JPS63162535A - Production of powdery acicular hematite particle - Google Patents

Production of powdery acicular hematite particle

Info

Publication number
JPS63162535A
JPS63162535A JP61313541A JP31354186A JPS63162535A JP S63162535 A JPS63162535 A JP S63162535A JP 61313541 A JP61313541 A JP 61313541A JP 31354186 A JP31354186 A JP 31354186A JP S63162535 A JPS63162535 A JP S63162535A
Authority
JP
Japan
Prior art keywords
particles
suspension
particle
acicular hematite
acicular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61313541A
Other languages
Japanese (ja)
Other versions
JPH0629144B2 (en
Inventor
Tatsuya Nakamura
龍哉 中村
Harumi Kurokawa
晴己 黒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toda Kogyo Corp
Original Assignee
Toda Kogyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toda Kogyo Corp filed Critical Toda Kogyo Corp
Priority to JP61313541A priority Critical patent/JPH0629144B2/en
Publication of JPS63162535A publication Critical patent/JPS63162535A/en
Publication of JPH0629144B2 publication Critical patent/JPH0629144B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To produce powdery acicular hematite particles having high density and uniform grain size and having no hole on the surface and in the inside of the particles, by treating acidic suspension contg. beta-FeOOH hydrothermally after adding a P compd. thereto. CONSTITUTION:Aq. suspension having <=7pH is obtd. by adding alkaline aq. soln. to aq. suspension contg. <=1mol/l beta-FeOOH obtd. by heat-treating and hydrolyzing aq. soln. of FeCl3 and adjusting the pH of the mixture to >=8, and adding hydrochloric acid thereto. Then, 0.1-2.0atom% P compd. expressed in terms of P and based on the amt. of Fe(III) in the suspension (e.g. metaphosphoric acid) is added to the suspension, and the mixture is treated hydrothermally at 100-130 deg.C to form powdery acicular hematite particles.

Description

【発明の詳細な説明】 〔産業上の利用分野) 本発明は、高密度記録用磁性酸化鉄粒子わ】末を製造す
る際に出発原料として使用される針状ヘマタイト粒子粉
末の製造法に関するものであり、詳しくは、粒子表面並
びに粒子内部に空孔が存在しておらず、実質的に高密度
であって、且つ、粒度が均斉で樹枝状粒子が混在してい
ない針状ヘマタイト粒子からなる針状ヘマタイト粒子粉
末の製造法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for producing acicular hematite particles used as a starting material in producing magnetic iron oxide particles for high-density recording. More specifically, it consists of acicular hematite particles that have no pores on the particle surface or inside the particle, are substantially high-density, have uniform particle size, and do not contain dendritic particles. The present invention relates to a method for producing acicular hematite particle powder.

〔従来の技術〕[Conventional technology]

近年、磁気記録再生用機器の長時間記録化、小型軽量化
が進むにつれて、磁気記録媒体の高性能化、高密度記録
化の要求が高まってきている。
BACKGROUND ART In recent years, as magnetic recording and reproducing equipment has become longer recording time and has become smaller and lighter, demands for higher performance and higher density recording of magnetic recording media have been increasing.

磁気記録媒体の高性能化、高記録密度化の為には、残留
磁束密度B「の向上が必要である。磁気記録媒体の残留
磁束密度Orは、磁性酸化鉄粒子粉末のビークル中での
分散性、塗膜中での配向性及び充填性に依存している。
In order to improve the performance and increase the recording density of magnetic recording media, it is necessary to improve the residual magnetic flux density B. It depends on the properties, orientation in the coating, and filling properties.

そして、ビークル中での分散性、塗膜中での配向性及び
充填性を向上させるためには、ビークル中に分散させる
磁性酸化鉄粒子粉末の粒子表面並びに粒子内部に空孔が
存在しておらず実質的に高密度であって、且つ、粒度が
均斉で樹枝状粒子が混在していない粒子が要求される。
In order to improve the dispersibility in the vehicle, the orientation and filling properties in the coating film, it is necessary to prevent the presence of pores on the surface and inside of the magnetic iron oxide particles to be dispersed in the vehicle. Particles are required to have substantially high density, uniform particle size, and no dendritic particles.

現在、磁気記録用磁性粒子粉末として主に針状晶マグネ
タイト粒子わ)末または、針状晶マグヘマイト粒子粉末
が用いられている。これらは一般に、第一鉄塩水溶液と
アルカリとを反応させて得られる水酸化第一鉄粒子を含
む11111以上のコロイド水溶液を空気酸化しく通常
、「湿式反応」と呼ばれている。)で得られる針状α−
Fe0011粒子を、空気中300℃付近で加熱、脱水
してヘマタイト粒子となし、更に、水素等還元性ガス中
300〜400℃で還元して針状マグネタイト粒子とし
、または次いでこれを、空気中200〜300℃で酸化
して針状マグヘマイト粒子とすることにより得られてい
る。
Currently, acicular magnetite particles or acicular maghemite particles are mainly used as magnetic particles for magnetic recording. These reactions are generally called "wet reactions" in which an aqueous colloid solution of 11111 or more containing ferrous hydroxide particles obtained by reacting an aqueous ferrous salt solution with an alkali is oxidized with air. ) obtained with acicular α-
Fe0011 particles are heated and dehydrated in air at around 300°C to form hematite particles, and further reduced in a reducing gas such as hydrogen at 300 to 400°C to form acicular magnetite particles, or this is then heated and dehydrated in air at 200°C. It is obtained by oxidizing at ~300°C to obtain acicular maghemite particles.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

粒子表面並びに粒子内部に空孔が存在しておらず実質的
に高密度であって、且つ、粒度が均斉で樹枝状粒子が混
在していない磁性酸化鉄粒子粉末は、現在量も要求され
ているところであるが、出発原料である針状ゲータイト
粒子を製造する前述の公知方法により得られた粒子粉末
は、樹枝状粒子が混在しており、また粒度から言えば、
均斉な粒度を有した粒子であるとは言い難い。
There is a current demand for magnetic iron oxide particle powder that has no pores on the particle surface or inside the particle, has a substantially high density, has a uniform particle size, and does not contain dendritic particles. However, the particle powder obtained by the above-mentioned known method for producing acicular goethite particles as a starting material contains dendritic particles, and in terms of particle size,
It is difficult to say that the particles have a uniform particle size.

また、このゲータイト粒子粉末を出発原料として常法に
より磁性酸化鉄粒子粉末を得た場合、ゲータイト粒子を
加熱脱水して得られるヘマタイト粒子は脱水により、粒
子表面並びに粒子内部に多数の空孔を生じ、次いで、該
ヘマタイト粒子を還元、又は、必要によ更に酸化して得
られるマグネイト粒子又はマグヘマイト粒子もまた粒子
表面並びに粒子内部に多数の空孔が分布していることが
観察される。
In addition, when magnetic iron oxide particles are obtained using the goethite particles as a starting material by a conventional method, the hematite particles obtained by heating and dehydrating the goethite particles have many pores on the particle surface and inside the particles due to dehydration. Then, it is observed that the magnetite particles or maghemite particles obtained by reducing or further oxidizing the hematite particles also have a large number of pores distributed on the particle surface and inside the particles.

このように、粒子表面並びに粒子内部に多数の空孔を有
する磁性酸化鉄粒子粉末は、保磁力lieが低いもので
あり、しかも、ビークル中での分散が悪いものである。
As described above, magnetic iron oxide particles having a large number of pores on the particle surface and inside the particles have a low coercive force lie, and moreover, have poor dispersion in a vehicle.

磁性酸化鉄粒子の粒子表面並びに粒子内部に発生した空
孔をなくする試みは、例えば特公昭38−26156号
公報及び粉体および粉末冶金協会昭和43年度春季大会
講演概要集2−6に記載の通り、従来からなされてはい
るが、いずれの方法も、粒子表面並びに粒子内部に発生
した空孔をなくする為に高温で加熱する必要があり、そ
の結果、粒子及び粒子相互間で焼結が生起し、これを還
元、酸化して得られた磁性酸化鉄粒子粉末の保磁力は極
度に低下し、また、磁性塗料を製造する際のビークル中
への分散も悪くなるという欠点があった。
Attempts to eliminate pores generated on the surface and inside of magnetic iron oxide particles have been made, for example, as described in Japanese Patent Publication No. 38-26156 and 2-6 of the Abstracts of Presentations at the 1960 Spring Conference of the Powder and Powder Metallurgy Association. Both methods require heating at high temperatures to eliminate pores generated on the particle surface and inside the particles, and as a result, sintering occurs between the particles and between the particles. The coercive force of the magnetic iron oxide particle powder obtained by reducing and oxidizing the magnetic iron oxide particles is extremely low, and the dispersion into a vehicle when manufacturing a magnetic paint is also poor.

一方、磁性酸化鉄粒子の粒子表面並びに粒子内部に一旦
発生した空孔をなくする方法ではなく、粒子表面並びに
粒子内部に空孔のない粒子を出発原料として磁性酸化鉄
粒子を得る方法も試みられている。
On the other hand, instead of the method of eliminating the pores once generated on the particle surface and inside of the magnetic iron oxide particles, a method of obtaining magnetic iron oxide particles using particles without pores on the particle surface and inside the particles as a starting material has also been attempted. ing.

この方法は、例えば、特公昭55−22416号公報、
特公昭55−4694号公報、特開昭57−92527
号公報及び特開昭51−8193号公報に記載のように
水溶液中から直接針状晶へマタイト粒子を生成させ、該
針状晶へマタイト粒子を出発原料として還元、酸化する
ことにより針状晶磁性酸化鉄粒子を得る方法である。
This method is disclosed in, for example, Japanese Patent Publication No. 55-22416,
Japanese Patent Publication No. 55-4694, Japanese Patent Publication No. 57-92527
As described in Japanese Patent Publication No. 51-8193, needle-shaped matite particles are directly generated from an aqueous solution, and the needle-shaped hematite particles are reduced and oxidized as a starting material to produce needle-shaped crystals. This is a method for obtaining magnetic iron oxide particles.

即ち、粒子表面並びに粒子内部の空孔は、前述した通り
、針状晶ゲータイト粒子を加熱脱水して針状晶へマタイ
ト粒子とする際の脱水により発生するものであるから、
水溶液中から直接針状晶ヘマタイトを生成させれば、脱
水工程を省略することができ、従って、粒子表面並びに
粒子内部に空孔の全くない針状晶へマタイト粒子を得る
ことができ、該へマタイト粒子を出発原料として還元、
酸化して得られた針状晶磁性酸化鉄粒子もまた粒子表面
並びに粒子内部に空孔が全くないものとなる。
That is, as mentioned above, the pores on the particle surface and inside the particles are generated by dehydration when acicular goethite particles are heated and dehydrated to form acicular hematite particles.
If acicular hematite is produced directly from an aqueous solution, the dehydration step can be omitted, and therefore acicular hematite particles with no pores on the particle surface or inside the particles can be obtained. Reduction using matite particles as a starting material,
The acicular crystal magnetic iron oxide particles obtained by oxidation also have no pores on the particle surface or inside the particle.

上述したところから明らかな通り、粒子表面並びに粒子
内部に空孔が全く存在しておらず実質的に高密度であっ
て、且つ、粒子が均斉で樹枝状粒子が混在していない針
状磁性酸化鉄粒子粉末を得る為には、粒子が均斉で樹枝
状粒子が混在していない針状ヘマタイト粒子を水溶液中
から直接生成させる方法が強く要望されているのである
As is clear from the above, the acicular magnetic oxide has substantially no pores on the particle surface or inside the particle, has a substantially high density, has uniform particles, and does not contain dendritic particles. In order to obtain iron particle powder, there is a strong demand for a method of directly producing acicular hematite particles, which have uniform particles and do not contain dendritic particles, from an aqueous solution.

〔問題点を解決する為の手段〕 本発明者は、粒度が均斉で樹枝状粒子力9昆在していな
い針状ヘマタイト粒子を水溶液中から直接生成させる方
法について種々検討を重ねた結果、本発明に到達したの
である。
[Means for Solving the Problems] The present inventor has conducted various studies on a method for directly producing acicular hematite particles with uniform particle size and no dendritic particle force 9 from an aqueous solution, and has developed the present invention. The invention was achieved.

即ち、本発明は、β−FeO011を含む水懸f4液に
アルカリ性水溶液を添加してpH8以上の水性懸濁液と
し、次いで、該水性セ、濁液に塩酸を添加して得られた
前記β−FeOOHを含むpl(7以下の水性゛き濁液
に、当該懸濁液中のFe(III)に対しP換算で0.
1〜2.0以下%のリン化合物を添加した後、100〜
130℃の温度範囲で水熱処理することにより、針状ヘ
マタイト粒子を生成させることよりなる針状ヘマタ・イ
ト粒子からなる針状ヘマタイト粒子粉末の製造法である
That is, in the present invention, an alkaline aqueous solution is added to a water-suspended F4 solution containing β-FeO011 to form an aqueous suspension having a pH of 8 or more, and then hydrochloric acid is added to the aqueous suspension to obtain the -Into an aqueous suspension containing pl (7 or less), 0.0% in terms of P is added to Fe(III) in the suspension.
After adding 1-2.0% or less of phosphorus compound, 100-2.0%
This is a method for producing acicular hematite particle powder consisting of acicular hematite particles by generating acicular hematite particles by hydrothermal treatment in a temperature range of 130°C.

〔作  用〕[For production]

先ず、本発明において最も重要な点は、β−Fe00H 9118以上の水性懸濁液とし、次いで、該水性懸濁液
に塩酸を添加して得られた前記βFe0OIIを含むp
117以下の水性懸濁液に、当該懸濁液中のFe(II
I)に対しP換算で0.1〜2.0以下%のリン化合物
を添加した後、100〜130℃の温度範囲で水熱処理
した場合には、粒度が均斉で樹枝状粒子が混在していな
い針状ヘマタイト粒子を水溶液中から直接生成させるこ
とができるという事実である。
First, the most important point in the present invention is to prepare an aqueous suspension of β-Fe00H 9118 or more, and then add hydrochloric acid to the aqueous suspension to obtain the p-containing β-Fe0OII.
117 or less, Fe(II
When a phosphorus compound of 0.1 to 2.0% or less (calculated as P) is added to I) and then hydrothermally treated in a temperature range of 100 to 130°C, the particle size is uniform and dendritic particles are mixed. The fact is that free acicular hematite particles can be produced directly from an aqueous solution.

本発明において針状へマタイj・粒子が生成する理由に
ついて、本発明者は、後出の比較例に示す通り、リン化
合物を添加しない場合には、等方的なヘマタイト粒子が
生成することから、リン化合物が生成するヘマタイト粒
子の粒子形態に関!7. しているものと考えている。
Regarding the reason why acicular hematite particles are generated in the present invention, the present inventor believes that, as shown in the comparative example below, isotropic hematite particles are generated when no phosphorus compound is added. , concerning the particle morphology of hematite particles produced by phosphorus compounds! 7. I think that I am doing it.

本発明においては、9118以上の水性懸濁液をpH7
以下の水性懸′EJ液とする為に使用する酸として塩酸
を使用した場合には、ヘマタイト粒子を生成させること
ができるが、塩酸以外の酸、例えば、硫酸、酢酸、燐酸
等を使用する場合にはへマタイト粒子を生成させること
ができない。
In the present invention, an aqueous suspension with a pH of 9118 or higher is
When using hydrochloric acid as the acid used to prepare the following aqueous suspended EJ solution, hematite particles can be generated, but when using acids other than hydrochloric acid, such as sulfuric acid, acetic acid, phosphoric acid, etc. cannot produce hematite particles.

次に、本発明実施にあたっての諸条件について述べる。Next, various conditions for implementing the present invention will be described.

本発明においては、鉄原料としてβ−FeOOHを使用
することが必要である。β−Fe0011は、塩化第二
鉄水l6液を加熱処理して加水分解する方法、塩化第一
鉄水溶液に酸素含有ガスを通気して酸化反応を行う方法
等により得ることができ、不定形、針状、紡錘状等いか
なる粒子形態のものでも使用することができる。
In the present invention, it is necessary to use β-FeOOH as the iron raw material. β-Fe0011 can be obtained by a method of heating and hydrolyzing a ferric chloride aqueous solution, a method of performing an oxidation reaction by passing an oxygen-containing gas through a ferrous chloride aqueous solution, etc. Any particle shape, such as needle-like or spindle-like, can be used.

本発明において、β−Fe00Hを含む水懸蜀液のpi
は高々6.0程度であり、当該懸濁液中4号公報外水7
8液を添加することにより1118以上とする。
In the present invention, pi of the water-suspended Shu solution containing β-Fe00H
is about 6.0 at most, and the amount of outside water 7 in the suspension is
By adding 8 liquids, it becomes 1118 or more.

本発明におけるアルカリ性水溶液としては、水酸化ナト
リウム、水酸化カリウム、アンモニア水等を使用するこ
とができる。アルカリ性水溶液添加後の水性懸濁液のp
Hが8以下の場合には、ヘマタイトとβ−FGOOHの
混合物が生成する。
As the alkaline aqueous solution in the present invention, sodium hydroxide, potassium hydroxide, aqueous ammonia, etc. can be used. p of aqueous suspension after addition of alkaline aqueous solution
When H is 8 or less, a mixture of hematite and β-FGOOH is produced.

本発明において、9118以上の水性懸濁液をpH7以
ドの水性懸濁液にする為には、塩酸を使用することが必
要である。塩酸添加後の水性懸濁液のpHが7以−にで
ある場合には、100〜130℃の温度領域においては
β−Fe0011が安定して生成する為へマタイト粒子
が生成しない。
In the present invention, it is necessary to use hydrochloric acid in order to turn an aqueous suspension with a pH of 9118 or higher into an aqueous suspension with a pH of 7 or lower. When the pH of the aqueous suspension after addition of hydrochloric acid is 7 or higher, hematite particles are not produced because β-Fe0011 is stably produced in the temperature range of 100 to 130°C.

本発明においては、β−FeOOHを含む水懸濁液の濃
度が1.0 moI/l程度の高温度であってもヘマタ
イト粒子を生成することが可能である。 1.0 mo
l/2以上の場合にもヘマタイト粒子は生成するが、粒
度が不均斉となる。
In the present invention, it is possible to produce hematite particles even at a high temperature where the concentration of the aqueous suspension containing β-FeOOH is about 1.0 moI/l. 1.0 mo
Although hematite particles are generated when the ratio is 1/2 or more, the particle size becomes asymmetric.

本発明におけるリン化合物としては、メタリン酸、次亜
リン酸、亜リン酸、正リン酸、ピロリン酸及びこれ等の
塩等無機のリン化合物を用いることができる。
As the phosphorus compound in the present invention, inorganic phosphorus compounds such as metaphosphoric acid, hypophosphorous acid, phosphorous acid, orthophosphoric acid, pyrophosphoric acid, and salts thereof can be used.

リン化合物の添加量は、懸濁液中のFe(III)に対
し、P換算で0.1〜2.0以下%である。0.1以下
%以下である場合には、本発明の目的とする針状ヘマタ
イト粒子を得ることができない。2.0以下%以上であ
る場合にも、針状ヘマタイトが生成するが、反応に長時
間を要する。
The amount of the phosphorus compound added is 0.1 to 2.0% in terms of P based on Fe(III) in the suspension. If the content is 0.1% or less, the acicular hematite particles targeted by the present invention cannot be obtained. If the content is 2.0% or more, acicular hematite is produced, but the reaction takes a long time.

本発明における反応温度は、100〜130℃である。The reaction temperature in the present invention is 100 to 130°C.

100℃以下である場合には、β−Fe0011の溶解
が十分に進行しない為へマタイト粒子が生成しない、1
30℃以」二である場合にもヘマタイト粒子は生成する
が、高圧容器等特殊な装置を必要とする為、工業的、経
済的ではない。
If the temperature is below 100°C, hematite particles will not be generated because the dissolution of β-Fe0011 will not proceed sufficiently.1
Although hematite particles are produced when the temperature is 30° C. or higher, this is not industrially or economically viable because it requires special equipment such as a high-pressure container.

〔実施例〕〔Example〕

次に、実施例並びに比較例により本発明を説明する。 Next, the present invention will be explained with reference to Examples and Comparative Examples.

尚、以下の実施例における粒子の平均径は、電子顕微鏡
写真から測定した数値の平均値であり、比表面積はBE
T法により測定した値である。
In addition, the average diameter of particles in the following examples is the average value of numerical values measured from electron micrographs, and the specific surface area is BE
This is a value measured by the T method.

実施例1 O,4mo1/Ilのβ−Fe0011粒子(比表面積
58n?/g)を含むρ115.5の水懸濁液500m
 lにNa01l水溶液を添加してpH9,0の水性懸
濁液を得た。
Example 1 500 m of an aqueous suspension of ρ115.5 containing β-Fe0011 particles (specific surface area 58 n?/g) of O,4 mo1/Il
An aqueous solution of Na01l was added to the resulting solution to obtain an aqueous suspension with a pH of 9.0.

上記水性懸濁液にIIcI水溶液を添加して得られたβ
−Fe0011粒子を含むpH2,0の水性懸濁液に、
正リン酸0.20g(Fe(III)に対しP換算で1
.0原子%に該当する。)を添加した後、密閉容器中に
入れ、125℃で15時間水熱処理して赤褐色沈澱を生
成させた。赤褐色沈澱を水洗、濾過、乾燥して得られた
粒子粉末は、図1に示すX線回折に示す通り、ヘマタイ
トであり、図2に示す電子顕微鏡写真(x 20 、0
00)から明らかな通り、平均粒子径が0,8μmの針
状粒子であり、粒度が均斉で、且つ、個々の粒子が独立
した粒子であった。
β obtained by adding IIcI aqueous solution to the above aqueous suspension
- an aqueous suspension at pH 2.0 containing Fe0011 particles;
Orthophosphoric acid 0.20g (1 in terms of P for Fe(III))
.. This corresponds to 0 atom%. ), the mixture was placed in a closed container and hydrothermally treated at 125° C. for 15 hours to form a reddish-brown precipitate. The particles obtained by washing the reddish-brown precipitate with water, filtration, and drying were hematite as shown in the X-ray diffraction shown in Figure 1, and the electron micrograph (x 20 , 0
00), the particles were acicular particles with an average particle diameter of 0.8 μm, the particle size was uniform, and each particle was an independent particle.

実施例2 0.5 mol/ Itのβ−Fe0011粒子(比表
面積110 rrr/g)を含むpH5,0の水懸濁液
500III!、にN 114011水溶液を添加して
pl+8.5の水性懸濁液を得た。
Example 2 Aqueous suspension 500III at pH 5.0 containing 0.5 mol/It β-Fe0011 particles (specific surface area 110 rrr/g). , an aqueous N 114011 solution was added to obtain an aqueous suspension with a pl+8.5.

上記水性懸濁液にllCl水溶液を添加して得られたβ
−Fe0011粒子を含むpH1,5の水性懸濁液に、
正リン酸0.125g(Fe(III)に対しP換算で
0.5原子%に該当する。)を添加した後、密閉容器中
に入れ、125℃で15時間水熱処理して赤褐色沈澱を
生成させた。赤褐色沈澱を水洗、濾過、乾燥して得られ
た粒子粉末は、X線回折の結果へマタイトであり、図3
に示す電子顕微鏡写真(X20.000)から明らかな
通り、平均粒子径が0.5μmの針状粒子であり、粒度
が均斉で、且つ、個々の粒子が独立した粒子であった。
β obtained by adding llCl aqueous solution to the above aqueous suspension
- an aqueous suspension of pH 1.5 containing Fe0011 particles;
After adding 0.125 g of orthophosphoric acid (corresponding to 0.5 at% in terms of P based on Fe(III)), the mixture was placed in a sealed container and hydrothermally treated at 125°C for 15 hours to form a reddish brown precipitate. I let it happen. The particles obtained by washing the reddish-brown precipitate with water, filtering, and drying were found to be hematite as a result of X-ray diffraction, as shown in Figure 3.
As is clear from the electron micrograph (X20.000) shown in , the particles were acicular particles with an average particle diameter of 0.5 μm, the particle size was uniform, and each particle was an independent particle.

比較例1 正リン酸を添加しなかった以外は、実施例1と同様に水
熱処理して赤褐色沈澱を生成させた。
Comparative Example 1 A reddish-brown precipitate was produced by hydrothermal treatment in the same manner as in Example 1, except that orthophosphoric acid was not added.

赤褐色沈澱を水洗、濾過、乾燥して得られた粒子粉末は
、図4に示すX線回折及び図5に示す電子顕微鏡写真(
x20,000)から明らかな通り、平均粒径が0.3
μlの等友釣粒子であった。
The particles obtained by washing the reddish-brown precipitate with water, filtration, and drying showed the X-ray diffraction shown in Figure 4 and the electron micrograph shown in Figure 5 (
x20,000), the average particle size is 0.3
μl of isotropic particles.

比較例2 0.2 mo1/fのβ−Fe0011粒子(比表面積
180 r//g)を含むpH1,7の水懸濁液500
m lをNa011水溶液及び11cI水溶液を用いて
pH!整することなく、そのまま密閉容器中に入れ、実
施例1と同様に水熱処理して黄褐色沈澱を生成させた。
Comparative Example 2 500 pH 1.7 aqueous suspension containing 0.2 mo1/f β-Fe0011 particles (specific surface area 180 r//g)
pH!ml using Na011 aqueous solution and 11cI aqueous solution! The mixture was placed in a closed container as it was without conditioning, and subjected to hydrothermal treatment in the same manner as in Example 1 to produce a yellowish brown precipitate.

黄褐色沈澱を水洗、濾過、乾燥して得られた粒子粉末は
、X線回折の結果及び図6に示す電子顕微鏡写真(x 
20 、000)から明らかな通り、β−Fe0011
のままであった。
The particles obtained by washing the yellow brown precipitate with water, filtration, and drying are shown in the results of X-ray diffraction and in the electron micrograph (x
20,000), β-Fe0011
It remained as it was.

比較例3 N a OIt水溶液を添加してpH6,8の水性懸濁
液とした以外は実施例1と同様に水熱処理して茶褐色沈
澱を生成させた。茶褐色沈澱を水洗、濾過、乾燥して得
られた粒子粉末は、X線回折の結果及び図7の電子顕微
鏡写真(x 20.000)から明らかな通り、β−F
e0011とへマタイトの混合物であった。
Comparative Example 3 A brown precipitate was produced by hydrothermal treatment in the same manner as in Example 1, except that an aqueous N a OIt solution was added to obtain an aqueous suspension having a pH of 6.8. As is clear from the X-ray diffraction results and the electron micrograph (x 20,000) in FIG.
It was a mixture of e0011 and hematite.

比較例4 11cI水溶液を添加してβ−FeOOHを含むPH7
,5の水性懸濁液とした以外は、実施例1と同様に水熱
処理して黄褐色沈澱を生成させた。黄褐色沈澱を水洗、
濾過、乾燥して得られた粒子粉末は、X線回折の結果及
び図8に示す電子顕微鏡写真(X50゜000)から明
らかな通り、β−Fe0011のままであった。
Comparative Example 4 PH7 containing β-FeOOH by adding 11cI aqueous solution
, 5 was used as an aqueous suspension, but hydrothermal treatment was carried out in the same manner as in Example 1 to produce a yellow brown precipitate. Wash the yellowish brown precipitate with water.
The particles obtained by filtration and drying remained β-Fe0011, as is clear from the results of X-ray diffraction and the electron micrograph (X50°000) shown in FIG.

比較例5 水熱処理の温度を95℃とした以外は、実施例1と同様
にして黄褐色沈澱を生成させた。黄褐色沈澱を水洗、濾
過、乾燥して得られた粒子粉末は、図9に示すX線回折
及び図10に示す電子顕微鏡写真(x 50.000)
から明らかな通り、β−PeOOIlのままであった。
Comparative Example 5 A yellow brown precipitate was produced in the same manner as in Example 1, except that the temperature of the hydrothermal treatment was 95°C. The particles obtained by washing the yellow brown precipitate with water, filtering, and drying showed the X-ray diffraction shown in Figure 9 and the electron micrograph (x 50,000) shown in Figure 10.
As is clear from this, it remained β-PeOOIl.

〔発明の効果〕 本発明における針状ヘマタイト粒子粉末の製造法によれ
ば、前出実施例に示した通り、粒子表面並びに粒子内部
に空孔が存在しておらず実質的に窩密度であって、且つ
、粒度が均斉で樹枝状粒子が混在していない針状ヘマタ
イト粒子からなる針状ヘマタイト粒子粉末を得ることが
できるので、磁性粒子粉末用出発原料として好適なもの
である。
[Effects of the Invention] According to the method for producing acicular hematite particles of the present invention, as shown in the previous example, there are no pores on the particle surface or inside the particles, and the density of acicular hematite particles is substantially low. In addition, it is possible to obtain acicular hematite particles having a uniform particle size and containing no dendritic particles, which is suitable as a starting material for magnetic particles.

【図面の簡単な説明】[Brief explanation of the drawing]

図1、図4及び図9はいずれもX線回折図であり、図1
は実施例1で得られたヘマタイトn子粉末、図4は、比
較例1で得られたベマタ(+・粒子粉末、図9は比較例
5で得られたβ−Fef)014粒子粉末である。 図2、図3、図5乃至図8及び図10は、いずれも電子
顕微鏡写真であり、図2、図3及び図5はそれぞれ、実
施例1、実施例2及び比較例1で得られたヘマタイト粒
子粉末、図6、図8及び図10はそれぞれ、比較例2及
び比較例4及び比較例5で得られたβ−FeOQIf粒
子粉末、図7は、ヘマタイトとβ−FeOOtlとの混
合物粒子粉末である。
Figures 1, 4, and 9 are all X-ray diffraction diagrams, and Figure 1
4 is the hematite n-particle powder obtained in Example 1, FIG. 4 is the Bemata (+・particle powder) obtained in Comparative Example 1, and FIG. 9 is the β-Fef 014 particle powder obtained in Comparative Example 5. . Figures 2, 3, 5 to 8, and 10 are all electron micrographs, and Figures 2, 3, and 5 were obtained in Example 1, Example 2, and Comparative Example 1, respectively. Hematite particle powder, FIGS. 6, 8, and 10 are β-FeOQIf particles obtained in Comparative Example 2, Comparative Example 4, and Comparative Example 5, respectively, and FIG. 7 is a mixture particle powder of hematite and β-FeOOtl. It is.

Claims (1)

【特許請求の範囲】[Claims] (1) β−FeOOHを含む水懸濁液にアルカリ性水
溶液を添加してpH8以上の水性懸濁液とし、次いで、
該水性懸濁液に塩酸を添加して得られた前記β−FeO
OHを含むpH7以下の水性懸濁液に、当該懸濁液中の
Fe(III)に対しP換算で0.1〜2.0原子%のリ
ン化合物を添加した後、100〜130℃の温度範囲で
水熱処理することにより、針状ヘマタイト粒子を生成さ
せることを特徴とする針状ヘマタイト粒子からなる針状
ヘマタイト粒子粉末の製造法。
(1) Add an alkaline aqueous solution to an aqueous suspension containing β-FeOOH to make an aqueous suspension with a pH of 8 or higher, and then
The β-FeO obtained by adding hydrochloric acid to the aqueous suspension
After adding a phosphorus compound of 0.1 to 2.0 atomic % in terms of P to Fe(III) in the suspension to an aqueous suspension containing OH and having a pH of 7 or less, a temperature of 100 to 130 ° C. 1. A method for producing acicular hematite particle powder comprising acicular hematite particles, characterized in that acicular hematite particles are produced by hydrothermal treatment within a range of 100 to 100 ml.
JP61313541A 1986-12-24 1986-12-24 Method for producing acicular hematite particles Expired - Lifetime JPH0629144B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61313541A JPH0629144B2 (en) 1986-12-24 1986-12-24 Method for producing acicular hematite particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61313541A JPH0629144B2 (en) 1986-12-24 1986-12-24 Method for producing acicular hematite particles

Publications (2)

Publication Number Publication Date
JPS63162535A true JPS63162535A (en) 1988-07-06
JPH0629144B2 JPH0629144B2 (en) 1994-04-20

Family

ID=18042560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61313541A Expired - Lifetime JPH0629144B2 (en) 1986-12-24 1986-12-24 Method for producing acicular hematite particles

Country Status (1)

Country Link
JP (1) JPH0629144B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5202108A (en) * 1990-10-12 1993-04-13 Analytical Development Corporation Process for producing ferrate employing beta-ferric oxide
US5217584A (en) * 1990-10-12 1993-06-08 Olin Corporation Process for producing ferrate employing beta-ferric oxide
JP2003300732A (en) * 2002-03-18 2003-10-21 Sud Chem Mt Srl Method for producing high purity iron oxide and its use

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5202108A (en) * 1990-10-12 1993-04-13 Analytical Development Corporation Process for producing ferrate employing beta-ferric oxide
US5217584A (en) * 1990-10-12 1993-06-08 Olin Corporation Process for producing ferrate employing beta-ferric oxide
JP2003300732A (en) * 2002-03-18 2003-10-21 Sud Chem Mt Srl Method for producing high purity iron oxide and its use
JP2011037710A (en) * 2002-03-18 2011-02-24 Sued Chemie Mt Srl Application of highly pure iron oxide

Also Published As

Publication number Publication date
JPH0629144B2 (en) 1994-04-20

Similar Documents

Publication Publication Date Title
US4309459A (en) Process for producing SiO2 coated iron oxide powder for use in the preparation of acicular magnetic iron or iron oxide powder
JPS6113362B2 (en)
JPS6122428A (en) Manufacture and use of ferromagnetic pigment
KR890001971B1 (en) Process for producing cobalt-containing magnetic iron oxide powder
JPS63162535A (en) Production of powdery acicular hematite particle
JPH0585487B2 (en)
JPS62108737A (en) Production of ferromagnetic iron oxide powder
JPS6135135B2 (en)
JP3087778B2 (en) Method for producing acicular goethite particle powder
JPH01222409A (en) Manufacture of needle-like magnetic iron-oxide particle and powder
JPS63162534A (en) Production of powdery hematite particle having shape of ellipsoid of revolution
JPS6350326A (en) Production of hematite
JPS6334608B2 (en)
JPH0573698B2 (en)
JP2931182B2 (en) Method for producing acicular γ-FeOOH
JPH028303A (en) Manufacture of acicular metal magnetic granular powder containing iron as main component
JPS5951498B2 (en) Method for producing acicular α-FeOOH particle powder
JP3166809B2 (en) Method for producing acicular magnetic iron oxide particles
JPS6332243B2 (en)
JPS639735B2 (en)
JPH0635326B2 (en) Method for producing particles containing iron carbide
JPH0310579B2 (en)
JPH0518766B2 (en)
JPS60170906A (en) Spindle shaped gamma-fe2o3 magnetic powder including co and manufacture of the same
JPS62128931A (en) Production of magnetic iron oxide grain powder having spindle type