JPH01212231A - Production of magnetic iron oxide for magnetic recording - Google Patents

Production of magnetic iron oxide for magnetic recording

Info

Publication number
JPH01212231A
JPH01212231A JP63035593A JP3559388A JPH01212231A JP H01212231 A JPH01212231 A JP H01212231A JP 63035593 A JP63035593 A JP 63035593A JP 3559388 A JP3559388 A JP 3559388A JP H01212231 A JPH01212231 A JP H01212231A
Authority
JP
Japan
Prior art keywords
magnetic
iron oxyhydroxide
iron
iron oxide
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63035593A
Other languages
Japanese (ja)
Other versions
JPH0518766B2 (en
Inventor
Ichiro Honma
一郎 本間
Eiji Nomura
英司 野村
Kazuya Haga
芳賀 一也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishihara Sangyo Kaisha Ltd
Original Assignee
Ishihara Sangyo Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishihara Sangyo Kaisha Ltd filed Critical Ishihara Sangyo Kaisha Ltd
Priority to JP63035593A priority Critical patent/JPH01212231A/en
Publication of JPH01212231A publication Critical patent/JPH01212231A/en
Publication of JPH0518766B2 publication Critical patent/JPH0518766B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To improve the shape retentiveness, dispersibility, heat resistance, and magnetic characteristics of acicular particles by adding water soluble silicate to the aq. suspension of the iron oxyhydroxide obtd. by a specific method and depositing a silicon compd. on the surface of the iron oxyhydroxide, then separating and drying said iron and oxidizing the iron to the magnetic iron oxide. CONSTITUTION:An aq. soln. prepd. by dissolving a ferrous salt (e.g.: FeSO4) in water to 30-100g/l Fe concn. is partially neutralized and oxidized to form the nuclear crystal of the iron oxyhydroxide. While this liquid is neutralized with an alkali (e.g. NaOH) in the presence of a water soluble phosphorus compd. (e.g.: orthophosphoric acid), the liquid is subjected to, for example, air oxidation to incorporate the phosphorus into the above-mentioned nuclear crystal and to grow said crystal. After the resulted iron oxyhydroxide is separated from the reaction mother liquid, the iron oxyhydroxide is suspended in water. A water soluble silicate (e.g.: sodium silicate) is added to this suspension to deposit the silicate compd. on the surface of the iron oxyhydroxide. The deposited iron oxyhydroxide is separated and dried and is then dehydrated at 650-750 deg.C in the air atmosphere in a heat treatment furnace; thereafter, the iron oxyhydroxide is reduced at about 400 deg.C in gaseous H2 flow to magnetite which is further oxidized in the air at about 300 deg.C. The titled magnetic oxide is thus obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、磁気記録媒体の記録素子として有用な磁性酸
化鉄の製造方法に関し、さらに詳しくは、粒度分布が揃
い、保磁力、角形比、配向性、反転磁界分布などの磁気
特性に優れ、各種有機バインダーに対して改善された分
散性を有する磁気記録用磁性酸化鉄の製造方法に関する
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing magnetic iron oxide useful as a recording element of a magnetic recording medium. The present invention relates to a method for producing magnetic iron oxide for magnetic recording, which has excellent magnetic properties such as orientation and reversal magnetic field distribution, and has improved dispersibility in various organic binders.

〔従来の技術〕[Conventional technology]

磁気記録媒体の記録素子として汎用されているマグネタ
イト(r−FezOi)、マグネタイト(FezO4)
、ベルトライド系化合物(Fed、、 1’、33< 
X <1.5)、それらをコバルトなどの金属化合物で
変性した磁性酸化鉄、または針状メタル(α−Fe s
合金鉄)などの磁性粉末は、通常オキシ水酸化鉄粉末(
α。
Magnetite (r-FezOi) and magnetite (FezO4) are commonly used as recording elements in magnetic recording media.
, bertolide compound (Fed, 1', 33<
X <1.5), magnetic iron oxides modified with metal compounds such as cobalt, or acicular metals (α-Fe s
Magnetic powders such as iron alloy (ferroalloy) are usually mixed with iron oxyhydroxide powder (iron oxyhydroxide powder).
α.

β、  r−FeOOH)を加熱処理して脱水、還元ま
たは還元した後酸化することによって製造されている。
β, r-FeOOH) is heat treated to dehydrate, reduce, or reduce and then oxidize.

このような方法で製造された磁性粉末は、粒度分布が揃
っていないことが多く、このために樹脂バインダーと混
練して磁性塗料を調製する場合に、磁性粉末が均一に分
散されにりく、高充填でかつ良好な磁気特性を有する磁
気記録媒体を得ることはむつかしいとされている。
Magnetic powder produced by this method often has uneven particle size distribution, which makes it difficult for the magnetic powder to be uniformly dispersed when kneaded with a resin binder to prepare magnetic paint. It is said that it is difficult to obtain a magnetic recording medium that is filled and has good magnetic properties.

しかしながら、近時磁気記録媒体の高密度化とあいまっ
て、粒度分布が揃っており充填性の一層大きい磁性粉末
が望まれている。
However, in conjunction with the recent increase in the density of magnetic recording media, a magnetic powder with uniform particle size distribution and greater filling properties is desired.

従来、この対策として、例えば(1)オキシ水酸化鉄の
核晶生成時にリン酸塩イオン、Znイオン、Snイオン
などを添加する方法(特公昭39−25546、特公昭
55−23217 、特開昭56−155024)や(
2)高アルカリ条件でオキシ水酸化鉄を製造する方法(
特開昭53−127400)などが挙げられる。
Conventionally, as a countermeasure against this problem, for example, (1) a method of adding phosphate ions, Zn ions, Sn ions, etc. during the generation of iron oxyhydroxide nuclei (Japanese Patent Publications No. 39-25546, No. 55-23217, No. 56-155024) and (
2) Method for producing iron oxyhydroxide under highly alkaline conditions (
JP-A-53-127400).

一方、磁性粉末の製造において、リンおよびケイ素を用
いる技術としては、例えば(3)オキシ水酸化鉄を反応
終了後の母液から0別、水洗した後水中へ懸濁させ、そ
の粒子表面にリン化合物およびケイ素化合物を被着させ
る方法(特開昭53−129198)や(4)γ−Fe
、0.の製造に際し、針状酸化鉄またはその水化物の表
面にリン、ケイ素などを被着し、これを還元して得たマ
グネタイト上にコバルト化合物を被着し、さらに熱処理
を施してコバルトイオンをドープさせる方法(特開昭4
9−69588)などがある、− 〔発明が解決しようとする問題〕 ところが、前記(1)〜(4)の方法で得られるオキシ
水酸化鉄は、粒度分布、粒子形状性などにおいて必ずし
も充分でなく、また、これに脱水、還元、酸化などの熱
処理を施す際、粒子焼結が生じ易いので、得られる磁性
酸化鉄から導かれる磁気記録媒体の磁気特性は満足すべ
きものでなかった。
On the other hand, in the production of magnetic powder, techniques using phosphorus and silicon include, for example, (3) iron oxyhydroxide is separated from the mother liquor after the reaction is completed, washed with water, and then suspended in water to form a phosphorus compound on the particle surface. and a method of depositing a silicon compound (JP-A-53-129198) and (4) γ-Fe
,0. During production, phosphorus, silicon, etc. are deposited on the surface of acicular iron oxide or its hydrate, a cobalt compound is deposited on the magnetite obtained by reducing this, and then heat treatment is performed to dope cobalt ions. How to do it (Unexamined Japanese Patent Publication No.
[Problems to be Solved by the Invention] However, the iron oxyhydroxide obtained by the methods (1) to (4) above is not necessarily sufficient in terms of particle size distribution, particle shape, etc. In addition, when it is subjected to heat treatments such as dehydration, reduction, and oxidation, particle sintering tends to occur, so the magnetic properties of magnetic recording media derived from the magnetic iron oxide obtained have not been satisfactory.

本発明は、かかる従来技術の問題点を解消し、粒度分布
が揃い、保磁力、角形比、配向性、反転磁界分布などの
磁気特性に優れ、各種有機バインダーに対して改善され
た分散性を有する磁気記録用磁性酸化鉄の製造方法を提
供することにある。
The present invention solves the problems of the conventional technology, has a uniform particle size distribution, has excellent magnetic properties such as coercive force, squareness ratio, orientation, and reversal magnetic field distribution, and has improved dispersibility in various organic binders. An object of the present invention is to provide a method for producing magnetic iron oxide for magnetic recording.

(問題点を解決するための手段〕 本発明者達は、このような問題点を解決すべ(種々検討
を重ねた。その結果、第1鉄塩水溶液を部分中和、酸化
してオキシ水酸化鉄の核晶を生成させ、ついで液液を水
溶性リン化合物の存在下に中和、酸化して該核晶を成長
させてリンを固相中に含有するオキシ水酸化鉄を得、こ
のオキシ水酸化鉄の粒子表面上にケイ素化合物を主成分
とする耐熱性層を形成させてから磁性酸化鉄の製造をお
こなうと、粒度分布が揃い、結晶形状が明確な磁性粉末
を得ることができ、各種磁気特性は、従来技術で得られ
るものにくらべて顕著に改善される、という知見を得、
本発明を完成した。
(Means for Solving the Problems) The present inventors have attempted to solve these problems (after various studies). As a result, the ferrous salt aqueous solution is partially neutralized and oxidized to produce oxyhydroxy Iron core crystals are generated, and then the liquid is neutralized and oxidized in the presence of a water-soluble phosphorus compound to grow the core crystals to obtain iron oxyhydroxide containing phosphorus in the solid phase. If magnetic iron oxide is produced after forming a heat-resistant layer mainly composed of a silicon compound on the surface of iron hydroxide particles, magnetic powder with uniform particle size distribution and clear crystal shape can be obtained. We obtained the knowledge that various magnetic properties are significantly improved compared to those obtained with conventional technology,
The invention has been completed.

すなわち、本発明は、第1鉄塩水溶液を部分中和、酸化
してオキシ水酸化鉄の核晶を生成させ、ついで液液を水
溶性リン化合物の存在下にアルカリで中和しつつ酸化し
て該結晶を成長させ、得られたオキシ水酸化鉄を反応母
液から分離、水中に懸濁させ、該懸濁液に水溶性ケイ酸
塩を添加して、オキシ水酸化鉄の表面にケイ素化合物を
被着した後、分離、乾燥し、このものから磁性酸化鉄を
つくることを特徴とする磁気記録用磁性酸化鉄の製造方
法である。
That is, the present invention partially neutralizes and oxidizes an aqueous ferrous salt solution to generate nuclear crystals of iron oxyhydroxide, and then oxidizes the liquid while neutralizing it with an alkali in the presence of a water-soluble phosphorus compound. The iron oxyhydroxide obtained is separated from the reaction mother liquor, suspended in water, and a water-soluble silicate is added to the suspension to form a silicon compound on the surface of the iron oxyhydroxide. This is a method for producing magnetic iron oxide for magnetic recording, which is characterized in that magnetic iron oxide is produced from the deposited, separated and dried material.

使用する第1鉄塩としては、硫酸第1鉄、塩化第1鉄、
硝酸第1鉄などの鉱酸の第1鉄塩および炭酸第1鉄など
があり、工業的には硫酸第1鉄が望ましい、アルカリと
しては、水酸化ナトリウム、炭酸ナトリウム、水酸化カ
リウム、炭酸カルシウム、アンモニア、炭酸アンモニウ
ムなどが挙げられ、工業的には、水酸化ナトリウム、ア
ンモニアが好ましい、オキシ水酸化鉄核晶成長時に添加
するリン化合物としては、水溶性のもので例えばオルソ
リン酸、ピロリン酸、トリポリリン酸、メタリン酸、上
記以外の縮合リン酸、さらに次リン酸、亜リン酸類、次
亜リン酸およびそれらの塩などが挙げられる。
The ferrous salts used include ferrous sulfate, ferrous chloride,
There are ferrous salts of mineral acids such as ferrous nitrate and ferrous carbonate, and ferrous sulfate is preferred industrially.As alkalis, sodium hydroxide, sodium carbonate, potassium hydroxide, and calcium carbonate are available. , ammonia, ammonium carbonate, etc., and industrially, sodium hydroxide and ammonia are preferred. Phosphorus compounds added during iron oxyhydroxide core crystal growth include water-soluble ones such as orthophosphoric acid, pyrophosphoric acid, Examples include tripolyphosphoric acid, metaphosphoric acid, condensed phosphoric acids other than those mentioned above, hypophosphoric acid, phosphorous acids, hypophosphorous acid, and salts thereof.

酸化剤は、空気、酸素、過酸化水素、塩素酸塩、その他
の酸化剤などを用いるこ゛とができるが、空気が好適で
ある。
As the oxidizing agent, air, oxygen, hydrogen peroxide, chlorate, and other oxidizing agents can be used, but air is preferred.

本発明方法においては、先づ第1鉄塩溶液をアルカリで
部分中和し、酸化して液中のFe分の一部をオキシ水酸
化鉄の核晶にする。このとき、第1鉄塩溶液のFe濃度
は通常30〜100 g/I!であり、アルカリの添加
量は、通常母液中のFeイオンを5〜50%だけ沈殿さ
せるに必要な量である。
In the method of the present invention, a ferrous salt solution is first partially neutralized with an alkali and oxidized to convert a portion of the Fe content in the solution into nuclear crystals of iron oxyhydroxide. At this time, the Fe concentration of the ferrous salt solution is usually 30 to 100 g/I! The amount of alkali added is usually the amount necessary to precipitate 5 to 50% of Fe ions in the mother liquor.

核晶生成の反応温度は通常30〜60℃である。The reaction temperature for nucleation crystal formation is usually 30 to 60°C.

なお、この核晶生成反応中に系内に水溶性リン化合物な
どを媒晶剤として存在させてもよい。
In addition, a water-soluble phosphorus compound or the like may be present as a crystal modifier in the system during this nucleation crystal formation reaction.

上述の核晶生成反応の終った液は、オキシ水酸化鉄核晶
の懸濁した第1鉄塩溶液であり、ついで前記した水溶性
リン化合物の存在下にアルカリを添加しながら酸化して
、核晶を成長させ、リンを固溶させたオキシ水酸鉄を得
る。
The liquid after the above-mentioned nucleation crystal formation reaction is a ferrous salt solution in which iron oxyhydroxide nucleus crystals are suspended, and is then oxidized while adding an alkali in the presence of the above-mentioned water-soluble phosphorus compound. Nucleic crystals are grown to obtain iron oxyhydroxide containing phosphorus as a solid solution.

この核晶成長段階では、リン化合物をアルカリに予め混
合して添加するかあるいは別に添加してもよく、このリ
ン化合物の添加量は、通常生成するα−Pe00B全量
基準P換算量で0.05〜2重量%、望ましくは0.1
〜1.0重量“%である。このリンの量が上記範囲より
少なすぎると所望の効果が得られにくかったり、一方多
すぎるとこれより誘導される磁性酸化鉄中の非磁性物を
増し、飽和磁化(σS)を下げたりする0反応温度は通
常35〜80℃、望ましくは50〜70℃である。pl
lは普通3〜6の間に保たれる0粒度分布幅が小さく枝
分れの少ないものを得るためには、核晶の成長速度を1
〜20 g/l/時程度に調節するのが望ましい、核晶
を成長させる方法としては、予め母液の淵−度、核晶の
生成量を調節し、核晶生成反応の終了後、アルカリの添
加を開始して中和、酸化をおこなうか、核晶生成後に第
1鉄塩を補給してから中和、酸化をおこなうかによって
核晶を適当な粒子サイズにまで成長させる。オキシ水酸
化鉄の核晶を該核晶の重量による成長倍率が1.2〜4
.0、望ましくは1.5〜3になるように成長させるの
がよい。
At this stage of nuclei crystal growth, a phosphorus compound may be mixed with the alkali in advance or added separately. ~2% by weight, preferably 0.1
~1.0% by weight. If the amount of phosphorus is too small than the above range, it may be difficult to obtain the desired effect, while if it is too large, non-magnetic substances in the magnetic iron oxide derived from it will increase. The zero reaction temperature for lowering the saturation magnetization (σS) is usually 35 to 80°C, preferably 50 to 70°C.pl
l is usually kept between 3 and 6.0 In order to obtain a grain size distribution with a small width and less branching, the growth rate of the nuclei should be adjusted to 1.
The method of growing the nuclei, which is preferably adjusted to approximately 20 g/l/hour, is to adjust the depth of the mother liquor and the amount of nuclei crystals produced in advance, and after the completion of the nucleation reaction, add an alkali. Nucleic crystals can be grown to an appropriate particle size by starting addition and performing neutralization and oxidation, or by replenishing ferrous salt after nucleation and then performing neutralization and oxidation. The growth rate of iron oxyhydroxide nuclear crystals based on the weight of the nuclear crystals is 1.2 to 4.
.. 0, preferably 1.5 to 3.

つぎに核晶成長反応が終った液を濾別し、得られたオキ
シ水酸化鉄を水中に懸濁させ、該液のpIIを6以上、
望ましくは8以上に調整した後水溶性ケイ酸塩を添加し
てオキシ水酸化鉄の粒子表面にケイ素化合物を被着させ
る。被着時のpIIは、粒子表面にケイ素化合物を均一
に被着させるため液液に酸性物質を添加して7以下に調
整することが望ましい、使用する水溶性ケイ酸塩として
は、オルトケイ酸塩、ニケイ酸塩、四ケイ酸塩、メタケ
イ酸塩などが挙げられる。このケイ素化合物の添加量は
、通常生成するオキシ水酸化鉄全量基準Si換算量で0
.05〜2重量%、望ましくは0.1〜1.0重量%で
ある。このケイ素の量が上記範囲より少なすぎると、オ
キシ水酸化鉄を熱処理する際に粉末粒子の耐熱性が低下
し、得られる磁性酸化鉄の針状性が悪(なる、一方多す
ぎると、磁性酸化鉄中の非磁性物の含有量が増加して飽
和磁化(σS)の低下をきたすので望ましくない。
Next, the liquid after the nucleus crystal growth reaction is filtered, the obtained iron oxyhydroxide is suspended in water, and the pII of the liquid is set to 6 or more.
Desirably, after adjusting the number to 8 or more, a water-soluble silicate is added to coat the surface of the iron oxyhydroxide particles with a silicon compound. The pII during deposition is preferably adjusted to 7 or less by adding an acidic substance to the liquid in order to uniformly deposit the silicon compound on the particle surface.The water-soluble silicate used is orthosilicate. , disilicate, tetrasilicate, metasilicate, etc. The amount of this silicon compound added is 0 in terms of Si based on the total amount of iron oxyhydroxide normally produced.
.. 05 to 2% by weight, preferably 0.1 to 1.0% by weight. If the amount of silicon is too small than the above range, the heat resistance of the powder particles will decrease when iron oxyhydroxide is heat-treated, and the resulting magnetic iron oxide will have poor acicular properties (on the other hand, if it is too large, the magnetic This is undesirable because the content of nonmagnetic substances in iron oxide increases, resulting in a decrease in saturation magnetization (σS).

ケイ素化合物を被着したオキシ水酸化鉄は、通常の濾過
、水洗、乾燥及び粉砕を経てオキシ水酸化鉄粉末として
得られる。このオキシ水酸化鉄粉末から通常の方法によ
って磁気記録用磁性酸化鉄を得ることができる。すなわ
ち゛、先ず300〜800℃の温度において空気中で脱
水し、ついでこの脱水化物を300〜500℃の温度に
おいて水素又は水蒸気を含む水素で還元してFe、0.
を得るか、あるいはさらにこのFe、O,を200〜4
00℃の温度において酸素又は空気で酸化することによ
りT−FelO,とすることができる。
Iron oxyhydroxide coated with a silicon compound is obtained as iron oxyhydroxide powder through conventional filtration, water washing, drying and pulverization. Magnetic iron oxide for magnetic recording can be obtained from this iron oxyhydroxide powder by a conventional method. That is, first, it is dehydrated in air at a temperature of 300 to 800°C, and then this dehydrated product is reduced with hydrogen or hydrogen containing water vapor at a temperature of 300 to 500°C to obtain Fe, 0.
or further this Fe, O, 200~4
T-FelO can be obtained by oxidizing with oxygen or air at a temperature of 00°C.

〔作 用〕[For production]

本発明は、オキシ水酸化鉄の製造工程においてリン化合
物およびケイ素化合物を用いているが、前述の従来技術
のように生成したオキシ水酸化鉄や酸化鉄の表面にそれ
らを被着させるのではなく、オキシ水酸化鉄核晶の成長
過程で固相中にリンを含有させ、ついで得られたオキシ
水酸化鉄の表面にケイ素化合物の層を形成させるところ
に特徴がある。その結果として、粒度分布の改善および
熱処理時の耐熱性の改善が図れ、さらにそれらの相乗的
効果も相俟つて、針状性、粒度分布が良好で、空孔が少
なく、優れた磁気特性を有し、かつ塗料分散性の良好な
磁性酸化鉄を製造することができるのである、なお、本
発明においてこのような優れた効果が得られる理由は明
らかではないが、下記のように考えている。
The present invention uses a phosphorus compound and a silicon compound in the production process of iron oxyhydroxide, but instead of depositing them on the surface of the iron oxyhydroxide or iron oxide produced as in the prior art described above. , is characterized in that phosphorus is contained in the solid phase during the growth process of iron oxyhydroxide core crystals, and then a layer of silicon compound is formed on the surface of the obtained iron oxyhydroxide. As a result, it is possible to improve particle size distribution and heat resistance during heat treatment, and the synergistic effects of these also result in good acicularity, good particle size distribution, fewer pores, and excellent magnetic properties. It is possible to produce magnetic iron oxide that has a magnetic iron oxide and has good paint dispersibility.The reason why such an excellent effect is obtained in the present invention is not clear, but it is thought as follows. .

オキシ水酸化鉄の成長反応中に系内にリン化合物を存在
させると、枝分れ結晶の発生が抑制され、針状性が良好
でかつ粒子形状の明確なリンを固溶させたオキシ水酸化
鉄が得られる。また反応中に微細な核種が発生するのを
防止できるので、粒度分布が揃ったものが得られる。
When a phosphorus compound is present in the system during the growth reaction of iron oxyhydroxide, the generation of branched crystals is suppressed, resulting in oxyhydroxide with good acicularity and well-defined phosphorus particle shape. Iron is obtained. Furthermore, since generation of fine nuclides during the reaction can be prevented, particles with uniform particle size distribution can be obtained.

リン化合物は焼結防止剤としてオキシ水酸化鉄や酸化鉄
に被着されることは知られているが、本発明のようにケ
イ素化合物をオキシ水酸化鉄の表面に被着させる場合に
は、リン化合物は粒子表面に被着させるよりも予め粒子
内に固溶させておく方が粒子の耐熱性を向上させる上か
らも、また磁性酸化鉄の種々の磁気特性の上からも望ま
しい。
It is known that phosphorus compounds are applied to iron oxyhydroxide and iron oxide as sintering inhibitors, but when a silicon compound is applied to the surface of iron oxyhydroxide as in the present invention, It is preferable that the phosphorus compound is dissolved in solid solution in the particles in advance rather than being deposited on the surface of the particles, from the viewpoint of improving the heat resistance of the particles and also from the viewpoint of various magnetic properties of magnetic iron oxide.

〔実施例〕〔Example〕

つぎに、具体的な実施例により、本発明を説明する。 Next, the present invention will be explained using specific examples.

実施例−1 (1)  オキシ水酸化鉄核晶の生成反応空気吹込み管
と撹拌機を備えた反応容器に1.50モル/Ilの硫酸
第1鉄水溶液201を入れ、60℃に昇温し、この温度
を維持しながら、10モル/1の水酸化ナトリウム水溶
液1.07ffiを攪拌下に加え(沈殿Fe15g/i
)、この中へ101/分の速度で空気を吹き込み100
〜200分間反応させてオキシ水酸化鉄の核晶を得た。
Example-1 (1) Production of iron oxyhydroxide core crystals A 1.50 mol/Il ferrous sulfate aqueous solution 201 was placed in a reaction vessel equipped with an air blowing tube and a stirrer, and the temperature was raised to 60°C. Then, while maintaining this temperature, 1.07 ffi of a 10 mol/1 aqueous sodium hydroxide solution was added with stirring (precipitated Fe15 g/i
), air is blown into this at a speed of 101/min.
The reaction was performed for ~200 minutes to obtain iron oxyhydroxide core crystals.

(2)核晶の成長反応 所望の粒子径に成長させるため、上記の核種スラリiを
60〜65℃に維持しつつ、ION水酸化ナトリウム水
溶液1.6111を8−7分の速度で添加し、空気を5
1/分の速度で送入して中和、酸化反応をおこなった。
(2) Nucleic crystal growth reaction In order to grow to the desired particle size, while maintaining the above nuclide slurry i at 60 to 65°C, ION sodium hydroxide aqueous solution 1.6111 was added at a rate of 8 to 7 minutes. , air 5
Neutralization and oxidation reactions were carried out by feeding at a rate of 1/min.

成長倍率は、核晶に対する重量比で2.5倍となる。The growth rate is 2.5 times the weight ratio to the core crystal.

この成長反応において、1モル/iのオルトリン酸水溶
液を水酸化ナトリウム水溶液と並行して連続的に添加し
た。オルトリン酸の添加量は生成するオキシ水酸化鉄の
重量に対しP換算量で0.3%となるように添加した。
In this growth reaction, a 1 mol/i orthophosphoric acid aqueous solution was continuously added in parallel with the sodium hydroxide aqueous solution. The amount of orthophosphoric acid added was 0.3% in terms of P based on the weight of iron oxyhydroxide to be produced.

このようにして得られるオキシ水酸化鉄の比表面積は4
5〜50rrr/gであった。
The specific surface area of iron oxyhydroxide obtained in this way is 4
It was 5 to 50 rrr/g.

(3)  ケイ素化合物の被着 上記のオキシ水酸化鉄の反応終了液は濾過工程で濾別、
水洗された。洗浄されたオキシ水酸化鉄は、スラリー濃
度が100 g/lになるように水中に分散し、このス
ラリーのpIIを400 g/lの水酸化ナトリウム水
溶液で8に調整した後、Si換算で50 g/II濃度
のケイ酸ソーダ水溶液を加え、オキシ水酸化鉄の表面に
ケイ素化合物の被膜を形成させた。ケイ酸ソーダの添加
量は、オキシ水酸化鉄の重量に対してSi換算量で0.
3%とした。この後、希硫酸で該スラリーのpnを6ま
で徐々に下げた。
(3) Adhesion of silicon compounds The above-mentioned iron oxyhydroxide reaction solution is separated by filtration in a filtration step.
Washed with water. The washed iron oxyhydroxide was dispersed in water so that the slurry concentration was 100 g/l, and the pII of this slurry was adjusted to 8 with a 400 g/l aqueous sodium hydroxide solution, and then the pII was adjusted to 50 in terms of Si. A sodium silicate aqueous solution having a concentration of g/II was added to form a silicon compound film on the surface of the iron oxyhydroxide. The amount of sodium silicate added is 0.0% in terms of Si based on the weight of iron oxyhydroxide.
It was set at 3%. Thereafter, the pn of the slurry was gradually lowered to 6 with dilute sulfuric acid.

(4)磁性酸化鉄化 上記の処理を受けたオキシ水酸化鉄は濾別水洗され、さ
らに100〜150℃で乾燥された。このオキシ水酸化
鉄は、空気雰囲気下、熱処理炉において650〜750
℃の温度で脱水し、ついで、この脱水物を水素気流中4
00℃で還元してマグネタイトとし、さらに空気中30
0℃で酸化してT−酸化鉄である磁性酸化鉄(A)を得
た。
(4) Formation of magnetic iron oxide The iron oxyhydroxide subjected to the above treatment was filtered, washed with water, and further dried at 100 to 150°C. This iron oxyhydroxide is heated to a temperature of 650 to 750 in a heat treatment furnace in an air atmosphere.
dehydrated at a temperature of
It is reduced to magnetite at 00℃, and further reduced to 30℃ in air.
Magnetic iron oxide (A), which is T-iron oxide, was obtained by oxidation at 0°C.

(5)  塗料化及び磁気特性の測定 各々のr−Fe、O,について、下記の配合割合に従っ
て配合物を調製し、ボールミルで混練して磁性塗料を製
造した。
(5) Formation into paint and measurement of magnetic properties For each of r-Fe and O, a mixture was prepared according to the proportions shown below and kneaded in a ball mill to produce a magnetic paint.

■ r−Pe、O,粉末    100  重量部■ 
大豆レシチン       1.6〃■ 界面活性剤 
       4  〃■ 酢ビー塩ビ共重合樹脂  
10.5  〃■ ジオクチルフタレート   4  
〃■ メチルエチルケトン   84  〃■ トルエ
ン        93  〃ついで、各々の磁性塗料
をポリエステルフィルムに通常の方法により塗布、配向
した後乾燥して、約7μ厚の磁性塗膜を有する磁気記録
体を作成した。これら磁気記録体について、通常の方法
により保磁力(Ilc) 、磁束密度(Br) 、角形
比(fir/B■)、配向性(OR) 、反転磁界分布
(SPD)を測定し表示した。
■ r-Pe, O, powder 100 parts by weight ■
Soy lecithin 1.6〃■ Surfactant
4 〃■ Vinegar vinyl PVC copolymer resin
10.5 〃■ Dioctyl phthalate 4
〃■ Methyl ethyl ketone 84〃■ Toluene 93〃Next, each magnetic coating material was coated on a polyester film by a conventional method, oriented and dried to prepare a magnetic recording medium having a magnetic coating film about 7μ thick. For these magnetic recording bodies, coercive force (Ilc), magnetic flux density (Br), squareness ratio (fir/B), orientation (OR), and switching field distribution (SPD) were measured and displayed using conventional methods.

(6)  粒度分布の測定 粒度分布(σL/、[)の測定方法 よく分散されたr−Pe、O,を試料として、電子顕微
鏡により約500個の粒子の長軸粒子径を読みとり、そ
の算術平均軸長T:、(μ)と標準偏差σL(μ)を決
め、下記の式に従って粒度分布(L分布)を求める。
(6) Measurement of particle size distribution Method for measuring particle size distribution (σL/, The average axial length T:, (μ) and standard deviation σL (μ) are determined, and the particle size distribution (L distribution) is determined according to the following formula.

L分布=σL/L このし分布の値が小さいほど粒度分布がシャープであり
、この値でもって粒度分布改善の指標とした。
L distribution = σL/L The smaller the value of this distribution, the sharper the particle size distribution, and this value was used as an index of particle size distribution improvement.

実施例−2,3 実施例−1におけるケイ酸ソーダ水溶液を添加する際の
オキシ水酸化鉄スラリーのpIIを10(実施例−2)
および12(実施例−3)に変える以外は実施例−1の
場合と同じにして、磁性酸化鉄(B)(実施例−2)お
よび磁性酸化鉄(C)(実施例−3)を得た。
Examples 2 and 3 The pII of the iron oxyhydroxide slurry when adding the sodium silicate aqueous solution in Example 1 was 10 (Example 2)
Magnetic iron oxide (B) (Example-2) and magnetic iron oxide (C) (Example-3) were obtained in the same manner as in Example-1 except that 12 (Example-3) was changed. Ta.

実施例−4 実施例−1におけるケイ酸ソーダの添加量をオキシ水酸
化鉄の重量に対するSi換算値で0.2%と変える以外
は実施例−1の場合と同じにして、磁性酸化鉄(D)を
得た。
Example-4 Magnetic iron oxide ( D) was obtained.

比較例−1 実施例−1におけるケイ酸ソーダ水溶液の添加を、オキ
シ水酸化鉄の成長反応中連続的におこなうように変える
以外は実施例−1の場合と同じにして、磁性酸化鉄(I
F、)を得た。
Comparative Example-1 A magnetic iron oxide (I
F,) was obtained.

比較例−2 実施例−1におけるケイ酸ソーダ水溶液の添加を、オキ
シ水酸化鉄の成長反応終了後のスラリーにおこなうよう
に変える以外は実施例−1の場合と同じにして、磁性酸
化鉄(F)を得た。
Comparative Example-2 A magnetic iron oxide ( F) was obtained.

比較例−3 比較例−1におけるオルトリン酸水溶液の添加を、オキ
シ水酸化鉄の成長反応終了後のスラリーにおこなうよう
に変える以外は比較例−1の場合と同じにして、磁性酸
化鉄(G)を得た。
Comparative Example-3 The procedure was the same as in Comparative Example-1 except that the orthophosphoric acid aqueous solution in Comparative Example-1 was added to the slurry after the growth reaction of iron oxyhydroxide was completed, and magnetic iron oxide (G ) was obtained.

比較例−4 比較例−2におけるオルトリン酸水溶液の添加を、オキ
シ水酸化鉄の成長反応終了後のスラリーにおこない、し
かる後にケイ酸ソーダ水溶液を添加するように変える以
外は比較例−2の場合と同じにして、磁性酸化鉄(H)
を得た。
Comparative Example-4 The case of Comparative Example-2 except that the orthophosphoric acid aqueous solution in Comparative Example-2 was added to the slurry after the growth reaction of iron oxyhydroxide was completed, and then the sodium silicate aqueous solution was added. In the same way as magnetic iron oxide (H)
I got it.

比較例−5 比較例−4におけるケイ酸ソーダ水溶液の添加を、オキ
シ水酸化鉄の濾別、水洗後のスラリーにおこなうように
変える以外は比較例−4の場合と同じにして、磁性酸化
鉄(1)を得た。
Comparative Example 5 A magnetic iron oxide was prepared in the same manner as in Comparative Example 4 except that the addition of the sodium silicate aqueous solution in Comparative Example 4 was changed to the slurry after filtration of iron oxyhydroxide and washing with water. (1) was obtained.

比較例−6,7,8 比較例−3,4,5におけるオルトリン酸水溶液の添加
を、オキシ水酸化鉄の濾別、水洗後のスラリーにおこな
い、しかる後にケイ酸ソーダ水溶液を添加するように変
える以外は比較例3,4゜5と同じにして、磁性酸化鉄
(J)(比較例−6)、磁性酸化鉄(K)(比較例−7
)および磁性酸化鉄(L)(比較例−8)を得た。
Comparative Examples 6, 7, 8 The orthophosphoric acid aqueous solution in Comparative Examples 3, 4, and 5 was added to the slurry after iron oxyhydroxide was filtered and washed with water, and then the sodium silicate aqueous solution was added. The same procedures as Comparative Examples 3 and 4゜5 were made except for the changes, and magnetic iron oxide (J) (Comparative Example-6) and magnetic iron oxide (K) (Comparative Example-7) were prepared.
) and magnetic iron oxide (L) (Comparative Example-8) were obtained.

〔発明の効果〕〔Effect of the invention〕

本発明は以上のように構成したことにより、っぎのよう
な種々の優れた効果を収めるものである。
The present invention, configured as described above, achieves various excellent effects such as those mentioned above.

■ 本発明によって得られる磁性酸化鉄は粒度分布が揃
い、また粒子形状が明確で、針状性が良好となる。これ
は、オキシ水酸化鉄の粒度分布、粒子形状が改善される
こと、さらに熱処理時の耐熱性が向上し、針状粒子の形
状保持性が改善されることによるものである。
(2) The magnetic iron oxide obtained by the present invention has a uniform particle size distribution, a clear particle shape, and good acicularity. This is due to improved particle size distribution and particle shape of iron oxyhydroxide, improved heat resistance during heat treatment, and improved shape retention of acicular particles.

■ 耐熱性が向上するため、磁気特性を引き出すための
熱処理を充分に施すことができ、保磁力(Hc)、反転
磁界分布(SF口)、角形比(SQ) 、配向性(OR
)、磁束密度(Br)などの磁気特性が向上する。
■ Improved heat resistance allows sufficient heat treatment to bring out magnetic properties, improving coercive force (Hc), reversal magnetic field distribution (SF port), squareness ratio (SQ), and orientation (OR).
), magnetic properties such as magnetic flux density (Br) are improved.

■ また、この磁性酸化鉄を用いて磁性塗料を調製する
と、分散性が良好で塗料樹脂液との混合分散時間が短縮
され、磁性塗膜への磁性体の充填性が向上する。
(2) In addition, when a magnetic paint is prepared using this magnetic iron oxide, the dispersibility is good, the mixing and dispersion time with the paint resin liquid is shortened, and the ability to fill the magnetic coating film with the magnetic substance is improved.

Claims (6)

【特許請求の範囲】[Claims] 1.第1鉄塩水溶液を部分中和、酸化してオキシ水酸化
鉄核晶を生成させ、ついで該液を水溶性リン化合物の存
在下にアルカリで中和しつつ酸化して該核晶を成長させ
、得られたオキシ水酸化鉄を反応母液から分離、水中に
懸濁させ、該懸濁液に水溶性ケイ酸塩を添加してオキシ
水酸化鉄の表面にケイ素化合物を被着した後、分離、乾
燥し、このものから磁性酸化鉄をつくることを特徴とす
る磁気記録用磁性酸化鉄の製造方法。
1. A ferrous salt aqueous solution is partially neutralized and oxidized to generate iron oxyhydroxide core crystals, and then the solution is neutralized and oxidized with an alkali in the presence of a water-soluble phosphorus compound to grow the core crystals. The obtained iron oxyhydroxide is separated from the reaction mother liquor, suspended in water, and a water-soluble silicate is added to the suspension to deposit a silicon compound on the surface of the iron oxyhydroxide, followed by separation. A method for producing magnetic iron oxide for magnetic recording, characterized by drying the product and producing magnetic iron oxide from this product.
2.オキシ水酸化鉄核晶がリンを含有している請求項1
に記載の磁気記録用磁性酸化鉄の製造方法。
2. Claim 1 wherein the iron oxyhydroxide core crystal contains phosphorus.
A method for producing magnetic iron oxide for magnetic recording as described in .
3.水溶性リン化合物がオルトリン酸ないしその塩であ
る請求項1または2に記載の磁気記録用磁性酸化鉄の製
造方法。
3. 3. The method for producing magnetic iron oxide for magnetic recording according to claim 1, wherein the water-soluble phosphorus compound is orthophosphoric acid or a salt thereof.
4.水溶性ケイ酸塩がケイ酸ナトリウムである請求項1
,2または3に記載の磁気記録用磁性酸化鉄の製造方法
4. Claim 1 wherein the water-soluble silicate is sodium silicate.
, 2 or 3. The method for producing magnetic iron oxide for magnetic recording according to .
5.水溶性ケイ酸塩を添加する際の懸濁液のpII値が
6以上である請求項1,2,3または4に記載の磁気記
録用磁性酸化鉄の製造方法。
5. 5. The method for producing magnetic iron oxide for magnetic recording according to claim 1, wherein the suspension has a pII value of 6 or more when the water-soluble silicate is added.
6.水溶性ケイ酸塩を添加する際の懸濁液のpII値が
8以上である請求項1,2,3または4に記載の磁気記
録用磁性酸化鉄の製造方法。
6. 5. The method for producing magnetic iron oxide for magnetic recording according to claim 1, 2, 3, or 4, wherein the suspension has a pII value of 8 or more when the water-soluble silicate is added.
JP63035593A 1988-02-18 1988-02-18 Production of magnetic iron oxide for magnetic recording Granted JPH01212231A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63035593A JPH01212231A (en) 1988-02-18 1988-02-18 Production of magnetic iron oxide for magnetic recording

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63035593A JPH01212231A (en) 1988-02-18 1988-02-18 Production of magnetic iron oxide for magnetic recording

Publications (2)

Publication Number Publication Date
JPH01212231A true JPH01212231A (en) 1989-08-25
JPH0518766B2 JPH0518766B2 (en) 1993-03-12

Family

ID=12446092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63035593A Granted JPH01212231A (en) 1988-02-18 1988-02-18 Production of magnetic iron oxide for magnetic recording

Country Status (1)

Country Link
JP (1) JPH01212231A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5641470A (en) * 1995-07-17 1997-06-24 Minnesota Mining And Manufacturing Company Process for making goethite

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105800696A (en) * 2016-03-02 2016-07-27 天津大学 Method for preparing high-magnetism ferroferric oxide powder from steel pickling waste liquid

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5641470A (en) * 1995-07-17 1997-06-24 Minnesota Mining And Manufacturing Company Process for making goethite

Also Published As

Publication number Publication date
JPH0518766B2 (en) 1993-03-12

Similar Documents

Publication Publication Date Title
US4406694A (en) Process for producing acicular ferromagnetic alloy particles and acicular ferromagnetic alloy particles obtained by the said process
JP3087825B2 (en) Spindle-shaped goethite particle powder, method for producing the same, spindle-shaped metal magnetic particle powder containing iron as a main component obtained using the goethite particle powder as a starting material, and method for producing the same
US4396596A (en) Method of preparing gamma ferric hydroxyoxide powder
JPH01212231A (en) Production of magnetic iron oxide for magnetic recording
US4560544A (en) Process for the preparation of acicular α-FeOOH for magnetic recording materials
KR890003881B1 (en) Process for production of cobalt-and-ferrous iron comtaining ferromagnetic iron oxide
JP3750414B2 (en) Spindle-shaped goethite particle powder, spindle-shaped hematite particle powder, spindle-shaped metal magnetic particle powder containing iron as a main component, and production method thereof
JPS6021307A (en) Production of ferromagnetic metallic powder
JP3337046B2 (en) Spindle-shaped metal magnetic particles containing cobalt and iron as main components and method for producing the same
JPS6334608B2 (en)
JPH0529611B2 (en)
JP2931182B2 (en) Method for producing acicular γ-FeOOH
JPS639735B2 (en)
JPS63140005A (en) Production of fine ferromagnetic metal particle powder
JP3166809B2 (en) Method for producing acicular magnetic iron oxide particles
JP3092649B2 (en) Method for producing spindle-shaped metal magnetic particles containing iron as a main component
JPH0415601B2 (en)
JPS59132420A (en) Manufacture of metallic magnetic powder for magnetic recording
JPS63265823A (en) Method for coating metal compound on fine particles of acicular iron oxyhydroxide or the like
JP2746369B2 (en) Method for producing magnetic iron oxide powder for magnetic recording
JPS58151333A (en) Manufacture of needlelike iron oxide particle
JPS6261537B2 (en)
JPS649372B2 (en)
JPS6332243B2 (en)
JPS5864303A (en) Production of magnetic particle powder of needle crystal alloy consisting essentially of fe-mg-ni

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term