, the multilayer printed wiring board of the present exemplary embodiment has remarkably excellent wiring capacity. Furthermore, the contact strength between the outer layer conductive pattern and the substrate is significantly improved. Therefore, high mounting reliability can be realized even in a multilayer printed wiring board having a small diameter land. Industrial applications
本発明の構成において、 内層材は導電ペース ト によ り 形成 されたイ ンタ一スティ シャルバイ ァホール ( I V H ) を有す るため、 内層材のイ ンタ一スティ シャルバイ ァホール ( I V H ) のラ ン ドが平滑性を持つよ う に、 ラ ン ド部を形成できる。 外層か らの金属メ ツ キによ り 、 この ラ ン ド上にサ一フェイ ス バイ ァホール ( S V H ) を容易に形成できるため、 配線収容 性が著し く 向上する。 さ ら に、 絶縁樹脂付き金属箔の中に使 用される絶縁樹脂は、 金属に対して強い接着性を有するため、 絶縁樹脂と金属箔の接着強度が飛躍的に向上し、 そのため、 外層用導電パターンが小径になっ て も、 良好な部品実装強度 が保持できる。  In the structure of the present invention, since the inner layer material has an interstitial via hole (IVH) formed by the conductive paste, the land of the inner layer material interstitial via hole (IVH) is reduced. A land portion can be formed so as to have smoothness. The surface via holes (SVH) can be easily formed on the land by the metal plating from the outer layer, so that the wiring accommodating property is significantly improved. In addition, the insulating resin used in the metal foil with the insulating resin has strong adhesiveness to the metal, so that the adhesive strength between the insulating resin and the metal foil is dramatically improved. Good component mounting strength can be maintained even if the conductive pattern has a small diameter.

Claims

( a ) 絶縁基板と、 前記絶縁基板の両側に設置された金 属箔によ り 形成された複数の内層材用導電パター ンと、 前記絶縁基板に設置されたイ ンタースティ 請 (a) an insulating substrate; a plurality of conductive patterns for inner layer materials formed by metal foils provided on both sides of the insulating substrate; and an interstitial device provided on the insulating substrate.
シャルバィ ァホールとを有する内層材と、 ( b ) 前記内層材の両側に設置された絶縁樹脂と、 ( c ) 前記絶縁樹脂に接着された外層用導電パターンと、 ( d ) 前記内層材用導電パターンと前記外層用導電パタ 範  (B) an insulating resin provided on both sides of the inner layer material, (c) an outer layer conductive pattern adhered to the insulating resin, and (d) the inner layer material conductive pattern. And the conductive pattern for the outer layer.
一ンとを電気的に接続するサーフェイ スバイ ァホ ールと を備え、 前記イ ン夕一スティ シャルバイ ァホールは、 前記複数の 内層材導電パターンの う ち のそれぞれの内層材導電バタ ーンを電気的に接続し、 前記外層用導電パター ンは、 前記絶縁樹脂と前記絶縁樹 脂に接着された金属箔と を有する絶縁樹脂付き金属箔の う ちの前記金属箔か ら形成された多層プリ ン ト配線板。  And a surface via hole for electrically connecting the inner layer conductive pattern to each of the plurality of inner layer conductive patterns. The surface via hole electrically connects each inner layer conductive pattern of the plurality of inner layer conductive patterns. The outer layer conductive pattern is a multilayer print formed from the metal foil of the metal foil with the insulating resin having the insulating resin and the metal foil adhered to the insulating resin. Wiring board.
2 . 請求の範囲の第 1 項において、 前記絶縁基板は、 基材と前記基材に含浸された樹脂とを 有するシ一 ト状の樹脂プリ プレダの硬化によ り 形成され, 前記絶縁基板は貫通穴を有 し、 2. The insulating substrate according to claim 1, wherein the insulating substrate is formed by curing a sheet-shaped resin pre-prepared material having a base material and a resin impregnated in the base material. It has a through hole,
前記ィ ン夕ースティ シャルバィ ァホールは、 前記貫通穴 に充填された導電ペース 卜 を有し、 The institial via hole is the through hole Having a conductive paste filled in,
前記絶縁樹脂は非貫通穴を有し、  The insulating resin has a non-through hole,
前記サ一フェイ スバイ ァホールは前記非貫通穴に形成さ れている多層プリ ン 卜配線板。  The multi-layer printed wiring board, wherein the surface via hole is formed in the non-through hole.
3 . 請求の範囲の第 1 項において、 3. In claim 1,
前記サーフェイ スバイ ァホールは前記非貫通穴に形成さ れた金属メ ツ キを有する多層プリ ン ト配線板。 4 請求の範囲の第 1 項において、  The surface via hole is a multilayer printed wiring board having a metal plating formed in the non-through hole. 4 In claim 1 of the claims,
前記サーフェイ スバイ ァホールは前記非貫通穴に形成さ れた金属メ ツキを有し、  The surface via hole has a metal plating formed in the non-through hole,
前記外層用導電パターンは、 さ ら に、 前記外層用導電パ ター ンの表面に設置された金属メ ツキを有する多層プリ ン ト配線板。  The multi-layer printed wiring board further includes a metal plating provided on a surface of the outer layer conductive pattern.
5 . 請求の範囲の第 2 項において、 5. In claim 2,
前記絶縁基板に含まれる前記樹脂は、 前記絶縁樹脂と同 じ材料を有する多層プリ ン ト配線板。  A multilayer printed wiring board, wherein the resin contained in the insulating substrate has the same material as the insulating resin.
6 . 請求の範囲の第 2 項において、 6. In claim 2,
前記絶縁基板に含まれる前記樹脂は、 熱硬化性樹脂を有 し、  The resin contained in the insulating substrate has a thermosetting resin,
前記基材は、 芳香族ポ リ ア ミ ドか ら作成され、 被圧縮性 と多孔質を有する多層プリ ン 卜配線板 . 請求の範囲の第 2 項において、 The substrate is made from an aromatic polyamide and is compressible. And a multi-layer printed wiring board having porosity.
前記基材は、 芳香族ポ リ アミ ド繊維か ら作成された不織 布を有する多層プリ ン ト配線板。 . 請求の範囲の第 1 項において、  The above-mentioned base material is a multilayer printed wiring board having a nonwoven fabric made of aromatic polyamide fibers. In claim 1 of the claims,
前記非貫通穴と前記貫通穴のう ちの少なく と も一つは、 約 3 0 か ら約 1 0 0 mまでの口径を有する多層プ リ ン ト配線板。 . 請求の範囲の第 1 項において、  At least one of the non-through hole and the through hole is a multilayer printed wiring board having a diameter of about 30 to about 100 m. In claim 1 of the claims,
前記非貫通穴と前記貫通穴は、 レーザ加'ェによ り 形成さ れた穴である多層プリ ン ト配線板。 0. 請求の範囲の第 1 項において、  The multilayer printed wiring board, wherein the non-through holes and the through holes are holes formed by laser processing. 0. In claim 1 of the claims,
前記内層材は、 複数の絶縁基板と、 前記複数の絶縁基板 のう ちのそれぞれの絶縁基板の両側に設置された複数の 内層材用導電パターンと を有する多層プリ ン ト配線板。 1 . ( a ) 絶縁基板と、 前記絶縁基板の両側に設置された金属 箔によ り 形成された内層材用導電パターンと、 前記 絶縁基板に設置されたィ ンタースティ シャルバイ ァ ホールと を有する内層材と、 ( b ) 前記内層 の両側に設置された絶縁樹脂と、The multilayer printed wiring board, wherein the inner layer material includes: a plurality of insulating substrates; and a plurality of inner layer material conductive patterns provided on both sides of each of the plurality of insulating substrates. 1. (a) An inner layer having: an insulating substrate; a conductive pattern for an inner layer material formed by metal foil provided on both sides of the insulating substrate; and an interstitial via hole provided on the insulating substrate. Materials and (b) an insulating resin installed on both sides of the inner layer,
( c ) 前記絶縁樹脂の表面に設置された外層用導電パ夕(c) An outer layer conductive pattern installed on the surface of the insulating resin.
—ンと、
( d ) 前記内層材用導電パターン と前記外層用導電バタ  (d) The conductive pattern for the inner layer material and the conductive butter for the outer layer
一ンと を電気的に接続するサーフェイ スバイ ァ ホールと  A surface via hole that electrically connects the
を備え、 With
前記外層用導電パターンは、 前記絶縁樹脂と前記絶縁樹 脂に接着された金属箔と を有する絶縁樹脂付き金属箔か ら形成され、 The outer layer conductive pattern is formed from a metal foil with an insulating resin having the insulating resin and a metal foil adhered to the insulating resin,
前記内層材用導電パターンは、 さ ら に、 前記内層材用配 線パターンに電気的に接続された導体突起を有し、 前記導体突起は、 前記絶縁基板を貫通して、 前記外層用 導電パターンに接続され、 The conductive pattern for the inner layer material further has a conductive protrusion electrically connected to the wiring pattern for the inner layer material, and the conductive protrusion penetrates the insulating substrate to form the outer layer conductive pattern. Connected to
導体突起は前記イ ンターステイ シャルバィ ァホールの機 能を有する多層プリ ン ト配線板。 請求の範囲の第 1 1 項において、 The conductor projection is a multilayer printed wiring board having the function of the interstitial via hole. In claim 11 of the claims,
前記絶縁基板は、 基材と前記基材に含浸された樹脂とを 有するシー ト状の樹脂プリ プレダの硬化によ り 形成され 前記導体突起は前記樹脂プリ プレダの中を貫通し、 前記絶縁樹脂は非貫通穴を有し、 The insulating substrate is formed by curing a sheet-like resin pre-predeer having a base material and a resin impregnated in the base material, the conductor protrusion penetrates through the resin pre-predeer, and the insulating resin Has a non-through hole,
前記サーフェイ スバイ ァホールは前記非貫通穴に形成さ れている多層プリ ン ト配線板。 The surface via hole is a multilayer printed wiring board formed in the non-through hole.
13. 請求の範囲の第 1 1 項において、 13. In claim 11 of the Claims,
前記非貫通穴は、 レーザ加工によ り 形成された穴である 多層プリ ン ト配線板。  The multilayer printed wiring board, wherein the non-through holes are holes formed by laser processing.
14. 請求の範囲の第 1 1 項において、 14. In claim 11 of the Claims,
前記導体突起は導電性ペース 卜 の硬化によ り 形成されて いる多層プリ ン ト配線板。 15. 請求の範囲の第 1 1 項において、  The multilayer printed wiring board, wherein the conductive protrusions are formed by curing a conductive paste. 15. In claim 11 of the Claims,
前記導体突起は、 円錐状及び角錐状のう ちの少な く と も 一つの形状を有する多層プリ ン 卜配線板。  The multilayer printed wiring board, wherein the conductor protrusion has at least one of a conical shape and a pyramid shape.
16. 請求の範囲の第 1 1 項において、 16. In claim 11 of the Claims,
前記サ一フェイ スバイ ァホールは前記非貫通穴に形成さ れた金属メ ツキを有する多層プリ ン ト配線板。  The surface via hole is a multilayer printed wiring board having a metal plating formed in the non-through hole.
17. 請求の範囲の第 1 2 項において、 17. In paragraph 12 of the Claims,
前記サ一フェイ スバイ ァホールは前記非貫通穴に形成さ れた金属メ ツキを有し、  The surface via hole has a metal plating formed in the non-through hole,
前記外層用導電パターンは、 さ ら に、 前記外層用導電パ ター ンの表面に設置された金属メ ツキを有する多層プリ ン ト配線板。 ( a ) 絶縁基板と、 前記絶縁基板の両側に設置された金属 箔によ り 形成された内層材用導電パターン と、 前記 絶縁基板に設置されたィ ンターステイ シャルバィ ァ ホールと を有する内層材を作成する工程、 The multi-layer printed wiring board further includes a metal plating provided on a surface of the outer layer conductive pattern. (a) An inner layer material having an insulating substrate, an inner layer material conductive pattern formed of metal foil provided on both sides of the insulating substrate, and an interstitial via hole provided on the insulating substrate. The process of creating,
( b ) 前記内層材の両面に、 絶縁樹脂と前記絶縁樹脂に 接着された金属箔とを有する絶縁樹脂付き金属箔 を重ね合わせる工程、  (b) a step of superposing a metal foil with an insulating resin having an insulating resin and a metal foil adhered to the insulating resin on both surfaces of the inner layer material,
( c ) 前記内層材と前記内層材の両面に重ねられた前記 絶縁樹脂付き金属箔を加熱しながら加圧する工程, こ こで、 前記絶縁樹脂が前記内層材に接着さ れ、  (c) a step of pressing while heating the inner layer material and the metal foil with insulating resin superposed on both surfaces of the inner layer material, wherein the insulating resin is bonded to the inner layer material,
( d ) 前記絶縁樹脂付き金属箔を加工する こ と によ り 、 前記絶縁樹脂付き金属箔に非貫通穴を形成するェ 程、  (d) forming a non-through hole in the metal foil with insulating resin by processing the metal foil with insulating resin;
( e ) 表面に露出する前 ί己金属箔を加工して、 外層用導 電パターンを形成する工程、  (e) processing the metal foil to form a conductive pattern for the outer layer before being exposed to the surface,
( f ) 前記外層用導電パターンと前記内層材用導電パ夕 一ンと を電気的に接続する工程  (f) a step of electrically connecting the outer layer conductive pattern and the inner layer material conductive pattern.
を備えた多層プリ ン ト配線板の製造方法 請求の範囲の第 1 8 項において、 A method for manufacturing a multilayer printed wiring board comprising the method according to claim 18, wherein:
前記内層材を作成する工程は、 The step of creating the inner layer material,
( i ) 基材と前記基に含浸された樹脂と を有する シ一 卜 状の樹脂プリ プレダに貫通穴を形成する工程 ( i i ) 前記貫通穴に導電性ペース ト を充填する工程、 ( i i i ) 前記導電性ペース ト持つ前記樹脂プリ プレダの両 面に、 金属箔を張 り合わせる工程、 (i) a step of forming a through-hole in a sheet-shaped resin pre-predeer having a base material and a resin impregnated in the base; (ii) a step of filling the through-hole with a conductive paste, (iii) a step of laminating a metal foil on both surfaces of the resin pre-printer having the conductive paste,
( i v ) 重ねられた前記導電性ペース ト持つ前記樹脂プリ プレダと前記金属箔と加熱しながら加圧工程、 こ こで、 前記絶縁基板が前記樹脂プリ プレダの 硬化によ り 形成され、 前記絶縁基板と前記金属 箔とが接着され、 そして、 前記導電性ペス ト の 硬化によ り 、 前記イ ンターステイ シャルバイ ァ ホールが形成され、  (iv) a pressing step while heating the resin pre-spreader and the metal foil having the conductive paste superimposed thereon, wherein the insulating substrate is formed by curing the resin pre-spreader; The substrate and the metal foil are adhered to each other, and the interstitial via hole is formed by curing the conductive paste.
( V ) 前記金属箔を加工して、 前記内層材用導電パター ンを形成する工程と  (V) processing the metal foil to form the conductive pattern for the inner layer material;
を有する多層プリ ン ト配線板の製造方法。 20 . 請求の範囲の第 1 9 項において、  A method for producing a multilayer printed wiring board having: 20. In claim 19,
前記貫通穴と前記非貫通穴はレーザ加工によ り 形成され る多層プリ ン ト配線板の製造方法。  The method for manufacturing a multilayer printed wiring board, wherein the through hole and the non-through hole are formed by laser processing.
2 1 . 請求の範囲の第 1 9 項において、 2 1. In claim 19,
前記非貫通穴を形成する工程は、  The step of forming the non-through hole,
前記非貫通穴を形成する領域の前記金属箔を予め除去す る工程と、  Removing the metal foil in a region where the non-through hole is to be formed in advance;
前記金属箔を除去した位置に前記非貫通穴を形成するェ 程を有する多層プリ ン 卜配線板の製造方法。 A method for manufacturing a multilayer printed wiring board, comprising a step of forming the non-through hole at a position where the metal foil is removed.
22. 請求の範囲の第 1 8 項において、 22. In claim 18 of the claim,
前記外層用導電パターンと前記内層材用導電パターンと を電気的に接続する工程は、 前記非貫通穴に金属メ ツキ を設置する工程を有する多層プリ ン ト配線板の製造方法  The step of electrically connecting the outer layer conductive pattern and the inner layer material conductive pattern includes a step of installing a metal plating in the non-through hole.
23. 請求の範囲の第 1 8 項において、 23. In paragraph 18 of the Claims,
前記絶縁樹脂付き金属箔に前記非貫通穴を形成する工程 は、  The step of forming the non-through hole in the metal foil with the insulating resin,
前記非貫通穴を形成する領域の前記金属箔を予め除去す る工程と、  Removing the metal foil in a region where the non-through hole is to be formed in advance;
前記金属箔を除去した位置に、 所望する穴径よ り も大き ぃ径を持つ レーザービームを照射して、 前記非貫通穴を 形成する工程と  Irradiating a laser beam having a diameter larger than a desired hole diameter to a position where the metal foil is removed, thereby forming the non-through hole;
を有する多層プリ ン ト配線板の製造方法。  A method for producing a multilayer printed wiring board having:
24. 請求の範囲の第 1 9 項において、 24. In claim 19,
前記絶縁基板に含まれる前記樹脂は、 前記絶縁樹脂付き 金属箔の前記絶縁樹脂と同 じ材料を有する多層プリ ン ト 配線板。  The resin contained in the insulating substrate is a multilayer printed wiring board having the same material as the insulating resin of the metal foil with the insulating resin.
25. 請求の範囲の第 1 9 項において、 25. In claim 19,
前記絶縁基板に含まれる前記樹脂は、 熱硬化性樹脂を有 し、 前記基材は、 芳香族ポ リ アミ ドか ら作成され、 被圧縮性 と多孔質を有する多層プリ ン ト配線板の製造方法。 The resin contained in the insulating substrate has a thermosetting resin, The method for producing a multilayer printed wiring board having compressibility and porosity, wherein the base material is made of an aromatic polyamide.
26. 請求の範囲の第 1 9 項において、 26. In claim 19,
前記基材は、 芳香族ポ リ アミ ド繊維か ら作成された不織 布を有する多層プリ ン ト配線板の製造方法。  A method for producing a multilayer printed wiring board, wherein the substrate has a nonwoven fabric made of aromatic polyamide fibers.
2 7 . 請求の範囲の第 1 8 項において、 27. In claim 18 of the claim,
前記外層用導電パターンと前記内層材用導電パターンと を電気的に接続する工程は、  Electrically connecting the outer layer conductive pattern and the inner layer material conductive pattern,
前記非貫通穴に金属メ ツキを設置する工程と、  Installing a metal plating in the non-through hole;
前記外層用導電パター ンの表面に、 金属メ ツ キ設置する 工程と を有する多層プリ ン 卜配線板の製造方法。 2 8. 請求の範囲の第 1 9 項において、  Providing a metal pattern on the surface of the outer layer conductive pattern. 2 8. In paragraph 19 of the Claims,
前記非貫通穴と前記貫通穴の う ちの少な く と も一つは、 約 3 0 z m力ゝ ら約 1 0 0 mまでの 口径を有する多層プ リ ン 卜配線板の製造方法。 2 9 . 請求の範囲の第 1 8 項において、  At least one of the non-through hole and the through hole is a method for manufacturing a multilayer printed wiring board having a diameter of about 30 zm force to about 100 m. 2 9. In claim 18,
前記内層材を作成する工程は、 複数の絶縁基板と、 前記 複数の絶縁基板のう ちのそれぞれの絶縁基板の両側に設 置された複数の内層材用導電パターンとを形成する工程 を有する多層プリ ン ト配線板の製造方法。 The step of forming the inner layer material includes a step of forming a plurality of insulating substrates, and a plurality of inner layer material conductive patterns provided on both sides of each of the plurality of insulating substrates. Manufacturing method of printed wiring boards.
30. ( a ) 絶縁基板と、 前記絶縁基板の両側に設置された金属 箔によ り 形成された内層材用導電パターンと、 前記 絶縁基板に設置されたイ ンターステイ シャルバイ ァ ホールとを有する内層材を作成する工程、 30. (a) An inner layer having an insulating substrate, a conductive pattern for an inner layer material formed of metal foil provided on both sides of the insulating substrate, and an interstitial via hole provided on the insulating substrate. The process of creating the material,
( b ) 前記内層材の両面に、 絶縁樹脂と前記絶縁樹脂に  (b) Insulating resin and the insulating resin on both surfaces of the inner layer material
接着された金属箔とを有する絶縁樹脂付き金属箔 を重ね合わせる工程、  A step of laminating a metal foil with an insulating resin having a bonded metal foil,
( c ) 前記内層材と前記内層材の両面に重ねられた前記  (c) the inner layer material and the inner layer material
絶縁樹脂付き金属箔を加熱しながら加圧する工程、 こ こで、 前記絶縁樹脂が前記内層材に接着され、 ( d ) 前記絶縁樹脂付き金属箔を加工する こ とによ り 、  A step of applying pressure while heating the metal foil with insulating resin, wherein the insulating resin is bonded to the inner layer material, and (d) processing the metal foil with insulating resin.
前記絶縁樹脂付き金属箔に非貫通穴を形成する工程、 ( e ) 表面に露出する前記金属箔を加工して、 外層用導電 パターンを形成する工程、  Forming a non-through hole in the metal foil with insulating resin; (e) processing the metal foil exposed on the surface to form a conductive pattern for an outer layer;
( f ) 前記外層用導電パターンと前記内層材用導電パター ンとを電気的に接続する工程  (f) a step of electrically connecting the outer layer conductive pattern and the inner layer material conductive pattern
を備え、  With
前記内層材を作成する工程は、  The step of creating the inner layer material,
( i ) 第一金属箔に導体突起を設置する工程と、  (i) a step of placing a conductor projection on the first metal foil;
( ii ) 基材と前記基材に含浸された樹脂とを有する樹脂 プリ プレダを作成する工程と、  (ii) a step of preparing a resin pre-spreader having a base material and a resin impregnated in the base material;
( iii ) 前記樹脂プリ プレダの一面に、 前記導体突起を持 つ前記金属箔を重ね、 そ して、 他面に第二金属箔 を重ねる工程と、 (iii) The metal foil having the conductor protrusions is overlapped on one surface of the resin pre-spreader, and the second metal foil is provided on the other surface. And the process of stacking
( iv) 重ねられた前記第一金属箔と前記絶縁基板と前記 第二金属箔とを、 加熱しながら加圧し、 これによ り 、 前記導体突起を前記樹脂プリ プレダの中を貫 通し、 そ して、 前記前記樹脂プリ プレダの硬化に よ り 前記絶縁基板を形成し、 前記導体突起によ り 前記ィ ンタ一スティ シャルバイ ァホールを形成す る工程と  (iv) The stacked first metal foil, the insulating substrate, and the second metal foil are pressurized while being heated, whereby the conductor protrusion penetrates through the resin pre-spreader, and Forming the insulating substrate by curing the resin pre-predeer, and forming the interstitial via hole by the conductor protrusions;
を有する多層プリ ン ト配線板の製造方法。  A method for producing a multilayer printed wiring board having:
31. 請求の範囲の第 3 0 項において、 31. In paragraph 30 of the Claims,
前記導体突起は、 円錐形状及び角錐形状の う ちの少な く と も一つを有する多層プリ ン ト配線板の製造方法。 32. 請求の範囲の第 3 0 項において、  A method for manufacturing a multilayer printed wiring board, wherein the conductive protrusion has at least one of a conical shape and a pyramid shape. 32. In claim 30 of the claims,
前記非貫通穴はレーザ加工によ り 形成される多層プリ ン ト配線板の製造方法。  The method for manufacturing a multilayer printed wiring board, wherein the non-through holes are formed by laser processing.
33. 請求の範囲の第 3 0 項において、 33. In paragraph 30 of the Claims,
前記外層用導電パターンと前記内層材用導電パターンと を電気的に接続する工程は、 前記非貫通穴に金属メ ツキ を設置する工程を有する多層プリ ン 卜配線板の製造方法  The step of electrically connecting the outer layer conductive pattern and the inner layer material conductive pattern includes a step of installing a metal plate in the non-through hole.
34. 請求の範囲の第 3 0 項において、 前記絶縁基板に含 まれる前記樹脂は、 熱硬化性樹脂を有 し、 34. In Section 30 of the Claims, The resin contained in the insulating substrate has a thermosetting resin,
前記基材は、 芳香族ポリ アミ ドか ら作成され、 被圧縮性 と多孔質を有する多層プリ ン ト配線板の製造方法。 請求の範囲の第 3 0 項において、 The method for producing a multilayer printed wiring board having compressibility and porosity, wherein the substrate is made of an aromatic polyamide. In claim 30 of the claims,
前記非貫通穴は、 約 3 0 か ら約 1 0 0 mまでの口 径を有する多層プリ ン ト配線板の製造方法。 The method for producing a multilayer printed wiring board, wherein the non-through holes have a diameter of about 30 to about 100 m.
PCT/JP2000/008803 1999-12-14 2000-12-13 Multilayered printed wiring board and production method therefor WO2001045478A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP00981675A EP1194023A4 (en) 1999-12-14 2000-12-13 Multilayered printed wiring board and production method therefor
US09/913,372 US6630630B1 (en) 1999-12-14 2000-12-13 Multilayer printed wiring board and its manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP11/354307 1999-12-14
JP35430799 1999-12-14

Publications (1)

Publication Number Publication Date
WO2001045478A1 true WO2001045478A1 (en) 2001-06-21

Family

ID=18436669

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/008803 WO2001045478A1 (en) 1999-12-14 2000-12-13 Multilayered printed wiring board and production method therefor

Country Status (5)

Country Link
US (1) US6630630B1 (en)
EP (1) EP1194023A4 (en)
CN (1) CN1189068C (en)
TW (1) TW506242B (en)
WO (1) WO2001045478A1 (en)

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6795532B1 (en) * 1997-09-08 2004-09-21 Mci, Inc. Single telephone number access to multiple communication services
JP2002064270A (en) * 2000-08-17 2002-02-28 Matsushita Electric Ind Co Ltd Circuit board and its manufacturing method
TWI312166B (en) * 2001-09-28 2009-07-11 Toppan Printing Co Ltd Multi-layer circuit board, integrated circuit package, and manufacturing method for multi-layer circuit board
US7260890B2 (en) * 2002-06-26 2007-08-28 Georgia Tech Research Corporation Methods for fabricating three-dimensional all organic interconnect structures
JP3690378B2 (en) * 2002-07-26 2005-08-31 株式会社 日立ディスプレイズ Display device
US6809269B2 (en) * 2002-12-19 2004-10-26 Endicott Interconnect Technologies, Inc. Circuitized substrate assembly and method of making same
US20050055917A1 (en) * 2003-08-14 2005-03-17 York International Corporation Corner assembly construction for an air handling unit
US20050041405A1 (en) * 2003-08-22 2005-02-24 Intel Corporation Stacked via structure that includes a skip via
KR100567087B1 (en) * 2003-10-20 2006-03-31 삼성전기주식회사 Method for fabricating the multi layer printed circuit board in parallel with improved interconnection
US7211289B2 (en) * 2003-12-18 2007-05-01 Endicott Interconnect Technologies, Inc. Method of making multilayered printed circuit board with filled conductive holes
US20050150682A1 (en) * 2004-01-12 2005-07-14 Agere Systems Inc. Method for electrical interconnection between printed wiring board layers using through holes with solid core conductive material
GR1004980B (en) * 2004-05-07 2005-09-09 Γεωργιος Σεργιαδης System for the incorporation and interconnection of photovoltaic elements in structural glazings, or in other structural elements
US7157791B1 (en) * 2004-06-11 2007-01-02 Bridge Semiconductor Corporation Semiconductor chip assembly with press-fit ground plane
US8345433B2 (en) * 2004-07-08 2013-01-01 Avx Corporation Heterogeneous organic laminate stack ups for high frequency applications
DE102004045451B4 (en) 2004-09-20 2007-05-03 Atotech Deutschland Gmbh Galvanic process for filling through-holes with metals, in particular printed circuit boards with copper
JP4416616B2 (en) * 2004-09-29 2010-02-17 株式会社リコー Electronic component mounting body and electronic equipment
US7293355B2 (en) * 2005-04-21 2007-11-13 Endicott Interconnect Technologies, Inc. Apparatus and method for making circuitized substrates in a continuous manner
US7827682B2 (en) 2005-04-21 2010-11-09 Endicott Interconnect Technologies, Inc. Apparatus for making circuitized substrates having photo-imageable dielectric layers in a continuous manner
US7627947B2 (en) * 2005-04-21 2009-12-08 Endicott Interconnect Technologies, Inc. Method for making a multilayered circuitized substrate
US7211470B2 (en) * 2005-09-01 2007-05-01 Endicott Interconnect Technologies, Inc. Method and apparatus for depositing conductive paste in circuitized substrate openings
KR101335480B1 (en) 2006-03-30 2013-12-02 아토테크 도이칠란드 게엠베하 Electrolytic method for filling holes and cavities with metals
US7808434B2 (en) * 2006-08-09 2010-10-05 Avx Corporation Systems and methods for integrated antennae structures in multilayer organic-based printed circuit devices
US7989895B2 (en) 2006-11-15 2011-08-02 Avx Corporation Integration using package stacking with multi-layer organic substrates
US8440916B2 (en) * 2007-06-28 2013-05-14 Intel Corporation Method of forming a substrate core structure using microvia laser drilling and conductive layer pre-patterning and substrate core structure formed according to the method
JP5436774B2 (en) * 2007-12-25 2014-03-05 古河電気工業株式会社 Multilayer printed circuit board and manufacturing method thereof
CN101472404B (en) * 2007-12-25 2011-12-07 富葵精密组件(深圳)有限公司 Multi-layer circuit board and manufacturing method thereof
JP4612066B2 (en) * 2008-02-18 2011-01-12 釜屋電機株式会社 Chip fuse and manufacturing method thereof
JP4711149B2 (en) * 2008-06-18 2011-06-29 ソニー株式会社 Flexible printed wiring board, touch panel, display panel and display device
CN101662881B (en) * 2008-08-27 2011-12-07 富葵精密组件(深圳)有限公司 Circuit board and manufacturing method thereof
US20110084372A1 (en) 2009-10-14 2011-04-14 Advanced Semiconductor Engineering, Inc. Package carrier, semiconductor package, and process for fabricating same
US8569894B2 (en) 2010-01-13 2013-10-29 Advanced Semiconductor Engineering, Inc. Semiconductor package with single sided substrate design and manufacturing methods thereof
TWI411075B (en) 2010-03-22 2013-10-01 Advanced Semiconductor Eng Semiconductor package and manufacturing method thereof
CN103517558B (en) * 2012-06-20 2017-03-22 碁鼎科技秦皇岛有限公司 Manufacture method for package substrate
TWI460315B (en) * 2012-10-26 2014-11-11 Songtex Technology Company Ltd Panel to panel horizontal continue plating line
WO2018092798A1 (en) * 2016-11-18 2018-05-24 矢崎総業株式会社 Method of forming circuit body and circuit body
JP6810617B2 (en) * 2017-01-16 2021-01-06 富士通インターコネクトテクノロジーズ株式会社 Circuit boards, circuit board manufacturing methods and electronic devices
US10157832B2 (en) * 2017-03-08 2018-12-18 Globalfoundries Inc. Integrated circuit structure including via interconnect structure abutting lateral ends of metal lines and methods of forming same
CN109803481B (en) * 2017-11-17 2021-07-06 英业达科技有限公司 Multilayer printed circuit board and method for manufacturing multilayer printed circuit board
CN108156759B (en) * 2017-12-28 2019-12-24 广州兴森快捷电路科技有限公司 Reworking method for printed circuit board with smaller laser aperture
US11540390B2 (en) * 2018-07-31 2022-12-27 Kyocera Corporation Printed wiring board and method of manufacturing printed wiring board

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0818228A (en) * 1994-06-27 1996-01-19 Yamamoto Seisakusho:Kk Manufacture of multi-layer printed board
JPH0818228B2 (en) 1988-07-15 1996-02-28 工業技術院長 Stylus-type tool wear detection method
JPH11289165A (en) * 1998-04-03 1999-10-19 Toshiba Corp Multilayer wiring board and method for manufacturing the same
JPH11298146A (en) 1998-04-16 1999-10-29 Matsushita Electric Ind Co Ltd Multilayered printed wiring board and manufacture thereof

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5300402A (en) * 1988-12-30 1994-04-05 International Business Machines Corporation Composition for photo imaging
JP2881963B2 (en) * 1990-05-25 1999-04-12 ソニー株式会社 Wiring board and manufacturing method thereof
CA2109687A1 (en) * 1993-01-26 1995-05-23 Walter Schmidt Method for the through plating of conductor foils
US5600103A (en) * 1993-04-16 1997-02-04 Kabushiki Kaisha Toshiba Circuit devices and fabrication method of the same
EP0647090B1 (en) * 1993-09-03 1999-06-23 Kabushiki Kaisha Toshiba Printed wiring board and a method of manufacturing such printed wiring boards
CN1075338C (en) * 1993-09-21 2001-11-21 松下电器产业株式会社 Connecting member of a circuit substrate and method of manufacturing multilayer circuit substrates by using the same
JP3474937B2 (en) * 1994-10-07 2003-12-08 株式会社東芝 Method of manufacturing wiring board for mounting and method of manufacturing semiconductor package
JP3084352B2 (en) * 1995-08-28 2000-09-04 太陽インキ製造株式会社 Insulating resin composition for copper foil lamination type build-up and method for producing multilayer printed wiring board using the same
US5699613A (en) * 1995-09-25 1997-12-23 International Business Machines Corporation Fine dimension stacked vias for a multiple layer circuit board structure
US6143116A (en) * 1996-09-26 2000-11-07 Kyocera Corporation Process for producing a multi-layer wiring board
JPH10261870A (en) * 1997-03-18 1998-09-29 Hitachi Chem Co Ltd Build-up method multilayer wiring board material and manufacture of multilayer wiring board thereby
JP3324437B2 (en) * 1997-04-04 2002-09-17 松下電器産業株式会社 Manufacturing method of multilayer printed wiring board
JPH11298105A (en) * 1998-04-07 1999-10-29 Asahi Chem Ind Co Ltd Via hole filling type printed board and manufacture thereof
US6274821B1 (en) * 1998-09-16 2001-08-14 Denso Corporation Shock-resistive printed circuit board and electronic device including the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0818228B2 (en) 1988-07-15 1996-02-28 工業技術院長 Stylus-type tool wear detection method
JPH0818228A (en) * 1994-06-27 1996-01-19 Yamamoto Seisakusho:Kk Manufacture of multi-layer printed board
JPH11289165A (en) * 1998-04-03 1999-10-19 Toshiba Corp Multilayer wiring board and method for manufacturing the same
JPH11298146A (en) 1998-04-16 1999-10-29 Matsushita Electric Ind Co Ltd Multilayered printed wiring board and manufacture thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1194023A4 *

Also Published As

Publication number Publication date
US6630630B1 (en) 2003-10-07
EP1194023A4 (en) 2005-11-09
EP1194023A1 (en) 2002-04-03
CN1189068C (en) 2005-02-09
CN1337145A (en) 2002-02-20
TW506242B (en) 2002-10-11

Similar Documents

Publication Publication Date Title
WO2001045478A1 (en) Multilayered printed wiring board and production method therefor
US6459046B1 (en) Printed circuit board and method for producing the same
KR101116079B1 (en) Method for manufacturing multilayer printed circuit board and multilayer printed circuit board
US6664127B2 (en) Method of manufacturing multi-layer printed wiring board
JP5098646B2 (en) Circuit board manufacturing method
JP4192657B2 (en) Manufacturing method of build-up multilayer wiring board with built-in chip parts
WO1998056220A1 (en) Single-sided circuit board and method for manufacturing the same
JP2002064270A (en) Circuit board and its manufacturing method
JPH1154934A (en) Multilayered printed wiring board and its manufacture
JP2004327510A (en) Copper-plated laminated board for multilayered printed wiring board, multilayered printed wiring board and method of manufacturing the same
WO2006118141A1 (en) Multilayer wiring board and method for producing same
JPH11186698A (en) Manufacture of circuit board, and circuit board
TW517504B (en) Circuit board and a method of manufacturing the same
JP5077800B2 (en) Manufacturing method of multilayer printed wiring board
WO2003009656A1 (en) Circuit-formed substrate and method of manufacturing circuit-formed substrate
JP2009182070A (en) Multilayer base for forming multilayer printed wiring board, and multilayer printed wiring board
JP4161604B2 (en) Printed wiring board and manufacturing method thereof
JPH1154926A (en) One-sided circuit board and its manufacture
JP3705370B2 (en) Manufacturing method of multilayer printed wiring board
JP3738536B2 (en) Method for manufacturing printed wiring board
JP2002208763A (en) Circuit board and method for manufacturing it
KR100722605B1 (en) Manufacturing method of all layer inner via hall printed circuit board that utilizes the fill plating
JP2001237550A (en) Multilayered printed board and its manufacturing method
KR100651422B1 (en) Method for fabricating the multi layer using Layup Process
JP3238901B2 (en) Multilayer printed wiring board and method of manufacturing the same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 00802826.5

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

WWE Wipo information: entry into national phase

Ref document number: 2000981675

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 09913372

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2000981675

Country of ref document: EP