JPS6112345B2 - - Google Patents

Info

Publication number
JPS6112345B2
JPS6112345B2 JP52068000A JP6800077A JPS6112345B2 JP S6112345 B2 JPS6112345 B2 JP S6112345B2 JP 52068000 A JP52068000 A JP 52068000A JP 6800077 A JP6800077 A JP 6800077A JP S6112345 B2 JPS6112345 B2 JP S6112345B2
Authority
JP
Japan
Prior art keywords
nickel
active material
ozone
hydroxide
oxidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52068000A
Other languages
Japanese (ja)
Other versions
JPS544335A (en
Inventor
Takahisa Oosaki
Tamotsu Shirogami
Juichi Sato
Masao Koyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP6800077A priority Critical patent/JPS544335A/en
Publication of JPS544335A publication Critical patent/JPS544335A/en
Priority to JP57162186A priority patent/JPS5873964A/en
Publication of JPS6112345B2 publication Critical patent/JPS6112345B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はオゾン酸化法によるアルカリ電池用ニ
ツケル活物質の製造方法の改良に関する。 従来アルカリ電池用ニツケル活物質の製造方法
として、例えば苛性アルカリ溶液と臭素水あるい
は次亜塩素酸塩溶液などの酸化剤との混合溶液中
に硝酸ニツケル、硫酸ニツケルのごときニツケル
塩溶液を加えてニツケル酸化物を生成しこれをニ
ツケル活物質とする方法、あるいは粉末の水酸化
第1ニツケルを乾燥状態でオゾン含有ガスにて酸
化しニツケル酸化物としこれをニツケル活物質と
るオゾン酸化法などがある。この内オゾン酸化に
よるニツケル活物質の製造法は、粉末の水酸第1
ニツケルに直接オゾンを接触させてニツケル酸化
物とするものであり、前者に比べ水洗、脱水、乾
燥、粉砕の工程が不要であるばかりか、大量のア
ルカリ溶液や爆発性の次亜塩素酸ソーダ溶液など
を必要とせず、また反応後の排ガス処理が容易で
あるなど工業的に極めて有効な方法である。しか
し従来オゾン酸化によるニツケル酸化物の生成は
反応効率が低く、酸化度の高いニツケル活物質を
得るには大量のオゾンと長時間接触させる必要が
あるため生成ニツケル活物質が高価となるのみな
らず、通常この方法で生成したニツケル酸化物は
酸化が不充分で水酸化第1ニツケルの表面のみが
酸化されて粉末中心部までニツケル酸化物に変化
しておらず電気抵抗の高い水酸化第1ニツケルが
中心に残る。従つてこれを電池活物質として使用
すると電池内部抵抗が増加するほか電池活物質の
容量が小さく、且つ放電性能の低下も急激になる
などの欠点が認められた。 本発明は放電容量が著しく向上し、かつ放電特
性も平担な性能を示すニツケル活物質を少量のオ
ゾン量により効率よく得ることのできるアルカリ
電池用ニツケル活物質の製造方法を提供すること
を目的とする。 本発明は水酸化第1ニツケルにマンガン、銀お
よびそれらの化合物の少なくとも一種と、苛性ア
ルカリとを添加した後、オゾン含有ガス流により
酸化せしめたアルカリ電池用ニツケル活物質の製
造方法である。 なお本発明において、オゾン酸化反応時に共存
させる金属または金属化合物は、マンガン、銀ま
たはこれらの酸化物、水酸化物、硫酸塩、硝酸塩
などであり、これらは1種または2種以上の混合
物としても用いてもよい。 また、苛性アルカリとしては苛性カリウム、苛
性ソーダ、水酸化リチウム、水酸化ルビジウム、
水酸化セシウムなどを用いることができる。 つまり、本発明は水酸化第1ニツケルの酸化時
にマンガン、銀などと苛性アルカリとが共存する
ことによりそれらが相乗的に触媒の如き役割を果
して酸化反応を促進する結果水酸化第1ニツケル
の酸化が高効率で進行し、未反応で排出されるオ
ゾン量が大幅に減少するとともに、廉価良質なニ
ツケル活物質を合成するものである。 以下本発明を実施例により説明する。 実施例 I 80メツシユパス水酸化第1ニツケル200g、二
酸化マンガン10gと80メツシユパス苛性カリウム
粉末20gとを充分混合した後、この混合物を二頭
フラスコ中に入れマグネチツクスターラーを用い
てフラスコ内の粉末を撹拌しながらオゾン含有ガ
スを通過させ、水酸化第1ニツケルを酸化して黒
色のニツケル酸化物を合成しニツケル活物質を得
た。次にこのニツケル活物質80gと鱗状黒鉛
1.5g、ポリスチレン0.5gとを充分混合した後この
粉末1.0gを採取し加圧成形して得たニツケル陽極
と、この陽極に対し3倍の放電容量を有する亜鉛
板を対極として5mA/cm2の定電流放電を30%苛
性カリウム溶液電解液中で行い終止電圧1.0Vと
した場合の通過オゾン量と放電容量との関係を調
べた結果を第1図に示す。 なお比較例としては実施例Iにおいて二酸化マ
ンガンおよび苛性カリウムを添加せず水酸化第1
ニツケルだけをオゾン酸化して活物質を得た場
合、また水酸化第1ニツケルに二酸化マンガンの
みを添加してオゾン酸化してニツケル活物質を得
た場合を、第1図に併せて示した。 第1図から明らかなように本発明方法によれば
比較例に比べ反応効率が増加しており、たとえば
本発明法(曲線A)では水酸化第1ニツケル1モ
ル当り1モルのオゾンと反応させることによつて
250mAn/gの容量をもつ活物質が得られたのに
比べ、水酸化第1ニツケルに二酸化マンガンのみ
を添加してオゾン酸化したもの(曲線B)は同程
度の容量を持つ活物質を得るために4倍量以上の
オゾンが必要であり、また水酸化第1ニツケルの
みのオゾン酸化によるニツケル活物質(曲線C)
は更に多量のオゾンを必要とする。 実施例 80メツシユパス水酸化第1ニツケル100gと酸
化銀5gと、80メツシユパス苛性ソーダ粉末10gと
を充分混合した後この混合物を二頭フラスコ中に
入れマグネチツクスターラーを用いてフラスコ内
の粉末を撹拌しながら水酸化第1ニツケル1モル
当り1モルのオゾンと反応させ黒色のニツケル酸
化物を合成し活物質を得た。次にこのニツケル活
物質8.0gと鱗状黒鉛1.5gとポリスチレン0.5gとを
充分混合した後この粉末0.5gを採取し予備成形後
第2図に示す如くJIS規格H―C型電池陽極罐2
に金属リング3とともに加圧充填し陽極体1を構
成した。しかるに前記陽極体1上に8モル/濃
度の苛性カリウム水溶液0.05c.c.を滴下し、ナイロ
ン不織布からなるセパレータ4を介して亜鉛を主
体とする陰極体0.25gを載せ、さらに陰極端子兼
用蓋7を絶縁性のパツキン6を介して設け前記陽
極罐2の開口部を密封しニツケル・亜鉛電池を作
製した。第1表及び第3表に実施例に於けるニ
ツケル・亜鉛電池の500Ω連続放電結果を示す
(曲線A)。比較例は水酸化第1ニツケルに酸化銀
のみを添加した場合(曲線B)と水酸化第1ニツ
ケル単独の場合(曲線C)とにつき、それぞれ第
1表の如く通過オゾン量を変えて酸化を行つたニ
ツケル活物質を用いて作製したニツケル・亜鉛電
池の500Ω連続放電結果である。
The present invention relates to an improvement in a method for producing nickel active materials for alkaline batteries using an ozone oxidation method. Conventionally, nickel active materials for alkaline batteries have been produced by adding a nickel salt solution such as nickel nitrate or nickel sulfate to a mixed solution of a caustic alkaline solution and an oxidizing agent such as bromine water or a hypochlorite solution. There is a method of producing an oxide and using it as a nickel active material, or an ozone oxidation method of oxidizing powdered nickel hydroxide in a dry state with an ozone-containing gas to form nickel oxide, which is used as a nickel active material. Of these, the method for producing nickel active materials by ozone oxidation is
Nickel is made into nickel oxide by directly contacting ozone with nickel, and compared to the former, it does not require washing, dehydration, drying, and pulverization processes, and it also eliminates the need for large amounts of alkaline solution and explosive sodium hypochlorite solution. It is an extremely effective method industrially, as it does not require any other substances, and it is easy to treat the exhaust gas after the reaction. However, the conventional production of nickel oxide by ozone oxidation has low reaction efficiency, and to obtain a nickel active material with a high degree of oxidation, it is necessary to contact it with a large amount of ozone for a long time, which not only makes the produced nickel active material expensive. Usually, the nickel oxide produced by this method is insufficiently oxidized, and only the surface of the nickel hydroxide is oxidized, and the center of the powder does not change to nickel oxide, resulting in a high electrical resistance of the nickel oxide hydroxide. remains in the center. Therefore, when this material is used as a battery active material, there are drawbacks such as an increase in battery internal resistance, a small capacity of the battery active material, and a rapid decline in discharge performance. An object of the present invention is to provide a method for producing a nickel active material for alkaline batteries, which can efficiently obtain a nickel active material with significantly improved discharge capacity and uniform discharge characteristics using a small amount of ozone. shall be. The present invention is a method for producing a nickel active material for an alkaline battery, in which at least one of manganese, silver and their compounds, and caustic alkali are added to nickel hydroxide, and the mixture is then oxidized with an ozone-containing gas flow. In the present invention, the metal or metal compound coexisting during the ozone oxidation reaction is manganese, silver, or their oxides, hydroxides, sulfates, nitrates, etc., and these may be used alone or as a mixture of two or more. May be used. In addition, caustic alkalis include caustic potassium, caustic soda, lithium hydroxide, rubidium hydroxide,
Cesium hydroxide or the like can be used. In other words, in the present invention, when manganese, silver, etc. and caustic alkali coexist during the oxidation of nickel hydroxide, they synergistically play a role like a catalyst and promote the oxidation reaction, resulting in the oxidation of nickel hydroxide. The process proceeds with high efficiency, significantly reduces the amount of unreacted ozone emitted, and synthesizes low-cost, high-quality nickel active materials. The present invention will be explained below with reference to Examples. Example I After thoroughly mixing 200 g of 80 mesh pass nickel hydroxide, 10 g of manganese dioxide, and 20 g of 80 mesh pass caustic potassium powder, the mixture was placed in a two-headed flask and the powder in the flask was stirred using a magnetic stirrer. At the same time, an ozone-containing gas was passed through the reactor to oxidize the primary nickel hydroxide to synthesize black nickel oxide and obtain a nickel active material. Next, 80g of this nickel active material and scaly graphite
After sufficiently mixing 1.5 g of polystyrene and 0.5 g of polystyrene, 1.0 g of this powder was taken and pressure molded to obtain a nickel anode, and a zinc plate having a discharge capacity three times that of this anode was used as a counter electrode to generate 5 mA/cm 2 . Figure 1 shows the results of examining the relationship between the amount of ozone passing through and the discharge capacity when a constant current discharge was performed in a 30% caustic potassium solution electrolyte with a final voltage of 1.0V. In addition, as a comparative example, in Example I, manganese dioxide and caustic potassium were not added and hydroxide was used.
FIG. 1 also shows a case in which an active material was obtained by ozone oxidation of only nickel, and a case in which a nickel active material was obtained by ozone oxidation with only manganese dioxide added to primary nickel hydroxide. As is clear from Figure 1, according to the method of the present invention, the reaction efficiency is increased compared to the comparative example. For example, in the method of the present invention (curve A), 1 mole of nickel hydroxide is reacted with 1 mole of ozone. depending on the matter
An active material with a capacity of 250 mAn/g was obtained, whereas an active material with a similar capacity was obtained by adding only manganese dioxide to nickel hydroxide and ozone oxidation (curve B). more than four times the amount of ozone is required, and nickel active material by ozone oxidation of only nickel hydroxide (curve C)
requires even more ozone. Example After thoroughly mixing 100 g of 80 mesh pass nickel hydroxide, 5 g of silver oxide, and 10 g of 80 mesh pass caustic soda powder, the mixture was placed in a two-headed flask and the powder in the flask was stirred using a magnetic stirrer. One mole of nickel hydroxide was reacted with 1 mole of ozone to synthesize a black nickel oxide to obtain an active material. Next, 8.0 g of this nickel active material, 1.5 g of scaly graphite, and 0.5 g of polystyrene were thoroughly mixed, and then 0.5 g of this powder was collected and preformed.
The anode body 1 was then filled together with a metal ring 3 under pressure. However, 0.05 cc of an 8 mol/concentration caustic potassium aqueous solution was dropped onto the anode body 1, 0.25 g of a cathode body mainly composed of zinc was placed on the separator 4 made of nylon nonwoven fabric, and the cathode terminal lid 7 was insulated. A nickel-zinc battery was fabricated by sealing the opening of the anode can 2 with a plastic gasket 6 interposed therebetween. Tables 1 and 3 show the results of 500Ω continuous discharge of the nickel-zinc battery in the example (curve A). Comparative examples are a case where only silver oxide is added to nickel hydroxide (curve B) and a case where nickel hydroxide alone is added (curve C), and the oxidation is carried out by changing the amount of ozone passing through as shown in Table 1. These are the results of a 500Ω continuous discharge of a nickel-zinc battery fabricated using a nickel active material.

【表】 第1表及び第3図から明らかなように本発明方
法は比較例に比べ数分の1のオゾン量で比較例よ
りも容量の大きなニツケル活物質を合成すること
ができるのみならず、本発明方法によるニツケル
活物質を用いた電池は比較例のニツケル活物質を
用いた電池に比較してより平担な放電特性を持つ
ていることがわかる。これは添加物としての酸化
銀と苛性ソーダとの相乗作用が水酸化ニツケルの
酸化時のみでなく、酸化後のニツケル酸化物の特
性にまで関与していることを示している。 実施例 80メツシユパス水酸化第1ニツケル100gと酸
化銀4gもしくは酸化マンガン4gと、80メツシユ
苛性カリウム粉末8gとを充分混合した後、この
混合物を二頭フラスコ中に入れてマグネチツクス
ターラーを用いてフラスコ内の粉末を撹拌しなが
らオゾン含有ガスを通過させ、水酸化第1ニツケ
ルを酸化して黒色のニツケル酸化物を合成しニツ
ケル活物質を得た。 次にこのニツケル活物質8.0gと鱗状黒鉛1.5g、
ポリスチレン0.5gとを充分混合した後この粉末
1.0gを採取し加圧成形して得たニツケル陽極と、
この陽極に対し3倍の放電容量を有する亜鉛板を
対極として5mA/cm2の定電流放電を30%苛性カ
リウム溶液電解液中で行い終止電圧1.0Vとした
場合の通過オゾン量と放電容量との関係を調べた
結果を第2表に示す。 比較例は水酸化第1ニツケル単独の場合及び水
酸化コバルト(4g)を用いた場合とにつきそれ
ぞれ活物質の放電容量と通過オゾン量との関係を
求めたものである。
[Table] As is clear from Table 1 and Figure 3, the method of the present invention is not only capable of synthesizing a nickel active material with a larger capacity than the comparative example with a fraction of the amount of ozone compared to the comparative example. It can be seen that the battery using the nickel active material according to the method of the present invention has more flat discharge characteristics than the battery using the nickel active material of the comparative example. This indicates that the synergistic effect of silver oxide and caustic soda as additives is involved not only in the oxidation of nickel hydroxide, but also in the properties of nickel oxide after oxidation. Example After thoroughly mixing 100 g of 80 mesh pass nickel hydroxide, 4 g of silver oxide or 4 g of manganese oxide, and 8 g of 80 mesh caustic potassium powder, the mixture was placed in a two-headed flask and stirred using a magnetic stirrer. Ozone-containing gas was passed through the powder while stirring to oxidize the primary nickel hydroxide to synthesize black nickel oxide and obtain a nickel active material. Next, 8.0g of this nickel active material and 1.5g of scaly graphite,
After thoroughly mixing with 0.5g of polystyrene, this powder
A nickel anode obtained by collecting 1.0g and press-molding it,
The amount of ozone passing through and the discharge capacity when a constant current discharge of 5 mA/cm 2 is performed in a 30% caustic potassium solution electrolyte with a zinc plate having three times the discharge capacity as the counter electrode and the final voltage is 1.0 V. Table 2 shows the results of examining the relationship between. In the comparative example, the relationship between the discharge capacity of the active material and the amount of ozone passing through was determined for the case of using nickel hydroxide alone and the case of using cobalt hydroxide (4 g), respectively.

【表】 第2表より明らかなように本発明法は従来法に
比べ少量のオゾン量で高い放電容量の活物質を得
ることができる。また添加物としての銀、マンガ
ンが水酸化第1ニツケルの酸化時のみでなく、酸
化後のニツケル酸化物の特性にまで関与するため
に本発明方法によるニツケル活物質を用いた電池
は比較例のニツケル活物質を用いた電池に比較し
てより平坦な放電特性を持ち、放電容量も増加し
ていることが確められた。なお、比較のため第2
表の水酸化コバルト及び苛性カリウムを用い4モ
ルのオゾンガスでオゾン酸化した場合の放電特性
を第3図に曲線Dとして併せて示した。第3図曲
線Aは、先に説明したように酸化銀、苛性ソーダ
を用い1モルのオゾンガスによりオゾン酸化した
ものである。同図から明らかなように本発明のも
のは(曲線A)、比較のもの(曲線D)にくらべ
オゾンガスが少ないにもかかわらず良好な放電特
性が得られていることがわかる。 尚上記実施例に於てそれぞれ二酸化マンガン、
酸化銀、苛性カリウム、苛性ソーダを用いたが他
にマンガン、銀の化合物としてそれらの硫酸塩、
水酸化物などをそして苛性アルカリとして水酸化
リチウム、水酸化ルビジウム、水酸化セシウムな
どを用いても同じような効果が得られた。 以上の如く本発明方法は水酸化第1ニツケルの
酸化時にマンガンあるいは銀の単体又はその化合
物の少くとも一種と苛性アルカリとが共存するこ
とによつて酸化反応が促進され、水酸化第1ニツ
ケルの酸化が高効率で進行するとともに、それら
添加物により生成後のニツケル活物質も放電容量
が大きく、放電曲線が平坦な特性を持つなどその
工業的価値は極めて大である。
[Table] As is clear from Table 2, the method of the present invention can obtain an active material with a high discharge capacity with a smaller amount of ozone than the conventional method. In addition, since silver and manganese as additives are involved not only in the oxidation of nickel hydroxide but also in the properties of nickel oxide after oxidation, the battery using the nickel active material according to the method of the present invention is different from the comparative example. It was confirmed that the battery had flatter discharge characteristics and increased discharge capacity compared to batteries using nickel active materials. In addition, for comparison, the second
The discharge characteristics when cobalt hydroxide and caustic potassium shown in the table were ozone oxidized with 4 mol of ozone gas are also shown as curve D in FIG. Curve A in FIG. 3 is obtained by ozone oxidation with 1 mol of ozone gas using silver oxide and caustic soda as described above. As is clear from the figure, it can be seen that the device of the present invention (curve A) has good discharge characteristics despite having less ozone gas than the comparative device (curve D). In the above examples, manganese dioxide,
Silver oxide, caustic potassium, and caustic soda were used, but in addition, manganese and silver compounds such as their sulfates,
Similar effects were obtained by using hydroxides and lithium hydroxide, rubidium hydroxide, cesium hydroxide, etc. as caustic alkalis. As described above, in the method of the present invention, the oxidation reaction is promoted by the coexistence of at least one of elemental manganese or silver or a compound thereof and caustic alkali during the oxidation of nickel hydroxide. Oxidation proceeds with high efficiency, and due to these additives, the produced nickel active material also has a large discharge capacity and a flat discharge curve, making it extremely valuable industrially.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法によるニツケル活物質の放
電容量と通過オゾン量との関係を示した曲線図、
第2図は本発明方法によるニツケル活物質を用い
たニツケル・亜鉛電池の断面図、第3図は本発明
方法によるニツケル活物質を用いたニツケル・亜
鉛電池の連続放電特性を示す曲線図。 1…ニツケル陽極体、2…陽極罐、3…金属リ
ング、4…セパレータ、5…亜鉛陰極、6…絶縁
パツキン、7…陰極端子兼用蓋である。
FIG. 1 is a curve diagram showing the relationship between the discharge capacity of the nickel active material and the amount of ozone passing through according to the method of the present invention;
FIG. 2 is a cross-sectional view of a nickel-zinc battery using the nickel active material according to the method of the present invention, and FIG. 3 is a curve diagram showing the continuous discharge characteristics of the nickel-zinc battery using the nickel active material according to the method of the present invention. DESCRIPTION OF SYMBOLS 1...Nickel anode body, 2...Anode can, 3...Metal ring, 4...Separator, 5...Zinc cathode, 6...Insulating packing, 7...Cathode terminal lid.

Claims (1)

【特許請求の範囲】[Claims] 1 水酸化第1ニツケルにマンガン、銀およびそ
れらの化合物の少なくとも一種と、苛性アルカリ
とを添加した後、オゾンガスにより酸化せしめる
ことを特徴とするアルカリ電池用ニツケル活物質
の製造方法。
1. A method for producing a nickel active material for an alkaline battery, which comprises adding at least one of manganese, silver, and their compounds, and a caustic alkali to nickel hydroxide, and then oxidizing the mixture with ozone gas.
JP6800077A 1977-06-10 1977-06-10 Method of making nickel active material for alkali cell Granted JPS544335A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP6800077A JPS544335A (en) 1977-06-10 1977-06-10 Method of making nickel active material for alkali cell
JP57162186A JPS5873964A (en) 1977-06-10 1982-09-20 Manufacture of nickel active mass for alkaline battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP6800077A JPS544335A (en) 1977-06-10 1977-06-10 Method of making nickel active material for alkali cell
JP57162186A JPS5873964A (en) 1977-06-10 1982-09-20 Manufacture of nickel active mass for alkaline battery

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP57162186A Division JPS5873964A (en) 1977-06-10 1982-09-20 Manufacture of nickel active mass for alkaline battery

Publications (2)

Publication Number Publication Date
JPS544335A JPS544335A (en) 1979-01-13
JPS6112345B2 true JPS6112345B2 (en) 1986-04-08

Family

ID=59858828

Family Applications (2)

Application Number Title Priority Date Filing Date
JP6800077A Granted JPS544335A (en) 1977-06-10 1977-06-10 Method of making nickel active material for alkali cell
JP57162186A Granted JPS5873964A (en) 1977-06-10 1982-09-20 Manufacture of nickel active mass for alkaline battery

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP57162186A Granted JPS5873964A (en) 1977-06-10 1982-09-20 Manufacture of nickel active mass for alkaline battery

Country Status (1)

Country Link
JP (2) JPS544335A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4612213A (en) * 1982-08-25 1986-09-16 The United States Of America As Represented By The Secretary Of The Navy Nickel oxide battery cathode prepared by ozonation
JPH0476721U (en) * 1990-11-19 1992-07-03
DE69232392T2 (en) * 1991-10-21 2002-08-29 Yuasa Battery Co Ltd METHOD FOR PRODUCING A NICKEL PLATE AND AN ALKALINE BATTERY
DE4439987C2 (en) * 1994-11-09 1997-02-27 Starck H C Gmbh Co Kg Process for the preparation of manganese (III) -containing nickel hydroxide and its use
US6991875B2 (en) 2002-08-28 2006-01-31 The Gillette Company Alkaline battery including nickel oxyhydroxide cathode and zinc anode

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3911094A (en) * 1974-01-28 1975-10-07 Esb Inc Method of preparing stable NiOOH

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3911094A (en) * 1974-01-28 1975-10-07 Esb Inc Method of preparing stable NiOOH

Also Published As

Publication number Publication date
JPS6340023B2 (en) 1988-08-09
JPS5873964A (en) 1983-05-04
JPS544335A (en) 1979-01-13

Similar Documents

Publication Publication Date Title
US3899350A (en) Method of preparing high capacity nickel electrode powder
JPS6211460B2 (en)
JPS6112345B2 (en)
US4330603A (en) High capacity nickel battery material doped with alkali metal cations
JPH0750606B2 (en) Non-aqueous electrolyte battery and method for producing positive electrode active material thereof
JPS6137732B2 (en)
JPH0247824B2 (en)
JP2004523067A (en) Cobalt (III) encapsulated nickel hydroxide and basic carbonate for battery electrodes
DE3513119A1 (en) Process for preparing higher-valence nickel oxides for electrical accumulators in a chemical manner
JPH0576745B2 (en)
US1221062A (en) Galvanic cell.
JP2714092B2 (en) Manufacturing method of positive electrode for non-aqueous secondary battery
JPS5857866B2 (en) Zinc cathode for alkaline batteries
JPH02234356A (en) Sealed-type alkali battery
JPS6211461B2 (en)
JPS6347113B2 (en)
US976279A (en) Process for making material for alkaline batteries.
JPH10334911A (en) Alkaline storage battery and its manufacture
JP2553624B2 (en) Paste type cadmium negative electrode
JPS59128765A (en) Nonaqueous electrolyte battery
JPS6347112B2 (en)
RU2108412C1 (en) Method for production of nickelic hydroxide and device for its embodiment
JP2005332691A (en) Layered nickel oxide electrode material and its manufacturing method, and battery using it
JPH0574907B2 (en)
JP2000299103A (en) Positive pole active material for alkaline electrolyte battery and alkali electrolyte battery using it