JPS61247972A - Automatic analyzing device - Google Patents

Automatic analyzing device

Info

Publication number
JPS61247972A
JPS61247972A JP9054585A JP9054585A JPS61247972A JP S61247972 A JPS61247972 A JP S61247972A JP 9054585 A JP9054585 A JP 9054585A JP 9054585 A JP9054585 A JP 9054585A JP S61247972 A JPS61247972 A JP S61247972A
Authority
JP
Japan
Prior art keywords
reagent
reaction
holder
analysis
reaction container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9054585A
Other languages
Japanese (ja)
Inventor
Koichi Wakatake
孝一 若竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Tectron Instruments Corp
Original Assignee
Japan Tectron Instruments Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Tectron Instruments Corp filed Critical Japan Tectron Instruments Corp
Priority to JP9054585A priority Critical patent/JPS61247972A/en
Publication of JPS61247972A publication Critical patent/JPS61247972A/en
Pending legal-status Critical Current

Links

Landscapes

  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

PURPOSE:To obtain plural pieces of reliable blood analytic information in a short time by measuring >=1 items for each of plural reaction container holders and inhibiting different items from being analyzed for the same reaction container. CONSTITUTION:When a specific sample container 1 is conveyed to a sample dispensing position, the sample in the container 1 is dispensed to a reaction container A by a specific amount through a sample dispensing device C. When a reagent bottle 5 corresponding to a measurement item is conveyed to a reagent dispensing position, the reagent in the bottle 5 is dispensed to the reaction container A by a specific amount through a reagent dispensing device D. A turret type reaction container holder E which holds a necessary number of reaction containers A at equal intervals is formed integrally wit the outer peripheral drum part of a column 20 and one item is analyzed for each stage of the reaction container holders E1-E5. For example, a GOT analysis is taken in the holder E1, a GPT analysis in E2, an LDH analysis in E3, an ALP analysis in E4, and a TP analysis in E5 respectively.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、生化学的分析や免疫学的分析を簡易に行う
自動分析装置に係り、特に所謂シングルマルチ方式の自
動分析装置の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an automatic analyzer that easily performs biochemical analysis and immunological analysis, and particularly relates to an improvement of a so-called single-multi type automatic analyzer.

〔従来技術とその問題点〕[Prior art and its problems]

近年、地域における血液検査の充実化を図る目的から、
小病院でも簡易に血液検査を行うことができる小型で低
価格の自動分析装置が種々提案されてお秒、そのほとん
どのものが所謂シングル方式のものか、シングルマルチ
方式のものである。
In recent years, with the aim of improving blood testing in the region,
Various small, low-cost automatic analyzers that can easily perform blood tests even in small hospitals have been proposed, and most of them are of the so-called single type or single multi type.

シングル方式の自動分析装置は、異なる測定項目を一つ
の反応ラインで連続して分析するもので、反応容器を別
途手段で洗浄するのでキャリーオーバ発生の虞れは少な
いが測定項目に対応する光波長の切換え等が複雑で分析
結果を得るまで長時間かかるという問題を有していた。
Single-type automatic analyzers continuously analyze different measurement items in one reaction line, and since the reaction container is cleaned by a separate means, there is less risk of carryover, but the light wavelength corresponding to the measurement item is The problem was that switching between the two was complicated and it took a long time to obtain the analysis results.

またシングルマルチ方式の自動分析装置は、そのほとん
どのものが反応容器の洗浄装置を備えているが、同一の
反応容器で異なる項目、の分析を行うことから反応容器
でのキャリーオーバが発生し易く、また装置も洗浄装置
を配設した分装置が大型−複雑化して高価となるという
問題を有していた。
In addition, most single-multiple automatic analyzers are equipped with a reaction container cleaning device, but because different items are analyzed in the same reaction container, carryover in the reaction container is likely to occur. Moreover, the apparatus also had the problem that the separate apparatus equipped with the cleaning apparatus was large and complex, making it expensive.

〔発明の目的〕[Purpose of the invention]

この発明は、かかる現状に鑑み創案されたものであって
、その目的とするところは、異なる項目を短時間で分析
でき、しかも反応容器でのキャリーオーバが発生する虞
れも生じない、シングル方式とシングルマルチ方式との
長所を併せ持つ小型で低コストの汎用型自動分析装置を
提供しようとするものである。
The present invention was devised in view of the current situation, and its purpose is to use a single method that allows analysis of different items in a short time, and also eliminates the risk of carryover occurring in the reaction vessel. The aim is to provide a compact, low-cost, general-purpose automatic analyzer that combines the advantages of the single-multi method and the single-multi method.

〔発明の構成〕[Structure of the invention]

上記目的を達成するため、この発明にあっては、所要数
の反応容器を等間隔に保持する反応容器ホルダと、これ
らの各反応容器に検体を分注するサンプル分注装置と、
検体が分注され九反応容器に測定項目に対応する試薬を
分注する試薬分注装置と、検体の反応状態を光学的に測
定する光学測定装置とを備えてなる自動分析装置の上記
反応容器ホルダを、支柱の長軸方向に沿って複数個取り
付け、該反応容器ホルダの夫々は、そのホルダ上面がサ
ンプル分注装置及び試薬分注装置の作動面と面一となる
位置に到来するよう順次垂直方向に間欠移送され、かつ
上記各反応容器ホルダは、上記検体分注及び試薬分注に
適するタイミングで回動して反応容器を各分注位置に移
送するようにして自動分析装置を構成したものである。
In order to achieve the above object, the present invention includes a reaction container holder that holds a required number of reaction containers at equal intervals, a sample dispensing device that dispenses a specimen into each of these reaction containers,
The reaction container of an automatic analyzer comprising a reagent dispensing device for dispensing a reagent corresponding to a measurement item into a reaction container into which a specimen is dispensed, and an optical measurement device for optically measuring the reaction state of the specimen. A plurality of holders are attached along the long axis direction of the column, and each of the reaction vessel holders is installed in sequence so that the top surface of the holder is flush with the operating surface of the sample dispensing device and the reagent dispensing device. The automatic analyzer was configured such that the reaction containers were intermittently transferred in the vertical direction, and each of the reaction container holders rotated at a timing suitable for the sample dispensing and reagent dispensing to transfer the reaction containers to each dispensing position. It is something.

〔実施例〕〔Example〕

以下、添付図面に示す実施例にもとづき、この発明の詳
細な説明する。
Hereinafter, the present invention will be described in detail based on embodiments shown in the accompanying drawings.

第1図乃至第3図は、この発明の第1実施例に係るシン
グルマルチ方式の自動分析装置Xを示すものであって、
第1図はこの自動分析装置を平面からみた図である。同
図中Sはターレット状のサンプラ、Rはターレット状の
試薬供給装置、BはサンプラSと試薬供給装置Rとの間
に配設された反応容器ホルダ収容部を夫々示している。
1 to 3 show a single-multi type automatic analyzer X according to a first embodiment of the present invention,
FIG. 1 is a plan view of this automatic analyzer. In the figure, S denotes a turret-shaped sampler, R denotes a turret-shaped reagent supply device, and B denotes a reaction vessel holder accommodation section disposed between the sampler S and the reagent supply device R, respectively.

テンプラSは、複数個のサンプル容器l内に測定すべき
検体(血清)が所要量収容されており、各サンプル容器
lはターレット状のサンプルホルダ2に等間隔毎に保持
され、図示外の駆動装置によってサンプル分注位置まで
所定のタイミングで間欠移送される。
Tempura S has a plurality of sample containers l containing a required amount of the specimen (serum) to be measured, and each sample container l is held at equal intervals in a turret-shaped sample holder 2. The device intermittently transports the sample to the sample dispensing position at predetermined timing.

このようにしてサンプル分注位置まで所定のサンプル容
器1が移送されると、同容器l内の検体はサンプル分注
装置C’に介して後記する反応容器Aに所要量分注され
る。
When a predetermined sample container 1 is transferred to the sample dispensing position in this manner, a required amount of the specimen in the container 1 is dispensed into a reaction container A, which will be described later, via a sample dispensing device C'.

また試薬供給装置RKは、測定項目に対応する第1試薬
又は第2試薬等の試薬を所要量収容してなる試薬ボトル
5がターレット状のボトルホルダ6に平面からみて放射
状に保持されてお抄、同ホルダ6は図示外の駆動装置に
よって測定項目に対応する試薬か収容された試薬ボトル
5を試薬分注位置まで正逆回転して移送されるよう駆動
制御されている。
Further, in the reagent supply device RK, a reagent bottle 5 containing a required amount of a reagent such as a first reagent or a second reagent corresponding to a measurement item is held in a turret-shaped bottle holder 6 in a radial manner when viewed from a plane. The holder 6 is driven and controlled by a drive device (not shown) so that the reagent bottle 5 containing the reagent corresponding to the measurement item is transferred by forward and reverse rotation to a reagent dispensing position.

このようにして試薬分注位置まで測定項目に対応する試
薬ボトル5が移送されると、同ボトル5内の試薬は試薬
分注装置りを介して試薬分注位置に到来した前記反応容
器AK所要量分注される。
When the reagent bottle 5 corresponding to the measurement item is transferred to the reagent dispensing position in this way, the reagent in the bottle 5 is transferred to the reaction container AK that has arrived at the reagent dispensing position via the reagent dispensing device. The amount is dispensed.

尚、前記サンプル分注装置Cと試薬分注装置りは、吸排
ポンプと、ピペットと、ピペットをサンプル吸引位置又
は試薬吸引位置まで移送する移送装置と、上記ピペット
を昇降案内する昇降装置とから構成され、上記ピペット
は各吸引位置に移送された後下降してサンプル又は試薬
を吸引した後上昇してサンプル吐出位置又は試薬吐出位
置まで回動して移送された後再び下降してサンプル又は
試薬を反応容器Aに吐出し、この後さらに上昇してピペ
ット洗浄部まで移送された後、上記各作業を順次繰り返
すよう構成されており、これら各部の構成及び駆動制御
装置の構成・作用は公知のサンプル分注装置と試薬分注
装置の構成・作用と同様であるので、ここではその詳細
な説明をここでは省略する。
The sample dispensing device C and the reagent dispensing device C are composed of a suction pump, a pipette, a transfer device that transfers the pipette to a sample suction position or a reagent suction position, and a lifting device that guides the pipette up and down. After being transferred to each suction position, the pipette descends to aspirate the sample or reagent, rises, rotates to the sample discharge position or reagent discharge position, is transferred, and then descends again to aspirate the sample or reagent. It is configured to discharge into reaction container A, then further ascend and be transferred to the pipette cleaning section, and then repeat the above operations in sequence.The configuration of each of these parts and the configuration and operation of the drive control device are based on known samples. Since the configuration and operation of the dispensing device and the reagent dispensing device are the same, detailed explanation thereof will be omitted here.

反応容器ホルダ収容部Bの中心部には第2図に示すよう
に1内部に光源10と、この光源10より照射された測
定光1を直角に反射させる反射鏡11とを内部に固定し
てなる端部が密閉された筒状の光学器12が垂直に立設
されており、この光学器[2の前記反射鏡11で反射さ
れた測定光pは、光学器[2の胴部13に貫通して開設
され九孔[4から光学器12外へと導かれ、この後後記
する反応容器Aを透過して受光器15で受光され、該受
光器15では、図示はしないが受光された測定光pを所
定波長毎に分光し、このうち測定項目に対応する波長の
光量の増減を電圧変換する等公知の光学測定方法によっ
て検体の光学測定が行なわれる。勿論この受光器15は
波長フィルターによって測定項目に対応する波長に変換
された測定光を受光する形式のものであってもよい。
As shown in FIG. 2, a light source 10 and a reflecting mirror 11 for reflecting the measurement light 1 emitted from the light source 10 at right angles are fixed in the center of the reaction vessel holder accommodation part B. A cylindrical optical device 12 with a sealed end is vertically installed, and the measurement light p reflected by the reflecting mirror 11 of this optical device [2 is reflected by the body 13 of the optical device [2]. The light is guided to the outside of the optical device 12 through the nine holes [4], which are opened through it, and transmitted through a reaction vessel A, which will be described later, and is received by the light receiver 15, where the light is received, although not shown. The optical measurement of the specimen is performed by a known optical measurement method, such as splitting the measurement light p into each predetermined wavelength and converting the increase or decrease in the amount of light of the wavelength corresponding to the measurement item into a voltage. Of course, this light receiver 15 may be of a type that receives measurement light converted into a wavelength corresponding to the measurement item by a wavelength filter.

光学測定装置Hは上記光学器12と受光器15とから構
成される。
The optical measuring device H is composed of the optical device 12 and the light receiver 15.

また、所要数の反応容器Aが等間隔に保持されるターレ
ット状の反応容器ホルダEは、支柱20の外周胴部に一
体的に形成されていると共に、このホルダEは、支柱2
0の長軸方向に沿って等間隔毎に複数個(図示の実施例
では5段(下からEl、El・・・Es )であるが、
これに限定されず測定項目数・検体数等に対応するニー
ズに応じた段数にすることができる。)形成されている
Further, a turret-shaped reaction vessel holder E, which holds a required number of reaction vessels A at equal intervals, is integrally formed on the outer peripheral body of the column 20, and this holder E is attached to the column 20.
0 at equal intervals along the long axis direction (in the illustrated embodiment, there are 5 stages (from the bottom El, El...Es),
The number of stages is not limited to this, and can be set according to the needs corresponding to the number of measurement items, the number of specimens, etc. ) is formed.

これら各反応容器ホルダEl乃至E5は各段毎に一つの
項目分析が行われるものとし、例えば上記ホルダElで
はGOT分析が、ElではGPT分析が、EsではUD
H分析が、E4ではALP分析が、EsではTP分析が
行なわれるよう構成されるが、必ずしもこれに限定され
るものではなく、他の項目分析(CRNN分析、CA分
析等、ニーズに対応する項目分析)を行うよう構成する
ことができる。
It is assumed that each of these reaction vessel holders El to E5 performs one item analysis for each stage. For example, the above holder El performs GOT analysis, El performs GPT analysis, and Es performs UD analysis.
H analysis is configured to be performed, E4 is configured to perform ALP analysis, and Es is configured to perform TP analysis. However, it is not necessarily limited to this, and other item analyzes (CRNN analysis, CA analysis, etc. analysis).

支柱20は中空円筒状でその上端部21が閉塞されて形
成されていると共に、同支柱20の内径は光学器12の
外径より若干大径となるよう構成されており、上端部2
1には把手22が突設され、また最下段の反応容器ホル
ダE1より下方の下端胴部外局面には円板状のギヤ体G
が支柱20と一体的に形成されている。
The column 20 is formed in a hollow cylindrical shape with its upper end 21 closed, and the inner diameter of the column 20 is slightly larger than the outer diameter of the optical device 12.
1 has a handle 22 protruding from it, and a disc-shaped gear body G is provided on the outer surface of the lower end body below the lowest reaction vessel holder E1.
is formed integrally with the support column 20.

ま次支柱20の胴部外周より水平方向に突設された各段
の反応容器ホルダEには、特に第3図に示すように前記
反応容器Aを収容する有底状の収容孔24が等間隔に複
数個開設されており、これらの各収容孔24には、回礼
24の長軸方向と直交する水平方向に沿って導光孔25
が貫通形成されている。つまり各導光孔25は、反応容
器ホルダE、の外周壁26から収容孔24を経て支柱2
0の中空部27へと直線上に夫々開設されており、該導
光孔5の支柱側端部は、その軸心が測定位置で前記光学
器【2の孔[4の軸心と合致するよう形成されている。
As shown in FIG. 3, the reaction vessel holders E at each stage, which are horizontally protruded from the outer periphery of the body of the secondary support 20, are provided with a bottomed accommodation hole 24 for accommodating the reaction vessel A. A plurality of light guide holes 25 are formed at intervals, and a light guide hole 25 is formed in each of these accommodation holes 24 along a horizontal direction perpendicular to the long axis direction of the light guide hole 24.
is formed through it. In other words, each light guiding hole 25 is connected to the column 2 from the outer peripheral wall 26 of the reaction container holder E through the accommodation hole 24.
The light guide holes 5 are opened on a straight line into the hollow parts 27 of the optical device [2], and the pillar side ends of the light guide holes 5 have their axes aligned with the axes of the holes [4] of the optical device [2] at the measurement position. It is formed like this.

このように構成された反応容器ホルダEはその下端部が
支持台30上に載置された状態で保持されると共に、垂
直に立設された光学器12を支柱20の中空部27に嵌
合してなる反応容器ホルダEは、光学器L2の軸心方向
に沿って昇降動可能で、かつ回器12の周方向に沿って
回転可能な状態で上記支持台30に載置されている。
The reaction vessel holder E configured in this manner is held with its lower end placed on the support stand 30, and the vertically erected optical device 12 is fitted into the hollow portion 27 of the support column 20. The reaction container holder E is placed on the support base 30 in a manner that it can move up and down along the axial direction of the optical device L2 and can rotate along the circumferential direction of the rotating device 12.

すなわち、上記支持台30は、反応容器ホルダEのギヤ
体G下面と当接して反応容器ホルダEをベアリング31
を介して回転可能に保持する支持部32と、回部32の
下方に一体形成され、回部32の直径より大きい直径を
有する本体部33とから構成されている。また支持台3
0には、第2図に示すように、内径が光学器12の胴部
外径よシ若干大径の孔あが上記支持部32と本体部33
ヲ上下に貫通して開設されており、回礼34の内周壁に
配設されたベアリング35を介して支持台30は光学器
12の長軸方向(垂直方向)に沿って昇降動可能に光学
器12に嵌装されている。この支持台30の昇降動は昇
降駆動装置40を介して支持台両側に1対づつ並設され
た図示外の案内レールに沿って駆動案内される。
That is, the support stand 30 is in contact with the lower surface of the gear body G of the reaction vessel holder E, and the reaction vessel holder E is supported by the bearing 31.
The main body 33 is integrally formed below the rotating portion 32 and has a diameter larger than the diameter of the rotating portion 32. Also, support stand 3
As shown in FIG.
The support table 30 is vertically penetrated through the optical device 12, and the support table 30 can move up and down along the long axis direction (vertical direction) of the optical device 12 via a bearing 35 disposed on the inner circumferential wall of the optical device 12. It is fitted in 12. The vertical movement of the support table 30 is driven and guided via a lift drive device 40 along a pair of guide rails (not shown) arranged in parallel on both sides of the support table.

昇降駆動装置40は、前記光学器12の下端が固着され
たベースFに配設されてなるモータMと、このそ−タM
によって回転される一対の主プーリ41 、41と、こ
れら主プ・−IJ 41 、41の垂直上方位置に配設
された一対の従動プーリ42 、42と、この主プーリ
41 、41と従動プーリ42 、42に懸架されタチ
ェーンベル) 43 、43とから構成されてお秒、こ
れら主プーリ41 、41.従動プーリ42゜42及び
チェーンベル) 43 、43は夫々が一組の駆動機構
を構成して支持台(9)の本体部部の両側部に隣設され
立設されていると共に、本体部おの両側部はこの両側部
に配設されてなるチェーンベル) 43 、43に固定
されており、従って支持台30は光学器120周方向に
は回動することなくモータMの駆動によって、光学器1
2の長軸方向に沿ってのみ昇降案内されるものである。
The lifting drive device 40 includes a motor M disposed on a base F to which the lower end of the optical device 12 is fixed;
A pair of main pulleys 41 , 41 rotated by a pair of main pulleys 41 , 41 , a pair of driven pulleys 42 , 42 arranged vertically above these main pulleys 41 , 41 , and a pair of driven pulleys 42 , 42 which are rotated by the main pulleys 41 , 41 and the driven pulley 42 . , 42 (chain bells) 43, 43, and these main pulleys 41, 41. The driven pulleys 42, 42 and chain bells 43 and 43 each constitute a set of drive mechanisms, and are installed adjacent to and erected on both sides of the main body of the support base (9). Both sides of the optical device 120 are fixed to chain bells (43, 43) disposed on both sides of the optical device 120, so that the support stand 30 does not rotate in the circumferential direction of the optical device 120, but is driven by the motor M to support the optical device 120. 1
It is guided up and down only along the long axis direction of 2.

尚、従動ブー1742 、42の配設高さは、支持台3
0が最上昇位置にあるとき、この支持台30に載置され
た反応容器ホルダEの最下段ホルダElの上面が、前記
サンプル分注装置C及び試薬分注装置Rの各ピペット水
平移動面、つま抄ピペット下端の作動面より若干下方に
位置してピペットが上記反応容器ホルダElの外側壁及
び反応容器Aの上端部と衝合しない位置にセットされる
ように配設されている。
Note that the installation height of the driven boos 1742 and 42 is higher than that of the support base 3.
0 is at the highest position, the upper surface of the lowermost holder El of the reaction container holder E placed on this support stand 30 is the pipette horizontal movement surface of the sample dispensing device C and the reagent dispensing device R, The pipette is located slightly below the operating surface of the lower end of the pipette so that the pipette is set in a position that does not abut the outer wall of the reaction container holder El and the upper end of the reaction container A.

また、前記支持白菊の本体部おには、反応容器ホルダE
を光学器12の外周面の周方向に間欠回動させる回転駆
動装置50が配設されており同装置50を構成するそ一
タmの回転軸先端には、第2図に示すように前記反応容
器ホルダEをセットしたときに同ホルダEのギヤ体Gと
噛合し、同ホルダEを光学器120円周方向に沿って回
転させるための駆動ギヤgが配設されている。
In addition, a reaction vessel holder E is attached to the main body of the supporting white chrysanthemum.
A rotary drive device 50 for intermittently rotating the optical device 12 in the circumferential direction of the outer circumferential surface of the optical device 12 is disposed. A drive gear g is provided that meshes with a gear body G of the reaction vessel holder E when it is set, and rotates the holder E along the circumferential direction of the optical device 120.

尚、前記受光器15は、前記サンプル分注装置Cと試薬
分注装置Rの前記作動面より複数段分下方に配設されて
いる。
The light receiver 15 is disposed several steps below the operating surfaces of the sample dispensing device C and the reagent dispensing device R.

次にこのように構成された自動分析装置Xの作用につい
て説明する。
Next, the operation of the automatic analyzer X configured as described above will be explained.

各段の反応容器ホルダEl乃至E5に開設された反応容
器Aの収容孔24夫々に、別途洗浄処理が施こされた反
応容器Aを収容させ、この後反応容器ホルダEを光学器
12の上方よシ把手nを把持して挿着し、最上昇位置に
セットされた支持台園の支持部32上恍載置する。この
とき反応容器ホルダEの下端に配設されたギヤ体Gは駆
動ギヤgと噛合するようセットする。
The reaction vessels A that have been separately cleaned are accommodated in the accommodation holes 24 for the reaction vessels A opened in the reaction vessel holders El to E5 of each stage, and then the reaction vessel holders E are placed above the optical device 12. Grasp the handle n and insert it, and place it on the support part 32 of the support stand set at the highest position. At this time, the gear body G disposed at the lower end of the reaction vessel holder E is set to mesh with the drive gear g.

この状態から図示外のスタートスイッチをオンするとモ
ータmが間欠駆動して反応容器ホルダEを反応容器Aの
配役間隔毎に間欠回動させると共に、テンプラS及びサ
ンプル分注装置Cも始動しサンプル容器内の検体が最下
段の反応容器ホルダElに保持された反応容器A内に順
次所要量分注する。
In this state, when a start switch (not shown) is turned on, the motor m is driven intermittently to rotate the reaction vessel holder E intermittently at each interval for placing the reaction vessels A, and the TEMPRA S and sample dispensing device C are also started. The required amount of the sample is sequentially dispensed into the reaction container A held in the lowermost reaction container holder El.

このようにして検体が分注された反応容器Aが間欠移送
されて試薬分注位置に到来すると、反応容器ホルダEl
の全反応容器A内には試薬分注装置Rを介して測定項目
に対応する例えばGPT分析用の第1試薬及び必要に応
じて第2試薬が分注される。この場合、測定項目に対応
する試薬が収容された試薬ボトル5は、検体が試薬分注
位置に到来するのに同期して試薬分注位置に到来するよ
う図示外の駆動制御装置を介してボトルホルダ6を駆動
制御する。
When the reaction container A into which the sample has been dispensed in this way is intermittently transferred and reaches the reagent dispensing position, the reaction container holder El
A first reagent for GPT analysis, for example, corresponding to the measurement item, and a second reagent if necessary, are dispensed into all the reaction containers A via the reagent dispensing device R. In this case, the reagent bottle 5 containing the reagent corresponding to the measurement item is moved to the reagent dispensing position via a drive control device (not shown) so that the reagent bottle 5 arrives at the reagent dispensing position in synchronization with the arrival of the sample at the reagent dispensing position. The holder 6 is driven and controlled.

このようにして最下段の反応容器ホルダElに保持され
た全ての反応容器Aに検体及び測定項目に対応する試薬
が分注し終えると、この終了タイミングを図示外の制御
装置が検知して昇降駆動装置40が始動し、支持台(9
)はモータMの間欠回動によって間欠下降する。この下
降量は、反応容器ホルダ8間の各高さ間隔長さと同じで
ある。このようにして反応容器ホルダE1が測定位置ま
で間欠移送され、かつ反応容器ホルダE2が前記サンプ
ル分注面及び試薬分注面と同一平面となる位置まで移送
されるとこの間欠移送終了タイミングを図示外の制御装
置が検知して前記モータmを前記と同様間欠回動させ、
反応容器ホルダE2の各反応容器A内には前記反応容器
ホルダE1の反応容器Aへの検体分注及び試薬分注と同
様の手順で検体及び反応容器ホルダE1で分注された試
薬とは異なる測定項目に対応する試薬の分注が順次行な
われ、他方反応容器ホルダEIK保持された反応容器A
内の検体と試薬との反応液は、光学器12の光源10よ
り照射され反射鏡11で反射されて孔14から導光孔5
に導びかれた測定光!によって照射され、受光器15で
測定項目に対応する波長が選択されて所要の光学分析が
行われる。以後、反応容器ホルダE3乃至EsK保持さ
れ九各反応容器AKは上記反応容器ホルダEl、Ezの
反応容器Aと同様の手順に従って検体分注、反応容器ホ
ルダEt 、Ezで分注された試薬とは異なる試薬の分
注及び所定の光学測定が行なわれる。
When the sample and the reagent corresponding to the measurement item have been dispensed into all the reaction vessels A held in the lowest reaction vessel holder El in this way, a control device (not shown) detects this completion timing and raises and lowers the The drive device 40 starts and the support base (9
) is intermittently lowered by the intermittent rotation of the motor M. This amount of descent is the same as the length of each height interval between the reaction vessel holders 8. In this way, when the reaction container holder E1 is intermittently transferred to the measurement position and the reaction container holder E2 is transferred to a position where it is flush with the sample dispensing surface and the reagent dispensing surface, the timing at which this intermittent transfer ends is illustrated. an external control device detects and rotates the motor m intermittently in the same manner as above;
In each reaction vessel A of the reaction vessel holder E2, a sample and a reagent different from those dispensed in the reaction vessel holder E1 are placed in the same manner as the sample and reagent dispensed into the reaction vessel A of the reaction vessel holder E1. The reagents corresponding to the measurement items are sequentially dispensed, while the reaction vessel A holding the reaction vessel holder EIK
The reaction solution of the sample and the reagent inside is irradiated by the light source 10 of the optical device 12, reflected by the reflecting mirror 11, and passed through the hole 14 to the light guiding hole 5.
Measuring light guided by! The light receiver 15 selects the wavelength corresponding to the measurement item and performs the required optical analysis. Thereafter, each of the nine reaction vessels AK held by the reaction vessel holders E3 to EsK is subjected to sample dispensing according to the same procedure as the reaction vessel A of the reaction vessel holders El and Ez, and the reagents dispensed by the reaction vessel holders Et and Ez are Dispensing of different reagents and predetermined optical measurements are carried out.

このようにして全ての反応容器Aに収容された検体と試
薬との反応液の光学測定が終了すると、把手22を把持
して反応容器ホルダEを光学器12から引き抜き、各反
応容器Aを各反応容器ホルダEl乃至E5の収容孔Uか
ら取り外し、これら取抄外された各反応容器Aは別途設
けられた洗浄装置又は手作業によシ洗浄し、前記したよ
うに反応容器ホルダEにリセットして再使用される。尚
、サンプラS1サンプル分注装置C1試薬供給装置R1
試薬分注装置D1光学測定装置H1昇降駆動装置40及
び回転駆動装置50の駆動制御は、図示外の公知構成よ
りなる制御装置によって行なわれる。
When the optical measurement of the reaction liquid of the sample and reagent contained in all the reaction vessels A is completed in this way, the reaction vessel holder E is pulled out from the optical device 12 by grasping the handle 22, and each reaction vessel A is separated. The reaction containers A are removed from the accommodation holes U of the reaction container holders El to E5, and each of the removed reaction containers A is cleaned using a separately provided cleaning device or manually, and then reset to the reaction container holder E as described above. and reused. In addition, sampler S1 sample dispensing device C1 reagent supply device R1
The drive control of the reagent dispensing device D1, the optical measurement device H1, the lifting drive device 40, and the rotation drive device 50 is performed by a control device having a known configuration not shown.

第4図は、この発明の第2実施例に係る自動分析装置を
示すものであって、この実施例では前記第1実施例のご
とく反応容器ホルダE各段毎に一項目分析を行うもので
はなく各段毎に二項目分析を行うように構成した他は、
他の構成及び作用は第1実施例と同一であるので、ここ
ではその詳細な説明を省略する。
FIG. 4 shows an automatic analyzer according to a second embodiment of the present invention. In this embodiment, unlike the first embodiment, one item of analysis is performed for each stage of the reaction vessel holder E. In addition to configuring the system to perform two-item analysis for each stage,
Since the other configurations and operations are the same as those of the first embodiment, detailed explanation thereof will be omitted here.

すなわち、この実施例に係る自動分析装置は、−の反応
容器ホルダEに保持された複数の反応容器Aのうち、そ
の半分の反応容器Alで−の項目分析を行い、他の半分
の反応容器A2で他の−の項目分析を行うよう試薬の分
注を制御したもので、このように構成することで、反応
容器ホルダEが5段配設されている第1実施例の自動分
析装置に比べ分析項目数が、反応容器ホルダEの段数を
増加させることなく2倍となシ、よシ綿密な血液情報が
得られる。勿論必要に応じて−の反応容器ホルダEで三
項目以上の分析を行うこともこの第2実施例に係る制御
手段を適宜応用することで可能である。
That is, the automatic analyzer according to this embodiment performs the - item analysis on half of the reaction vessels Al among the plurality of reaction vessels A held in the - reaction vessel holder E, and analyzes the - items on the other half of the reaction vessels Al. The dispensing of reagents is controlled so that the analysis of the other - items is performed in A2. With this configuration, the automatic analyzer of the first embodiment, in which five reaction vessel holders E are arranged, can be used. The number of analysis items is doubled without increasing the number of stages of the reaction container holder E, and more detailed blood information can be obtained. Of course, it is also possible to carry out analyzes of three or more items using the negative reaction vessel holder E, if necessary, by appropriately applying the control means according to the second embodiment.

尚、上記各実施例では、反応容器ホルダEが間欠下降す
るよう構成されている場合を例にとり説明し九が、間欠
上昇させつつ各サンプル分注、試薬分注及び光学測定を
行うように構成しても効果は同一であり、また同反応容
器ホルダEを垂直方向に間欠移送する昇降駆動装置40
も各種ギヤを利用して構成した駆動装置又は各種ピスト
ンを利用した昇降装置によって構成しても同様の効果が
得られる。
In each of the above embodiments, the case where the reaction container holder E is configured to be intermittently lowered will be explained as an example, and in Example 9, each sample dispensing, reagent dispensing, and optical measurement are performed while being intermittently raised. The effect is the same even if the reaction container holder E is vertically moved intermittently by the lifting drive device 40.
Similar effects can also be obtained by constructing a drive device using various gears or a lifting device using various pistons.

また、前記各実施例では、テンプラSと試薬供給装置R
を同一平面位置に並設するとともに、サンプル分注装置
Cと試薬分注装置りの各作業面を同一平面となるようセ
ットした場合を例にと9説明したが、この発明にあって
はこれに限定されず、サンプラS及びサンプル分注装置
Cと試薬供給装置R及び試薬分注装置りとを段を異なら
しめて配設しても同様の効果が得られ、或いはサンプラ
S及びサンプル分注装置Cと試薬供給装置R及び試薬分
注装置りと光学測定装置の受光器15を垂直方向に順に
配置しても同様の効果が得られる。
In addition, in each of the above embodiments, Tempura S and reagent supply device R
9 has been explained using an example in which the work surfaces of the sample dispensing device C and the reagent dispensing device C are set to be on the same plane. However, the same effect can be obtained even if the sampler S and the sample dispensing device C and the reagent supply device R and the reagent dispensing device are arranged in different stages, or the sampler S and the sample dispensing device A similar effect can be obtained by arranging C, the reagent supply device R, the reagent dispensing device R, and the light receiver 15 of the optical measuring device in order in the vertical direction.

〔発明の効果〕〔Effect of the invention〕

この発明は以上説明したように、複数の反応容器ホルダ
毎に一以上の項目測定が行なわれるように構成され、し
かもこの分析は反応容器ホルダがセットされると最後の
段の反応容器ホルダに保持された反応容器の測定分析が
終了するまで連続的に行なわれるので、複数の血液分析
情報を短時間に得ることができるとともに、取扱いが容
易であ抄、また同一の反応容器で異なる項目の分析を行
なわないのでキャリーオーバーが発生する虞れが全くな
く常に信頼性のある血液データを得ることができる他、
洗浄装置が組み込まれていないこと及び複数個の反応容
器ホルダが縦に配列されているので自動分析装置全体を
大幅に小型化でき、しかも構成が簡易であるので低価格
で提供することができる。
As explained above, this invention is configured such that one or more item measurements are performed for each of a plurality of reaction vessel holders, and furthermore, once the reaction vessel holders are set, this analysis is held in the last stage reaction vessel holder. Since the measurement and analysis of the reaction vessels are carried out continuously until the end, it is possible to obtain multiple pieces of blood analysis information in a short time, and it is easy to handle, and it is also possible to analyze different items in the same reaction vessel. Since there is no risk of carryover occurring, reliable blood data can always be obtained.
Since no washing device is incorporated and a plurality of reaction vessel holders are arranged vertically, the entire automatic analyzer can be significantly downsized, and the structure is simple, so it can be provided at a low price.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の第1実施例に係る自動分析装置の構
成を概略的に示す平面図、嬉2図は同装置の要部を示す
第1図i−n線拡大断面図、第3図は反応容器ホルダの
一部を切欠して示す斜視図、第4図はこの発明の第2実
施例に係る自動分析装置の反応容器ホルダの使用例を示
す平面説明図である。 X・・・自動分析装置  A・・・反応容器C・・・サ
ンプル分注装置 D・・・試薬分注装置E・・・反応容
器ホルダ  H・・・光学測定装置20・・・支柱  
    40・・・昇降駆動装置50・・・回転駆動装
置 特許出願人 日本テクトロン株式会社 M2図
FIG. 1 is a plan view schematically showing the configuration of an automatic analyzer according to a first embodiment of the present invention, FIG. The figure is a partially cutaway perspective view of the reaction container holder, and FIG. 4 is an explanatory plan view showing an example of use of the reaction container holder of the automatic analyzer according to the second embodiment of the present invention. X... Automatic analyzer A... Reaction container C... Sample dispensing device D... Reagent dispensing device E... Reaction container holder H... Optical measurement device 20... Support
40... Lifting drive device 50... Rotating drive device Patent applicant Nihon Tektron Co., Ltd. M2 diagram

Claims (1)

【特許請求の範囲】[Claims] 所要数の反応容器を等間隔に保持する反応容器ホルダと
、これらの各反応容器に検体を分注するサンプル分注装
置と、検体が分注された反応容器に測定項目に対応する
試薬を分注する試薬分注装置と、検体の反応状態を光学
的に測定する光学測定装置とを備えてなる自動分析装置
において、上記反応容器ホルダは支柱の長軸方向に沿つ
て複数個取り付けられ、該複数個の反応容器ホルダの夫
々は、そのホルダ上面が前記サンプル分注装置及び試薬
分注装置の作動面と面一となる位置に到来するよう順次
垂直方向に間欠移送され、かつ上記各反応容器ホルダは
、上記検体分注及び試薬分注に適するタイミングで回動
して反応容器を各分注位置に移送するよう構成されてい
ることを特徴とする自動分析装置。
A reaction vessel holder that holds the required number of reaction vessels at equal intervals, a sample dispensing device that dispenses the specimen into each of these reaction vessels, and a reagent that corresponds to the measurement item into the reaction vessels into which the specimen has been dispensed. In an automatic analyzer equipped with a reagent dispensing device for dispensing a reagent, and an optical measurement device for optically measuring the reaction state of a specimen, a plurality of the reaction container holders are attached along the longitudinal direction of the column, and Each of the plurality of reaction vessel holders is sequentially and intermittently transferred vertically so that the upper surface of the holder is flush with the operating surface of the sample dispensing device and the reagent dispensing device, and each of the reaction vessels An automatic analyzer characterized in that the holder is configured to rotate at a timing suitable for the sample dispensing and reagent dispensing to transfer the reaction container to each dispensing position.
JP9054585A 1985-04-26 1985-04-26 Automatic analyzing device Pending JPS61247972A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9054585A JPS61247972A (en) 1985-04-26 1985-04-26 Automatic analyzing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9054585A JPS61247972A (en) 1985-04-26 1985-04-26 Automatic analyzing device

Publications (1)

Publication Number Publication Date
JPS61247972A true JPS61247972A (en) 1986-11-05

Family

ID=14001383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9054585A Pending JPS61247972A (en) 1985-04-26 1985-04-26 Automatic analyzing device

Country Status (1)

Country Link
JP (1) JPS61247972A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05288755A (en) * 1992-04-14 1993-11-02 Kao Corp Automatic analyzer
JP2007017413A (en) * 2005-07-11 2007-01-25 Olympus Corp Autoanalyzer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5045689A (en) * 1973-08-27 1975-04-23
JPS6069562A (en) * 1983-09-26 1985-04-20 Koichi Wakatake Disc for holding vessel in automatic analyzing device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5045689A (en) * 1973-08-27 1975-04-23
JPS6069562A (en) * 1983-09-26 1985-04-20 Koichi Wakatake Disc for holding vessel in automatic analyzing device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05288755A (en) * 1992-04-14 1993-11-02 Kao Corp Automatic analyzer
JP2007017413A (en) * 2005-07-11 2007-01-25 Olympus Corp Autoanalyzer

Similar Documents

Publication Publication Date Title
EP1465728B1 (en) Stackable aliquot vessel array
US5270211A (en) Sample tube entry port for a chemical analyzer
EP2253960B1 (en) Automatic loading of sample tubes for clinical analyzer
US10613106B2 (en) Reaction vessel handling apparatus, testing apparatus, and methods using same
GB2199407A (en) Automated patient sample analysis instrument
JPH0526883A (en) Automatic analyzer
JPH0565825B2 (en)
JPS61247972A (en) Automatic analyzing device
EP0336309A2 (en) A selective or sequential access analyzer for clinico-chemical analyses and for immunological tests
JPH0275959A (en) Automatic analysis apparatus
JPH0225754A (en) Automatic analyzing device
JPS61247974A (en) Holding device for reaction container
JPH0371072B2 (en)
JPS61247973A (en) Holding device for reaction container
JPS61247971A (en) Automatic analyzing device
JPS62133355A (en) Eia automatic analyzer
JPH03140869A (en) Automatic apparatus for chemical analysis
JP2009053028A (en) Automatic analyzer
JPH06288916A (en) Biochemically analyzing method
JPS62115370A (en) Sample holder
JPS61187660A (en) Simple and automatic blood analyser
JPH04279862A (en) Automatic analyzer
JPH0353174Y2 (en)
JPH03202773A (en) Reagent pipetting apparatus of automatic analyser
JPH0420145B2 (en)