JPS5864221A - Manufacture of ferromagnetic iron oxide coated with cobalt - Google Patents

Manufacture of ferromagnetic iron oxide coated with cobalt

Info

Publication number
JPS5864221A
JPS5864221A JP56161807A JP16180781A JPS5864221A JP S5864221 A JPS5864221 A JP S5864221A JP 56161807 A JP56161807 A JP 56161807A JP 16180781 A JP16180781 A JP 16180781A JP S5864221 A JPS5864221 A JP S5864221A
Authority
JP
Japan
Prior art keywords
iron oxide
ferromagnetic iron
cobalt
crystals
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56161807A
Other languages
Japanese (ja)
Other versions
JPS6138129B2 (en
Inventor
Kazuo Nakada
中田 和男
Tsuneo Ishikawa
石川 恒夫
Makoto Ogasawara
誠 小笠原
Taro Amamoto
天本 太郎
Toshihiko Kawamura
河村 俊彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishihara Sangyo Kaisha Ltd
Original Assignee
Ishihara Sangyo Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishihara Sangyo Kaisha Ltd filed Critical Ishihara Sangyo Kaisha Ltd
Priority to JP56161807A priority Critical patent/JPS5864221A/en
Publication of JPS5864221A publication Critical patent/JPS5864221A/en
Publication of JPS6138129B2 publication Critical patent/JPS6138129B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain ferromagnetic iron oxide with high coercive force, favorable thermal characteristics and high aging stability by introducing P into crystals of ferromagnetic iron oxide and by depositing a compound contg. at least Co on the surfaces of the resulting ferromagnetic iron oxide particles. CONSTITUTION:An alkali such as sodium hydroxide is added to a ferrous salt soln. such as a ferrous sulfate soln. contg. suspended nuclear crystals of alpha- FeOOH, and while blowing air, the soln. is maintained at about 50-90 deg.C reaction temp. and 3-6pH so as to regulate the growing rate of the nuclear crystals to about 5-15g/l/hr and to grow the crystals about 1.5-6 times. In this stage, P is introduced almost uniformly into the crystals by adding a phosphorus compound such as o-phosphoric acid by 0.1-1wt% as P basing on the total amount of alpha-FeOOH produced finally. The resulting alpha-FeOOH contg. P is separated by filtration, washed in water, dried, and pulverized to obtain ferromagnetic iron oxide. This iron oxide is coated with about 0.5-10wt% compound contg. at least Co such as cobalt sulfate.

Description

【発明の詳細な説明】 本発明は、磁気記録材料として有用なコバルト被着強磁
性酸化鉄の製造方法に関し、さらに詳しくは、コバルト
を被薫させる強磁性酸化鉄として、その前駆体の段階て
あらかじめその結晶中に’)ンを含有させてから強磁性
酸化鉄に誘導したものを用い、次いでここで得られた強
磁性酸化鉄の表WJK少くともコバルトを含む化合物を
被着するコバルト被着強磁性酸化鉄の製造方法に関する
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing cobalt-coated ferromagnetic iron oxide useful as a magnetic recording material. The ferromagnetic iron oxide is obtained by incorporating ') into the crystal in advance, and then applying a compound containing at least cobalt to the resulting ferromagnetic iron oxide. This invention relates to a method for producing ferromagnetic iron oxide.

強磁性酸化鉄にコバルト化合物を被着させたものは、高
保磁力を有していることから、ビデオ用、オーディオ用
などの磁気1轍分野でさかんに利用されてThに、この
ようなコバルト被着強磁性酸化鉄を得るための方法も数
多く提案されている。′tた、コバルト被着前に酸化鉄
にリンを含有させることKついて4、いくつかの提案が
みられる。
Ferromagnetic iron oxide coated with a cobalt compound has a high coercive force, so it is widely used in the field of magnetic tracks such as video and audio. Many methods for obtaining ferromagnetic iron oxide have also been proposed. There are also several proposals for incorporating phosphorus into iron oxide before depositing cobalt.

例えば、%開明49−69588号公報には、マダネタ
イトKl1元する前のα−1i”@oOHにリン酸塩な
どを被着し、それを還元して得られ九マグネタイト或は
、ヒれからI4したr−F・108にコバルト化合物を
被着し、さらに焼戻しする方法が記載されているが、コ
バルト化合物の被着が均一に行なわれにくい欠点がある
For example, in Japanese Patent Publication No. 49-69588, 9 magnetite obtained by depositing phosphate etc. on α-1i"@oOH before being converted into madanetite Kl1 and reducing it, or I4 from fins. A method has been described in which a cobalt compound is deposited on the prepared r-F.108 and further tempered, but there is a drawback that the cobalt compound is not easily deposited uniformly.

別に、4I−昭55−149137号公報には、結晶中
にケイ素及びリンを含んだものにコバルト化合物を吸着
、拡散させる方法が記載されているが、主としてケイ素
及びリンの添加による比表面積の増加と、それに伴う保
磁力の増大がみられるものの、保磁力のパラフキなどの
点でなお改良を望まれている。
Separately, 4I-Sho 55-149137 describes a method of adsorbing and diffusing cobalt compounds into crystals containing silicon and phosphorus, but mainly increases the specific surface area by adding silicon and phosphorus. Although a corresponding increase in coercive force has been observed, improvements are still desired in terms of variations in coercive force, etc.

本発明は前記方法とは異なり、リン化合物は粒子表面で
はなく結晶中に存在させ、かつケイ素などを含有させな
いα−F・OOHを用い、それから誘導した強磁性酸化
鉄にコバルト化合物を被着することを%微とする。
The present invention differs from the above method in that the phosphorus compound is present in the crystal rather than on the particle surface, and α-F OOH, which does not contain silicon, is used, and a cobalt compound is deposited on the ferromagnetic iron oxide derived from it. This is considered to be a small percentage.

本発明者等は、結晶中に含有されたリンは、コバルト化
合物の被着を妨害せず、良好かつ均一−aコバルト被覆
が得られ、更に前記リンはコバルトの結晶中への拡散を
防止する結果、高保磁力で、熱特性、経時安定性にすぐ
れた強磁性酸化鉄が製造できることを確認した。
The inventors have found that the phosphorus contained in the crystal does not interfere with the deposition of the cobalt compound, resulting in a good and uniform cobalt coating, and that the phosphorus prevents the diffusion of cobalt into the crystal. As a result, it was confirmed that ferromagnetic iron oxide with high coercive force, excellent thermal properties, and stability over time could be produced.

本発明は、α−F・OOH核晶を懸濁含有した第1鉄塩
水I#液を、最終的に生成する全α−FeOOHfiK
対してp換算でα1〜1重量−となるような量のリン化
合物の存在下に、中和、酸化して該核晶を成長させてリ
ン含有α−Fe00Hを生成させ、得られたα−peo
oklを強磁性酸化鉄に誘導したのち、該強磁性酸化鉄
粒子表面に少くと本コバルトを含む化合物を被覆するこ
とを特徴とする、コバルト被着強磁性酸化鉄の製造方法
である。
The present invention produces a ferrous salt water I# solution containing α-F・OOH nucleus crystals suspended in the total α-FeOOHfiK that is finally produced.
On the other hand, in the presence of a phosphorus compound in an amount such that α1 to 1 weight- in terms of p, the nucleus crystals are grown by neutralization and oxidation to produce phosphorus-containing α-Fe00H, and the obtained α- peo
This is a method for producing cobalt-coated ferromagnetic iron oxide, which is characterized in that after inducing okl into ferromagnetic iron oxide, the surface of the ferromagnetic iron oxide particles is coated with a compound containing at least a small amount of cobalt.

α−F・0OHFi、例えば第1鉄塩溶液をアルカリで
部分中和してF・の一部を沈澱させた後、酸化してα−
F・OOH核晶を生成させ、次いでこの溶液をさらにア
ルカリで中和しつつ酸化して前記核晶を成長させること
によって製造される。本発明の方法では、前記核晶成長
反応時Kt中にリン化合物を存在させる。
α-F・0OHFi, for example, a ferrous salt solution is partially neutralized with an alkali to precipitate a part of F, and then oxidized to form α-
It is produced by generating F.OOH nucleus crystals, and then oxidizing this solution while neutralizing it with an alkali to grow the nucleus crystals. In the method of the present invention, a phosphorus compound is present in Kt during the nucleic crystal growth reaction.

使用する@1鉄塩としては、硫酸第1鉄、硝酸菖1鉄、
塩化I11鉄などの鉱酸の第1鉄塩などがToフ、工業
的に#i硫酸第1鉄が好ましい。
The @1 iron salts used include ferrous sulfate, 1 iron nitrate,
Ferrous salts of mineral acids such as I11 iron chloride are preferred, and #i ferrous sulfate is preferred industrially.

アルカリとしては、アルカリ金属或はアルカリ土類金属
の水酸化物、酸化物又は炭酸基、例えば水酸化ナトリウ
ム、水酸化カリウム、酸化ナトリウム、炭酸カルシウム
などがあり、工業的には水酸化ナトリウム、水酸化カリ
ウムが好ましい・酸化のために用いられる酸化剤として
は、空気、酸素、その他の酸化剤などがあり、一般に空
気が好適である。リン化合物としては、オルトリン酸、
メタリン酸、ポリリン酸、亜リン酸などのリン酸或は、
これらのアルカリ金属、アンモニウムなどとの水溶性塩
々どかあり、普通はオルトリン酸又はその塩が用いられ
る。
Examples of alkalis include hydroxides, oxides, or carbonate groups of alkali metals or alkaline earth metals, such as sodium hydroxide, potassium hydroxide, sodium oxide, and calcium carbonate. Potassium oxide is preferred.Oxidizing agents used for oxidation include air, oxygen, and other oxidizing agents, with air generally preferred. Phosphorus compounds include orthophosphoric acid,
Phosphoric acid such as metaphosphoric acid, polyphosphoric acid, phosphorous acid, or
There are water-soluble salts of these alkali metals, ammonium, etc., and orthophosphoric acid or its salts are usually used.

前記α−Fe00H核晶生成反応は、通常30〜100
 g/lの濃度の第1鉄塩溶液に、母液中のF・イオン
を5〜25 t / lだけf;#させるのに必要なア
ルカリを加え、空気を吹き込みながら反応温度を50〜
100℃及びpHを3〜8の間に維持して、10〜80
分間行なわれる。この工程において、形状性のよい核晶
を得るためK リン化合物を添加する場合は、α−F・
OOH核晶に対しp換算量で0.1〜0.4重量−とな
るように母液中にリン化合物を添加することが奨められ
るが、このリンは核晶に内包され、本発明にいうリンの
効果を発現しない。
The α-Fe00H nucleation reaction is usually performed at a reaction time of 30 to 100
To a ferrous salt solution with a concentration of 1 g/l, add the alkali necessary to bring the F ion in the mother liquor to 5-25 t/l, and raise the reaction temperature to 50-25 t/l while blowing air.
10-80, maintaining 100°C and pH between 3-8.
It takes place for a minute. In this step, when adding a K phosphorus compound to obtain nuclei crystals with good shape, α-F.
It is recommended to add a phosphorus compound to the mother liquor in an amount of 0.1 to 0.4 weight in terms of p relative to the OOH nucleus crystals, but this phosphorus is encapsulated in the nucleus crystals, and the phosphorus compound referred to in the present invention is does not exhibit the effect of

次いで行なわれるα−FeOOH核晶成長反応は、通常
α−F・OOH核晶の懸濁した第1鉄塩溶液にさらにア
ルカリを加え、空気を吹込み力から、反応温度を50〜
90℃及びpHを3〜6の間に維持して、核晶の成長速
度を5〜15 g/l/時程度及び成長倍率を1.5〜
6程度となるようlfc@節して行々われる。この工程
において、母液中にリン化合物を重加するととによ〕、
α−Fe0OHKはlt均一にリンを含有させることが
できる。リン化合物の添加量は、最終的に得られる全α
−F600H量を基準にしてp換算量で0.1〜1重量
%とする。この量が少なすぎると、所望の効果が得られ
ず、一方、  1、多すぎると熱特性、経時安定性など
の良好なものが得られにくい。
The subsequent α-FeOOH nucleus crystal growth reaction is usually carried out by adding an alkali to the ferrous salt solution in which α-F OOH nuclei are suspended, and then increasing the reaction temperature by blowing air into the ferrous salt solution at 50°C to
Maintaining the temperature at 90°C and the pH between 3 and 6, the growth rate of the nuclei is approximately 5 to 15 g/l/hour, and the growth rate is approximately 1.5 to 1.5.
It is carried out in lfc@ clause so that it is about 6. In this step, if a phosphorus compound is added to the mother liquor,
α-Fe0OHK can contain phosphorus uniformly. The amount of phosphorus compound added is determined by the total α
The p-conversion amount is 0.1 to 1% by weight based on the amount of -F600H. If this amount is too small, the desired effect will not be obtained; on the other hand, if it is too large, it will be difficult to obtain good thermal properties, stability over time, etc.

このようにして得られたリン含有α−Fe00Hは、通
常の濾過、水洗、乾燥及び粉砕を経てα−P@00H粉
末とし、この粉末を通常の方法によυ本発明方法でいう
強磁性酸化鉄、即ち、r−pesos、re@04或は
ベルトライド化合物を得ることができる。脱水は、例え
ば、空気中で300〜700℃の温度に加熱して行ない
、還元け、例えば水素又は水蒸気を含む水素で300〜
500℃の温度に加熱して行々い、酸化は、例えば酸素
又は空気中で200〜400℃の温度に加熱して行危う
The phosphorus-containing α-Fe00H obtained in this way is made into α-P@00H powder through ordinary filtration, water washing, drying and pulverization, and this powder is subjected to ferromagnetic oxidation as referred to in the method of the present invention by an ordinary method. Iron, ie r-pesos, re@04 or bertolide compounds can be obtained. Dehydration is performed, for example, by heating in air to a temperature of 300 to 700°C, and reduction is performed, for example, with hydrogen or hydrogen containing water vapor at a temperature of 300 to 700°C.
Oxidation is carried out by heating to a temperature of 200-400°C, for example in oxygen or air.

本発明の方法で1よ、前述の方法により得られたリン含
有強磁性酸化鉄を少くともコバルトを含む化合物によっ
て被覆する。この被機は、前記酸化鉄のスラリー中で金
属塩をアルカリ中和するととKよって行なわれる。ここ
で用いられるコバルト塩としては、コバルトの無機酸塩
或は有機酸基が挙げられ、例えば硫酸コバルト、塩化コ
バルト、酢酸コバルト々どが挙げられ、その被着量は通
常、酸化鉄に対する重量基準で0.5〜1O−1望まし
くは1〜6%である。この時、同時又はその前後に被覆
してもよいコバルト以外の金属塩としては、@1鉄塩、
1ltlマンガン塩、亜鉛虜、ニッケル塩などが挙げら
れ、その被着量は通常酸化鉄に対して第1鉄の場合0.
5〜201望ましくH5〜1511T、6す、その他の
金属の場合0〜10チである。
In the method of the present invention, 1) the phosphorus-containing ferromagnetic iron oxide obtained by the above-described method is coated with a compound containing at least cobalt. This process is carried out by neutralizing the metal salt with an alkali in the iron oxide slurry. The cobalt salts used here include inorganic acid salts or organic acid groups of cobalt, such as cobalt sulfate, cobalt chloride, cobalt acetate, etc., and the amount of coating is usually based on the weight of iron oxide. The amount is 0.5 to 1 O-1, preferably 1 to 6%. At this time, metal salts other than cobalt that may be coated at the same time or before or after are @1 iron salt,
Examples include manganese salts, zinc salts, nickel salts, etc., and the amount of adhesion is usually 0.1% for ferrous iron compared to iron oxide.
5 to 201, preferably H5 to 1511T, 6, and 0 to 10 in the case of other metals.

被着する方法としては、例えばfl)強磁性酸化鉄を少
くともコバルトを含む金属塩水溶液に分散させ、これに
アルカリ溶液を加える方法、(2)強磁性酸化鉄を少く
ともコバルトを含む金属塩水溶液とアルカリ 溶液との
混合液に分散させる方法、(3)強磁性酸化鉄を水に分
散させ、これに少くともコバルトを含む金属塩水溶液と
アルカリ溶液とを添加する方法、(4)強磁性酸化鉄を
アルカリ水溶液に分散させ、これに少くともコバルトを
含む金属塩水溶液を添加する方法、(5)強磁性酸化鉄
を少くともコバルトを含む金属塩水溶液に分散させ、こ
の分散液をアルカリ溶液中和滴下添加する方法などが挙
げられ、また、コバルト、第1鉄、その他の金属の1部
又は全部を同時に処理したり、順次処理したり、適宜の
方法を採用することができ、との被着処理は常温もしく
け60〜150℃程度の加熱下に行なってもよい。
Examples of methods for adhering include fl) a method of dispersing ferromagnetic iron oxide in a metal salt aqueous solution containing at least cobalt and adding an alkaline solution thereto; (2) a method of dispersing ferromagnetic iron oxide in a metal salt containing at least cobalt; (3) A method of dispersing ferromagnetic iron oxide in a mixture of an aqueous solution and an alkaline solution, (3) A method of dispersing ferromagnetic iron oxide in water, and adding thereto an aqueous metal salt solution containing at least cobalt and an alkaline solution; (4) Ferromagnetic A method of dispersing iron oxide in an aqueous alkaline solution and adding thereto an aqueous solution of a metal salt containing at least cobalt; (5) dispersing ferromagnetic iron oxide in an aqueous solution of a metal salt containing at least cobalt; Examples include a method of neutralizing dropwise addition, and it is also possible to treat part or all of cobalt, ferrous iron, and other metals simultaneously, sequentially, or adopt an appropriate method. The adhesion treatment may be carried out at room temperature or under heating at about 60 to 150°C.

前述の方法により得られたコバルト被着強磁性酸化鉄は
、p遇した後、通常の方法により乾燥したシ、非酸化性
あるいは酸化性雰囲気中で100〜300℃程度で熱処
理したシして吃よい・ 本発明方法によって得られるコバルト被着強磁性酸化鉄
は、高保磁力で、かつ熱特性、経時安定性などの良好な
ものである。この理由については明らかでないが、リン
含有α−F・00Hは比較的高温の加熱によって空孔の
少ない強磁性酸化鉄が得られやすいこと、強磁性酸化鉄
の表面に多量のリンが存在し危いためか、均一でかつ良
好なコバルト被着が得られること、強磁性酸化鉄中に含
まれるリンがコバルトの結晶中への拡散を防止して好ま
しい構造になることなどが推定される。
The cobalt-coated ferromagnetic iron oxide obtained by the above method is subjected to plating, dried by a conventional method, heat-treated at about 100 to 300°C in a non-oxidizing or oxidizing atmosphere, and then dried. Good: The cobalt-coated ferromagnetic iron oxide obtained by the method of the present invention has a high coercive force and good thermal properties and stability over time. The reason for this is not clear, but ferromagnetic iron oxide with few pores can be easily obtained by heating phosphorus-containing α-F・00H at a relatively high temperature, and a large amount of phosphorus exists on the surface of ferromagnetic iron oxide, making it dangerous. It is presumed that this is because uniform and good cobalt deposition can be obtained, and that the phosphorus contained in the ferromagnetic iron oxide prevents cobalt from diffusing into the crystal, resulting in a preferable structure.

以下の実施例及び比較例により、本発明がよ)詳しく理
解できるであろう。
The following examples and comparative examples will provide a more detailed understanding of the present invention.

実施例1〜2及び比較例1〜2 空気炊込み管と攪拌器を備えた反応器に、3.800g
のFeSO4を含む水溶液204を入れ、43℃に昇温
し、NaOH水溶液(濃度200g//)2.14jを
攪拌下に加え(沈澱F・15 r / l ) 、この
中へ60(1部時間の速度で空気を吹き込み、45’C
で40分間反応させてα−paoo)Iの核晶を得た。
Examples 1-2 and Comparative Examples 1-2 3.800 g was placed in a reactor equipped with an air cooking tube and a stirrer.
204 of an aqueous solution containing FeSO4 was added, the temperature was raised to 43°C, 2.14j of a NaOH aqueous solution (concentration 200 g//) was added with stirring (precipitate F.15 r/l), and 60 (1 part hour) was added into the solution. Blow air at a speed of 45'C.
The mixture was reacted for 40 minutes to obtain α-paoo)I nucleus crystals.

さらに、851部時間の速度で空気を吹き込みながら、
下記第1表に示す所定量のオルトリン酸及びNaOH水
溶液(濃度200 g/1)FL4tを徐AK加えて、
pHを5.1に維持し、50℃で8時間反応させ、核晶
を約3.5倍に成長させた。
Furthermore, while blowing air at a rate of 851 parts per hour,
Adding a predetermined amount of orthophosphoric acid and NaOH aqueous solution (concentration 200 g/1) FL4t shown in Table 1 below,
The pH was maintained at 5.1 and the reaction was carried out at 50° C. for 8 hours to grow the nucleus crystals approximately 3.5 times.

上記の方法で得られたそれぞれのα−Fの00Hは、通
常の一過、水洗、乾燥及び粉砕を経て、α−Fs00H
粉末として得、このものを通常の方法により、脱水(空
気中、650℃)還元(水蒸気を含む水素中、420℃
)及び酸化(空気中、280℃)を行ないそれぞれのγ
−F@@01を得た。
Each α-F 00H obtained by the above method is subjected to normal passing, water washing, drying and pulverization, and α-Fs00H
obtained as a powder, which was dehydrated (in air at 650°C) and reduced (in hydrogen containing water vapor at 420°C) by conventional methods.
) and oxidation (in air, 280℃) to obtain each γ
-F@@01 was obtained.

上記の方法で得られたそれぞれのr−F@*Oa200
gを水21に分散させてスラリーとし、液中KN、ガス
を吹き込みながら、硫酸コバルト1七ル/l溶液120
−と硫酸第1鉄1モル/l溶液250dとの混合液を加
え、攪拌した。
Each r-F@*Oa200 obtained by the above method
Disperse 21g of cobalt sulfate into a slurry in 21g of water, and add 120g of cobalt sulfate 17l/l solution while blowing KN into the liquid and gas.
- and 250 d of a 1 mol/l solution of ferrous sulfate was added and stirred.

さらに、水酸化ナトリウム5モル/j溶液780−を加
え、室温(28℃)で5時間攪拌を続けた。反応後のス
ラリーを濾過、水洗し、得られ九スラリーを110℃で
10時間不活性雰囲気中で乾燥し、目的のコバルト被着
強磁性酸化鉄粉末A−Dを得た。
Further, 780 - of a 5 mol/j solution of sodium hydroxide was added, and stirring was continued at room temperature (28°C) for 5 hours. The slurry after the reaction was filtered and washed with water, and the resulting slurry was dried at 110° C. for 10 hours in an inert atmosphere to obtain the desired cobalt-coated ferromagnetic iron oxide powders A-D.

比較例3〜4 比較例1の方法て得られたα−F・OOHKついて、−
過、水洗後オルトリン酸をα−F・00HK対して下記
gt表に示す所定量被着した後、実施例1の場合と同様
にしてr −F @tO,を得、さらに同様にして目的
のコバルト被着強磁性酸化鉄粉末E及びFを得た。
Comparative Examples 3 to 4 Regarding α-F・OOHK obtained by the method of Comparative Example 1, -
After washing with filtration and water, a predetermined amount of orthophosphoric acid shown in the gt table below was applied to α-F・00HK, and r −F @tO was obtained in the same manner as in Example 1. Co-coated ferromagnetic iron oxide powders E and F were obtained.

得られたサンプルA〜FKついて、通常の方法によ)保
磁力を測定し、下記の方法により熱特性及び経時安定性
を計算して第1表の結果を得た。
The coercive force of the obtained samples A to FK was measured by a conventional method, and the thermal properties and stability over time were calculated by the following method to obtain the results shown in Table 1.

(熱特定の測定法) 室温及び12!!’CKおける保磁力を測定し、下記針
算弐により、熱特性を求める。
(Thermospecific measurement method) Room temperature and 12! ! 'Measure the coercive force at CK and determine the thermal characteristics using the following calculation.

(経時安定性の霧室) 当初の保磁力及び60℃、相対湿度80嘩でlO日間放
置した後の保磁力を測定し、下配計算弐により経時安定
性を求める。
(Fog room for stability over time) Measure the initial coercive force and the coercive force after leaving it for 10 days at 60° C. and relative humidity 80 degrees, and calculate the stability over time by using the lower calculation.

間型安定性(ΔHa)= (当初の保磁力)−(m1度
60℃、相対湿度80−でlO日間放置後の保磁力) 第1表 実施例3 実施例1の方法で得られ九r−F@*05200gを水
21に分散させてスラリーとし、液中にN富ガスを吹き
込みながら、硫酸コバル)1モル/jl[12G11/
を加え、攪拌した。さらに、水酸化ナトリウム5七ル/
l溶液590dを加え、90℃で5時間攪拌を続けた0
反応後のス〜 ラリ−を一過、水洗し、得られたスラリーを110℃で
10時間乾燥し、目的のコバルト被着強磁性酸化鉄粉末
Hを得た。
Temperature stability (ΔHa) = (initial coercive force) - (coercive force after standing for 10 days at m1 degree 60°C and relative humidity 80) Table 1 Example 3 9r obtained by the method of Example 1 Disperse 200 g of -F@*05 in water 21 to make a slurry, and while blowing N-rich gas into the liquid, add 1 mole of cobal sulfate/jl [12G11/
was added and stirred. Furthermore, sodium hydroxide 57 l/
Added 590 d of l solution and continued stirring at 90°C for 5 hours.
After the reaction, the slurry was passed through and washed with water, and the resulting slurry was dried at 110° C. for 10 hours to obtain the desired cobalt-coated ferromagnetic iron oxide powder H.

実施例4 硫酸コバルト1七ル/l溶液120−を加え、攪拌し、
さらに水酸化ナトリウS5モル/j溶液59G−を加え
ることを、硫酸コバルト1モル/j+lI[120m及
び硫酸第1マンガン1七ル/j溶液120mを加え、攪
拌し、さらに水酸化ナトリウム5七ル/l溶液680m
を加えることに代える以外は実施例3の場合と同様に 
゛して、目的のコバルト積着強磁性酸化鉄工を得た。
Example 4 Add 120 g of cobalt sulfate 17 l/l solution, stir,
Furthermore, 59 g of sodium hydroxide S5 mol/j solution is added, cobalt sulfate 1 mol/j+lI [120 m and manganous sulfate 17 mol/j solution 120 ml are added, stirred, and sodium hydroxide 57 mol/j solution is added. l solution 680m
Same as in Example 3 except for adding .
As a result, the desired cobalt-deposited ferromagnetic oxide ironwork was obtained.

実施例5 コバルト及び111鉄化合物を被着するr−F・108
を!グネタイ)K代える以外は実施例1の場合と同様に
して、目的めコバルト被着−磁性酸化鉄Jを得九。
Example 5 r-F 108 depositing cobalt and 111 iron compounds
of! Cobalt-coated magnetic iron oxide J was obtained in the same manner as in Example 1 except that K was replaced.

上記で得られたサンプルH,I及びJについて、通常の
方法によ)保磁力を測定し、前記の方法によル熱特性及
び経時安定性を計算して第2表の結果を得た。
For Samples H, I, and J obtained above, the coercive force was measured using a conventional method, and the thermal properties and stability over time were calculated using the method described above to obtain the results shown in Table 2.

Claims (1)

【特許請求の範囲】[Claims] α−F・OOH核晶を懸濁含有した第1鉄塩水溶液を、
最終的に生成する全(1−Fe00H量に対してP換算
で0.1〜1重量−となる′ような量のリン化合物の存
在下に、中和、酸化して該核晶を成長させてリン含有α
−F@OOHを生成させ、得られたα−FeOOHを強
磁性酸化鉄に誘導したのち、該強磁性酸化鉄粒子表面に
少くともコバルトを含む化合物を被着することを特徴と
する、コバルト被着強磁性酸化鉄の製造方法。
A ferrous salt aqueous solution containing α-F・OOH nucleus crystals suspended,
The nucleus crystals are grown by neutralization and oxidation in the presence of an amount of phosphorus compound that is 0.1 to 1 weight in terms of P based on the amount of 1-Fe00H that is finally produced. phosphorus-containing α
-F@OOH is generated and the obtained α-FeOOH is induced into ferromagnetic iron oxide, and then a compound containing at least cobalt is deposited on the surface of the ferromagnetic iron oxide particles. A method for producing ferromagnetic iron oxide.
JP56161807A 1981-10-09 1981-10-09 Manufacture of ferromagnetic iron oxide coated with cobalt Granted JPS5864221A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56161807A JPS5864221A (en) 1981-10-09 1981-10-09 Manufacture of ferromagnetic iron oxide coated with cobalt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56161807A JPS5864221A (en) 1981-10-09 1981-10-09 Manufacture of ferromagnetic iron oxide coated with cobalt

Publications (2)

Publication Number Publication Date
JPS5864221A true JPS5864221A (en) 1983-04-16
JPS6138129B2 JPS6138129B2 (en) 1986-08-27

Family

ID=15742283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56161807A Granted JPS5864221A (en) 1981-10-09 1981-10-09 Manufacture of ferromagnetic iron oxide coated with cobalt

Country Status (1)

Country Link
JP (1) JPS5864221A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5330497A (en) * 1976-09-01 1978-03-22 Basf Ag Cobalttdoped acicular magnetic iron oxide and process for preparing same
JPS553295A (en) * 1978-06-20 1980-01-11 Cselt Centro Studi Lab Telecom Wavelength dividing transmitter
JPS5531093A (en) * 1978-08-24 1980-03-05 Hoechst Ag Novel 1*2*44triazole derivative*its manufacture and agricultural chemical containing it as active ingredient

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5330497A (en) * 1976-09-01 1978-03-22 Basf Ag Cobalttdoped acicular magnetic iron oxide and process for preparing same
JPS553295A (en) * 1978-06-20 1980-01-11 Cselt Centro Studi Lab Telecom Wavelength dividing transmitter
JPS5531093A (en) * 1978-08-24 1980-03-05 Hoechst Ag Novel 1*2*44triazole derivative*its manufacture and agricultural chemical containing it as active ingredient

Also Published As

Publication number Publication date
JPS6138129B2 (en) 1986-08-27

Similar Documents

Publication Publication Date Title
US4053325A (en) Heat stable iron oxides
US4202871A (en) Production of acicular ferric oxide
US3845198A (en) Acicular gamma iron oxide process
JPS59107924A (en) Manufacture of magnetic iron oxide powder containing cobalt
JPS5864221A (en) Manufacture of ferromagnetic iron oxide coated with cobalt
KR890000703B1 (en) A process for preparing acicular alpha-feooh
JPS6251894B2 (en)
JPH0270003A (en) Method for treating ferromagnetic iron powder
US4153472A (en) Process for preparing a red pigmentary iron oxide
JPH02208227A (en) Production of low-bulk density tricobalt tetroxide
JPS5825202A (en) Manufacture of needle-shaped alpha-feooh for magnetic recording material
JP2931182B2 (en) Method for producing acicular γ-FeOOH
JPS5879819A (en) Surface-modified ferromagnetic chromium dioxide
JPS62223025A (en) Manufacture of needle-like alpha-iron oxide (iii)
JPS61141627A (en) Production of alpha-feooh needles
JPS6350326A (en) Production of hematite
JPS5939730A (en) Manufacture of ferromagnetic iron oxide
JPS59562B2 (en) Ferromagnetic metal powder and its manufacturing method
JPS6132257B2 (en)
JPH01212231A (en) Production of magnetic iron oxide for magnetic recording
JPH02271503A (en) Magnetic alloy powder and its manufacture
JPS62219902A (en) Manufacture of metal magnetic powder
JPS59119704A (en) Manufacture of acicular goethite
JPS5855203B2 (en) Method for producing iron-cobalt alloy ferromagnetic powder
JPS5935404A (en) Manufacture of cobalt-coated magnetic iron oxide powder