JPH0415601B2 - - Google Patents

Info

Publication number
JPH0415601B2
JPH0415601B2 JP59262518A JP26251884A JPH0415601B2 JP H0415601 B2 JPH0415601 B2 JP H0415601B2 JP 59262518 A JP59262518 A JP 59262518A JP 26251884 A JP26251884 A JP 26251884A JP H0415601 B2 JPH0415601 B2 JP H0415601B2
Authority
JP
Japan
Prior art keywords
feooh
magnetic
temperature
particle size
size distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59262518A
Other languages
Japanese (ja)
Other versions
JPS61140110A (en
Inventor
Tatsuo Ishikawa
Eiji Nomura
Hajime Makiuchi
Taiko Azuma
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishihara Sangyo Kaisha Ltd
Original Assignee
Ishihara Sangyo Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishihara Sangyo Kaisha Ltd filed Critical Ishihara Sangyo Kaisha Ltd
Priority to JP59262518A priority Critical patent/JPS61140110A/en
Publication of JPS61140110A publication Critical patent/JPS61140110A/en
Publication of JPH0415601B2 publication Critical patent/JPH0415601B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)
  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の技術分野〕 本発明は、特に粒度分布を改善した磁気記録材
料用針状α−FeOOHの製造方法に関する。 〔従来技術とその問題点〕 磁気記録媒体の記録材料として汎用されている
マグヘマイト(γ−Fe2O3)、マグネタイト
(Fe3O4)、ベルトライド系化合物(FeOX、1.33
<X<1.5)、それらをコバルト等の金属化合物で
変成した磁性酸化鉄、または針状メタル(α−
Fe、合金鉄)などの磁性粉末は、通常含水酸化
鉄粉末(α、β、γ−FeOOH)を加熱処理して
脱水、還元または還元した後酸化することによつ
て製造されている。このような方法で製造された
磁性粉末は、粒度分布が揃つていないことが多
く、このために例えば樹脂バインダーと混練して
磁性塗料を調製する場合に、磁性粉末が均一に分
散されにくく、高充填度でかつ良好な磁気特性を
有する磁気記録媒体を得ることはきわめてむずか
しいとされている。 しかしながら、近時磁気記録媒体の高密度化と
あいまつて、より小さな粒子でかつ粒度分布がシ
ヤープで充填性の一層大きい磁性粉末が望まれて
おり、前記問題点の解決が強く求められている。 前記問題点を解決するために、前記磁性粉末の
前駆体であるα−FeOOHについて、その粒度分
布を改善する製造方法が種々提案されている。例
えば、α−FeOOH核晶生成時にリン酸塩イオ
ン、Znイオン、Snイオンなどを添加する方法
(特公昭39−25546、特公昭55−23217、特開昭56
−155024)、第1鉄塩水溶液に予め一定量のアン
モニウム塩を存在させた後、該液をアンモニアで
部分中和してα−FeOOH核晶を生成する方法
(特公昭51−17518)、高アルカリ条件でα−
FeOOHを製造する方法(特開昭53−127400)な
どが挙げられる。しかし、これらの方法で得られ
るα−FeOOHは、粒度分布、粒子形状性などに
おいて必ずしも充分でなく、これらを用いて製造
した磁性粉末の磁気特性においても充分でないの
で、なお一層の改良が望まれている。 〔発明の目的〕 本発明の目的は前記従来技術の問題点を解消
し、粒度分布がシヤープで粒子形状性が優れた磁
気記録材料用α−FeOOHの製造方法を提供する
ことにある。 〔発明の概要〕 本発明者達は、上記目的を達成するべく種々研
究を重ねた結果、第1鉄塩水溶液を特定の温度に
維持しながら部分中和、酸化してα−FeOOH核
晶を生成させた懸濁液を、特定の条件下で熟成
し、次いで該液或は該液に第1鉄塩水溶液を加え
た液を中和、酸化して該核晶を成長させると、粒
度分布がシヤープで、枝分れなどが少なく結晶形
状が明確なα−FeOOHを得ることができ、これ
を用いて製造した磁性粉末の各種磁気特性も良好
であり、前記問題点をいずれも解決しうるとの知
見に基づいて本発明を完成した。すなわち、本発
明は第1鉄塩水溶液を40〜70℃の温度に維持しな
がら部分中和、酸化してα−FeOOH核晶を生成
させた懸濁液を、50℃以上かつ該核晶生成温度よ
り高い温度でPH2〜6に保持しながら30分以上熟
成し、次いで該液或は該液に第1鉄塩水溶液を加
えた液を中和、酸化して該核晶を成長させ、α−
FeOOHを得ることを特徴とする、磁気記録材料
用針状α−FeOOHの製造方法である。 使用する第1鉄塩としては、硫酸第1鉄、塩化
第1鉄、硝酸第1鉄などの鉱酸の第1鉄塩及び炭
酸第1鉄などがあり、工業的には硫酸第1鉄が望
ましい。第1鉄塩の中和に用いるアルカリとして
は、アルカリ金属或はアルカリ土類金属の水酸化
物、酸化物又は炭酸塩があり、水酸化ナトリウ
ム、水酸化カリウム、酸化ナトリウム、炭酸ナト
リウムなどが挙げられる。またアンモニアガス、
アンモニア水溶液、炭酸アンモニウムなどもアル
カリとして使用できる。工業的には水酸化ナトリ
ウム、水酸化カリウム、アンモニアが望ましい。
酸化剤は空気、酸素、過酸化ソーダ、過酸化水
素、塩素酸ソーダなどが挙げられるが一般に空気
が好適である。 本発明方法においては、先ず第1鉄塩水溶液を
部分中和し、酸化して液中のFe分の一部をα−
FeOOHの核晶にするが、第1鉄塩水溶液の濃度
は通常30〜90g/であり、アルカリの添加量
は、母液中のFeイオンを5〜50%、Feイオン濃
度でいえば5〜25g/だけ沈殿させるに必要な
量である。この生成核晶濃度が上記範囲より低す
ぎると製造効率が低下して工業的(経済的)実施
に適さなくなり、一方高すぎると核晶反応液の粘
度が高くなり、均一な酸化反応を妨げ、粒度分布
がシヤープでなくなり、ひいてはこれから誘導さ
れる磁性粉末の磁気特性の低下につながる。 この核晶生成段階での反応温度は通常30〜80℃
であり、望ましくは40〜70℃である。この温度が
上記範囲より低すぎると反応時間が長くなり、粒
度分布がシヤープでなくなる。一方高すぎると粒
状のマグネタイトが生成しやすくなり、核晶とし
て好ましくないものになる。 この生成反応は、なるべく短時間に終らせるの
が核晶の粒度分布をシヤープにする上からよい
が、例えば20〜180分程度に調節するのがよい。
得られる核晶は、BET比表面積40〜140m2/g程
度のものであることがよい。 上述の核晶生成反応の終つた液は、α−
FeOOH核晶の懸濁した第1鉄塩水溶液であり、
本発明方法では、次いでこの液を熟成処理に供す
る。熟成方法としては、該懸濁液をそのまま所定
の条件下で熟成する方法と該懸濁液を濾過し得ら
れた核晶を水または新しい母液に分散させた懸濁
液を所定の条件下で熟成する方法とがあるが、い
るれの場合でも熟成の効果は得られる。しかし工
業的にみた場合、核晶生成反応の終つた液をその
まま熟成処理に供するのが好ましい。 熟成温度は50℃以上かつ核晶生成温度よりも高
い温度であり、望ましくは60℃以上かつ核晶生成
温度よりも高い温度である。この温度が50℃未満
では、核晶の溶解析出反応が抑制され、粒度分布
がシヤープで枝分れが少ない粒子を生成すること
が難しく、熟成時間を長くする必要があり、工業
的に不利となる。この温度は高い程、粒度分布や
粒子形状性を改善する上で効果が大きく、熟成時
間の短縮も可能となる。したがつてオートクレー
ブを用いた100℃以上での熟成でもその効果は得
られるのであるが、工業的実施の容易さ、製造コ
ストなどを考慮すると、通常常圧下での50〜95℃
の範囲が望ましい。熟成時間については少くとも
30分は必要であり、その上限は特にないが、工業
的にみると10時間以下で充分である。 熟成時のPHは通常2〜6の間に、望ましくは
2.5〜5.5の間に保たれる。このPHが上記範囲より
低すぎると核晶が凝集しやすくなり、凝集塊或は
イガ栗状の粒子が生成するので好ましくない。一
方高すぎるとマグネタイトの生成安定域となり、
共存する水酸化鉄やグリーンラストからマグネタ
イトが生成したり、微細な核晶がマグネタイトに
転移したりして好ましくない。なお、熟成時のPH
はできるだけ変動幅が小さいように保持すること
が、粒度分布がシヤープで粒子形状性が優れたα
−FeOOHを得る上において好ましい。熟成時に
撹拌によつて懸濁液中に空気が巻き込まれると、
酸化反応が進行してPHの低下をきたすので、でき
るだけ空気の混入を防ぐため、撹拌を低速にした
り或は反応容器内の空気をN2ガスで置換したり
することがPHを一定にする上からよい。 上述の熟成処理を施したα−FeOOH核晶は、
所望の粒子サイズのα−FeOOHを得るために、
通常引きつづいて核晶成長反応に供される。この
成長反応は、熟成処理の終つた懸濁液或は該液に
第1鉄塩水溶液を追加した液を、アルカリを添加
しながら空気などの酸化剤を加えて酸化すること
によつて行なわれる。 反応温度は通常50℃以上であり、望ましくは熟
成温度と同じかそれ以上の温度である。この温度
が50℃未満では、α−FeOOHの3つの結晶軸方
向への成長速度が異なつてきて結晶に乱れを生
じ、粒度分布や粒子形状性の上からよくない。 成長倍率は核晶に対する重量比率で1〜5、望
ましくは1.5〜3になるようにする。この倍率が
上記範囲より高すぎると粒度分布幅が大きくな
り、かつ粒子の枝分れも多くなる。この工程で
は、生成するα−FeOOHのBET比表面積が、例
えば25〜100m2/gになるようにするのが好まし
い。 成長反応によつて所望の粒子サイズとしたα−
FeOOHは、通常の濾過、水洗、乾燥を経て、α
−FeOOH粉末として得られる。このα−
FeOOH粉末を通常の方法で加熱処理して脱水、
還元または還元した後酸化することによつてマグ
ヘマイト(γ−Fe2O3)、マグネタイト(Fe3O4)、
ベルトライド系化合物(FeOx1.33<X<1.5)、
針状メタル(α−Fe、合金鉄)などの磁性粉末
にすることができる。上記磁性粉末のうち、マグ
ヘマイト、マグネタイト、ベルトライド系化合物
などの磁性酸化鉄については、それらをコバルト
などの金属化合物で変成してコバルト含有磁性酸
化鉄とすることができる。 上記のα−FeOOH粉末の熱処理に際しては、
粒子の焼結防止及び生成物の磁気特性を向上させ
るため、通常P、Si、Ti、Al、Mg、Ca、B、
Znなどの化合物が耐熱剤として使用される。 〔実施例〕 以下本発明を実施例をもつて説明する。 (1) 核晶の生成反応 空気吹き込み管と撹拌器を備えた反応容器に
1.50モル/のFeSO4水溶液20を入れ、40℃
或は60℃に昇温し、この温度を維持しながら、
5モル/のNaOH水溶液2.14を撹拌下に加
え(沈殿Fe15g/)、この中へ10/分の速
度で空気を吹き込み、80〜100分間反応させて
α−FeOOHの核晶を得た。 (2) 核晶の熟成 上記核晶の生成反応で得られた懸濁液につい
て、液温及びPHをすみやかに所定の値に調整
し、所定の時間熟成した。PHの調整は、微量の
NaOH水溶液またはH2SO4水溶液を懸濁液に
添加することにより行ない、熟成中PHを設定値
の±0.2以内に保持させた。なお、熟成中撹拌
によつて液中に空気が巻き込まれるのをできる
だけ防ぐため、撹拌速度は低速にした。 上記熟成処理で得られたα−FeOOH核晶に
ついてBET法による比表面積(SSA)を測定
し、さらに下記の方法により粒度分布(σL/
L)を測定し、第1表〜第3表の結果を得た。 粒度分布(σL/)の測定方法 よく分散されたα−FeOOH核晶を試料と
し、電子顕微鏡により約500個の粒子の長軸粒
子径を読みとり、その算術平均軸長(μ)と
標準偏差σL(μ)を決め、下記の式に従つて粒
度分布(L分布)を求める。 L分布=σL/ このL分布の値が小さいほど粒度分布がシヤ
ープであり、この値でもつて粒度分布改善の指
標とした。
[Technical Field of the Invention] The present invention particularly relates to a method for producing acicular α-FeOOH for magnetic recording materials with improved particle size distribution. [Prior art and its problems] Maghemite (γ-Fe 2 O 3 ), magnetite (Fe 3 O 4 ), and bertholide compounds (FeOX, 1.33
<X<1.5), magnetic iron oxides modified with metal compounds such as cobalt, or acicular metals (α-
Magnetic powders such as Fe, ferroalloys) are usually produced by heat-treating hydrated iron oxide powders (α, β, γ-FeOOH) to dehydrate, reduce, or reduce and then oxidize. Magnetic powder produced by such a method often has uneven particle size distribution, which makes it difficult for the magnetic powder to be uniformly dispersed when, for example, kneading it with a resin binder to prepare a magnetic paint. It is considered extremely difficult to obtain a magnetic recording medium with a high filling degree and good magnetic properties. However, in conjunction with the recent increase in the density of magnetic recording media, there is a desire for magnetic powders with smaller particles, a sharper particle size distribution, and greater filling properties, and there is a strong demand for a solution to the above-mentioned problems. In order to solve the above problems, various manufacturing methods have been proposed for improving the particle size distribution of α-FeOOH, which is a precursor of the magnetic powder. For example, a method of adding phosphate ions, Zn ions, Sn ions, etc. during α-FeOOH nucleation crystal formation (Japanese Patent Publications No. 39-25546, No. 55-23217, No.
-155024), A method in which a certain amount of ammonium salt is pre-existing in an aqueous solution of ferrous salt, and then the solution is partially neutralized with ammonia to generate α-FeOOH nucleus crystals (Japanese Patent Publication No. 51-17518), α− under alkaline conditions
Examples include a method for producing FeOOH (Japanese Unexamined Patent Publication No. 53-127400). However, the α-FeOOH obtained by these methods is not necessarily satisfactory in terms of particle size distribution, particle shape, etc., and the magnetic properties of the magnetic powder produced using these methods are also insufficient, so further improvements are desired. ing. [Object of the Invention] An object of the present invention is to solve the problems of the prior art described above and to provide a method for producing α-FeOOH for magnetic recording materials, which has a sharp particle size distribution and excellent particle shape. [Summary of the Invention] As a result of various studies to achieve the above object, the present inventors partially neutralized and oxidized a ferrous salt aqueous solution while maintaining it at a specific temperature to generate α-FeOOH nucleus crystals. The resulting suspension is aged under specific conditions, and then the solution or the solution to which a ferrous salt aqueous solution is added is neutralized and oxidized to grow the nucleus crystals, resulting in a particle size distribution. It is possible to obtain α-FeOOH, which has a sharp shape, less branching, and a clear crystal shape, and the various magnetic properties of the magnetic powder produced using this material are also good, and all of the above problems can be solved. The present invention was completed based on this knowledge. That is, the present invention provides a suspension in which α-FeOOH nucleus crystals are produced by partially neutralizing and oxidizing an aqueous ferrous salt solution while maintaining the temperature at 40 to 70°C. The solution is aged for 30 minutes or more while being maintained at a pH of 2 to 6 at a temperature higher than the above temperature, and then the solution or a solution prepared by adding a ferrous salt aqueous solution is neutralized and oxidized to grow the nucleus crystals, and α −
This is a method for producing acicular α-FeOOH for magnetic recording materials, which is characterized by obtaining FeOOH. Ferrous salts used include ferrous salts of mineral acids such as ferrous sulfate, ferrous chloride, and ferrous nitrate, and ferrous carbonate.Industrially, ferrous sulfate is desirable. The alkali used for neutralizing ferrous salts includes hydroxides, oxides, or carbonates of alkali metals or alkaline earth metals, such as sodium hydroxide, potassium hydroxide, sodium oxide, and sodium carbonate. It will be done. Also, ammonia gas,
Ammonia aqueous solution, ammonium carbonate, etc. can also be used as the alkali. Industrially, sodium hydroxide, potassium hydroxide, and ammonia are preferred.
Examples of the oxidizing agent include air, oxygen, sodium peroxide, hydrogen peroxide, and sodium chlorate, but air is generally preferred. In the method of the present invention, first, an aqueous ferrous salt solution is partially neutralized and oxidized to remove part of the Fe content in the solution from α-
The concentration of the ferrous salt aqueous solution is usually 30 to 90 g, and the amount of alkali added is 5 to 50% of the Fe ion concentration in the mother liquor, which is 5 to 25 g in terms of FeOOH nucleation crystals. This is the amount necessary to precipitate /. If the concentration of the generated nuclei crystals is too low than the above range, the production efficiency will decrease, making it unsuitable for industrial (economic) implementation, while if it is too high, the viscosity of the nucleic crystal reaction solution will increase, which will prevent a uniform oxidation reaction. The particle size distribution is no longer sharp, which in turn leads to a decrease in the magnetic properties of the magnetic powder derived therefrom. The reaction temperature in this nucleation stage is usually 30-80℃
The temperature is preferably 40 to 70°C. If this temperature is too lower than the above range, the reaction time will be long and the particle size distribution will not be sharp. On the other hand, if it is too high, granular magnetite tends to be generated, which is not desirable as a nucleus crystal. It is best to complete this production reaction in as short a time as possible in order to sharpen the particle size distribution of the nucleus crystals, but it is preferably adjusted to about 20 to 180 minutes, for example.
The obtained nucleus crystals preferably have a BET specific surface area of about 40 to 140 m 2 /g. The liquid after the above-mentioned nucleation reaction is α-
It is an aqueous solution of ferrous salt in which FeOOH nucleus crystals are suspended,
In the method of the present invention, this liquid is then subjected to aging treatment. The ripening method is to ripen the suspension as it is under predetermined conditions, or to filter the suspension and disperse the resulting nucleic crystals in water or fresh mother liquor and then to ripen the suspension under predetermined conditions. There is a method of ripening, but the effect of ripening can be obtained even if you use it. However, from an industrial point of view, it is preferable to subject the liquid after the nucleation reaction to an aging treatment as it is. The ripening temperature is 50°C or higher and higher than the nucleation temperature, preferably 60°C or higher and higher than the nucleation temperature. If this temperature is less than 50℃, the dissolution precipitation reaction of the nucleus crystals will be suppressed, and it will be difficult to produce particles with a sharp particle size distribution and less branching, which will require a longer ripening time, which is industrially disadvantageous. Become. The higher this temperature is, the more effective it is in improving particle size distribution and particle shape, and it is also possible to shorten the ripening time. Therefore, the effect can be obtained even by aging at 100℃ or higher using an autoclave, but considering the ease of industrial implementation and manufacturing cost, it is usually done at 50 to 95℃ under normal pressure.
A range of is desirable. Regarding aging time, at least
30 minutes is necessary, and although there is no particular upper limit, 10 hours or less is sufficient from an industrial perspective. The pH during ripening is usually between 2 and 6, preferably
kept between 2.5 and 5.5. If this PH is too lower than the above range, the nucleus crystals tend to aggregate, resulting in formation of aggregates or burr-like particles, which is not preferable. On the other hand, if the temperature is too high, the magnetite formation becomes stable, and
This is undesirable because magnetite is generated from the coexisting iron hydroxide and green rust, and fine nuclear crystals are transferred to magnetite. In addition, the pH at the time of ripening
It is important to keep the fluctuation range as small as possible to obtain α that has a sharp particle size distribution and excellent particle shape.
-Preferable in obtaining FeOOH. If air is drawn into the suspension due to stirring during ripening,
As the oxidation reaction progresses, the pH decreases, so in order to prevent air from entering as much as possible, it is recommended to slow down the stirring speed or replace the air in the reaction vessel with N2 gas to keep the pH constant. From good. The α-FeOOH nucleus crystals subjected to the above-mentioned aging treatment are
In order to obtain α-FeOOH with the desired particle size,
Usually, it is subsequently subjected to a nucleation crystal growth reaction. This growth reaction is carried out by oxidizing the aged suspension or a solution obtained by adding an aqueous ferrous salt solution by adding an oxidizing agent such as air while adding an alkali. . The reaction temperature is usually 50°C or higher, preferably the same as or higher than the ripening temperature. If this temperature is less than 50°C, the growth rates of α-FeOOH in the three crystal axis directions become different, causing disorder in the crystal, which is not good in terms of particle size distribution and particle shape. The growth ratio is set to be 1 to 5, preferably 1.5 to 3 in terms of weight ratio to the nucleus crystals. If this magnification is too high than the above range, the width of the particle size distribution will become large and the particles will become more branched. In this step, it is preferable that the BET specific surface area of the generated α-FeOOH is, for example, 25 to 100 m 2 /g. α-
After normal filtration, water washing, and drying, FeOOH is
- Obtained as FeOOH powder. This α-
FeOOH powder is dehydrated by heat treatment in the usual way.
By reduction or oxidation after reduction, maghemite (γ-Fe 2 O 3 ), magnetite (Fe 3 O 4 ),
Bertolide compound (FeOx1.33<X<1.5),
It can be made into magnetic powder such as acicular metal (α-Fe, iron alloy). Among the above magnetic powders, magnetic iron oxides such as maghemite, magnetite, and bertholide compounds can be modified with a metal compound such as cobalt to form a cobalt-containing magnetic iron oxide. During the heat treatment of the above α-FeOOH powder,
In order to prevent particle sintering and improve the magnetic properties of the product, P, Si, Ti, Al, Mg, Ca, B,
Compounds such as Zn are used as heat-resistant agents. [Example] The present invention will be described below with reference to Examples. (1) Nucleic crystal formation reaction In a reaction vessel equipped with an air blowing tube and a stirrer.
Add 1.50 mol/FeSO 4 aqueous solution 20 and heat at 40℃.
Alternatively, raise the temperature to 60℃ and maintain this temperature.
2.14 mol/ml of NaOH aqueous solution was added under stirring (precipitated Fe: 15 g/min), air was blown into the mixture at a rate of 10/min, and the mixture was reacted for 80 to 100 minutes to obtain α-FeOOH nucleus crystals. (2) Ripening of Nucleic Crystals Regarding the suspension obtained in the above-mentioned nuclear crystal production reaction, the liquid temperature and pH were promptly adjusted to predetermined values, and the suspension was aged for a predetermined time. Adjustment of PH is done with a trace amount of
This was done by adding an aqueous NaOH solution or an aqueous H 2 SO 4 solution to the suspension to maintain the PH within ±0.2 of the set value during aging. Note that the stirring speed was kept low in order to prevent as much as possible air from being drawn into the liquid by stirring during ripening. The specific surface area (SSA) of the α-FeOOH nuclei obtained in the above ripening process was measured by the BET method, and the particle size distribution (σL/
L) was measured and the results shown in Tables 1 to 3 were obtained. Method for measuring particle size distribution (σL/) Using a well-dispersed α-FeOOH nucleus crystal as a sample, read the major axis particle diameter of about 500 particles using an electron microscope, and calculate the arithmetic mean axial length (μ) and standard deviation σL. (μ) and obtain the particle size distribution (L distribution) according to the following formula. L distribution = σL/ The smaller the value of this L distribution, the sharper the particle size distribution, and this value was also used as an index of particle size distribution improvement.

【表】【table】

【表】【table】

【表】【table】

【表】 (3) 核晶の成長分布 前記熟成処理終了後の懸濁液を所定の温度に
調整し、およそ10/分の速度で空気を吹き込
みながら、5モル/のNaOH水溶液を反応
液のPHを3.5〜5.5に保つように徐々に加えて、
核晶が所定の倍率(重量基準)に成長するまで
反応させた。 得られたα−FeOOHについて、前述の場合
と同様にして算術平均軸長(μ)、標準偏差
σL(μ)、粒度分布(σL/)及び比表面積
(SSA)を求め第4表に表示した。 前記核晶成長反応で得られた各々のサンプルに
ついて、濾過、水洗後オルトリン酸をα−
FeOOHに対して0.2重量%(P換算量)被着した
後、通常の方法により脱水(空気中650℃3時
間)、還元(水素気流中400℃3時間)及び再酸化
(空気中300℃1時間)を行ないγ−Fe2O3を得
た。各々のγ−Fe2O3について、下記の配合割合
に従つて配合物を調製し、ボールミルで混練して
磁性塗料を製造した。 (1) γ−Fe2O3粉末 100重量部 (2) 大豆レシチン 1.6 〃 (3) 界面活性剤 4 〃 (4) 酢ビ−塩ビ共重合樹旨 10.5 〃 (5) ジオクチルフタレート 4 〃 (6) メチルエチルケトン 84 〃 (7) トルエン 93 〃 次いで、各々の磁性塗料をポリエステルフイル
ムに通常の方法により塗布、配向した後乾燥し
て、約7μ厚の磁性塗膜を有する磁気記録体を作
成した。これら磁気記録体について、通常の方法
により保磁力(Hc)、磁束密度(Br)、角形比
(Br/Bm)、配向性(OR)、反転磁界分布
(SFD)、300Hz低域出力(EL)及び転写(PT)
を測定し第4表に表示した。
[Table] (3) Nucleic crystal growth distribution The suspension after the aging process was adjusted to a predetermined temperature, and 5 mol/min of NaOH aqueous solution was added to the reaction solution while blowing air at a rate of approximately 10/min. Add gradually to keep the pH between 3.5 and 5.5.
The reaction was allowed to occur until the nucleus crystals grew to a predetermined ratio (based on weight). For the obtained α-FeOOH, the arithmetic mean axial length (μ), standard deviation σL (μ), particle size distribution (σL/), and specific surface area (SSA) were determined in the same manner as in the previous case and are shown in Table 4. . For each sample obtained in the above nucleic crystal growth reaction, after filtration and water washing, orthophosphoric acid was added to α-
After depositing 0.2% by weight (P equivalent amount) on FeOOH, dehydration (in air at 650℃ for 3 hours), reduction (in a hydrogen stream for 3 hours at 400℃), and reoxidation (in air at 300℃ for 1 hour) time) to obtain γ-Fe 2 O 3 . A blend of each γ-Fe 2 O 3 was prepared according to the blending ratio shown below, and the mixture was kneaded in a ball mill to produce a magnetic paint. (1) γ-Fe 2 O 3 powder 100 parts by weight (2) Soybean lecithin 1.6 〃 (3) Surfactant 4 〃 (4) Vinyl acetate-PVC copolymer resin 10.5 〃 (5) Dioctyl phthalate 4 〃 (6 ) Methyl ethyl ketone 84 〃 (7) Toluene 93 〃 Next, each magnetic coating material was applied to a polyester film by a conventional method, oriented and dried to produce a magnetic recording medium having a magnetic coating film about 7μ thick. For these magnetic recording bodies, coercive force (Hc), magnetic flux density (Br), squareness ratio (Br/Bm), orientation (OR), switching field distribution (SFD), 300Hz low frequency output (EL) and transcription (PT)
were measured and shown in Table 4.

【表】【table】

【表】【table】

〔発明の効果〕〔Effect of the invention〕

本発明は以上のように構成したことにより次の
ような種々の優れた効果を収めるものである。 すなわち この熟成処理により、α−FeOOH核晶の粒
度分布がシヤープになり、結晶の形状も明確に
なる。 この熟成処理を受けたα−FeOOH核晶を所
定の条件で成長させると、枝分れ粒子や微細粒
子の発生が少なくなり、粒度分布がシヤープで
粒子形状性が優れたα−FeOOHを得ることが
できる。 このα−FeOOHを脱水、還元または還元し
た後酸化することによつて得られるγ−
Fe2O3、Fe3O4、ベルトライド系化合物、それ
らをコバルト等の金属化合物で変成した磁性酸
化鉄、または針状メタルなどの磁性粉末は粒度
分布、粒子形状性が良好である。この磁性粉末
を用いて磁性塗料を調製すると、分散性が良好
で、塗料樹脂との混合分散時間の短縮、磁性塗
膜の磁性体含有比率の向上が可能となる。 このα−FeOOHから誘導される磁性粉末は
充填性が良好で磁束密度(Br)が高く、角形
比(Br/Bm)、配向性(OR)の向上がみら
れ、更に保磁力(Hc)、反転磁界分布(SFD)、
低域出力(EL)、転写(PT)についても改善
がみられる。
By virtue of the above-described structure, the present invention achieves the following various excellent effects. That is, this aging treatment sharpens the particle size distribution of α-FeOOH nucleus crystals and makes the shape of the crystals clear. When the α-FeOOH nucleus crystals subjected to this aging treatment are grown under specified conditions, the generation of branched particles and fine particles is reduced, and α-FeOOH with a sharp particle size distribution and excellent particle shape can be obtained. I can do it. γ- obtained by dehydrating, reducing or reducing this α-FeOOH and then oxidizing it
Magnetic powders such as Fe 2 O 3 , Fe 3 O 4 , bertholide compounds, magnetic iron oxides modified with metal compounds such as cobalt, or acicular metals have good particle size distribution and particle shape. When a magnetic paint is prepared using this magnetic powder, it has good dispersibility, and it is possible to shorten the mixing and dispersion time with the paint resin and improve the magnetic substance content ratio of the magnetic paint film. The magnetic powder derived from this α-FeOOH has good filling properties, high magnetic flux density (Br), improved squareness ratio (Br/Bm), and improved orientation (OR), as well as coercive force (Hc), Switching field distribution (SFD),
Improvements can also be seen in low frequency output (EL) and transcription (PT).

Claims (1)

【特許請求の範囲】[Claims] 1 第1鉄塩水溶液を40〜70℃の温度に維持しな
がら部分中和、酸化してα−FeOOH核晶を生成
させた懸濁液を50℃以上かつ該核晶生成温度より
高い温度でPH2〜6に保持しながら30分以上熟成
し、次いで該液或いは該液に第1鉄塩水溶液を加
えた液を中和、酸化して該核晶を成長させα−
FeOOHを得ることを特徴とする、磁気記録材料
用針状α−FeOOHの製造方法。
1 While maintaining a ferrous salt aqueous solution at a temperature of 40 to 70°C, partially neutralize and oxidize the suspension to generate α-FeOOH nucleus crystals at a temperature of 50°C or higher and higher than the nucleation temperature. Aging is carried out for 30 minutes or more while maintaining the pH at 2 to 6, and then the solution or a solution to which a ferrous salt aqueous solution is added is neutralized and oxidized to grow the nucleic crystals.
A method for producing acicular α-FeOOH for magnetic recording materials, characterized by obtaining FeOOH.
JP59262518A 1984-12-12 1984-12-12 Manufacture of acicular alpha-feooh for magnetic recording material Granted JPS61140110A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59262518A JPS61140110A (en) 1984-12-12 1984-12-12 Manufacture of acicular alpha-feooh for magnetic recording material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59262518A JPS61140110A (en) 1984-12-12 1984-12-12 Manufacture of acicular alpha-feooh for magnetic recording material

Publications (2)

Publication Number Publication Date
JPS61140110A JPS61140110A (en) 1986-06-27
JPH0415601B2 true JPH0415601B2 (en) 1992-03-18

Family

ID=17376915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59262518A Granted JPS61140110A (en) 1984-12-12 1984-12-12 Manufacture of acicular alpha-feooh for magnetic recording material

Country Status (1)

Country Link
JP (1) JPS61140110A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63134523A (en) * 1986-11-22 1988-06-07 Chisso Corp Production of needle-like iron alpha-oxyhydroxide particulate powder

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55167135A (en) * 1979-06-12 1980-12-26 Seitetsu Kagaku Co Ltd Manufacture of yellow iron oxide

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55167135A (en) * 1979-06-12 1980-12-26 Seitetsu Kagaku Co Ltd Manufacture of yellow iron oxide

Also Published As

Publication number Publication date
JPS61140110A (en) 1986-06-27

Similar Documents

Publication Publication Date Title
KR890003881B1 (en) Process for production of cobalt-and-ferrous iron comtaining ferromagnetic iron oxide
JP3750414B2 (en) Spindle-shaped goethite particle powder, spindle-shaped hematite particle powder, spindle-shaped metal magnetic particle powder containing iron as a main component, and production method thereof
JPS6135135B2 (en)
JPH0415601B2 (en)
JP2885253B2 (en) Method of producing spindle-shaped goethite particles
JP3144683B2 (en) Spindle-shaped iron-based metal magnetic particle powder
JPS6334608B2 (en)
JP2640817B2 (en) Spindle-shaped goethite particles and method for producing the same
JPS6411577B2 (en)
JP3087777B2 (en) Method for producing acicular goethite particle powder
JP3087778B2 (en) Method for producing acicular goethite particle powder
JP2925561B2 (en) Spindle-shaped magnetic iron oxide particles
JP3087780B2 (en) Method for producing acicular goethite particle powder
JPS639735B2 (en)
JP2965606B2 (en) Method for producing metal magnetic powder
JP3087808B2 (en) Manufacturing method of magnetic particle powder for magnetic recording
JP3092649B2 (en) Method for producing spindle-shaped metal magnetic particles containing iron as a main component
JP2001192211A (en) Method for manufacturing powdery particle of iron- based compound
JP3141907B2 (en) Method for producing spindle-shaped iron-based metal magnetic particle powder
JP3003777B2 (en) Method for producing spindle-shaped magnetic iron oxide particles
JP2743007B2 (en) Spindle-shaped magnetic iron oxide particles and method for producing the same
JPH1029819A (en) Spindle shaped goethite particle and its production
KR910009210B1 (en) Method for manufacturing lepidocrocite
JP2704544B2 (en) Manufacturing method of spindle-shaped magnetic iron oxide particles
JPH0518766B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term