JPH02271503A - Magnetic alloy powder and its manufacture - Google Patents

Magnetic alloy powder and its manufacture

Info

Publication number
JPH02271503A
JPH02271503A JP1092438A JP9243889A JPH02271503A JP H02271503 A JPH02271503 A JP H02271503A JP 1092438 A JP1092438 A JP 1092438A JP 9243889 A JP9243889 A JP 9243889A JP H02271503 A JPH02271503 A JP H02271503A
Authority
JP
Japan
Prior art keywords
cobalt
iron
magnetic powder
powder
alloy powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1092438A
Other languages
Japanese (ja)
Inventor
Noriaki Otani
紀昭 大谷
Tetsuya Nakazumi
中住 哲也
Mikio Kishimoto
幹雄 岸本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP1092438A priority Critical patent/JPH02271503A/en
Publication of JPH02271503A publication Critical patent/JPH02271503A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an alloy magnetic powder whose grain-size distribution is uniform, which is branched little and whose oxidation-resistant property is excellent by a method wherein, in a magnetic alloy powder composed mainly of iron and cobalt, a BET specific surface area and an axial ratio are specified. CONSTITUTION:In an iron-cobalt alloy magnetic powder, a hydroxide is coprecipitated by using a ferric salt and a cobalt salt; this coprecipitate is treated by using an autoclave. Regarding an alloy magnetic powder which has been obtained by heating and reducing an obtained cobalt-contained alpha-iron oxyhydroxide, its saturation magnetization amount is large, it has a structure which is not branched, its grain size distribution is uniform, its axial ratio is 4.5 to 6.0 and its BET-method specific surface area is 25 to 35m<2>/g. Thereby, it is possible to obtain the alloy magnetic powder whose oxidation-resistant property has been improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は鉄−コバルト合金磁性粉末に係わり。[Detailed description of the invention] [Industrial application field] The present invention relates to iron-cobalt alloy magnetic powder.

さらに詳しくはその耐食性の改良に関する。More specifically, it relates to improving its corrosion resistance.

〔従来の技術〕[Conventional technology]

合金磁性粉末、特に鉄−コバルト合金粉末は。 Alloy magnetic powder, especially iron-cobalt alloy powder.

金属鉄磁性粉に比し高い飽和磁化を持つ之め磁気記録媒
体の性能向上が図られる等磁性材料としての用途がある
Because it has a higher saturation magnetization than metallic iron magnetic powder, it can be used as an isomagnetic material to improve the performance of magnetic recording media.

鉄−コバルト合金磁性粉は、一般にコバルト含有α−オ
キシ水酸化鉄粉末などを加熱還元することによって製造
されている。コバルト含有α−オキシ水酸鉄粉末は通常
、第一鉄塩とコバルト塩の水浴液に、アルカリ水浴液を
加えて、コバルト含有水酸化第一鉄の沈澱物を生成し、
これに空気を吹き込み、酸化して得られる。
Iron-cobalt alloy magnetic powder is generally produced by heating and reducing cobalt-containing α-iron oxyhydroxide powder. Cobalt-containing α-ferrous oxyhydroxide powder is usually produced by adding an alkaline bath solution to a bath solution of ferrous salt and cobalt salt to form a precipitate of cobalt-containing ferrous hydroxide;
It is obtained by blowing air into it and oxidizing it.

前記方法で得比、コバルト含Mα−オキシ水酸化鉄は軸
比の大きいものが得られるが1粒子の粒度分布が悪く、
枝分かれし土粒子となる。その結果、コバルト含有のオ
キシ水酸化鉄を加熱還元して得られた合金磁性粉末は、
比表面積が大きくなり、耐酸化性に欠ける廟点があり友
With the above method, cobalt-containing Mα-iron oxyhydroxide with a large axial ratio can be obtained, but the particle size distribution of one particle is poor;
It branches out and becomes soil particles. As a result, the alloy magnetic powder obtained by thermal reduction of cobalt-containing iron oxyhydroxide was
It has a large specific surface area and lacks oxidation resistance.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

この発明は、従来の磁性合金粉末の持ってい几粒度分布
が慝〈枝分れしているとめう欠点を解決し、以って粒度
分布が均一で枝分れの少ない耐酸化性に優れた合金磁性
粉末を提供することを目的とする。
This invention solves the drawback that conventional magnetic alloy powders have a narrow particle size distribution that is branched, and thus has a uniform particle size distribution with less branching and excellent oxidation resistance. The purpose is to provide alloy magnetic powder.

〔問題を解決する友めの手段〕[Friendly means of solving problems]

本発明者らは、上記欠点を解決するため種々検討を行っ
た結果、:7バルト含有α−オキシ水酸化鉄粉末を製造
するに際し、3価の鉄イオンと2価のコバルトイオンを
含有する水溶液を前記金属イオンと当量以上の水酸化ア
ルカリ水溶液中に30℃以下の温度でa、vot、反応
させ、コバルト含有水酸化第二鉄を生成し、さらに熱媒
した後、このコバルト含有水酸化第二鉄をオートクレー
プ中で水熱反応させることにより粒度分布が均一で、枝
分かれのないコバルト含有α−オキシ水酸化鉄粉末が得
られ、この粉末を加熱還元して得た鉄−コバルト合金磁
性粉末は、比表面積が小さく、かつ粒度分布の均一な合
金粉末で耐酸化性が改善されることを見いボし1本発明
をなすに至った・本発明において、3価の鉄イオンと2
価のコバルトイオンを含有する水浴液を水酸化アルカリ
水層液6C添加する際OfM度を30℃以上とすると。
As a result of various studies conducted by the present inventors in order to solve the above-mentioned drawbacks, the following results were obtained: 7. When producing balt-containing α-iron oxyhydroxide powder, an aqueous solution containing trivalent iron ions and divalent cobalt ions was found. is reacted with the metal ion in an aqueous alkali hydroxide solution of an equivalent amount or more at a temperature of 30°C or less to produce cobalt-containing ferric hydroxide. A cobalt-containing α-iron oxyhydroxide powder with a uniform particle size distribution and no branching is obtained by hydrothermally reacting diiron in an autoclave, and an iron-cobalt alloy magnetic powder obtained by heating and reducing this powder. discovered that the oxidation resistance could be improved by using an alloy powder with a small specific surface area and a uniform particle size distribution, and came up with the present invention.In the present invention, trivalent iron ions and
When adding 6C of the aqueous alkaline hydroxide solution to the water bath containing cobalt ions, the degree of OfM is set to 30°C or higher.

コバルト含有水酸化第二鉄の結晶成長の調整が峻かしく
、均一な粒度分布を持つコバルト含有水酸化第二鉄粉末
が得られない。
The crystal growth of cobalt-containing ferric hydroxide is difficult to control, making it impossible to obtain cobalt-containing ferric hydroxide powder with a uniform particle size distribution.

まt、オートクレープ中での水熱反応の温度は120℃
〜250℃の範囲にあるのが好ましい。この温度が12
0℃以下になると、コバルト含有α−オ中ソ水酸化鉄え
の転換に長時間を要し、−万250℃以上となるとコバ
ルト含有α−酸化鉄が混在して6粒子形状が崩れる之め
好ましくない。
Also, the temperature of the hydrothermal reaction in the autoclave is 120°C.
Preferably, the temperature is in the range of ~250°C. This temperature is 12
At temperatures below 0°C, it takes a long time to transform the cobalt-containing α-iron hydroxide, and at temperatures above -250°C, cobalt-containing α-iron oxides coexist and the particle shape collapses. Undesirable.

3価の鉄イオンの原料塩としては、塩化第二鉄、硫酸第
二鉄、硝酸第二鉄等の水m性第二鉄塩を用いることがで
きる。
As the raw material salt for trivalent iron ions, aqueous ferric salts such as ferric chloride, ferric sulfate, and ferric nitrate can be used.

2価のコバルトイオンの原料塩としては、塩化コバルト
、硫酸コバルト、硝酸コバルト等の水溶性コバルト塩を
用いればよい。
As the raw material salt for divalent cobalt ions, water-soluble cobalt salts such as cobalt chloride, cobalt sulfate, and cobalt nitrate may be used.

このようにして得九粒度分布が均一で枝分かれのないコ
バルト含有α−オキシ水酸化鉄粉末は。
Thus obtained is a cobalt-containing α-iron oxyhydroxide powder with a uniform particle size distribution and no branching.

水洗、ろ過、乾燥後加熱還元時の焼結ヤ、形崩れを防止
するためケイ素化合物等の焼結防止剤で表面を被覆する
ことが好ましい。
In order to prevent sintering and deformation during washing, filtration, and heating reduction after drying, it is preferable to coat the surface with an anti-sintering agent such as a silicon compound.

焼結防止剤で被aされ几コバルト含有α−オキシ水酸化
鉄の還元は九とえは水素気流中で300℃〜600℃の
温度で加熱還元する。このa度が300℃以下では還元
に長時間要し、一方600℃となると1合金磁性粉が焼
結し九り形崩れを起すので好ましくない。
The α-iron oxyhydroxide containing cobalt and coated with an anti-sintering agent is reduced by heating at a temperature of 300° C. to 600° C. in a hydrogen stream. If the a degree is less than 300°C, it will take a long time for reduction, while if it is 600°C, the 1-alloy magnetic powder will sinter and lose its shape, which is not preferable.

モル/ l 1kftの水酸化ナトリウム水浴液104
と1モル/1濃度のオルトケイ酸ナトリウム水fIjf
fL1.31との3液を混合した液中に撹拌しつつ炭酸
ガスを吹き込んでpH8以下となるまで中和して。
Mol/l 1kft sodium hydroxide water bath solution 104
and 1 mol/1 concentration of sodium orthosilicate water fIjf
While stirring, carbon dioxide gas was blown into the mixed solution of the three liquids with fL1.31 to neutralize it until the pH became 8 or less.

コバルト含有α−オキシ水酸化鉄表面にケイ酸ゾルを沈
着させ、水洗、乾燥し比。
A silicic acid sol was deposited on the cobalt-containing α-iron oxyhydroxide surface, washed with water, and dried.

ケイ素化合物被着コバルト含有α−オ午シ水酸水30−
に溶解した水m液と、水酸化ナトリウム60モルを水6
04に靜解し几水#[@塩度10℃で混合し、褐色の沈
澱を得た。次いてこれを常温で24時間熟睨した後、上
澄液の一部を除去し。
Silicon compound-coated cobalt-containing α-hydroxide water 30-
60 moles of sodium hydroxide dissolved in water and 60 moles of sodium hydroxide
04 and mixed with salt water #[@salinity 10°C to obtain a brown precipitate. The mixture was then allowed to stand at room temperature for 24 hours, and then a portion of the supernatant was removed.

その残部をオートクレープ中に入れ、180℃で2時+
t!a、水熱反応を行った。反応終了後、生成した黄色
の沈澱物を水洗、ろ過、乾燥してコバルト含有α−オキ
シ水酸化鉄粉末を得比。
Place the remainder in an autoclave and heat at 180°C for 2 hours.
T! a. A hydrothermal reaction was performed. After the reaction, the yellow precipitate produced was washed with water, filtered, and dried to obtain cobalt-containing α-iron oxyhydroxide powder.

次いで得られ几コバルト含有α−オ中゛シ水酸化鉄粉末
soogを水40g中に分散させた液と、l気し、45
0℃に加熱し還元して、鉄−コバルト合金88性粉を得
几。
Next, a solution obtained by dispersing the iron hydroxide powder SOOG in 40 g of water and 45 g of air was added to the obtained cobalt-containing α-O medium.
Heat to 0°C and reduce to obtain iron-cobalt alloy powder with 88% strength.

得られた磁性粉は枝分かれがなく2粒度分布が均一で、
長軸径が190 nm 、短軸径が35nm、軸比が5
.4でBET法による比表面積が2Brl/11  で
あつ之。
The obtained magnetic powder has no branching and has a uniform particle size distribution.
The major axis diameter is 190 nm, the minor axis diameter is 35 nm, and the axial ratio is 5.
.. 4 has a specific surface area of 2Brl/11 by the BET method.

実施例2 実施例1において、塩化第二鉄の代りに硝酸第二鉄10
モルを、塩化コバルトの代りに硝酸コバルト0.5モル
を受用し次項外は、実施例1と同様にして鉄コバルト合
金磁性粉を得几。
Example 2 In Example 1, 10 ferric nitrate was used instead of ferric chloride.
An iron-cobalt alloy magnetic powder was obtained in the same manner as in Example 1 except that 0.5 mole of cobalt nitrate was used instead of cobalt chloride.

磁性粉は枝分れなく1粒度分布が均一で、長軸径が17
5 nm、短軸径が35 nm 、軸比が5.0でBE
T法による比表面積は27ゼ/yでめった。
The magnetic powder is unbranched, has a uniform particle size distribution, and has a long axis diameter of 17
5 nm, minor axis diameter is 35 nm, axial ratio is 5.0 and BE
The specific surface area determined by the T method was 27 ze/y.

実施?IJ3 実施例2において、硝酸第二鉄と硝酸コバルトとをm解
した水m液と水酸化ナトリウム水m液とを混合するとJ
!O液温を25℃とした以外は、実施例2と同様にして
鉄−コバルト合金磁性粉を得几。
implementation? IJ3 In Example 2, when the aqueous solution obtained by dissolving ferric nitrate and cobalt nitrate and the sodium hydroxide aqueous solution are mixed, J
! Iron-cobalt alloy magnetic powder was obtained in the same manner as in Example 2 except that the O liquid temperature was 25°C.

磁性粉は枝分れなく0粒度分布が均一で、長軸i182
nm、短軸径35 run、軸比5.2で比表面積30
fftl/Iでめった。
The magnetic powder is unbranched, has a uniform particle size distribution, and has a long axis i182.
nm, short axis diameter 35 runs, axial ratio 5.2, specific surface area 30
I had a hard time with fftl/I.

比較例1 硫#第−Itcioモルと硫酸コバルト0.5モルを水
404VCflJ解し沈水浴液と水酸化ナトリウム70
モルを水40jlC浴解し次水醍液を液温25℃で混合
し淡緑色の沈澱を得t0この懸濁液を恒温槽中で50℃
に加温しながら毎分104の空気を吹き込み、6時間反
応させ黄色沈澱を得、これを水洗、乾燥してコバルト含
有α−オキシ水酸化鉄粉末を得た。
Comparative Example 1 - Itcio moles of sulfur and 0.5 moles of cobalt sulfate were dissolved in 404 VCflJ of water to form a submerged bath liquid and 70 moles of sodium hydroxide.
Mol was dissolved in water at 40jlC, and then mixed with aqueous solution at a temperature of 25°C to obtain a pale green precipitate. This suspension was heated at 50°C in a constant temperature bath.
Air was blown at a rate of 10 4 per minute while heating the mixture for 6 hours to obtain a yellow precipitate, which was washed with water and dried to obtain a cobalt-containing α-iron oxyhydroxide powder.

次いで実施例1と同様にして、ケイ素化合物披R処理後
、加熱還元して、鉄−コバルト合金磁性粉末を得比。
Next, in the same manner as in Example 1, after treatment with a silicon compound, heat reduction was performed to obtain an iron-cobalt alloy magnetic powder.

磁性粉は、長軸径が300 nm 、短軸径が30nr
rl。
The magnetic powder has a major axis diameter of 300 nm and a minor axis diameter of 30 nm.
rl.

軸比10で比表面積が47rd/9であつ九。The axial ratio is 10 and the specific surface area is 47rd/9.

比較例2 硫酸第一鉄10そルを水40 $ Icl11解し几水
浴液と水酸化ナトリウム70モルを水401Kg解し几
水fIIj液を温lX25℃で混合し、淡#色沈澱を得
この懸濁液を恒温槽中で50℃に加温しながら毎分10
4の空気を吹き込み6時間酸化反応を行って黄色沈澱を
得上。
Comparative Example 2 10 mol of ferrous sulfate was dissolved in 40 $ Icl of water, and 70 mol of sodium hydroxide was dissolved in 401 kg of water. 10 per minute while heating the suspension to 50°C in a constant temperature bath.
Air was blown in step 4 and the oxidation reaction was carried out for 6 hours to obtain a yellow precipitate.

この黄色沈#Oケイ素化合物のam、水素気流中での加
熱還元は実施例1と同様に行って金属鉄磁性粉を得た。
The yellow precipitated #O silicon compound was thermally reduced in a hydrogen stream in the same manner as in Example 1 to obtain metallic iron magnetic powder.

磁性粉の長軸径は200 nm 、短軸径は50nm、
@比4.0で比表面積は28rl/lであつt。
The long axis diameter of the magnetic powder is 200 nm, the short axis diameter is 50 nm,
At a ratio of 4.0, the specific surface area was 28 rl/l.

上記各実施例、比較例で得九合金磁性粉の保磁力、飽和
磁化量および耐酸化性の指標としての60℃、90%R
Hの条件下に放置し所定時間毎の飽和磁化量を測定し、
放置前の飽和磁化量からの低下率を測定した。
60°C, 90%R as an index of coercive force, saturation magnetization, and oxidation resistance of the 9 alloy magnetic powder obtained in each of the above Examples and Comparative Examples
Leave it under H conditions and measure the amount of saturation magnetization at predetermined time intervals.
The rate of decrease from the saturation magnetization before being left was measured.

〔発明の効果〕〔Effect of the invention〕

以上説明したようIC鉄−コバルト合金磁性粉において
、第二鉄塩とコバルト塩とより水酸化物を共沈させ、こ
の共沈物をオートクレープも環によって4几コバルト含
有α−オキシ水酸化鉄粉末をMJ熱還元して得九合金磁
性扮は、a和硫化量が大きく、枝分れのない構造を有し
粒度分布が均一で。
As explained above, in the IC iron-cobalt alloy magnetic powder, hydroxide is coprecipitated with ferric salt and cobalt salt, and this coprecipitate is also autoclaved into 4 liters of cobalt-containing α-iron oxyhydroxide. The magnetic alloy obtained by MJ thermal reduction of the powder has a large amount of a-sulfide, an unbranched structure, and a uniform particle size distribution.

軸比が4.5〜6.0とな!1lflET法比表面積が
3s−/I以下でしかも耐酸化性が格段に改善され比合
金−性粉であることが明らかである。
The axial ratio is 4.5 to 6.0! It is clear that the powder has a specific surface area of less than 3 s-/I according to the 1lflET method, and has significantly improved oxidation resistance, making it a specific alloy powder.

Claims (2)

【特許請求の範囲】[Claims] (1)主に鉄とコバルトとよりなる磁性合金粉末におい
て、BET比表面積が25m^2/g〜35m^2/g
で軸比が4.5〜6.0であることを特徴とする磁性合
金粉末。
(1) Magnetic alloy powder mainly composed of iron and cobalt has a BET specific surface area of 25 m^2/g to 35 m^2/g
A magnetic alloy powder having an axial ratio of 4.5 to 6.0.
(2)3価の鉄イオンと2価のコバルトイオンを含有す
る水溶液と前記金属イオンの当量以上の水酸化アルカリ
を含む水溶液を反応させて、コバルト含有水酸化第二鉄
を生成させ、該コバルト含有水酸化第二鉄をオートクレ
ープ中で、水熱反応させた反応生成物をろ過、乾燥後、
還元ガス中で加熱還元して鉄−コバルト合金磁性粉末と
することを特徴とする磁性合金粉末の製造方法。
(2) Cobalt-containing ferric hydroxide is produced by reacting an aqueous solution containing trivalent iron ions and divalent cobalt ions with an aqueous solution containing alkali hydroxide in an amount equal to or more than the equivalent of the metal ions, and After filtration and drying of the reaction product obtained by hydrothermally reacting the ferric hydroxide containing ferric hydroxide in an autoclave,
A method for producing a magnetic alloy powder, which comprises heating and reducing the iron-cobalt alloy powder in a reducing gas to obtain an iron-cobalt alloy magnetic powder.
JP1092438A 1989-04-12 1989-04-12 Magnetic alloy powder and its manufacture Pending JPH02271503A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1092438A JPH02271503A (en) 1989-04-12 1989-04-12 Magnetic alloy powder and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1092438A JPH02271503A (en) 1989-04-12 1989-04-12 Magnetic alloy powder and its manufacture

Publications (1)

Publication Number Publication Date
JPH02271503A true JPH02271503A (en) 1990-11-06

Family

ID=14054434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1092438A Pending JPH02271503A (en) 1989-04-12 1989-04-12 Magnetic alloy powder and its manufacture

Country Status (1)

Country Link
JP (1) JPH02271503A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000212610A (en) * 1999-01-27 2000-08-02 Tsurumi Soda Co Ltd Production of alloy powder and iron powder
CN108723383A (en) * 2017-04-13 2018-11-02 中国科学院金属研究所 A kind of controllable method for preparing of multiform looks, ferrocobalt magnetic nanoparticle with high saturated magnetic induction

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000212610A (en) * 1999-01-27 2000-08-02 Tsurumi Soda Co Ltd Production of alloy powder and iron powder
CN108723383A (en) * 2017-04-13 2018-11-02 中国科学院金属研究所 A kind of controllable method for preparing of multiform looks, ferrocobalt magnetic nanoparticle with high saturated magnetic induction
CN108723383B (en) * 2017-04-13 2021-09-21 中国科学院金属研究所 Controllable preparation method of multi-morphology iron-cobalt alloy magnetic nanoparticles with high saturation magnetic induction intensity

Similar Documents

Publication Publication Date Title
US4053325A (en) Heat stable iron oxides
US4826671A (en) Preparation of acicular α-Fe2 O3
JPH02271503A (en) Magnetic alloy powder and its manufacture
JPS5919163B2 (en) Method for producing magnetic metal powder
JPH0623054B2 (en) Manufacturing method of hematite particle powder
JPS61163120A (en) Manufacture of isometric magnetic iron oxide pigment
JPH0585487B2 (en)
JPH04503938A (en) Method for producing magnetic hexaferrite particles, obtained particles and products containing the same
JPS59562B2 (en) Ferromagnetic metal powder and its manufacturing method
JPS5945931A (en) Preparation of goethite
JPS6334608B2 (en)
JPH04311A (en) Manufacture of metal magnetic powder
JPS6350326A (en) Production of hematite
JPS6320769B2 (en)
JPS63162535A (en) Production of powdery acicular hematite particle
KR920005334B1 (en) Gamma-feooh manufacturing method for magnetic recording medium
JPS5919162B2 (en) Method for producing iron-cobalt alloy ferromagnetic powder
US5338355A (en) Method of preparing goethite
JPS60170906A (en) Spindle shaped gamma-fe2o3 magnetic powder including co and manufacture of the same
JPS6090829A (en) Treatment of barium ferrite
JPH11263623A (en) Production of magnetic powder
JPS62219902A (en) Manufacture of metal magnetic powder
JPS5855203B2 (en) Method for producing iron-cobalt alloy ferromagnetic powder
JPH0463208A (en) Manufacture of metal magnetic powder
JPS5860632A (en) Preparation of ferromagnetic iron oxide powder