JPS6138129B2 - - Google Patents

Info

Publication number
JPS6138129B2
JPS6138129B2 JP56161807A JP16180781A JPS6138129B2 JP S6138129 B2 JPS6138129 B2 JP S6138129B2 JP 56161807 A JP56161807 A JP 56161807A JP 16180781 A JP16180781 A JP 16180781A JP S6138129 B2 JPS6138129 B2 JP S6138129B2
Authority
JP
Japan
Prior art keywords
cobalt
iron oxide
feooh
ferromagnetic iron
phosphorus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56161807A
Other languages
Japanese (ja)
Other versions
JPS5864221A (en
Inventor
Kazuo Nakada
Tsuneo Ishikawa
Makoto Ogasawara
Taro Amamoto
Toshihiko Kawamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishihara Sangyo Kaisha Ltd
Original Assignee
Ishihara Sangyo Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishihara Sangyo Kaisha Ltd filed Critical Ishihara Sangyo Kaisha Ltd
Priority to JP56161807A priority Critical patent/JPS5864221A/en
Publication of JPS5864221A publication Critical patent/JPS5864221A/en
Publication of JPS6138129B2 publication Critical patent/JPS6138129B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、磁気記録材料として有用なコバルト
被着強磁性酸化鉄の製造方法に関し、さらに詳し
くは、コバルトを被着させる強磁性酸化鉄とし
て、その前駆体の段階であらかじめその結晶中に
リンを含有させてから強磁性酸化鉄に誘導したも
のを用い、次いでここで得られた強磁性酸化鉄の
表面に少くともコバルトを含む化合物を被着する
コバルト被着強磁性酸化鉄の製造方法に関する。 強磁性酸化鉄にコバルト化合物を被着させたも
のは、高保磁力を有していることから、ビデオ
用、オーデイオ用などの磁気記録分野でさかんに
利用されており、このようなコバルト被着強磁性
酸化鉄を得るための方法も数多く提案されてい
る。また、コバルト被着前に酸化鉄にリンを含有
させることについても、いくつかの提案がみられ
る。 例えば、特開昭49―69588号公報には、マグネ
タイトに還元する前のα―FeOOHにリン酸塩な
どを被着し、それを還元して得られたマグネタイ
ト或は、これから誘導したγ―Fe2O3にコバルト
化合物を被着し、さらに焼戻しする方法が記載さ
れているが、コバルト化合物の被着が均一に行な
われにくい欠点がある。別に、特開昭55―149137
号公報には、結晶中にケイ素及びリンを含んだも
のにコバルト化合物を吸着、拡散させる方法が記
載されているが、主としてケイ素及びリンの添加
による比表面積の増加と、それに伴う保磁力の増
大がみられるものの、保磁力のバラツキなどの点
でなお改良を望まれている。 本発明は前記方法とは異なり、リン化合物は粒
子表面ではなく結晶中に存在させ、かつケイ素な
どを含有させないα―FeOOHを用い、それから
誘導した強磁性酸化鉄にコバルト化合物を被着す
ることを特徴とする。 本発明者等は、結晶中に含有されたリンは、コ
バルト化合物の被着を妨害せず、良好かつ均一な
コバルト被覆が得られ、更に前記リンはコバルト
の結晶中への拡散を防止する結果、高保磁力で、
熱特性、経時安定性にすぐれた強磁性酸化鉄が製
造できることを確認した。 本発明は、α―FeOOH核晶を懸濁含有した第
1鉄塩水溶液を、最終的に生成する全α―
FeOOH量に対してp換算で0.1〜1重量%となる
ような量のリン化合物の存在下に、中和、酸化し
て該核晶を成長させてリン含有α―FeOOHを生
成させ、得られたα―FeOOHを強磁性酸化鉄に
誘導したのち、該強磁性酸化鉄粒子表面に少くと
もコバルトを含む化合物を被覆することを特徴と
する、コバルト被着強磁性酸化鉄の製造方法であ
る。 α―FeOOHは、例えば第1鉄塩溶液をアルカ
リで部分中和してFeの一部を沈澱させた後、酸
化してα―FeOOH核晶を生成させ、次いでこの
溶液をさらにアルカリで中和しつつ酸化して前記
核晶を成長させることによつて製造される。本発
明の方法では、前記核晶成長反応時に液中にリン
化合物を存在させる。 使用する第1鉄塩としては、硫酸第1鉄、硝酸
第1鉄、塩化第1鉄などの鉱酸の第1鉄塩などが
あり、工業的には硫酸第1鉄が好ましい。アルカ
リとしては、アルカリ金属或はアルカリ土類金属
の水酸化、酸化物又は炭酸塩、例えば水酸化ナト
リウム、水酸化カリウム、酸化ナトリウム、炭酸
カルシウムなどがあり、工業的には水酸化ナトリ
ウム、水酸化カリウムが好ましい。酸化のために
用いられる酸化剤としては、空気、酸素、その他
の酸化剤などがあり、一般に空気が好適である。
リン化合物としては、オルトリン酸、メタリン
酸、ポリリン酸、亜リン酸などのリン酸或は、こ
れらのアルカリ金属、アンモニウムなどとの水溶
性塩などがあり、普通はオルトリン酸又はその塩
が用いられる。 前記α―FeOOH核晶生成反応は、通常30〜
100g/の濃度の第1鉄塩溶液に、母液中のFe
イオンを5〜25g/だけ沈澱させるのに必要な
アルカリを加え、空気を吹き込みながら反応温度
を50〜100℃及びPHを3〜8の間に維持して、10
〜80分間行なわれる。この工程において、形状性
のよい核晶を得るためにリン化合物を添加する場
合は、α―FeOOH核晶に対しp換算量で0.1〜
0.4重量%となるように母液中にリン化合物を添
加することが奨められるが、このリンは核晶に内
包され、本発明にいうリンの効果を発現しない。 次いで行なわれるα―FeOOH核晶成長反応
は、通常α―FeOOH核晶の懸濁した第1鉄塩溶
液にさらにアルカリを加え、空気を吹込みなが
ら、反応温度を50〜90℃及びPHを3〜6の間に維
持して、核晶の成長速度を5〜15g//時程度
及び成長倍率を1.5〜6程度となるように調節し
て行なわれる。この工程において、母液中にリン
化合物を添加することにより、α―FeOOHにほ
ぼ均一にリンを含有させることができる。リン化
合物の添加量は、最終的に得られる全α―
FeOOH量を基準にしてp換算量で0.1〜1重量%
とする。この量が少なすぎると、所望の効果が得
られず、一方、多すぎると熱特性、経時安定性な
どの良好なものが得られにくい。 このようにして得られたリン含有α―FeOOH
は、通常の過、水洗、乾燥及び粉砕を経てα―
FeOOH粉末とし、この粉末を通常の方法により
本発明方法でいう強磁性酸化鉄、即ち、γ―
Fe2O3、Fe3O4或はベルトライド化合物を得るこ
とができる。脱水は、例えば、空気中で300〜700
℃の温度に加熱して行ない、還元は、例えば水素
又は水蒸気を含む水素で300〜500℃の温度に加熱
して行ない、酸化は、例えば酸素又は空気中で
200〜400℃の温度に加熱して行なう。 本発明の方法では、前述の方法により得られた
リン含有強磁性酸化鉄を少くともコバルトを含む
化合物によつて被覆する。この被覆は、前記酸化
鉄のスラリー中で金属塩をアルカリ中和すること
によつて行なわれる。ここで用いられるコバルト
塩としては、コバルトの無機酸塩或は有機酸塩が
挙げられ、例えば硫酸コバルト、塩化コバルト、
酢酸コバルトなどが挙げられ、その被着量は通
常、酸化鉄に対する重量基準で0.5〜10%、望ま
しくは1〜6%である。この時、同時又はその前
後に被覆してもよいコバルト以外の金属塩として
は、第1鉄塩、第1マンガン塩、亜鉛塩、ニツケ
ル塩などが挙げられ、その被着量は通常酸化鉄に
対して第1鉄の場合0.5〜20%、望ましくは5〜
15%であり、その他の金属の場合0〜10%であ
る。 被着する方法としては、例えば(1)強磁性酸化鉄
を少くともコバルトを含む金属水溶液に分散さ
せ、これにアルカリ溶液を加える方法、(2)強磁性
酸化鉄を少くともコバルトを含む金属塩水溶液と
アルカリ 溶液との混合液に分散させる方法、(3)
強磁性酸化鉄を水に分散させ、これに少くともコ
バルトを含む金属塩水溶液とアルカリ溶液とを添
加する方法、(4)強磁性酸化鉄をアルカリ水溶液に
分散させ、これに少くともコバルトを含む金属塩
水溶液を添加する方法、(5)強磁性酸化鉄を少くと
もコバルトを含む金属塩水溶液に分散させ、この
分散液をアルカリ溶液中に滴下添加する方法など
が挙げられ、また、コバルト、第1鉄、その他の
金属の1部又は全部を同時に処理したり、順次処
理したり、適宜の方法を採用することができ、こ
の被着処理は常温もしくは60〜150℃程度の加熱
下に行なつてもよい。 前述の方法により得られたコバルト被着強磁性
酸化鉄は、過した後、通常の方法により乾燥し
たり、非酸化性あるいは酸化性雰囲気中で100〜
300℃程度で熱処理したりしてもよい。 本発明方法によつて得られるコバルト被着強磁
性酸化鉄は、高保磁力で、かつ熱特性、経時安定
性などの良好なものである。この理由については
明らかでないが、リン含有α―FeOOHは比較的
高温の加熱によつて空孔の少ない強磁性酸化鉄が
得られやすいこと、強磁性酸化鉄の表面に多量の
リンが存在しないためか、均一でかつ良好なコバ
ルト被着が得られること、強磁性酸化鉄中に含ま
れるリンがコバルトの結晶中への拡散を防止して
好ましい構造になることなどが推定される。 以下の実施例及び比較例により、本発明がより
詳しく理解できるであろう。 実施例1〜2及び比較例1〜2 空気吹込み管と撹拌器を備えた反応器に、
3800gのFeSO4を含む水溶液20を入れ、43℃に
昇温し、NaOH水溶液(濃度200g/)2.14を
撹拌下に加え(沈澱Fe15g/)、この中へ600
/時間の速度で空気を吹き込み、45℃で40分間
反応させてα―FeOOHの核晶を得た。 さらに、85/時間の速度で空気を吹き込みな
がら、下記第1表に示す所定量のオルトリン酸及
びNaOH水溶液(濃度200g/)5.4を徐々に
加えて、PHを5.1に維持し、50℃で8時間反応さ
せ、核晶を約3.5倍に成長させた。 上記の方法で得られたそれぞれのα―FeOOH
は、通常の過、水洗、乾燥及び粉砕を経て、α
―FeOOH粉末として得、このものを通常の方法
により、脱水(空気中、650℃)還元(水蒸気を
含む水素中、420℃)及び酸化(空気中、280℃)
を行ないそれぞれのγ―Fe2O3を得た。 上記の方法で得られたそれぞれのγ―
Fe2O3200gを水2に分散させてスラリーとし、
液中にN2ガスを吹き込みながら、硫酸コバルト
1モル/溶液120mlと硫酸第1鉄1モル/溶
液250mlとの混合液を加え、撹拌した。さらに水
酸化ナトリウム5モル/溶液780mlを加え、室
温(28℃)で5時間撹拌を続けた。反応後のスラ
リーを過、水洗し、得られたスラリーを110℃
で10時間不活性雰囲気中で乾燥し、目的のコバル
ト被着強磁性酸化鉄粉末A〜Dを得た。 比較例 3〜4 比較例1の方法で得られたα―FeOOHについ
て、過、水洗後オルトリン酸をα―FeOOHに
対して下記第1表に示す所定量被着した後、実施
例1の場合と同様にしてγ―Fe2O3を得、さらに
同様にして目的のコバルト被着強磁性酸化鉄粉末
E及びFを得た。 得られたサンプルA〜Fについて、通常の方法
により保磁力を測定し、下記の方法により熱特性
及び経時安定性を計算して第1表の結果を得た。 (熱特定の測定法) 室温及び125℃における保磁力を測定し、下記
計算式により、熱特性を求める。 熱特性(%)=125℃における保磁力(Hc)/常温
〃 (〃)×100 (経時安定性の測定) 当初の保磁力及び60℃、相対湿度80%で10日間
放置した後の保磁力を測定し、下記計算式により
経時安定性を求める。 経時安定性(△Hc)=(当初の保磁力)−(温度
60℃、相対湿度80%で10日間放置後の保磁力)
The present invention relates to a method for producing cobalt-coated ferromagnetic iron oxide that is useful as a magnetic recording material, and more specifically, to produce ferromagnetic iron oxide coated with cobalt, phosphorus is preliminarily added to the crystal at the precursor stage. The present invention relates to a method for producing cobalt-coated ferromagnetic iron oxide, in which a compound containing at least cobalt is coated on the surface of the ferromagnetic iron oxide obtained by using the ferromagnetic iron oxide. Ferromagnetic iron oxide coated with a cobalt compound has a high coercive force, so it is widely used in magnetic recording fields such as video and audio. Many methods have also been proposed for obtaining magnetic iron oxide. There are also some proposals for incorporating phosphorus into iron oxide before depositing cobalt. For example, Japanese Patent Application Laid-open No. 49-69588 describes magnetite obtained by depositing phosphate on α-FeOOH before being reduced to magnetite and reducing it, or γ-Fe derived from this. A method has been described in which a cobalt compound is deposited on 2 O 3 and then tempered, but the method has the drawback that the cobalt compound is not easily deposited uniformly. Separately, JP-A-55-149137
The publication describes a method for adsorbing and diffusing a cobalt compound into crystals containing silicon and phosphorus, but the method mainly involves increasing the specific surface area by adding silicon and phosphorus and increasing the coercive force accordingly. However, improvements are still desired in terms of variations in coercive force. The present invention differs from the above method in that the phosphorus compound is present in the crystal rather than on the particle surface, and α-FeOOH containing no silicon is used, and a cobalt compound is deposited on the ferromagnetic iron oxide derived from the α-FeOOH. Features. The present inventors have found that the phosphorus contained in the crystal does not interfere with the adhesion of the cobalt compound and that a good and uniform cobalt coating can be obtained, and that the phosphorus prevents cobalt from diffusing into the crystal. , with high coercive force,
It was confirmed that ferromagnetic iron oxide with excellent thermal properties and stability over time can be produced. The present invention enables the production of a ferrous salt aqueous solution containing α-FeOOH nucleus crystals suspended in the total α-
In the presence of a phosphorus compound in an amount of 0.1 to 1% by weight in p terms based on the amount of FeOOH, the nucleic crystals are grown by neutralization and oxidation to generate phosphorus-containing α-FeOOH, which is obtained. This is a method for producing cobalt-coated ferromagnetic iron oxide, which comprises inducing α-FeOOH into ferromagnetic iron oxide, and then coating the surface of the ferromagnetic iron oxide particles with a compound containing at least cobalt. α-FeOOH can be produced by, for example, partially neutralizing a ferrous salt solution with an alkali to precipitate some of the Fe, oxidizing it to produce α-FeOOH nucleus crystals, and then further neutralizing this solution with an alkali. It is produced by oxidizing and growing the nucleus crystals. In the method of the present invention, a phosphorus compound is present in the liquid during the nucleic crystal growth reaction. The ferrous salts used include ferrous salts of mineral acids such as ferrous sulfate, ferrous nitrate, and ferrous chloride, with ferrous sulfate being industrially preferred. Examples of alkalis include hydroxides, oxides, or carbonates of alkali metals or alkaline earth metals, such as sodium hydroxide, potassium hydroxide, sodium oxide, and calcium carbonate. Potassium is preferred. Examples of the oxidizing agent used for oxidation include air, oxygen, and other oxidizing agents, with air being generally preferred.
Examples of phosphorus compounds include phosphoric acids such as orthophosphoric acid, metaphosphoric acid, polyphosphoric acid, and phosphorous acid, or water-soluble salts of these with alkali metals, ammonium, etc., and orthophosphoric acid or its salts are usually used. . The above α-FeOOH nucleation reaction is usually performed for 30~
Fe in the mother liquor is added to a ferrous salt solution with a concentration of 100 g/
Add the alkali necessary to precipitate 5 to 25 g of ions, maintain the reaction temperature between 50 and 100°C and pH between 3 and 8 while blowing air,
It lasts ~80 minutes. In this step, when adding a phosphorus compound to obtain well-shaped nucleus crystals, it is necessary to add a phosphorus compound in a p-equivalent amount of 0.1 to
Although it is recommended that a phosphorus compound be added to the mother liquor at a concentration of 0.4% by weight, this phosphorus is encapsulated in the core crystals and does not exhibit the effect of phosphorus according to the present invention. The subsequent α-FeOOH nucleus crystal growth reaction is usually carried out by adding an alkali to the ferrous salt solution in which α-FeOOH nuclei are suspended, and increasing the reaction temperature to 50 to 90°C and pH to 3 while blowing air. The growth rate of the nucleus crystals is controlled to be about 5 to 15 g/hour, and the growth rate is adjusted to about 1.5 to 6. In this step, by adding a phosphorus compound to the mother liquor, α-FeOOH can be made to contain phosphorus almost uniformly. The amount of phosphorus compound added is determined by the amount of total α-
0.1 to 1% by weight in p equivalent amount based on FeOOH amount
shall be. If this amount is too small, the desired effect cannot be obtained, while if it is too large, it is difficult to obtain good thermal properties, stability over time, etc. Phosphorus-containing α-FeOOH obtained in this way
α-
FeOOH powder is obtained, and this powder is converted into ferromagnetic iron oxide in the method of the present invention, that is, γ-
Fe 2 O 3 , Fe 3 O 4 or bertolide compounds can be obtained. Dehydration, e.g. 300-700 in air
Reduction is carried out by heating to a temperature of 300 to 500 °C, for example with hydrogen or hydrogen containing water vapor, and oxidation is carried out by heating to a temperature of 300 to 500 °C, for example in oxygen or air.
This is done by heating to a temperature of 200-400°C. In the method of the present invention, the phosphorus-containing ferromagnetic iron oxide obtained by the method described above is coated with a compound containing at least cobalt. This coating is carried out by alkali neutralization of the metal salt in the iron oxide slurry. Examples of the cobalt salt used here include inorganic and organic acid salts of cobalt, such as cobalt sulfate, cobalt chloride,
Examples include cobalt acetate, and the amount of the coating is usually 0.5 to 10%, preferably 1 to 6%, based on the weight of iron oxide. At this time, examples of metal salts other than cobalt that may be coated at the same time or before or after the coating include ferrous salts, manganous salts, zinc salts, nickel salts, etc., and the coating amount is usually smaller than that of iron oxide. On the other hand, in the case of ferrous iron, it is 0.5 to 20%, preferably 5 to 20%.
15%, and 0-10% for other metals. Examples of methods for depositing include (1) dispersing ferromagnetic iron oxide in a metal aqueous solution containing at least cobalt and adding an alkaline solution thereto; (2) dispersing ferromagnetic iron oxide in a metal salt containing at least cobalt; Dispersion in a mixture of aqueous and alkaline solutions, (3)
A method of dispersing ferromagnetic iron oxide in water and adding thereto an aqueous metal salt solution containing at least cobalt and an alkaline solution; (4) dispersing ferromagnetic iron oxide in an aqueous alkaline solution containing at least cobalt; (5) A method in which ferromagnetic iron oxide is dispersed in an aqueous metal salt solution containing at least cobalt, and this dispersion is added dropwise into an alkaline solution. 1. Part or all of iron and other metals can be treated simultaneously or sequentially, or any suitable method can be adopted. It's okay. The cobalt-coated ferromagnetic iron oxide obtained by the above-mentioned method is filtered and then dried by a conventional method or heated in a non-oxidizing or oxidizing atmosphere for
Heat treatment may be performed at about 300°C. The cobalt-coated ferromagnetic iron oxide obtained by the method of the present invention has a high coercive force and good thermal properties and stability over time. The reason for this is not clear, but ferromagnetic iron oxide with few vacancies is easily obtained by heating phosphorus-containing α-FeOOH at relatively high temperatures, and there is no large amount of phosphorus on the surface of ferromagnetic iron oxide. It is also presumed that uniform and good cobalt deposition is obtained, and that phosphorus contained in the ferromagnetic iron oxide prevents cobalt from diffusing into the crystal, resulting in a preferable structure. The present invention will be understood in more detail by the following Examples and Comparative Examples. Examples 1-2 and Comparative Examples 1-2 In a reactor equipped with an air blowing pipe and a stirrer,
Pour 20 g of an aqueous solution containing 3800 g of FeSO4, raise the temperature to 43°C, add 2.14 g of NaOH aqueous solution (concentration 200 g/) with stirring (precipitated Fe 15 g/), and add 600 g of FeSO4 to this solution.
Air was blown into the mixture at a rate of /hour and the reaction was carried out at 45°C for 40 minutes to obtain α-FeOOH nucleus crystals. Further, while blowing air at a rate of 85/hour, a predetermined amount of orthophosphoric acid and NaOH aqueous solution (concentration 200g/hour) 5.4 shown in Table 1 below was gradually added to maintain the pH at 5.1, and at 50℃ The reaction was carried out for a period of time, and the nucleus crystals grew approximately 3.5 times. Each α-FeOOH obtained by the above method
After passing through the usual filtering, water washing, drying and grinding, α
- Obtained as FeOOH powder, which was dehydrated (in air, 650°C), reduced (in hydrogen containing steam, 420°C) and oxidized (in air, 280°C).
Each γ-Fe 2 O 3 was obtained. Each γ- obtained by the above method
Disperse 200g of Fe 2 O 3 in water 2 to make a slurry,
While blowing N 2 gas into the liquid, a mixed solution of 1 mol of cobalt sulfate/120 ml of solution and 1 mol of ferrous sulfate/250 ml of solution was added and stirred. Furthermore, 5 mol of sodium hydroxide/780 ml of solution was added, and stirring was continued at room temperature (28°C) for 5 hours. After the reaction, the slurry was filtered and washed with water, and the resulting slurry was heated to 110℃.
The powder was dried for 10 hours in an inert atmosphere to obtain the desired cobalt-coated ferromagnetic iron oxide powders A to D. Comparative Examples 3 to 4 For α-FeOOH obtained by the method of Comparative Example 1, after washing with filtrate and water, orthophosphoric acid was applied to the α-FeOOH in a predetermined amount shown in Table 1 below, and then the method of Example 1 was applied. γ-Fe 2 O 3 was obtained in the same manner as above, and the desired cobalt-coated ferromagnetic iron oxide powders E and F were obtained in the same manner. The coercive force of the obtained samples A to F was measured by a conventional method, and the thermal properties and stability over time were calculated by the following method, and the results shown in Table 1 were obtained. (Measurement method for thermal identification) Measure coercive force at room temperature and 125°C, and calculate thermal characteristics using the following formula. Thermal properties (%) = Coercive force (Hc) at 125°C/room temperature 〃 (〃) × 100 (Measurement of stability over time) Initial coercive force and coercive force after being left at 60°C and relative humidity 80% for 10 days is measured, and the stability over time is determined using the formula below. Stability over time (△Hc) = (initial coercive force) - (temperature
Coercive force after being left at 60℃ and 80% relative humidity for 10 days)

【表】 実施例 3 実施例1の方法で得られたγ―Fe2O3200gを水
2に分散させてスラリーとし、液中にN2ガス
を吹き込みながら、硫酸コバルト1モル/溶液
120mlを加え、撹拌した。さらに、水酸化ナトリ
ウム5モル/溶液590mlを加え、90℃で5時間
撹拌を続けた。反応後のスラリーを過、水洗
し、得られたスラリーを110℃で10時間乾燥し、
目的のコバルト被着強磁性酸化鉄粉末Hを得た。 実施例 4 硫酸コバルト1モル/溶液120mlを加え、撹
拌し、さらに水酸化ナトリウム5モル/溶液
590mlを加えることを、硫酸コバルト1モル/
溶液120ml及び硫酸第1マンガン1モル/溶液
120mlを加え、撹拌し、さらに水酸化ナトリウム
5モル/溶液680mlを加えることに代える以外
は実施例3の場合と同様にして、目的のコバルト
被着強磁性酸化鉄Iを得た。 実施例 5 コバルト及び第1鉄化合物を被着するγ―
Fe2O3をマグネタイトに代える以外は実施例1の
場合と同様にして、目的のコバルト被着強磁性酸
化鉄Jを得た。 上記で得られたサンプルH、I及びJについ
て、通常の方法により保磁力を測定し、前記の方
法により熱特性及び経時安定性を計算して第2表
の結果を得た。
[Table] Example 3 200 g of γ-Fe 2 O 3 obtained by the method of Example 1 was dispersed in 2 water to make a slurry, and while blowing N 2 gas into the liquid, 1 mol of cobalt sulfate/solution was added.
120 ml was added and stirred. Furthermore, 5 mol of sodium hydroxide/590 ml of solution was added, and stirring was continued at 90°C for 5 hours. After the reaction, the slurry was filtered and washed with water, and the resulting slurry was dried at 110°C for 10 hours.
The desired cobalt-coated ferromagnetic iron oxide powder H was obtained. Example 4 Add 1 mole of cobalt sulfate/120 ml of solution, stir, and then add 5 mole of sodium hydroxide/solution.
Add 590 ml of cobalt sulfate 1 mole/
120 ml of solution and 1 mol of manganese sulfate/solution
The desired cobalt-coated ferromagnetic iron oxide I was obtained in the same manner as in Example 3, except that 120 ml was added, stirred, and further 5 mol of sodium hydroxide/680 ml of solution was added. Example 5 γ- Depositing Cobalt and Ferrous Compounds
The desired cobalt-coated ferromagnetic iron oxide J was obtained in the same manner as in Example 1 except that Fe 2 O 3 was replaced with magnetite. For Samples H, I, and J obtained above, the coercive force was measured by a conventional method, and the thermal properties and stability over time were calculated by the above method, and the results shown in Table 2 were obtained.

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 α―FeOOH核晶を懸濁含有した第1鉄塩水
溶液を、最終的に生成する全α―FeOOH量に対
してP換算で0.1〜1重量%となるような量のリ
ン化合物の存在下に、中和、酸化して該核晶を成
長させてリン含有α―FeOOHを生成させ、得ら
れたα―FeOOHを強磁性酸化鉄に誘導したの
ち、該強磁性酸化鉄粒子表面に少くともコバルト
を含む化合物を被着することを特徴とする、コバ
ルト被着強磁性酸化鉄の製造方法。
1. A ferrous salt aqueous solution containing suspended α-FeOOH nucleus crystals is prepared in the presence of an amount of phosphorus compound such that the amount is 0.1 to 1% by weight in terms of P based on the total amount of α-FeOOH to be finally produced. Then, the nucleic crystals are grown by neutralization and oxidation to generate phosphorus-containing α-FeOOH, and the obtained α-FeOOH is induced into ferromagnetic iron oxide. A method for producing cobalt-coated ferromagnetic iron oxide, the method comprising depositing a compound containing cobalt.
JP56161807A 1981-10-09 1981-10-09 Manufacture of ferromagnetic iron oxide coated with cobalt Granted JPS5864221A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56161807A JPS5864221A (en) 1981-10-09 1981-10-09 Manufacture of ferromagnetic iron oxide coated with cobalt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56161807A JPS5864221A (en) 1981-10-09 1981-10-09 Manufacture of ferromagnetic iron oxide coated with cobalt

Publications (2)

Publication Number Publication Date
JPS5864221A JPS5864221A (en) 1983-04-16
JPS6138129B2 true JPS6138129B2 (en) 1986-08-27

Family

ID=15742283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56161807A Granted JPS5864221A (en) 1981-10-09 1981-10-09 Manufacture of ferromagnetic iron oxide coated with cobalt

Country Status (1)

Country Link
JP (1) JPS5864221A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5330497A (en) * 1976-09-01 1978-03-22 Basf Ag Cobalttdoped acicular magnetic iron oxide and process for preparing same
JPS553295A (en) * 1978-06-20 1980-01-11 Cselt Centro Studi Lab Telecom Wavelength dividing transmitter
JPS5531093A (en) * 1978-08-24 1980-03-05 Hoechst Ag Novel 1*2*44triazole derivative*its manufacture and agricultural chemical containing it as active ingredient

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5330497A (en) * 1976-09-01 1978-03-22 Basf Ag Cobalttdoped acicular magnetic iron oxide and process for preparing same
JPS553295A (en) * 1978-06-20 1980-01-11 Cselt Centro Studi Lab Telecom Wavelength dividing transmitter
JPS5531093A (en) * 1978-08-24 1980-03-05 Hoechst Ag Novel 1*2*44triazole derivative*its manufacture and agricultural chemical containing it as active ingredient

Also Published As

Publication number Publication date
JPS5864221A (en) 1983-04-16

Similar Documents

Publication Publication Date Title
US4053325A (en) Heat stable iron oxides
US4202871A (en) Production of acicular ferric oxide
US4358431A (en) Production of magnetic iron oxides
KR890001971B1 (en) Process for producing cobalt-containing magnetic iron oxide powder
JPS5919163B2 (en) Method for producing magnetic metal powder
KR890000703B1 (en) A process for preparing acicular alpha-feooh
KR890003881B1 (en) Process for production of cobalt-and-ferrous iron comtaining ferromagnetic iron oxide
JPS6138129B2 (en)
JPS6021307A (en) Production of ferromagnetic metallic powder
JP2779200B2 (en) Method for producing needle-like α-Fe lower 2 O lower 3
JPH0585487B2 (en)
KR870001378B1 (en) Process for producing cohalt-containing magnetic iron oxide powder
JP2931182B2 (en) Method for producing acicular γ-FeOOH
JPS63162535A (en) Production of powdery acicular hematite particle
JPS6350326A (en) Production of hematite
JPS6334608B2 (en)
JPH02175806A (en) Manufacture of metal magnetic powder for magnetic recorder
JPS59562B2 (en) Ferromagnetic metal powder and its manufacturing method
JPH02271503A (en) Magnetic alloy powder and its manufacture
JPS5939730A (en) Manufacture of ferromagnetic iron oxide
JPS61141627A (en) Production of alpha-feooh needles
KR0154579B1 (en) Ferromagnetic iron oxide powder and its manufacture
JPS6132257B2 (en)
JPH01212231A (en) Production of magnetic iron oxide for magnetic recording
JPH0147882B2 (en)