JPS58151333A - Manufacture of needlelike iron oxide particle - Google Patents

Manufacture of needlelike iron oxide particle

Info

Publication number
JPS58151333A
JPS58151333A JP57031547A JP3154782A JPS58151333A JP S58151333 A JPS58151333 A JP S58151333A JP 57031547 A JP57031547 A JP 57031547A JP 3154782 A JP3154782 A JP 3154782A JP S58151333 A JPS58151333 A JP S58151333A
Authority
JP
Japan
Prior art keywords
particles
acicular
iron oxyhydroxide
crystals
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57031547A
Other languages
Japanese (ja)
Other versions
JPS61290B2 (en
Inventor
Norimichi Nagai
規道 永井
Masao Kiyama
木山 雅雄
Toshio Takada
高田 利夫
Nanao Horiishi
七生 堀石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toda Kogyo Corp
Original Assignee
Toda Kogyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toda Kogyo Corp filed Critical Toda Kogyo Corp
Priority to JP57031547A priority Critical patent/JPS58151333A/en
Publication of JPS58151333A publication Critical patent/JPS58151333A/en
Publication of JPS61290B2 publication Critical patent/JPS61290B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To manufacture needlelike iron oxide particles giving a magnetic recording medium having high output and high sensitivity and capable of increasing the recording density by adding sulfate to needlelike beta-iron oxyhydroxide particles and by calcining and particles by heating in air. CONSTITUTION:To needlelike beta-iron oxyhydroxide particles as a starting material is added 0.5-5.0wt% as SO4<2-> of sulfate basing on the amount of the particles, and the particles are calcined by heating at 300-500 deg.C in the air to form needlelike alpha-Fe2O3 particles holding the needlelike crystal form of the starting material. The alpha-Fe2O3 particles are reduced under heating in a reducing gas and further oxidized to obtain needlelike maghemite particles. Said alpha-Fe2O3 particles are optionally coated with a sintering inhibitor and reduced under heating in a reducing gas to obtain needlelike magnetite particles.

Description

【発明の詳細な説明】 本発明は、針状晶β−オキシ水酸化鉄粒子の針状晶を保
持継承した針状晶α−ハ^粒子粉末を得ること、及びこ
れを前駆体とする磁気記録用材料粉末である針状晶マグ
ネタイト粒子粉末及び針状晶マグヘマイト粒子粉末を得
ることを目的とする。
DETAILED DESCRIPTION OF THE INVENTION The present invention is directed to obtaining a powder of acicular α-ha^ particles that retains and inherits the acicular crystals of acicular β-iron oxyhydroxide particles, and to generate magnetic particles using this as a precursor. The purpose of the present invention is to obtain acicular magnetite particles and acicular maghemite particles, which are recording material powders.

詳しくは、出発原料である針状晶β−オキシ水水化化鉄
粒子該針状晶β−オキシ水酸化鉄粒子に対し30.2換
算で0.5〜5.0重量%の硫酸塩24ttl。
Specifically, 24 ttl of 0.5 to 5.0% by weight of sulfate (calculated as 30.2) based on the acicular β-iron oxyhydroxide particles which are the starting materials. .

た後空気中300〜500℃の温度範囲で加熱焼成する
ことにより、出発原料の針状晶を保持継承した針状晶α
−F〜へとすること、該針状晶a−Fe、O,粒子を還
元性ガス中で加熱還元して針状晶マグネタイト粒子とす
ること並びに前記針状晶α−F〜偽粒子を還元性ガス中
で加熱還元した後、更に酸化して針状晶マグヘマイト粒
子とすること、又は、必要により、前記針状晶α−?−
03粒子を焼結防止剤で被覆処理した後、還元性ガス中
で加熱還元して針状晶マグネタイト粒子とすること並び
に前記針状晶α−p〜へ粒子を焼結防止剤で被覆処理し
た後、還元性ガス中で加熱還元し、更に酸化して針状晶
マグヘマイト粒子とすることを特徴とする。
After that, by heating and firing in the air at a temperature range of 300 to 500°C, the needle crystals α that retain the needle crystals of the starting material are produced.
-F~, heating and reducing the acicular crystals a-Fe, O, particles in a reducing gas to obtain acicular magnetite particles, and reducing the acicular α-F~ pseudo particles. After being heated and reduced in a neutral gas, the acicular crystals α-? −
After coating the 03 particles with an anti-sintering agent, they were heated and reduced in a reducing gas to obtain acicular magnetite particles, and the particles were coated with an anti-sintering agent to form the acicular crystals α-p~. After that, it is characterized by being heated and reduced in a reducing gas and further oxidized to form acicular maghemite particles.

近年、磁気記録再生用機器の小型軽量化が進むにつれて
磁気テープ、磁気ディスク等の磁気記録媒体に対する高
性能化の必要性が益々生じてきている。すなわち、高密
度記811性、高出力特性、高感度特性、周波数特性の
向上が要求されている。
In recent years, as magnetic recording and reproducing equipment has become smaller and lighter, there has been an increasing need for higher performance magnetic recording media such as magnetic tapes and magnetic disks. That is, improvements in high-density recording properties, high output properties, high sensitivity properties, and frequency properties are required.

磁気記録媒体に対する上記のような要求を満足させる為
に適した磁性材料の特性は、磁気特性においては、高い
保磁力を有することであり、粉体特性においては、針状
晶を有し、且つ、粒度が均斉で双晶や樹枝状粒子が混在
していないことである0 即ち、高い保磁力を有する磁性粒子粉末を用いて磁気記
録媒体として塗布した場合、大きい残留磁束密度Brと
高い保磁力を有する為に高密度記録、高出力特性が得ら
れる。
The characteristics of a magnetic material suitable for satisfying the above requirements for magnetic recording media include having high coercive force in terms of magnetic properties, and having acicular crystals in terms of powder properties. , the particle size is uniform, and twins and dendritic particles are not mixed.0 In other words, when magnetic particle powder with high coercive force is used as a magnetic recording medium, it has a large residual magnetic flux density Br and a high coercive force. Because of this, high density recording and high output characteristics can be obtained.

また、磁気テープ、磁気ディスク等磁気記録媒体の出力
特性、感度特性は、残留磁束密度Brに依存し、残留磁
束密度Brは、磁性粒子粉末のビークル中での分散性、
塗膜中での配向性及び充填性に依存している。
In addition, the output characteristics and sensitivity characteristics of magnetic recording media such as magnetic tapes and magnetic disks depend on the residual magnetic flux density Br, and the residual magnetic flux density Br depends on the dispersibility of magnetic particles in the vehicle,
It depends on the orientation and filling properties in the coating film.

そして、ビークル中での分散性、塗膜中での配向性及び
充填性を向上させるためには、ビークル中に分散させる
磁性粒子粉末が針状晶であり、且つ、粒度が均斉で樹枝
状粒子が&fEしていないことが要求される。
In order to improve the dispersibility in the vehicle, the orientation and filling properties in the coating film, it is necessary that the magnetic particles dispersed in the vehicle have acicular crystals, uniform particle size, and dendritic particles. is required not to be &fE.

従来、磁気記録用材料として主に針状晶マグネタイト粒
子粉末1.又は針状晶マグヘマイト粒子粉末等が用いら
れている。
Conventionally, acicular magnetite particles have mainly been used as magnetic recording materials.1. Alternatively, acicular maghemite particle powder or the like is used.

これら針状晶磁性酸化鉄粒子粉末は、一般に、針状晶オ
キシ水酸化鉄粒子粉末を空気中で加熱焼成して針状晶a
−Fe203粒子とし、次いで、還元性ガス中で加熱還
元して針状晶マグネタイト粒子とし、更にこれを空気中
200〜600°Cで加熱酸化して針状晶マグヘマイト
粒子とすることにより得られている。針状晶磁性酸化鉄
粒子粉末の保磁力は、形状異方性に大きく依存するもの
であり、針状晶磁性酸化鉄粒子粉末の針状晶は、最も重
要な特性の一つである。
These acicular magnetic iron oxide particles are generally produced by heating and baking acicular iron oxyhydroxide particles in air to produce acicular magnetic iron oxide particles.
- Obtained by heating and reducing Fe203 particles in a reducing gas to obtain acicular magnetite particles, which are then heated and oxidized in air at 200 to 600°C to obtain acicular maghemite particles. There is. The coercive force of the acicular crystal magnetic iron oxide particles largely depends on the shape anisotropy, and the acicular structure of the acicular crystal magnetic iron oxide particles is one of the most important properties.

上述したように、針状晶を有し、且つ、粒度が均斉で双
晶や樹枝状粒子が混在していない針状晶磁性酸化鉄粒子
粉末は、現在、最も要求されているところであり、この
ような特性を備えた針状晶磁性酸化鉄粒子粉末を得るた
めには、先ず、出発原料であるオキシ水酸化鉄粒子が針
状晶を有し、且つ、粒度が均斉で双晶や樹枝状粒子が混
在していないことが必要であり、次に、いかにして粒子
形態、特に針状晶を保持継承させながら、加熱焼成、加
熱還元及び加熱酸化して針状晶磁性酸化鉄粒子粉末とす
るかが大きな課題となってくる。
As mentioned above, acicular magnetic iron oxide particles with acicular crystals, uniform particle size, and no twin or dendritic particles are currently in greatest demand. In order to obtain acicular crystal magnetic iron oxide particles having such characteristics, first, iron oxyhydroxide particles as a starting material must have acicular crystals, have uniform particle size, and have no twin or dendritic structure. It is necessary that the particles are not mixed together, and then how to maintain and inherit the particle morphology, especially the acicular crystals, and conduct heat sintering, heat reduction, and heat oxidation to form acicular crystal magnetic iron oxide particle powder. The big question is whether to do so.

先ず、出発原料としてのオキシ水酸化鉄粒子について述
べる。
First, iron oxyhydroxide particles as a starting material will be described.

オキシ水酸化鉄としては、結晶構造の異なるα−オキシ
水酸化鉄、β−オキシ水酸化鉄、及びr−オキシ水酸化
鉄等が知られている。
As iron oxyhydroxide, α-iron oxyhydroxide, β-iron oxyhydroxide, r-iron oxyhydroxide, etc., which have different crystal structures, are known.

β−オキシ水酸化鉄粒子粉末は、α−オキシ水酸化鉄粒
子粉末及びl−オキシ水酸化鉄粒子粉末と比べて、粒度
が均斉で双晶や樹枝状粒子が混在していない針状形態を
呈した粒子が得やすいという特徴を有しているので、磁
気記録用磁性酸化鉄粒子の出発原料として非常に好まし
いものである。
Compared to α-iron oxyhydroxide particles and l-iron oxyhydroxide particles, β-iron oxyhydroxide particles have a uniform particle size and an acicular morphology without twins or dendritic particles. Since it has the characteristic that it is easy to obtain particles exhibiting the same characteristics, it is very preferable as a starting material for magnetic iron oxide particles for magnetic recording.

次に、出発原料である針状晶β−オキシ水水化化鉄粒子
粒子形態、特に、針状晶を保持継承させながら加熱焼成
入び加熱還元ボφズ加熱酸化して針状晶磁性酸化鉄粒子
とするかが問題となる。
Next, the particle morphology of the acicular crystal β-oxyhydride iron particles, which is the starting material, is heated and oxidized into acicular crystal magnetic oxides by heating and calcination while retaining and inheriting the acicular crystals. The question is whether to use iron particles.

加熱焼成工程に関して言えば、粒度が均斉で双晶や樹枝
状粒子が混在していない針状晶β−オキシ水酸化鉄粒子
は、500℃以上で加熱焼成してα−Fe2os粒子と
する際には、針状晶がくずれ塊状のである。
Regarding the heating and sintering process, acicular β-iron oxyhydroxide particles with uniform particle size and no twin or dendritic particles are heated and sintered at 500°C or higher to form α-Fe2os particles. The needle-like crystals are broken down and are in the form of a lump.

この事実は、特公昭47−39477号公報の「・−面
加熱により針状がくずれ大きな塊状のα−Fe2osが
生じるときに必ず急激な気体の発生があり分析の結果塩
化物の一種であることを知った。・曲−Jという記載か
らも明らかである。
This fact is based on the article in Japanese Patent Publication No. 47-39477 that states, ``When the acicular shape collapses due to surface heating and large lumps of α-Fe2os are produced, there is always a sudden generation of gas, and analysis shows that it is a type of chloride. I learned that.・It is clear from the description that song-J.

針状晶β−オキシ水酸化鉄粒子粉末にC/−根が含有さ
れる原因について以下に説明する。
The reason why the acicular β-iron oxyhydroxide particles contain C/- roots will be explained below.

従来、針状晶β−オキシ水酸化鉄粒子の製造法としては
、大別して二通りの方法が知られている。
Conventionally, two methods are known for producing acicular β-iron oxyhydroxide particles.

その一つは、塩化第二鉄水溶液を加水分解する方法であ
り、他の一つは、塩化第一鉄水溶液に酸素含有ガスを通
気して酸化反応を行うものである。
One of them is a method of hydrolyzing a ferric chloride aqueous solution, and the other is a method of performing an oxidation reaction by passing an oxygen-containing gas through the ferrous chloride aqueous solution.

上記いずれの方法による場合にも、鉄原料として塩化鉄
水溶液を使用する為に、生成β−オキシ水酸化鉄粒子中
にat−根が多量に含有される。
In any of the above methods, since an aqueous iron chloride solution is used as the iron raw material, a large amount of at-roots is contained in the produced β-iron oxyhydroxide particles.

粒子中に含有されたOZ−根は洗浄を繰り返しても完全
には除去することが出来ず、針状晶β−オキシ水酸化鉄
粒子は2〜8重量メのCI−根を含有している。
The OZ-roots contained in the particles cannot be completely removed even after repeated washing, and the acicular β-iron oxyhydroxide particles contain 2 to 8 weight meters of CI-roots. .

従来、針状晶β−オキシ水酸化鉄粒子を加熱焼成してそ
の針状晶をくずすことなく針状晶α−Fr0g粒子を得
る方法としては、特公昭42−24662号公報及び前
出特公昭47−39477号公報に記載の方法がある。
Conventionally, methods for obtaining acicular α-Fr0g particles by heating and baking acicular β-iron oxyhydroxide particles without breaking the acicular crystals have been disclosed in Japanese Patent Publication No. 42-24662 and the aforementioned Japanese Patent Publication No. There is a method described in Japanese Patent No. 47-39477.

特公昭42−.24662号公報に記載されている方法
は、針状晶β−オキシ水酸化鉄粒子を205〜275℃
の低い温度で徐々に加熱焼成せしめてOZ−根の作用を
抑制しようとするものであり、針状晶β−オキシ水酸化
鉄粒子のα−Fe2os化に長時間を要するので工業的
、経済的ではない。
Special Public Service 1977-. In the method described in 24662, acicular β-iron oxyhydroxide particles are heated at 205 to 275°C.
This method attempts to suppress the action of OZ-roots by gradually heating and firing at a low temperature of isn't it.

特公昭47−Zf14ff7号公報に記載されている方
法は、針状晶β−オキシ水酸化鉄粒子粉末を水酸化ナト
リウム、酢酸アンモニウム、炭酸ナトリウム、アンモニ
ア水等の水溶液中で85〜100°Cで2〜10時間加
熱J[することにより塩化物を除去し、C/−根を含ま
ない針状晶β−オキシ水酸化鉄粒子を得るものである。
In the method described in Japanese Patent Publication No. 47-Zf14ff7, acicular β-iron oxyhydroxide particles are heated at 85 to 100°C in an aqueous solution of sodium hydroxide, ammonium acetate, sodium carbonate, aqueous ammonia, etc. By heating for 2 to 10 hours, chlorides are removed and acicular β-iron oxyhydroxide particles containing no C/- roots are obtained.

本発明者は、上述したところに鑑み、針状晶β−オキシ
水水化化鉄粒子粉末空気中で加熱焼成してα−F〜03
粒子粉末とする際に、粒子中に含有されるOZ−根によ
る作用を抑制して針状晶β−オキシ水酸化鉄粒子粉末の
粒子形態、特に針状晶を保■継承している針状晶α−I
I′%Oa粒子を得る方法について種々検討した結果、
本発明に到達したのである。
In view of the above, the present inventor has developed an α-F~03
When making powder particles, the action of OZ-roots contained in the particles is suppressed to maintain the particle morphology of the acicular crystal β-iron oxyhydroxide particles, especially the acicular crystals that have inherited the acicular crystal structure. Crystal α-I
As a result of various studies on how to obtain I'% Oa particles,
The present invention has been achieved.

即ち、本発明は、出発原料である針状晶β−オキシ水酸
化鉄粒子に該針状晶β−オキシ水酸化鉄粒子に対しSq
換算で05〜5.0重量%の硫酸塩と&、 舎tsた後
空気中500〜500℃の温度範囲で加熱焼成すること
により、出発原料の針状晶を保持継承した針状晶α−1
”e203粒子とすること、該針状晶α−Ff32−粒
子を還元性ガス中で加熱還元して針状晶マグネタイト粒
子とすること並びに前記針状晶α−1’%Os粒子を還
元性ガス中で加熱還元した後、更に酸化して針状晶マグ
ヘマイト粒子とすること、又は、必要により、前記針状
晶α−1lPe2as粒子を焼結防止剤で被覆処理した
後、還元性ガス中で加熱還元して針状晶マグネタイト粒
子とすること並びに前記針状晶α−Fへへ粒子を焼結防
止剤で被覆処理した倭、還元性ガス中で加熱還元し、更
に酸化して針状晶マグヘマイト粒子とすることを特徴と
するものである。
That is, the present invention provides Sq for the acicular β-iron oxyhydroxide particles as a starting material.
By heating and baking in the air at a temperature range of 500 to 500°C, the needle crystals α- 1
``e203 particles, the acicular α-Ff32- particles are heated and reduced in a reducing gas to obtain acicular magnetite particles, and the acicular α-1'%Os particles are reduced by heating in a reducing gas. After heating and reducing the particles in a reducing gas, the particles are further oxidized to form acicular maghemite particles, or if necessary, the acicular α-1lPe2as particles are coated with an anti-sintering agent and then heated in a reducing gas. The particles are reduced to acicular crystal magnetite particles, and the particles are coated with an anti-sintering agent to form the acicular crystal α-F, heated and reduced in a reducing gas, and further oxidized to form acicular crystal maghemite. It is characterized by being in the form of particles.

次に、本発明を完成するに至った技術的背景及び本発明
の構成について述べる。
Next, the technical background that led to the completion of the present invention and the configuration of the present invention will be described.

本発明者は、粒度が均斉で双晶や樹枝状粒子が混在して
いない針状晶β−オキシ水酸化鉄粒子を加熱焼成して(
Z−F l3203粒子とする際に粒子の針状晶がくず
れないようにする為には、加熱焼成に先立って予め、針
状晶β−オキシ水酸化鉄粒子に何らかの処理を施してお
くことが必要であると考え、その処理方法について種々
検討した結果、出発原料である針状晶β−オキシ水酸化
鉄粒子閏該針状晶β−オキシ水酸化鉄粒子に対しso4
顎算で0.5〜5.0重量%の硫酸塩ε会含セた後空気
中600〜500℃の温度範囲で加熱焼成した場合には
、粒度が均斉で双晶や樹枝状粒子が混在していない針状
晶β−オキシ水酸化鉄粒子の形態、特に針状晶を保持継
承している針状晶α−Fe、O,粒子を得ることができ
るという新規な知見を得た。
The present inventor has developed the method of heating and calcining acicular β-iron oxyhydroxide particles with uniform particle size and no twin or dendritic particles (
In order to prevent the acicular crystals of the particles from collapsing when forming Z-F l3203 particles, it is necessary to perform some kind of treatment on the acicular β-iron oxyhydroxide particles prior to heating and firing. We thought that it was necessary, and as a result of various studies on treatment methods, we found that the starting material, acicular β-iron oxyhydroxide particles, was
When calcined in air at a temperature range of 600 to 500°C after containing 0.5 to 5.0% by weight of sulfate epsilon, the particle size is uniform and twins and dendritic particles are mixed. We have obtained a new finding that it is possible to obtain acicular α-Fe, O, particles that retain and inherit the morphology of acicular crystal β-iron oxyhydroxide particles that do not have acicular crystals.

針状晶β−オキシ水酸化鉄粒子粉末tこ該針状晶オキシ
水酸化鉄粒子に対しSq換算で0.5〜5.0重量%の
硫酸塩衣#姦した後空気中300〜500°Cの温度範
囲で加熱焼成した場合には、針状晶がくずれることなく
針状晶β−オキシ水酸化鉄粒子の粒子形態、特に、針状
晶を保持継承した針状晶α−XPe、O,粒子が得られ
るという現象についての理論的解明は未だ明らかではな
いが、本発明者は、次のように考えている。
Acicular crystal β-iron oxyhydroxide particles powder t Sulfate coating of 0.5 to 5.0% by weight in terms of Sq to the needle crystal iron oxyhydroxide particles When calcined in a temperature range of Although the theoretical elucidation of the phenomenon in which particles are obtained is still unclear, the inventor of the present invention thinks as follows.

針状晶β−オキシ水酸化鉄粒子を加熱焼成してα−Fe
、Q、粒子とする過程を更に詳細に観察すると、先ず、
針状晶β−オキシ水酸化鉄粒子は加熱脱水されて針状晶
β−Fe203粒子となり、次いで該針状晶β−Fe、
O,粒子がα−Fe、03粒子に結晶変態する。
Acicular β-iron oxyhydroxide particles are heated and fired to form α-Fe.
, Q, when observing the process of forming particles in more detail, first,
The acicular β-iron oxyhydroxide particles are heated and dehydrated to become acicular β-Fe203 particles, and then the acicular β-Fe,
Crystal transformation of O, particles to α-Fe, 03 particles occurs.

この事実は、粉体粉末冶金協会昭和55年度春季大会講
演概要集160頁の[・・・・・・β−IFeO(OH
)粒子(β−オキシ水酸化鉄粒子)を加熱分解すると、
非常に微粒子ではあるが、互に三次元的に配向した状態
のβ−F%Os粒子となり、更にこれが熱分解により最
終物のα−Fe、、03に変化していくものと考えられ
る。」という記載から明らかである。
This fact is shown in [......β-IFeO(OH
) particles (β-iron oxyhydroxide particles) are thermally decomposed,
Although they are very fine particles, they become β-F%Os particles that are three-dimensionally oriented with each other, and it is thought that these particles are further transformed into the final product α-Fe, 03 by thermal decomposition. It is clear from the statement ``.

針状晶β−オキシ水酸化鉄粒子から針状晶β−Pe20
8への変化はトボタクティック反応である為形状の変化
はなく、従って、生成β−Pros粒子は、針状晶β−
オキシ水酸化鉄粒子の針状晶を保持継承したものである
が、引き続いて生起する針状晶β−ハ^粒子からα−F
e2%粒子への結晶変態の際にはat−根が作用して針
状晶がくずれ塊状の粒の液相を生じ、次いで該F e 
O13が加熱分解することにより塊状のa−IF〜へ粒
子が生成すると同時に分解生成したO/は針状晶β−F
〜へ粒子と反応して1eO13の液相を生じるというよ
うに、FeO/3の液相を介在して針状晶β−Fe、%
粒子の溶解とα−Fe)%粒子の析出が生起するいわゆ
る溶解析出過程を経ることに起因するものであろうと考
えられる。
Needle crystal β-Pe20 from needle crystal β-iron oxyhydroxide particles
Since the change to 8 is a tobotactic reaction, there is no change in shape, so the generated β-Pros particles are acicular β-Pros particles.
Although the needle-like crystals of iron oxyhydroxide particles are retained and inherited, α-F is formed from the subsequently generated needle-like β-ha^ particles.
During the crystal transformation to e2% particles, the at-root acts to break down the needle-like crystals and produce a liquid phase of lump-like particles, and then the Fe
When O13 is thermally decomposed, particles are generated into lumpy a-IF~, and at the same time, the decomposed O/ is acicular crystal β-F.
Acicular β-Fe,%
This is thought to be due to the so-called dissolution precipitation process in which dissolution of particles and precipitation of α-Fe)% particles occur.

そこで、本発明者は、針状晶β−オキシ水酸化鉄粒子の
粒子形態、特に、針状晶を保持継承した針状晶α−I’
%Qa粒子を得るためには、先ず、針状晶β−Fe20
3粒子を安定して存在させることが必要であり、次いで
、針状晶β−りへ粒子から針状晶α−ハ^粒子の結晶変
態に際してはF e O/、の液相を生成させないこと
が必要であると考え、そのような作用効果を有する物質
について検討を重ねた結果、硫酸塩が有効であるとの知
見を得た。
Therefore, the present inventor investigated the particle morphology of the acicular β-iron oxyhydroxide particles, in particular, the acicular crystals α-I' that retain and inherit the acicular crystals.
In order to obtain %Qa particles, first, acicular β-Fe20
It is necessary for the three particles to exist stably, and then, during the crystal transformation from the acicular β-ri particles to the acicular α-ha particles, a liquid phase of FeO/, must not be generated. As a result of repeated studies on substances that have such effects, we found that sulfates are effective.

即ち、針状晶β−オキシ水酸化鉄粒子に硫酸塩を含ませ
た後、空気中300〜500℃の温度範囲で加熱焼成し
た場合には、硫酸塩の存在により針状晶β−オキシ水酸
化鉄粒子から針状晶β−ハ八粉粒子安定して生成するこ
とができ、且つ、針状晶β−Pe208粒子から針状晶
へマタイト粒子への結晶変態に際してはF e O1B
の液相を生成しないので針状晶がくずれることなく、針
状晶β−オキシ水酸化鉄粒子の粒子形態を保持継承した
針状晶α−F〜へ粒子を得ることができるのであろうと
考えられる。
That is, when acicular β-oxyhydroxide particles are impregnated with sulfate and then heated and calcined in the air at a temperature range of 300 to 500°C, the acicular β-oxyhydroxide particles are dissolved due to the presence of the sulfate. Acicular β-Pe208 particles can be stably produced from iron oxide particles, and during crystal transformation from acicular β-Pe208 particles to acicular hematite particles, F e O1B
It is thought that since the liquid phase of the acicular crystals is not generated, the acicular crystals do not collapse, and particles can be obtained into acicular crystals α-F~ that retain the particle morphology of the acicular crystal β-iron oxyhydroxide particles. It will be done.

尚、300℃以上で加熱焼成する際にF e O/3が
液相を生成するという事実は、理化学辞典168〜16
9頁(岩波書店発行、1967年)の「・・・・・・F
e04・・・・・・融点300°C・・・・−・」とい
う記載から明らかである。
Furthermore, the fact that F e O/3 generates a liquid phase when heated and fired at 300°C or higher is explained in Physical and Chemistry Dictionary 168-16.
9 pages (Iwanami Shoten, 1967) “...F”
This is clear from the description "e04...melting point 300°C...".

いう低い温度で加熱焼成した為に、針状晶がくずれるこ
となく針状晶β−オキシ水酸化鉄粒子の針状晶を保持継
承した針状晶α−Fe、03粒子を得ることができたも
のと考えられる。
Because of the heating and firing at a low temperature, we were able to obtain acicular α-Fe, 03 particles that retained the acicular crystals of the acicular β-iron oxyhydroxide particles without causing the acicular crystals to collapse. considered to be a thing.

次に、本発明方法実施にあたっての諸条件について述べ
る。
Next, various conditions for implementing the method of the present invention will be described.

本発明において使用される硫酸塩としては、硫硫酸塩は
、固体状態又は、溶液状態のいずれの状態でも使用する
ことができるが、均一に混合する為には溶液状態で使用
することが好ましい。
The sulfate used in the present invention can be used in either a solid state or a solution state, but it is preferably used in a solution state in order to mix uniformly.

本発明における硫酸塩は、針状晶β−オキシ水酸化鉄粒
子に対し5O4−1換算で0.5〜5.0重量%で硫酸
塩が針状晶β−オキシ水酸化鉄粒子に対しso、−”換
算で0.5重量%以下の場合には、針状晶β−オキシ水
酸化鉄粒子粉末の粒子形態、特に針状晶を保持継承して
いる針状晶α−r〜偽粒子粉末を得るという効果は十分
ではない。
The sulfate in the present invention is 0.5 to 5.0% by weight based on 5O4-1 based on the acicular β-iron oxyhydroxide particles, and the sulfate is so , - If the amount is 0.5% by weight or less in terms of acicular crystal β-iron oxyhydroxide particles, the particle morphology of the acicular crystal β-iron oxyhydroxide particle powder, especially the acicular crystal α-r~pseudo particles that retain and inherit the acicular crystal. The effect of obtaining powder is not sufficient.

5.0重量−以上である場合も、針状晶β−オキシ水酸
化鉄粒子粉末の粒子形態、特に針状晶を保持継承してい
る針状晶α−Fe、O,粒子粉末を得ることができるが
、該針状晶α−Fe2%粒子粉末を加熱還元して得られ
た針状晶マグネタイト粒子粉末又は、更に加熱酸化して
得られた針状晶マグヘマイト粒子粉末は純度の低下によ
り、飽和磁化が大巾に減少し好ましくない。
Even when the weight is 5.0 weight or more, it is possible to obtain acicular α-Fe, O, particles that retain and inherit the particle morphology of the acicular β-iron oxyhydroxide particles, especially the acicular crystals. However, the acicular magnetite particles obtained by thermal reduction of the acicular α-Fe 2% particle powder or the acicular maghemite particles obtained by further thermal oxidation have a lower purity. The saturation magnetization is greatly reduced, which is not preferable.

本発明における硫酸塩との滉褒温度は、常温においても
十分所期の目的を達成することができる。
The temperature at which the sulfate is used in the present invention can sufficiently achieve the desired purpose even at room temperature.

加温した場合にも同様の効果が得られることは当然であ
る。
It goes without saying that similar effects can be obtained when heated.

本発明における加熱焼成温度は、300〜500°Cの
温度範囲である。
The heating and firing temperature in the present invention is in the temperature range of 300 to 500°C.

加熱焼成温度が300°C以下である場合には針状晶α
−Fe203粒子を得るのに長時間を要し、500°C
以上である場合には生成α−F〜へ粒子中の単一粒子の
成長が過度となり、粒子の変形と粒子及び粒子相互間の
焼結を引き起す。
If the heating and firing temperature is 300°C or less, needle crystal α
- It takes a long time to obtain Fe203 particles, and the temperature is 500°C.
If it is above, the growth of a single particle in the particles to the generated α-F~ becomes excessive, causing deformation of the particles and sintering of the particles and each other.

上述した通りの諸条件によれば、粒度が均斉で双晶や樹
枝状粒子が混在していない針状晶β−オキシ水酸化鉄粒
子の粒子形態、特に針状晶を保持継承した針状晶α−1
lI′F3203粒子粉末を得ることが出来、該針状晶
α−F%Qa粒子を還元性ガス中で加熱還元するか、若
しくは、更に酸化することにより又は、必要により前記
針状晶α−h^粒子を焼結防止剤で被覆処理した後、還
元性ガス中で加熱還元するか、若しくは、更に酸化する
ことにより粒度が均斉で双晶や樹枝状粒子が混在してい
ない針状晶マグネタイト粒子粉末又は針状晶マグヘマイ
ト粒子粉末を得ることができる。
According to the above-mentioned conditions, the particle morphology of acicular β-iron oxyhydroxide particles with uniform particle size and no twin or dendritic particles, especially acicular crystals that retain and inherit acicular crystals. α-1
lI'F3203 particles can be obtained by heating and reducing the acicular α-F%Qa particles in a reducing gas or further oxidizing them, or if necessary, the acicular α-h ^ After coating the particles with an anti-sintering agent, the particles are reduced by heating in a reducing gas or further oxidized to produce acicular magnetite particles with uniform particle size and no twin or dendritic particles. A powder or acicular maghemite particle powder can be obtained.

本件発明の加熱還元工程においては、所望にrす、針状
晶β−オキシ水酸化鉄粒子の粒子形態、特に針状晶を保
持継承しながら加熱焼成して得られた針状晶α−F82
03粒子をあらかじめ、焼結防止剤で被覆処理すること
ができ、この場合には針状晶が一層優れた針状晶マグネ
タイト粒子を得ることができ、該マグネタイト粒子を酸
化して得られたマグヘマイト粒子もまた針状晶が一層優
れたものである。
In the thermal reduction step of the present invention, the acicular crystal α-F82 obtained by heating and firing the acicular crystal β-iron oxyhydroxide particles while retaining and inheriting the particle morphology, especially the acicular crystal, as desired.
03 particles can be coated with an anti-sintering agent in advance, and in this case, acicular crystal magnetite particles with even better acicular crystals can be obtained, and maghemite obtained by oxidizing the magnetite particles The particles are also preferably acicular.

この事実について以下に説明する。This fact will be explained below.

粒度が均斉で双晶や樹枝状粒子が混在していない針状晶
β−オキシ水酸化鉄粒子をその粒子形態、特に針状晶を
保持継承しながら加熱焼成し、α−元温度が高くなると
、この針状晶マグネタイト粒子粉末の針状晶粒子の変形
と粒子および粒子相互間の焼結が著しくなり、得られた
針状晶マグネタイト粒子粉末の保磁力が極度に低下する
こととなる。
Acicular β-iron oxyhydroxide particles with uniform particle size and no twin or dendritic particles are heated and fired while retaining the particle morphology, especially the acicular crystals, and when the α-element temperature increases, The deformation of the acicular crystal particles of the acicular magnetite particles and the sintering between the particles and the particles become significant, and the coercive force of the obtained acicular magnetite particles becomes extremely low.

殊に、雰囲気が還元性である場合には、粒子の形状は加
熱温度の影響を受けやすく、粒子成長が著しく、単一粒
子が形骸粒子の大きさを越えて成長し、形骸粒子の外形
は漸次消え、粒子形状の変形と粒子および粒子相互間の
焼結を引き起こす。
In particular, when the atmosphere is reducing, the shape of the particles is easily affected by the heating temperature, and particle growth is significant, with single particles growing to a size exceeding the size of the shell particles, and the outer shape of the shell particles becoming smaller. It gradually disappears, causing deformation of the particle shape and sintering of the particles and each other.

その結果、保磁力が低下するのである。As a result, the coercive force decreases.

従って、粒度が均斉で双晶や樹枝状粒子が混在していな
い針状晶β−オキシ水酸化鉄粒子の粒子形態、特に針状
晶を保持継承しながら加熱焼成して得られた針状晶α−
P%On粒子の針状晶をこわさないようにする為、通常
、加熱還元は、300〜450℃で行なわれる。
Therefore, the particle morphology of acicular β-iron oxyhydroxide particles with uniform particle size and no twin or dendritic particles, especially the acicular crystals obtained by heating and firing while preserving and inheriting the acicular crystals. α−
In order not to destroy the needle-like crystals of the P%On particles, the thermal reduction is usually carried out at 300 to 450°C.

上述したように、還元性ガス中において粒子形状の変形
と粒子および粒子相互間の焼結が生起するのは、針状晶
β−オキシ水酸化鉄粒子を周知の通り、加熱焼成して得
られた針状晶α−IF8203粒子が、粒子成長が十分
ではなく、従って、粒子の結晶度合が小さいために加熱
還元工程において生成粒子の単一粒子の粒子成長が急激
であるため、単一粒子の均一な粒子成長が生起し難く、
従って、単一粒子の粒子成長が急激に生起した部分では
粒子および粒子相互間の焼結が生起し、粒子形状が崩れ
やすくなると考えられる。
As mentioned above, deformation of the particle shape and sintering between particles in a reducing gas occur when acicular β-iron oxyhydroxide particles are heated and calcined, as is well known. The acicular α-IF8203 particles do not grow sufficiently, and therefore, due to the small crystallinity of the particles, the growth of a single particle of the produced particles is rapid in the thermal reduction process. Uniform particle growth is difficult to occur,
Therefore, it is considered that in the portion where the grain growth of a single grain has rapidly occurred, sintering of grains and grains occurs, and the shape of grains tends to collapse.

従って、加熱還元工程において粒子形状の変形と粒子お
よび粒子相互間の焼結を防止するためには、加熱還元工
程に先立って、予め、粒度が均斉で双晶や樹枝状粒子が
混在していない針状晶α−Fe203粒子を焼結防止効
果を有する有機、無機化合物で被覆処理しておく方法が
ある。
Therefore, in order to prevent particle shape deformation and sintering between particles and particles in the heat-reduction process, it is necessary to make sure that the grain size is uniform and that twins and dendritic particles are not mixed together before the heat-reduction process. There is a method in which acicular α-Fe203 particles are coated with an organic or inorganic compound that has a sintering prevention effect.

尚、ここで焼結防止効果とは、加熱還元工程における生
成粒子中の単一粒子の急激な粒子成長を抑制する効果を
言い、このような作用効果を有する物質を以下、焼結防
止剤という。
Note that the sintering prevention effect here refers to the effect of suppressing the rapid particle growth of single particles in the particles produced during the heating reduction process, and substances that have this effect are hereinafter referred to as sintering inhibitors. .

焼結防止剤で被覆処理した粒度が均斉で双晶や樹枝状粒
子が混在していない針状晶α−F〜へ粒子は、周知の通
り一り50℃〜500’Cで加熱還元して粒度が均斉で
双晶や樹枝状粒子が混在していない針状晶マグネタイト
粒子粉末を得ることができる。
As is well known, the particles are heated and reduced at 50°C to 500'C to form acicular crystals α-F~, which is coated with an anti-sintering agent and has a uniform particle size and is free of twins and dendritic particles. Acicular magnetite particles with uniform particle size and no twin or dendritic particles can be obtained.

550℃以下である場合には還元反応の進行が遅く、長
時間を要する。
If the temperature is 550°C or lower, the reduction reaction progresses slowly and requires a long time.

また、500℃以上である場合には還元反応が急激に進
行して針状晶粒子の変形と、粒子および粒子相互間の焼
結を引き起こしてしまう0焼結防止効果を有する有機、
無機化合物としては周知のSl、11%、OrXMn、
Ou、Ni、P等の化合物、例えば、ケイ酸ナトリウム
、コロイダルシリカ、硫酸アルミニウム、アルミン酸ソ
ーダ、硫酸クロム、硫酸ニッケル、メタリン酸ソーダ等
の一種又は二種以上を使用することができる。
In addition, if the temperature is 500°C or higher, the reduction reaction will rapidly proceed, causing deformation of the acicular crystal particles and sintering of the particles and each other.
Inorganic compounds include well-known Sl, 11%, OrXMn,
One or more compounds such as Ou, Ni, and P, such as sodium silicate, colloidal silica, aluminum sulfate, sodium aluminate, chromium sulfate, nickel sulfate, and sodium metaphosphate, can be used.

焼結防止剤の被覆方法は、針状晶α−F〜へ粒子粉末を
焼結防止剤を含む水溶液中に添加、混合する方法でも効
果があるが、粒子表面に均一に被覆されることが好まし
く、焼結防止剤の水酸化物として沈着させることが好ま
しい。
A method for coating the sintering inhibitor by adding powder particles to the acicular crystals α-F and mixing them into an aqueous solution containing the sintering inhibitor is also effective, but it is difficult to coat the particle surface uniformly. Preferably, it is deposited as a hydroxide of the sintering inhibitor.

上述した様に、本発明方法により得られた針状晶マグネ
タイト粒子粉末又は針状晶マグヘマイト粒子粉末を用い
て磁気テープを製造した際には、ビークル中での分散性
、塗膜中での配向性及び充填性が極めて硬れている為、
現在、最も要求されている高出力、高感度であり、記録
の高密度化が可能な磁気記録媒体を得ることができる。
As mentioned above, when a magnetic tape is manufactured using the acicular magnetite particles or the acicular maghemite particles obtained by the method of the present invention, the dispersibility in the vehicle and the orientation in the coating film are improved. Because the properties and filling properties are extremely hard,
It is possible to obtain a magnetic recording medium that has high output, high sensitivity, and is capable of high recording density, which are currently most required.

次に、実施例並びに比較例により本発明を説明する。Next, the present invention will be explained with reference to Examples and Comparative Examples.

尚、実施例並びに比較例における粒子の長軸及び軸比は
、電子顕微鏡写真から測定した数値の平均値で示した。
The long axes and axial ratios of the particles in Examples and Comparative Examples are shown as average values of values measured from electron micrographs.

実施例 1 塩素18重量%を含有する長軸0.6μm1軸比(長軸
:短軸) 25 : 1の針状晶β−オキシ水酸化鉄粒
子粉末100C1を1モル/4の硫酸ナトリウム水溶液
40/に加えて30分間攪拌混合した後、p別、水洗、
乾燥した。
Example 1 Acicular β-iron oxyhydroxide particle powder 100C1 containing 18% by weight of chlorine and having a long axis of 0.6 μm and a monoaxial ratio (long axis: short axis) of 25:1 was mixed with 1 mol/4 sodium sulfate aqueous solution 40 / After stirring and mixing for 30 minutes, separate p, wash with water,
Dry.

得られた針状晶β−オキシ水酸化鉄粒子粉末は、16重
量%の塩素を含有しており、且つ、5O4−”換算でα
62重量%の硫酸ナトリウムがt3flでいた。
The obtained acicular β-iron oxyhydroxide particle powder contains 16% by weight of chlorine and α in terms of 5O4-”
There was 62% by weight of sodium sulfate in t3fl.

この針状晶β−オキシ水酸化鉄粒子粉末10009を空
気中450℃で加熱焼成してα−Fe10.粒子粉末を
得た。
This acicular β-iron oxyhydroxide particle powder 10009 was heated and calcined in air at 450°C to form α-Fe10. A particulate powder was obtained.

得られたα−F〜へ粒子は、図1に示す電子顕微鏡写真
(xsoooo)から明らかな通り長軸06μm1軸比
(長軸:短軸) 25 : 1で針状晶β−オキシ水酸
化鉄粒子の針状晶を保持継承したものであり、粒度が均
斉で双晶や樹枝状粒子が混在していないものであった。
As is clear from the electron micrograph (xsoooo) shown in FIG. 1, the obtained α-F~ particles are acicular β-iron oxyhydroxide with a long axis of 06 μm and a monoaxial ratio (long axis: short axis) of 25:1. It retained the acicular structure of the particles, had a uniform particle size, and did not contain twins or dendritic particles.

上記針状晶α−Frog粒子粉宋100gを64の一端
開放型レトルト容器中に投入し、駆動回転させなから4
ガスを毎分21の割合で通気し、還元温度650℃で加
熱還元し針状晶マグネタイト粒子粉末を得た。
100 g of the above needle-shaped α-Frog particle powder was put into a retort container with one end open in 64, and the retort container was rotated.
Gas was passed through the reactor at a rate of 21/min, and reduction was carried out by heating at a reduction temperature of 650° C. to obtain acicular magnetite particle powder.

得られた針状晶マグネタイト粒子粉末は、電子顕微鏡観
察の結果、長軸0.6μm1軸比(長軸:短軸) 25
 : 1であり粒度が均斉で双晶や樹枝状粒子が混在し
ていないものであった。
As a result of electron microscopic observation, the obtained acicular magnetite particles had a long axis of 0.6 μm and a uniaxial ratio (long axis: short axis) of 25
: 1, the particle size was uniform, and twins and dendritic particles were not mixed.

また、磁気特性は、保磁力が4200sであり、飽和磁
化σ8はB5.5 emu/、であった。
Further, regarding the magnetic properties, the coercive force was 4200 s, and the saturation magnetization σ8 was B5.5 emu/.

次いで、上記針状晶マグネタイト粒子粉末909を空気
中300℃で60分間加熱酸化して針状晶マグヘマイト
粒子粉末を得た。
Next, the acicular magnetite particles 909 were heated and oxidized in air at 300° C. for 60 minutes to obtain acicular maghemite particles.

得られた針状晶マグヘマイト粒子粉末は、電子顕微鏡観
察の結果、長軸0.6μ胃、軸比(長軸:短軸) 25
 : 1であり粒度が均斉で双晶や樹枝状粒子が混在し
ていないものであった。
As a result of electron microscopic observation, the obtained acicular maghemite particles had a long axis of 0.6μ and an axial ratio (long axis: short axis) of 25.
: 1, the particle size was uniform, and twins and dendritic particles were not mixed.

また、磁気特性は、保磁力5900eであり、飽和磁化
σBは76.50m”/9であった。
Further, regarding the magnetic properties, the coercive force was 5900e, and the saturation magnetization σB was 76.50 m''/9.

実施例 2〜8 出発原料として実施例1と同一の針状晶β−オキシ水酸
化鉄粒子粉末を用い、且つ、硫酸塩の種類、量、加熱焼
成温度及び加熱還元温度を種々変化させた以外は実施例
1と同様にして針状晶α−F〜へ粒子粉末、針状晶マグ
ネタイト粒子粉末及び針状晶マグヘマイト粒子粉末を得
た。
Examples 2 to 8 The same acicular β-iron oxyhydroxide particles as in Example 1 were used as the starting material, except that the type and amount of sulfate, heating calcination temperature, and heating reduction temperature were varied. In the same manner as in Example 1, acicular crystal α-F~ particle powder, acicular crystal magnetite particle powder, and acicular crystal maghemite particle powder were obtained.

得られた針状晶α−F〜へ粒子粉末、針状晶マグネタイ
ト粒子粉末及び針状晶マグヘタイト粒子粉末の主要製造
条件及び緒特性を表1に示す。
Table 1 shows the main manufacturing conditions and properties of the obtained acicular crystal α-F~ particle powder, acicular crystal magnetite particle powder, and acicular crystal maghetite particle powder.

イト粒子粉末は電子顕微鏡観察の結果、いずれも長軸(
1,(S ttm 、軸比(長軸:短軸) 25 : 
1で針状晶β−オキシ水酸化鉄粒子の針状晶を保持継承
したものであり、粒度が均斉で双晶や樹枝状粒子が混在
していないものであった。
As a result of electron microscopy observation, the long axis (
1, (S ttm, axial ratio (major axis: short axis) 25:
The acicular crystal β-iron oxyhydroxide particles of No. 1 were retained and inherited, the particle size was uniform, and twins and dendritic particles were not mixed.

実施例 9 液を添加して懸濁液のpH17,5に調整した。Example 9 The pH of the suspension was adjusted to 17.5.

次いで、上記懸濁液にケイ酸す) IJウム(3号水ガ
ラス) 1.4 q (針状晶α−F〜へ粒子粉末に対
し5iQ2として0.4重it%に相当する。)を添加
し60分間攪拌した後、懸濁液のpH値が45となるよ
うニ10%の硫酸を添加した後、プレスフィルターによ
り針状晶α−F〜へ粒子をp別、乾燥してsi化合物で
被覆された針状晶α−F〜へ粒子粉末を得た。
Next, 1.4 q of IJum (No. 3 water glass) (corresponding to 0.4 weight % as 5iQ2 with respect to the acicular crystal α-F~ particle powder) was added to the above suspension. After adding and stirring for 60 minutes, 10% sulfuric acid was added so that the pH value of the suspension became 45, and the particles were separated into acicular crystals α-F through a press filter and dried to form an Si compound. A powder of particles coated with acicular crystals α-F~ was obtained.

上記針状晶a−Fe2Q、粒子粉末を用いて加熱還元温
度を450℃とした以外は実施例1と同様にして針状晶
マグネタイト粒子粉末及び針状晶マグヘマイト粒子粉末
を得た。
Acicular crystal magnetite particle powder and acicular crystal maghemite particle powder were obtained in the same manner as in Example 1 except that the above-mentioned acicular crystal a-Fe2Q and particle powder were used and the heating reduction temperature was set to 450°C.

得られた針状晶マグネタイト粒子粉末及び針状晶マグヘ
マイト粒子粉末の緒特性を表1に示す。
Table 1 shows the properties of the obtained acicular magnetite particles and acicular maghemite particles.

針状晶マグネタイト粒子粉末及び針状晶マグヘマイト粒
子粉末は、電子顕微鏡観察の結果、いずれも、長軸0.
6μm1軸比(長軸:短軸) 25 : 1であった0 実施例 10〜14 用いた針状晶α−Fe203粒子の種類、焼結防止剤の
種類、麓を種々変化させた以外は実施例9と同様にして
針状晶マグネタイト粒子粉末及び針状晶マグヘマイト粒
子粉末を得た。
As a result of electron microscopic observation, both the acicular crystal magnetite particle powder and the acicular crystal maghemite particle powder have a long axis of 0.
6 μm uniaxial ratio (major axis: minor axis) was 25:1.0 Examples 10 to 14 Implemented except that the type of acicular α-Fe203 particles used, the type of sintering inhibitor, and the base were variously changed. Acicular magnetite particles and acicular maghemite particles were obtained in the same manner as in Example 9.

得られた針状晶マグネタイト粒子粉末及び針状晶マグヘ
マイト粒子粉末の緒特性を表1に示す。
Table 1 shows the properties of the obtained acicular magnetite particles and acicular maghemite particles.

実施例10〜14で得られた針状晶マグネタイト粒子粉
末及び針状晶マグヘマイト粒子粉末は、電子顕微鏡観察
の結果、いずれも長軸0.6μm1軸比(長軸:短軸)
 25 : 1程度であった。
As a result of electron microscopic observation, the acicular magnetite particles and the acicular maghemite particles obtained in Examples 10 to 14 both have a long axis of 0.6 μm and a uniaxial ratio (long axis: short axis).
The ratio was about 25:1.

比較例 1 硫酸ナトリウムτJ[しなかった以外は、実施例1と同
様にしてα−F〜08粒子粉末を得た。
Comparative Example 1 α-F~08 particle powder was obtained in the same manner as in Example 1 except that sodium sulfate τJ [was not added.

得られたα−I’e2Qa粒子粉末は図2に示す電子顕
微鏡写真(X30000)から明らかな通り、粒子形状
がくずれ、塊状を呈したものであった。
As is clear from the electron micrograph (X30000) shown in FIG. 2, the obtained α-I'e2Qa particle powder had a distorted particle shape and had a lumpy shape.

【図面の簡単な説明】[Brief explanation of the drawing]

図1及び図2は、いずれも電、子顕微鏡写真(X500
00)であり、図1は実施例1で得られた針状晶tL゛
−Fern 5・粒子粉末であり、図2は、比較例1で
得られた塊状のd 4−Fe、θ吉粒子粉末である。 特許出願人 戸田工業株式会社
Figures 1 and 2 are electron and electron micrographs (X500
00), and FIG. 1 shows the acicular crystal tL'-Fern 5 particles obtained in Example 1, and FIG. It is a powder. Patent applicant: Toda Kogyo Co., Ltd.

Claims (1)

【特許請求の範囲】 1)出発原料である針状晶β−オキシ水酸化鉄粒子Q該
針状晶β−オキシ水酸化鉄粒子に対しs o;’換算で
0.5〜5.0重量%の硫酸塩を含金tた後空気中30
0〜500℃の温度範囲で加熱焼成することにより、出
発原料の針状晶を保持継承した針状晶α−Fe20B粒
子とすることを特徴とする針状晶酸化鉄粒子粉末の製造
法。 2)出発原料である針状晶β−オキシ水酸化鉄粒子に該
針状晶β−オキシ水酸化鉄粒子に対しsob”換算でC
L5〜50重量%の硫酸塩と盈よした後空気中300〜
500℃の温度範囲で加熱焼成することにより、出発原
料の針状晶を保持継承した針状晶α−F〜へ粒子とし、
次いで、該針状晶α−F%Qa粒子を還元性ガス中で加
熱還元して針状晶マグネタイト粒子とするか、または、
更に酸化して針状晶マグヘマイト粒子とすることを特徴
とする針状晶酸化鉄粒子粉末の製造法。 3)出発原料である針状晶β−オキシ水酸化鉄粒子に該
針状晶β−オキシ水酸化鉄粒子に対し5042換算で0
.5〜5.0重量%の硫酸塩’l’akBだ後空気中3
00〜500℃の温度範囲で加熱焼成することにより、
出発原料の針状晶を保持継承した針状晶α−1’ e、
O,粒子とし、次いで、該針状晶α−?%Oa粒子を焼
結防止剤で被覆処理した後、還元性ガス中で加熱還元し
て針状晶マグネタイト粒子とするか、または、更に酸化
して針状晶マグヘマイト粒子とすることを特徴とする針
状晶酸化鉄粒子粉末の製造法。 4)焼結防止剤がケイ酸ナトリウム、硫酸クロム、アル
ミン酸ソーダから選ばれた一種である特許請求の範囲第
3項に記載の針状晶酸化鉄粒子粉末の製造法。
[Scope of Claims] 1) Starting material acicular β-iron oxyhydroxide particles Q 0.5 to 5.0 weight in terms of so; 30% in air after containing gold sulfate
1. A method for producing acicular iron oxide particles, the method comprising heating and firing in a temperature range of 0 to 500° C. to obtain acicular α-Fe20B particles that retain and inherit the acicular crystals of the starting material. 2) The starting material, acicular β-iron oxyhydroxide particles, has a carbon
L5~50% by weight of sulfate and 300~ in air after incubation
By heating and firing in a temperature range of 500°C, the needle crystals of the starting material are retained and transformed into particles into needle crystal α-F~,
Next, the acicular α-F%Qa particles are heated and reduced in a reducing gas to form acicular magnetite particles, or
A method for producing acicular iron oxide particles, which comprises further oxidizing to obtain acicular maghemite particles. 3) The starting material, acicular β-iron oxyhydroxide particles, contains 0 in terms of 5042 relative to the acicular β-iron oxyhydroxide particles.
.. 5-5.0% by weight of sulfate 'l'akB in air.
By heating and firing at a temperature range of 00 to 500℃,
Acicular crystals α-1' e that retain and inherit the needle crystals of the starting material,
O, particles and then the acicular crystals α-? %Oa particles are coated with an anti-sintering agent, and then heated and reduced in a reducing gas to form acicular crystal magnetite particles, or further oxidized to form acicular crystal maghemite particles. A method for producing acicular iron oxide particle powder. 4) The method for producing acicular iron oxide particles according to claim 3, wherein the sintering inhibitor is one selected from sodium silicate, chromium sulfate, and sodium aluminate.
JP57031547A 1982-02-27 1982-02-27 Manufacture of needlelike iron oxide particle Granted JPS58151333A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57031547A JPS58151333A (en) 1982-02-27 1982-02-27 Manufacture of needlelike iron oxide particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57031547A JPS58151333A (en) 1982-02-27 1982-02-27 Manufacture of needlelike iron oxide particle

Publications (2)

Publication Number Publication Date
JPS58151333A true JPS58151333A (en) 1983-09-08
JPS61290B2 JPS61290B2 (en) 1986-01-07

Family

ID=12334212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57031547A Granted JPS58151333A (en) 1982-02-27 1982-02-27 Manufacture of needlelike iron oxide particle

Country Status (1)

Country Link
JP (1) JPS58151333A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011117005A (en) * 2011-03-22 2011-06-16 Tigers Polymer Corp Magnetite-containing elastomer composition

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102610736B1 (en) * 2018-10-31 2023-12-07 현대자동차주식회사 Fuel and water injection system and method for controlling the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011117005A (en) * 2011-03-22 2011-06-16 Tigers Polymer Corp Magnetite-containing elastomer composition

Also Published As

Publication number Publication date
JPS61290B2 (en) 1986-01-07

Similar Documents

Publication Publication Date Title
JPS5853688B2 (en) Method for producing acicular alloy magnetic particle powder mainly composed of Fe-Mg
JPS58151333A (en) Manufacture of needlelike iron oxide particle
JP3427871B2 (en) Cobalt-coated acicular magnetic iron oxide particles
JPS58167432A (en) Production of needle-like crystalline iron oxide particle powder
JPS6135135B2 (en)
JPS5891102A (en) Production of magnetic particle powder of needle crystal alloy
JPS58151334A (en) Manufacture of needlelike magnetic iron particle
JPS5921366B2 (en) Method for producing acicular Fe-Co alloy magnetic particle powder
JP3166809B2 (en) Method for producing acicular magnetic iron oxide particles
JPS6053444B2 (en) Manufacturing method of acicular iron magnetic particle powder
JPS5950607B2 (en) Method for producing acicular magnetic iron oxide particles
JPS5853686B2 (en) Method for producing acicular crystal metal iron magnetic particle powder
JPS5946281B2 (en) Method for producing acicular Fe-Co alloy magnetic particle powder
JPS5921363B2 (en) Method for producing acicular crystal metal iron magnetic particle powder
JPS5853687B2 (en) Method for producing acicular Fe-Zn alloy magnetic particle powder
JP2883962B2 (en) Method for producing acicular goethite particle powder
JPS5921364B2 (en) Method for producing acicular Fe-Zn alloy magnetic particle powder
JPS5921922B2 (en) Method for producing acicular Fe-Co-Zn alloy magnetic particle powder
JP3171223B2 (en) Method for producing acicular magnetic particle powder
JPS5932046B2 (en) Method for producing acicular magnetic iron oxide particles
JPS6239203B2 (en)
JP3055308B2 (en) Method for producing acicular magnetic iron oxide particles
JPS63140005A (en) Production of fine ferromagnetic metal particle powder
JPH026805B2 (en)
JPS5893806A (en) Production of magnetic particle powder of needle crystal alloy