JPH10334911A - Alkaline storage battery and its manufacture - Google Patents

Alkaline storage battery and its manufacture

Info

Publication number
JPH10334911A
JPH10334911A JP9139488A JP13948897A JPH10334911A JP H10334911 A JPH10334911 A JP H10334911A JP 9139488 A JP9139488 A JP 9139488A JP 13948897 A JP13948897 A JP 13948897A JP H10334911 A JPH10334911 A JP H10334911A
Authority
JP
Japan
Prior art keywords
cobalt
nickel hydroxide
powder
hydroxide
alkali
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9139488A
Other languages
Japanese (ja)
Inventor
Koji Yamamura
康治 山村
Futoshi Tanigawa
太志 谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP9139488A priority Critical patent/JPH10334911A/en
Publication of JPH10334911A publication Critical patent/JPH10334911A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a positive electrode active material for an alkaline storage battery superior the utilization factor of nickel hydroxide and having a stable characteristic by providing a film layer made of a cobalt composite oxide on the surface of powder grains mainly made of nickel hydroxide. SOLUTION: A cobalt composite oxide is expressed by the general expression Mx CoO2 , where M indicates at least one element among Li, Na, K, and 0<x<=1. In this manufacture, a powder made mainly of nickel hydroxide is mixed with an aqueous solution of compounds expressed by [Co(NH3 )6 ]CO3 and [Co(NH3 )6 ]2 (CO3 )3 . The mixed aqueous solution is heated and stirred at 70 deg.C or above, and a film layer made of a cobalt compound is provided on the surface of the powder made mainly of nickel hydroxide. The coated powder is heated at 90-150 deg.C together with alkali hydroxide, and the film layer make of the cobalt composite oxide is synthesized.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はアルカリ蓄電池に関
し、特にニッケル−カドミウム蓄電池、ニッケル−水素
蓄電池やニッケル−亜鉛蓄電池のようなペースト式ニッ
ケル正極の活物質とその製造法に関する。
The present invention relates to an alkaline storage battery, and more particularly to an active material for a paste-type nickel positive electrode such as a nickel-cadmium storage battery, a nickel-hydrogen storage battery, and a nickel-zinc storage battery, and a method for producing the same.

【0002】[0002]

【従来の技術】アルカリ蓄電池では負極としてカドミウ
ムの他に亜鉛、鉄、水素などが用いられている。現在の
ところカドミウム極が主体であるが、エネルギー密度を
高めることが可能な金属水素化物、つまり水素吸蔵合金
を負極に使ったニッケル−水素蓄電池が開発実用化さ
れ、その製法などに多くの提案がされている。
2. Description of the Related Art In an alkaline storage battery, zinc, iron, hydrogen and the like are used as a negative electrode in addition to cadmium. At present, cadmium electrodes are the main component, but nickel-hydrogen storage batteries that use a metal hydride that can increase the energy density, that is, a hydrogen-absorbing alloy for the negative electrode, have been developed and put into practical use. Have been.

【0003】一方、正極としては一部空気極や酸化銀極
なども取り上げられているが、そのほとんどは水酸化ニ
ッケルを主としたニッケル極である。その電極形態はポ
ケット式から焼結式、さらにはペースト式へと移り変わ
って特性が向上し、密閉化が可能になるとともに用途も
広がった。上記ペースト式ニッケル極は、水酸化ニッケ
ル活物質粉末にコバルト、カドミウム等の粉末を添加
し、さらに結着材、水等を加えて粘調なペースト状態に
し、これを空間率の高い多孔体(芯材)に充填して作成
される。このニッケル極は焼結式のものに比べ、エネル
ギー密度が高いという特徴がある。
On the other hand, although some air electrodes, silver oxide electrodes and the like have been taken up as the positive electrode, most of them are nickel electrodes mainly composed of nickel hydroxide. The form of the electrode was changed from a pocket type to a sintered type, and further to a paste type, and the characteristics were improved. The paste-type nickel electrode is obtained by adding a powder such as cobalt and cadmium to a nickel hydroxide active material powder, further adding a binder, water, etc. to a viscous paste state, and converting this into a viscous paste ( Core material). This nickel electrode has a feature that its energy density is higher than that of a sintered type.

【0004】しかし、ペースト式ニッケル極は焼結式に
比べて水酸化ニッケルの利用率が低く、これを改善する
ために金属コバルトや水酸化コバルト等を添加し、導電
性の高い高次酸化状態のコバルト水酸化物を形成してい
る。特開平1−200555号公報では、水酸化ニッケ
ルの利用率を向上させるために水酸化ニッケルを主とす
る活物質の粒子表面に水酸化コバルトを形成してアルカ
リ共存下で加熱処理を行うことにより導電性の高い高次
酸化状態のコバルト酸化物CoOOHやCoO等を水酸
化ニッケルを主とする活物質粒子表面に形成することが
開示されている。
[0004] However, the paste type nickel electrode has a lower utilization rate of nickel hydroxide than the sintered type, and in order to improve this, a metal oxide or cobalt hydroxide is added, and a high conductivity higher oxidation state is obtained. Of cobalt hydroxide. In Japanese Patent Application Laid-Open No. Hei 1-200555, in order to improve the utilization rate of nickel hydroxide, cobalt hydroxide is formed on the surface of particles of an active material mainly composed of nickel hydroxide, and heat treatment is performed in the presence of alkali. It is disclosed that cobalt oxides such as CoOOH and CoO in a highly oxidized state having high conductivity are formed on the surface of active material particles mainly composed of nickel hydroxide.

【0005】またこのほかに、水酸化ニッケルを主とす
る活物質粒子表面に導電性の高い高次酸化状態のコバル
ト酸化物を形成する方法も提案されている。
In addition, there has been proposed a method of forming a highly oxidized cobalt oxide having high conductivity on the surface of active material particles mainly composed of nickel hydroxide.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、従来の
方法で金属コバルトやコバルト化合物である水酸化コバ
ルト粉末を酸化する場合、粉末粒子内部まで完全に酸化
することは難しく、2価より高次酸化状態のコバルト酸
化物のコバルトの価数が安定しないために、水酸化ニッ
ケルの利用率や大電流での放電特性が安定しないという
課題がある。
However, when oxidizing metal cobalt or cobalt hydroxide powder, which is a cobalt compound, by the conventional method, it is difficult to completely oxidize the inside of the powder particles, and it is difficult to oxidize the powder to a higher oxidation state than divalent. However, since the valence of cobalt of the cobalt oxide is not stable, there is a problem that the utilization rate of nickel hydroxide and the discharge characteristics at a large current are not stable.

【0007】本発明は、前記課題を解決しようとするも
のであり、水酸化ニッケルの利用率に優れ、かつ、特性
の安定したアルカリ蓄電池用正極活物質とその製造法を
提供するものである。
An object of the present invention is to provide a positive electrode active material for an alkaline storage battery which has excellent utilization of nickel hydroxide and has stable characteristics, and a method for producing the same.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
に本発明では正極活物質である水酸化ニッケルを主とす
る粉末粒子表面に、一般式[Co(NH36]CO3
および[Co(NH3 62(CO33で示される化合
物(ヘキサアンミンコバルト炭酸塩)を出発物質として
合成して得られる一般式MXCoO2(xは0<x≦1,
MはLi,Na,Kのうちの少なくとも1種の元素)で
示されるコバルト複合酸化物よりなる被覆層を設けたこ
とを特徴とする。
[MEANS FOR SOLVING THE PROBLEMS]
In the present invention, nickel hydroxide, which is a positive electrode active material, is mainly used.
The general formula [Co (NH)Three)6] COThree,
And [Co (NHThree) 6]Two(COThree)ThreeCompound indicated by
(Hexammine cobalt carbonate) as starting material
General formula M obtained by synthesisXCoOTwo(X is 0 <x ≦ 1,
M is at least one element of Li, Na and K)
Coating layer made of the cobalt composite oxide shown
And features.

【0009】その製法は、一般式[Co(NH36]C
3および[Co(NH362(CO33で示される化
合物(ヘキサアンミンコバルト炭酸塩)の水溶液に水酸
化ニッケルを主とする粉末を投入して混合する工程と、
この混合水溶液を70℃以上に加熱攪拌して水酸化ニッ
ケルを主とする粉末の表面にコバルト化合物からなる被
覆層を設ける工程と、この被覆処理後の粉末を水酸化ア
ルカリとともに90〜150℃に加熱して一般式MX
oO2(xは0<x≦1,MはLi,Na,Kのうちの
少なくとも1種の元素)で示されるコバルト複合酸化物
からなる被覆層を合成する工程とからなる。
The production method is based on the general formula [Co (NH 3 ) 6 ] C
Adding a powder mainly composed of nickel hydroxide to an aqueous solution of a compound (hexamminecobalt carbonate) represented by O 3 and [Co (NH 3 ) 6 ] 2 (CO 3 ) 3 and mixing them;
A step of heating and stirring the mixed aqueous solution at 70 ° C. or higher to form a coating layer composed of a cobalt compound on the surface of the powder mainly composed of nickel hydroxide, and bringing the powder after the coating treatment to 90 to 150 ° C. with alkali hydroxide. heating to the general formula M X C
synthesizing a coating layer made of a cobalt composite oxide represented by oO 2 (x is 0 <x ≦ 1, M is at least one element of Li, Na and K).

【0010】また本発明は、水酸化ニッケルを主とする
粉末表面に、一般式M3[Co(CO33](MはL
i,Na,Kのうちの少なくとも1種の元素)で示され
る化合物(トリカルボナトコバルト酸塩)を出発物質と
して合成して得られる一般式M XCoO2(xは0<x≦
1,MはLi,Na,Kのうちの少なくとも1種の元
素)で示されるコバルト複合酸化物よりなる被覆層を設
けたことを特徴とするものである。
[0010] The present invention mainly comprises nickel hydroxide.
General formula M on the powder surfaceThree[Co (COThree)Three] (M is L
i, at least one element of Na, K)
Compound (tricarbonatocobaltate) as the starting material
Formula M obtained by synthesis XCoOTwo(X is 0 <x ≦
1, M is at least one element of Li, Na, and K
A coating layer made of cobalt composite oxide
It is characterized in that

【0011】本発明におけるその他の特徴、正極の製造
法については、以下の発明の実施の形態以降で詳述す
る。
The other features of the present invention and the method of manufacturing the positive electrode will be described in detail in the following embodiments of the present invention.

【0012】[0012]

【発明の実施の形態】請求項1に記載の発明では、正極
の構成材料である水酸化ニッケルを主とする粉末粒子表
面に、一般式[Co(NH36]CO3、および[Co
(NH362(CO33で示される化合物(ヘキサア
ンミンコバルト炭酸塩)を出発物質として合成して得ら
れる一般式MXCoO2(xは0<x≦1,MはLi,N
a,Kのうちの少なくとも1種の元素)で示されるコバ
ルト複合酸化物よりなる被覆層を設けるものである。
DETAILED DESCRIPTION OF THE INVENTION According to the first aspect of the present invention, a powdery material mainly composed of nickel hydroxide, which is a constituent material of a positive electrode, has a general formula [Co (NH 3 ) 6 ] CO 3 and [Co
(NH 3) 6] 2 (CO 3) a compound represented by the 3 general formula (Hexaamminecobalt carbonate) obtained by synthesizing a starting material M X CoO 2 (x is 0 <x ≦ 1, M is Li , N
a coating layer composed of a cobalt composite oxide represented by at least one of a and K).

【0013】従来の水酸化コバルト、酸化コバルト、金
属コバルト等を水酸化アルカリ粉末、もしくは水酸化ア
ルカリ水溶液と混合し、加熱して酸素(大気中)で酸化
し、水酸化ニッケルを主とする粉末粒子の表面に高導電
性のコバルト酸化物層を合成する方法は、アルカリ水溶
液に対するコバルトの溶解度が非常に小さいために長時
間の処理時間が必要であり、また、水酸化コバルト、酸
化コバルト、金属コバルト粉末粒子内に未反応領域が残
りやすい。このためにこの方法で得られた水酸化ニッケ
ルを主とする正極活物質の利用率や大電流での放電特性
が安定しないという課題がある。
Conventional cobalt hydroxide, cobalt oxide, metal cobalt, etc. are mixed with an alkali hydroxide powder or an aqueous solution of an alkali hydroxide, heated and oxidized with oxygen (in the atmosphere) to obtain a powder mainly composed of nickel hydroxide. The method of synthesizing a highly conductive cobalt oxide layer on the surface of the particles requires a long treatment time because the solubility of cobalt in an aqueous alkaline solution is extremely low. Unreacted regions tend to remain in the cobalt powder particles. For this reason, there is a problem that the utilization rate of the positive electrode active material mainly composed of nickel hydroxide obtained by this method and the discharge characteristics under a large current are not stable.

【0014】これに対して、一般式[Co(NH36
CO3、および[Co(NH362(CO33で示され
る化合物(ヘキサアンミンコバルト炭酸塩)は水に可溶
であり、かつ、その水溶液を70℃以上に加熱すること
により容易に酸化、分解させることができる。このこと
より、上記ヘキサアンミンコバルト炭酸塩水溶液中に水
酸化ニッケルを主とする粉末粒子を分散させ、この状態
で70℃以上に加熱して[Co(NH36]CO3を酸
化、分解するか、もしくは[Co(NH362(C
33を分解して水酸化ニッケルの粉末粒子表面にオキ
シ水酸化コバルト層を形成することができる。
On the other hand, the general formula [Co (NH 3 ) 6 ]
The compound represented by CO 3 and [Co (NH 3 ) 6 ] 2 (CO 3 ) 3 (hexamminecobalt carbonate) is soluble in water, and is heated by heating the aqueous solution to 70 ° C. or more. It can be easily oxidized and decomposed. Thus, the powder particles mainly composed of nickel hydroxide are dispersed in the aqueous solution of hexaammine cobalt carbonate, and heated to 70 ° C. or more in this state to oxidize and decompose [Co (NH 3 ) 6 ] CO 3. Or [Co (NH 3 ) 6 ] 2 (C
O 3 ) 3 can be decomposed to form a cobalt oxyhydroxide layer on the surface of the nickel hydroxide powder particles.

【0015】このオキシ水酸化コバルト層は3価のコバ
ルト塩水溶液が分解して形成されるため未反応部分がな
く、均一なものになる。しかし、この分解工程で生成さ
れるオキシ水酸化コバルトの導電率は低いために高い水
酸化ニッケル利用率を得ることはできない。このためオ
キシ水酸化コバルトを水酸化アルカリと反応させて、高
い導電性を有する化合物にする必要がある。これまでの
検討結果より2価のコバルト化合物より一般式MXCo
2(xは0<x≦1,MはLi,Na,Kのうちの少
なくとも1種の元素)で示されるコバルト複合酸化物を
合成する場合、コバルトの酸化が律則になることがわか
った。つまり、コバルトが酸化されない条件下では水酸
化アルカリと混合しても一般式MXCoO2のコバルト複
合酸化物は合成されない。
The cobalt oxyhydroxide layer is formed by decomposing an aqueous solution of a trivalent cobalt salt, so that there is no unreacted portion and the layer is uniform. However, since the conductivity of cobalt oxyhydroxide generated in this decomposition step is low, a high nickel hydroxide utilization rate cannot be obtained. Therefore, it is necessary to react cobalt oxyhydroxide with alkali hydroxide to obtain a compound having high conductivity. Formula M X Co from previous study results from divalent cobalt compound
When synthesizing a cobalt composite oxide represented by O 2 (x is 0 <x ≦ 1, M is at least one element of Li, Na, and K), it is found that oxidation of cobalt becomes a rule. Was. That is, cobalt-cobalt composite oxide of the general formula M X CoO 2 be mixed with alkali hydroxide under conditions which are not oxidized is not synthesized.

【0016】本実施例で合成されたオキシ水酸化コバル
トは非常に微細な粉末であり、かつ、コバルトが3価に
均一に酸化されているために水酸化アルカリとともに9
0〜150℃で加熱することにより、一般式MXCoO2
(xは0<x≦1,MはLi,Na,Kのうちの少なく
とも1種の元素)で示されるコバルト複合酸化物を均
一、かつ容易に合成することができる。
The cobalt oxyhydroxide synthesized in this embodiment is a very fine powder, and since cobalt is uniformly oxidized to trivalent, 9% together with alkali hydroxide.
By heating at 0 to 150 ° C., the general formula M X CoO 2
(X is 0 <x ≦ 1, M is at least one element of Li, Na, and K), and a cobalt composite oxide represented by the formula (1) can be uniformly and easily synthesized.

【0017】上記のように水酸化ニッケルの粉末粒子表
面に導電性の高い一般式MXCoO2で示される層を形成
することができ、水酸化ニッケルの利用率および大電流
での放電特性に優れ、かつ、特性の安定した水酸化ニッ
ケルを主とした正極活物質を得ることができる。
As described above, a layer represented by the general formula M X CoO 2 having high conductivity can be formed on the surface of the nickel hydroxide powder particles, and the nickel hydroxide utilization and discharge characteristics at a large current can be improved. It is possible to obtain a positive electrode active material mainly composed of nickel hydroxide, which is excellent and has stable characteristics.

【0018】請求項2の発明は、請求項1に記載の正極
活物質の製造法であって、一般式[Co(NH36]C
3および[Co(NH362(CO33で示される化
合物(ヘキサアンミンコバルト炭酸塩)の水溶液に水酸
化ニッケルを主とする粉末を投入して混合する工程以
降、水酸化ニッケルを主とする粉末の粒子表面に一般式
XCoO2(xは0<x≦1,MはLi,Na,Kのう
ちの少なくとも1種の元素)で示されるコバルト複合酸
化物の被覆層を合成するものである。
According to a second aspect of the present invention, there is provided the method for producing a positive electrode active material according to the first aspect, wherein the general formula [Co (NH 3 ) 6 ] C
From the step of adding and mixing powder mainly composed of nickel hydroxide into an aqueous solution of a compound represented by O 3 and [Co (NH 3 ) 6 ] 2 (CO 3 ) 3 (hexammine cobalt carbonate), Coating of a cobalt composite oxide represented by the general formula M X CoO 2 (x is 0 <x ≦ 1, M is at least one element of Li, Na, and K) on the particle surface of a powder mainly composed of nickel The layers are combined.

【0019】請求項3の発明は、水酸化ニッケルを主と
する粉末の表面に、一般式M3[Co(CO33](M
はLi,Na,Kのうちの少なくとも1種の元素)で示
される化合物(トリカルボナトコバルト酸塩)を出発物
質として得られる一般式MXCoO2(xは0<x≦1,
MはLi,Na,Kのうちの少なくとも1種の元素)で
示されるコバルト複合酸化物よりなる被覆層を設けたも
のである。
According to a third aspect of the present invention, the surface of the powder mainly composed of nickel hydroxide has the general formula M 3 [Co (CO 3 ) 3 ] (M
Is a general formula M X CoO 2 (x is 0 <x ≦ 1, obtained from a compound (tricarbonatocobaltate) represented by at least one element of Li, Na and K).
M is provided with a coating layer made of a cobalt composite oxide represented by at least one element of Li, Na and K).

【0020】一般式M3[Co(CO33](MはL
i,Na,Kのうちの少なくとも1種の元素)で示され
る化合物(トリカルボナトコバルト酸塩)は水に可溶で
あり、かつその水溶液を60℃以上に加熱することによ
り容易に分解させることができる。このことより、上記
トリカルボナトコバルト酸塩水溶液中に水酸化ニッケル
を主とする粉末粒子を分散させて60℃以上に加熱し、
トリカルボナトコバルト酸塩を分解して水酸化ニッケル
粉末粒子表面にオキシ水酸化コバルト層を形成すること
ができる。このオキシ水酸化コバルト層は3価のコバル
ト塩が分解して形成されるために未反応部分がなく、均
一なものになる。
The general formula M 3 [Co (CO 3 ) 3 ] (M is L
The compound (tricarbonatocobaltate) represented by at least one of i, Na, and K) is soluble in water and is easily decomposed by heating the aqueous solution to 60 ° C. or higher. be able to. From this, the powder particles mainly composed of nickel hydroxide are dispersed in the aqueous solution of tricarbonatocobaltate and heated to 60 ° C. or more,
The tricarbonatocobaltate can be decomposed to form a cobalt oxyhydroxide layer on the surface of the nickel hydroxide powder particles. The cobalt oxyhydroxide layer is uniform because there is no unreacted portion because the trivalent cobalt salt is decomposed and formed.

【0021】さらに、このオキシ水酸化コバルトは非常
に微細な粉末であり、かつコバルトが3価に均一に酸化
されているために、水酸化アルカリとともに90〜15
0℃で加熱することにより一般式MXCoO2(xは0<
x≦1,MはLi,Na,Kのうちの少なくとも1種の
元素)で示されるコバルト複合酸化物を均一、かつ容易
に合成することができる。
Further, since this cobalt oxyhydroxide is a very fine powder, and cobalt is uniformly oxidized trivalently, the cobalt oxyhydroxide is mixed with an alkali hydroxide at 90 to 15%.
Formula by heating at 0 ℃ M X CoO 2 (x is 0 <
x ≦ 1, M is at least one element of Li, Na, and K), and a cobalt composite oxide represented by the following formula (1) can be uniformly and easily synthesized.

【0022】請求項4の発明は、請求項3に記載の正極
活物質の製造法であって、一般式M 3[Co(C
33](MはLi,Na,Kのうちの少なくとも1種
の元素)で示される化合物は炭酸水素アルカリを含まな
い水溶液中では分解しやすいために、炭酸水素アルカリ
を溶解した水溶液に一般式M3[Co(CO33](M
はLi,Na,Kのうちの少なくとも1種の元素)で示
される化合物を溶解し、これに水酸化ニッケルを主とす
る粉末を投入して分散、混合する工程と、この混合水溶
液を60℃以上に加熱攪拌して、水酸化ニッケル粉末の
表面にコバルト化合物からなる被覆層を設ける工程と、
この被覆処理後の粉末を水酸化アルカリとともに90〜
150℃に加熱して一般式MXCoO2(xは0<x≦
1,MはLi,Na,Kのうちの少なくとも1種の元
素)で示されるコバルト複合酸化物の被覆層を合成する
工程とからなるものである。
According to a fourth aspect of the present invention, there is provided the positive electrode according to the third aspect.
A method for producing an active material, comprising the general formula M Three[Co (C
OThree)Three] (M is at least one of Li, Na and K
Element) does not contain alkali bicarbonate
Alkali hydrogen carbonate
Formula M in an aqueous solution ofThree[Co (COThree)Three] (M
Is at least one element of Li, Na and K)
Dissolve the compound to be used, and add nickel hydroxide
And mixing and dispersing the powder,
Heat the solution to 60 ° C or higher and stir the nickel hydroxide powder.
Providing a coating layer made of a cobalt compound on the surface,
The powder after the coating treatment is mixed with an alkali hydroxide in an amount of 90 to
Heat to 150 ° C to obtain general formula MXCoOTwo(X is 0 <x ≦
1, M is at least one element of Li, Na, and K
Synthesis of a coating layer of cobalt composite oxide
And a process.

【0023】請求項5の発明も、請求項3に記載の正極
活物質の製造法であり、一般式M3〔Co(CO33
(MはLi,Na,Kのうちの少なくとも1種の元素)
で示される化合物を炭酸水素アルカリ水溶液に溶解し、
これに水酸化ニッケルを主とする粉末を投入して分散、
混合する工程と、この溶液にさらに水酸化アルカリを徐
々に添加して90〜150℃に加熱し、一般式M3〔C
o(CO33〕(MはLi,Na,Kのうちの少なくと
も1種の元素)で示される化合物を分解しながら、一般
式MXCoO2(xは0<x≦1,MはLi,Na,Kの
うちの少なくとも1種の元素)で示されるコバルト複合
酸化物の被覆層を合成する工程からなるものである。
A fifth aspect of the present invention also provides a method for producing a positive electrode active material according to the third aspect , which comprises a general formula M 3 [Co (CO 3 ) 3 ].
(M is at least one element of Li, Na and K)
Is dissolved in an aqueous alkali hydrogen carbonate solution,
A powder mainly composed of nickel hydroxide is added thereto and dispersed,
Mixing, and further adding alkali hydroxide gradually to this solution and heating to 90 to 150 ° C. to obtain a compound of the general formula M 3 [C
o (CO 3) 3] (M is Li, Na, at least one element of K) with decomposition of the compound represented by the general formula M X CoO 2 (x 0 < x ≦ 1, M is (At least one element of Li, Na, and K).

【0024】請求項6の発明は、水酸化ニッケルを主と
する粉末を分散または混合した炭酸水素アルカリもしく
は炭酸アルカリ(アルカリはLi,Na,K,アンモニ
アのうちの少なくとも1種)水溶液にコバルト塩と酸化
剤の混合水溶液を混合する工程と、この混合水溶液を6
0℃以上に加熱攪拌して、水酸化ニッケルの粉末表面に
コバルト化合物からなる被覆層を設ける工程と、被覆層
を設けた粉末を水酸化アルカリとともに90〜150℃
に加熱して、一般式MXCoO2(xは0<x≦1,Mは
Li,Na,Kのうちの少なくとも1種の元素)で示さ
れるコバルト複合酸化物の被覆層を合成する工程とから
なるものである。
According to a sixth aspect of the present invention, a cobalt salt is added to an aqueous solution of alkali hydrogen carbonate or alkali carbonate (where the alkali is at least one of Li, Na, K and ammonia) in which a powder mainly composed of nickel hydroxide is dispersed or mixed. Mixing a mixed aqueous solution of urea and an oxidizing agent;
Heating and stirring at 0 ° C. or higher to form a coating layer made of a cobalt compound on the surface of the nickel hydroxide powder; and drying the powder provided with the coating layer together with alkali hydroxide at 90 to 150 ° C.
And heated to (the x 0 <x ≦ 1, M is Li, Na, at least one element of K) formula M X CoO 2 step of synthesizing a coating layer of cobalt composite oxide represented by It consists of:

【0025】炭酸水素アルカリ水溶液中にコバルト塩と
酸化剤の混合溶液を滴下、混合することによりコバルト
イオンとアルカリイオン、炭酸イオン、さらに前記コバ
ルト塩を構成する陰イオンあるいは他の各種陰イオン
(例えば、塩素、硫酸、酢酸、硝酸、しゅう酸等)によ
り多種の水に可溶なコバルト錯体が形成される。これら
水に可溶なコバルト錯体は、加熱することにより分解
し、さらに、これら分解物と水酸化アルカリを加熱反応
させることにより高い導電性を有する一般式MXCoO2
(xは0<x≦1,MはLi,Na,Kのうちの少なく
とも1種の元素)で示されるコバルト複合酸化物を合成
することができる。
By dropping and mixing a mixed solution of a cobalt salt and an oxidizing agent in an aqueous alkali hydrogencarbonate solution, cobalt ions and alkali ions, carbonate ions, anions constituting the cobalt salt or other various anions (for example, , Chlorine, sulfuric acid, acetic acid, nitric acid, oxalic acid, etc.) to form various water-soluble cobalt complexes. Soluble cobalt complex for these water to decompose by heating, further, the general formula M X CoO 2 having a high conductivity by thermal reaction of these decomposition products alkali hydroxide
(X is 0 <x ≦ 1, M is at least one element of Li, Na, and K).

【0026】上記のように、水酸化ニッケルの粉末粒子
表面に導電性の高い一般式MXCoO2層を形成すること
ができ、水酸化ニッケルの利用率および大電流での放電
特性に優れ、かつ特性の安定した正極活物質を得ること
ができる。
As described above, it is possible to form a highly conductive general formula M x CoO 2 layer on the surface of nickel hydroxide powder particles, and to have excellent nickel hydroxide utilization and discharge characteristics at high currents. In addition, a positive electrode active material having stable characteristics can be obtained.

【0027】請求項7の発明は、請求項6に記載の製造
法と同様、水酸化ニッケルを主とする粉末を分散または
混合した炭酸水素アルカリもしくは炭酸アルカリ(アル
カリはLi,Na,K,アンモニアのうちの少なくとも
1種)水溶液にコバルト塩と酸化剤の混合水溶液を混合
する工程と、この混合水溶液に水酸化アルカリを添加し
て90〜150℃に加熱し、一般式MXCoO2(xは0
<x≦1,MはLi,Na,Kのうちの少なくとも1種
の元素)で示されるコバルト複合酸化物の被覆層を合成
する工程からなるものである。
According to a seventh aspect of the present invention, in the same manner as in the production method of the sixth aspect, an alkali hydrogen carbonate or an alkali carbonate in which a powder mainly containing nickel hydroxide is dispersed or mixed (the alkali is Li, Na, K, ammonia at least one) step of mixing the mixed aqueous solution of a cobalt salt with an oxidizing agent to an aqueous solution, and heated by adding an alkali hydroxide to the mixed aqueous solution 90 to 150 ° C., the general formula M X CoO 2 (x of Is 0
(X ≦ 1, M is at least one element of Li, Na, and K).

【0028】請求項8の発明は、水酸化ニッケルを主と
する粉末と水酸化コバルト粉末もしくは酸化コバルト粉
末を、水酸化アルカリ、二酸化炭素、酸化剤、水の共存
下で加熱し、一般式MXCoO2(xは0<x≦1,Mは
Li,Na,Kのうちの少なくとも1種の元素)で示さ
れるコバルト複合酸化物粉末を合成、混合するものであ
る。
[0028] The invention of claim 8 is that the powder mainly composed of nickel hydroxide and the cobalt hydroxide powder or the cobalt oxide powder are heated in the coexistence of alkali hydroxide, carbon dioxide, oxidizing agent and water, and the general formula M This is to synthesize and mix a cobalt composite oxide powder represented by X CoO 2 (x is 0 <x ≦ 1, M is at least one element of Li, Na and K).

【0029】この処理条件に二酸化炭素ガスを導入する
ことにより水酸化コバルト、酸化コバルトの溶解性を向
上させることができ、従来に比べて反応時間を非常に短
縮することができるとともにコバルトの酸化未反応領域
を大きく低減することができる。
By introducing carbon dioxide gas under these treatment conditions, the solubility of cobalt hydroxide and cobalt oxide can be improved, so that the reaction time can be significantly shortened and the oxidation of cobalt can be reduced. The reaction area can be greatly reduced.

【0030】従って、水酸化ニッケルの利用率および大
電流での放電特性を向上させることが可能で、特性を安
定化させることができる。
Therefore, it is possible to improve the utilization rate of nickel hydroxide and the discharge characteristics at a large current, and to stabilize the characteristics.

【0031】請求項9の発明は、請求項8に記載の製造
法において、一般式MXCoO2(xは0<x≦1,Mは
Li,Na,Kのうちの少なくとも1種の元素)で示さ
れるコバルト複合酸化物粉末が水酸化ニッケルを主とす
る粉末表面を被覆するものである。
According to a ninth aspect of the present invention, there is provided the method according to the eighth aspect, wherein the general formula M X CoO 2 (x is 0 <x ≦ 1, M is at least one element of Li, Na, and K) ) Covers the surface of the powder mainly composed of nickel hydroxide.

【0032】請求項10の発明は、請求項1または3記
載の正極活物質において、コバルト複合酸化物をアルカ
リ蓄電池用の正極活物質である水酸化ニッケルに対して
2〜30重量%添加するものである。この範囲で混合す
ることにより、活物質を大幅に減らすことなく優れた作
用効果を発揮することができる。
According to a tenth aspect of the present invention, in the positive electrode active material according to the first or third aspect, the cobalt composite oxide is added in an amount of 2 to 30% by weight based on nickel hydroxide which is a positive electrode active material for an alkaline storage battery. It is. By mixing in this range, excellent effects can be exerted without significantly reducing the active material.

【0033】[0033]

【実施例】以下に本発明の実施例について図面とともに
説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0034】(実施例1)以下の手順でアルカリ蓄電池
用正極活物質を作成した。活物質の主体である水酸化ニ
ッケルには水酸化コバルトと水酸化亜鉛を共晶した水酸
化ニッケル粉末を用いた。以降、この水酸化ニッケルを
単に水酸化ニッケルと称す。
Example 1 A positive electrode active material for an alkaline storage battery was prepared in the following procedure. Nickel hydroxide, which is a eutectic of cobalt hydroxide and zinc hydroxide, was used as nickel hydroxide, which is a main component of the active material. Hereinafter, this nickel hydroxide is simply referred to as nickel hydroxide.

【0035】まず、水酸化コバルト粉末をアンモニア水
に分散、混合し、この混合水溶液に二酸化炭素ガスを通
じて、水酸化コバルトを溶解し、コバルト錯体水溶液を
作成した。水酸化コバルトは2価のヘキサアンミンコバ
ルト炭酸塩[Co(NH36]CO3で溶解し、大気中
の酸素により酸化されて3価のヘキサアンミンコバルト
炭酸塩[Co(NH362(CO33に変化する。こ
こではコバルトとして水酸化コバルトを用いたが、炭酸
コバルトをアンモニア水に溶解しても同様の結果を得る
ことができる。
First, cobalt hydroxide powder was dispersed and mixed in aqueous ammonia, and carbon dioxide gas was passed through the mixed aqueous solution to dissolve the cobalt hydroxide to prepare an aqueous cobalt complex solution. Cobalt hydroxide dissolved in divalent Hexaamminecobalt Carbonate [Co (NH 3) 6] CO 3, it is oxidized by oxygen in the atmosphere trivalent Hexaamminecobalt Carbonate [Co (NH 3) 6] 2 (CO 3 ) 3 Here, cobalt hydroxide was used as cobalt, but similar results can be obtained by dissolving cobalt carbonate in aqueous ammonia.

【0036】第1工程として、上記コバルト錯体水溶液
中に、水酸化ニッケル粉末重量100に対して、コバル
ト錯体水溶液中のコバルトが水酸化コバルト換算重量で
10になるように、水酸化ニッケル粉末粒子を投入して
分散、混合した。
In the first step, nickel hydroxide powder particles are added to the aqueous cobalt complex solution so that the cobalt in the aqueous cobalt complex solution becomes 10 in terms of cobalt hydroxide with respect to the weight of 100 nickel hydroxide powder. It was added, dispersed and mixed.

【0037】第2工程として、上記混合水溶液を90℃
で1時間加熱攪拌し、水酸化ニッケル粒子表面にコバル
ト化合物層を形成した。2価のヘキサアンミンコバルト
炭酸塩[Co(NH36]CO3はこの工程で3価に変
化する。前述のコバルト化合物は主にオキシ水酸化コバ
ルト、ヘキサアンミンコバルト炭酸塩[Co(N
36]CO3よりなる混合物であった。
In the second step, the mixed aqueous solution is heated at 90 ° C.
For 1 hour to form a cobalt compound layer on the surface of the nickel hydroxide particles. Divalent hexaammine cobalt carbonate [Co (NH 3 ) 6 ] CO 3 changes to trivalent in this step. The above-mentioned cobalt compounds are mainly cobalt oxyhydroxide, hexaammine cobalt carbonate [Co (N
H 3 ) 6 ] CO 3 .

【0038】第3工程として、コバルト化合物層を形成
した水酸化ニッケル粉末を回収して、30重量%の水酸
化ナトリウム水溶液中に入れ、110℃で1時間加熱攪
拌した後、水洗、乾燥して正極活物質を作成した。
In the third step, the nickel hydroxide powder having the cobalt compound layer formed thereon is recovered, put into a 30% by weight aqueous sodium hydroxide solution, heated and stirred at 110 ° C. for 1 hour, washed with water and dried. A positive electrode active material was prepared.

【0039】上記の作成方法で、水酸化ニッケル処理重
量を100g,1kg,10kgとして処理量の影響を
調べた。
The influence of the treatment amount was examined by setting the weight of the nickel hydroxide treated to 100 g, 1 kg, and 10 kg by the above-mentioned production method.

【0040】第3工程で上記ヘキサアンミンコバルト炭
酸塩は完全に分解され、さらに、酸化されて水酸化ナト
リウムと反応し、Na0.6CoO2のコバルト複合酸化物
に変わる。また、オキシ水酸化コバルトもさらに酸化さ
れ、水酸化ナトリウムと反応してNa0.6CoO2のコバ
ルト複合酸化物に変わった。
[0040] The Hexaamminecobalt carbonate in the third step is completely decomposed, further, is oxidized by reaction with sodium hydroxide, changing the cobalt composite oxide of Na 0.6 CoO 2. Further, cobalt oxyhydroxide was further oxidized and reacted with sodium hydroxide to be converted to a cobalt composite oxide of Na 0.6 CoO 2 .

【0041】さらに、混合した水酸化ニッケルもこの工
程で若干酸化されるが、コバルトのような高次酸化化合
物はほとんど生成せず、X線解析の結果ではβ型の水酸
化ニッケルの回折パターンを示した。
Further, the mixed nickel hydroxide is also slightly oxidized in this step, but a higher-order oxidized compound such as cobalt is hardly formed, and the result of X-ray analysis shows that the diffraction pattern of β-type nickel hydroxide is Indicated.

【0042】第2工程として、コバルト化合物層を形成
した水酸化ニッケル粉末を回収することなく、第1工程
で混合した水溶液に水酸化ナトリウム水溶液を攪拌しな
がら徐々に添加し、さらに加熱して水酸化ナトリウムと
反応させても前述の方法と同様の効果を得ることができ
た。
In the second step, an aqueous solution of sodium hydroxide is gradually added to the aqueous solution mixed in the first step while stirring without recovering the nickel hydroxide powder on which the cobalt compound layer has been formed. The same effect as in the above-described method could be obtained by reacting with sodium oxide.

【0043】上記で作成した正極活物質を用いて電池を
作成し、その特性を評価した。
A battery was prepared using the positive electrode active material prepared above, and its characteristics were evaluated.

【0044】電池の作成方法、試験方法および結果を記
述する。
The method for preparing the battery, the test method, and the results are described.

【0045】上記の製造方法で作成した正極活物質に酸
化亜鉛粉末2重量%を加えて充分に混合撹拌し、さらに
水を加えてペースト状にして、芯材をなす平均ポアサイ
ズ150μm、多孔度95%、厚さ1.0mmの発泡状
ニッケルシートに充填した。これを90℃で乾燥した後
ローラプレスで加圧し、さらにその表面にフッ素樹脂粉
末をコーティングして電極を作成した。これらの電極を
幅3.5cm、長さ11cm、厚さ0.7〜0.8mm
に調整し、リードを所定の位置に取り付けて正極板1と
した。その容量は約1500mAhとした。
2% by weight of zinc oxide powder was added to the positive electrode active material prepared by the above-mentioned manufacturing method, mixed and stirred sufficiently, and further water was added to form a paste. The average pore size of the core material was 150 μm, and the porosity was 95%. %, And filled into a foamed nickel sheet having a thickness of 1.0 mm. This was dried at 90 ° C. and then pressed by a roller press, and the surface was coated with a fluororesin powder to form an electrode. These electrodes are 3.5 cm wide, 11 cm long and 0.7-0.8 mm thick.
And the lead was attached to a predetermined position to obtain the positive electrode plate 1. The capacity was about 1500 mAh.

【0046】負極物質としては一般式MmNi3.55Co
0.75Mn0.4Al0.3の水素吸蔵合金を用いた。粒径53
μm以下の合金粉末を80℃の31%KOHアルカリ溶
液中に1時間投入して、アルカリ可溶分を取り除く合金
の表面活性化処理を施した。
The negative electrode material has the general formula MmNi 3.55 Co
A hydrogen storage alloy of 0.75 Mn 0.4 Al 0.3 was used. Particle size 53
An alloy powder of μm or less was put into a 31% KOH alkaline solution at 80 ° C. for 1 hour to perform a surface activation treatment on the alloy to remove alkali-soluble components.

【0047】上記の処理を施した合金試料粉末にカルボ
キシメチルセルロースの希水溶液を所定量加え、混合撹
拌してペースト状にし、これを平均ポアサイズ150μ
m、多孔度95%、厚さ1.0mmの発泡状ニッケルシ
ートに充填した。これを90℃で乾燥した後ローラプレ
スで加圧し、さらにその表面にフッ素樹脂粉末をコーテ
ィングして電極を作成した。これらの電極を幅3.5c
m、長さ14.5cm、厚さ約0.4mmに調整し、負
極板2とした。
A predetermined amount of a dilute aqueous solution of carboxymethylcellulose was added to the alloy sample powder subjected to the above-mentioned treatment, mixed and stirred to form a paste, which was then subjected to an average pore size of 150 μm.
m, a porosity of 95%, and a foamed nickel sheet having a thickness of 1.0 mm. This was dried at 90 ° C. and then pressed by a roller press, and the surface was coated with a fluororesin powder to form an electrode. These electrodes are 3.5 c wide.
m, length 14.5 cm, thickness about 0.4 mm.

【0048】前記正極板1、負極板2および親水性を付
与したポリプロピレン不織布からなるセパレータ3とを
組み合わせ、渦巻状に捲回して4/5Aサイズの電池ケ
ース4に収納した。比重1.3の水酸化カリウム水溶液
に水酸化リチウムを30g/l溶解した電解液を2.3
5ml注入後、ケース開口部を封口板5で封口して図1
に示す密閉形電池を作成した。なお図1中、6は封口板
5との間で安全弁7を加圧している正極端子キャップ、
8は絶縁ガスケット、9は正極リード体である。
The positive electrode plate 1, the negative electrode plate 2, and the separator 3 made of a polypropylene nonwoven fabric having hydrophilicity were combined, spirally wound, and housed in a battery case 4 of 4/5 A size. An electrolytic solution obtained by dissolving 30 g / l of lithium hydroxide in an aqueous solution of potassium hydroxide having a specific gravity of 1.3 was 2.3.
After injecting 5 ml, the opening of the case was sealed with a sealing plate 5 and FIG.
The sealed battery shown in the following was prepared. In FIG. 1, reference numeral 6 denotes a positive electrode terminal cap that presses the safety valve 7 between the sealing plate 5 and
8 is an insulating gasket, 9 is a positive electrode lead.

【0049】このようにして作成した電池を20℃にお
いて0.1C(10時間率、例えば1500mAhの電
池では電流150mA)で150%まで充電し、0.2
Cで終止電圧1.0Vまで放電し、放電終了後45℃で
5日間放置した。
The battery thus prepared was charged to 150% at 20 ° C. at a rate of 0.1 C (10 hours, for example, a battery of 1500 mAh has a current of 150 mA).
At C, the battery was discharged to a final voltage of 1.0 V. After the discharge, the battery was left at 45 ° C. for 5 days.

【0050】放置後、45℃、0.2Cで120%充
電、0.2Cで1.0Vまでの放電の、充放電サイクル
を10〜20サイクル行って化成し、試験電池とした。
After standing, the battery was subjected to 10 to 20 charge / discharge cycles of 45 ° C., 120% charge at 0.2 C and discharge at 0.2 C to 1.0 V to form a test battery.

【0051】この試験電池で以下の試験を行った。The following test was performed on this test battery.

【0052】(1)水酸化ニッケル利用率;これは20
℃の温度下で充電電流0.1C(0.15A)で150
%まで充電し、休止1時間後、0.2Cで1.0Vまで
放電した時の放電容量を測定し、正極中水酸化ニッケル
の理論容量(水酸化ニッケルのニッケル価数が1だけ変
化したときの電気量)と比較し、次の(式1)より水酸
化ニッケル利用率を求めた。
(1) Nickel hydroxide utilization rate;
At a charging current of 0.1 C (0.15 A) at a temperature of 150 ° C.
%, And after one hour of rest, the discharge capacity at the time of discharging to 1.0 V at 0.2 C is measured, and the theoretical capacity of nickel hydroxide in the positive electrode (when the nickel valence of nickel hydroxide changes by 1) The amount of nickel hydroxide was calculated from the following (Equation 1).

【0053】[0053]

【式1】水酸化ニッケル利用率=(放電容量/理論容
量)×100 (2)20℃での1C(1.5A)充放電試験;これは
20℃の温度下で0.2C(0.3A)で終止電圧1.
0Vまで放電した後、充電電流1Cで120%(1.2
時間)充電し、休止1時間後、1Cで1.0Vまで放電
したときの放電容量を測定した。(式1)により水酸化
ニッケル利用率を求め、1C放電時の水酸化ニッケル利
用率とした。
Formula 1: Nickel hydroxide utilization rate = (discharge capacity / theoretical capacity) × 100 (2) 1 C (1.5 A) charge / discharge test at 20 ° C .; In 3A), the cut-off voltage is 1.
After discharging to 0 V, the charging current was 1% and 120% (1.2%).
Time) The battery was charged, and after one hour of rest, the discharge capacity at the time of discharging to 1.0 V at 1 C was measured. The nickel hydroxide utilization rate was determined by (Equation 1) and was defined as the nickel hydroxide utilization rate at the time of 1C discharge.

【0054】(3)高温状態での過放電特性試験;これ
は20℃、0.2Cで1.0Vまで放電した後、1kΩ
の外部負荷をつないで45℃で2カ月保存し、過放電後
の20℃,1C充放電試験での放電容量を測定した。
(式1)より水酸化ニッケル利用率を求め、過放電後の
1C放電時の水酸化ニッケル利用率とした。
(3) Overdischarge characteristic test in a high temperature state;
Was stored at 45 ° C. for 2 months with an external load, and the discharge capacity was measured in a 20 ° C., 1C charge / discharge test after overdischarge.
The nickel hydroxide utilization rate was determined from (Equation 1), and was defined as the nickel hydroxide utilization rate at the time of 1C discharge after overdischarge.

【0055】(比較例)比較のために水酸化ニッケル粉
末重量100に対して水酸化コバルト粉末10を混合
し、この混合粉末に40重量%の水酸化ナトリウム水溶
液を1.5リットル混合した。
(Comparative Example) For comparison, a cobalt hydroxide powder 10 was mixed with a nickel hydroxide powder weight of 100, and 1.5 liter of a 40% by weight aqueous sodium hydroxide solution was mixed with the mixed powder.

【0056】次に、混合しながら空気を通じて110℃
で加熱処理した。処理後、水洗、乾燥して正極活物質を
作成した。なお処理時間は110℃で1時間とした。
Next, the mixture was passed through air at 110 ° C. while mixing.
Was heated. After the treatment, the product was washed with water and dried to prepare a positive electrode active material. The processing time was 110 ° C. for 1 hour.

【0057】水酸化ニッケル重量を100g,1kg,
10kgと、水酸化ニッケル処理量を変えて正極活物質
を作成した。
The weight of nickel hydroxide was 100 g, 1 kg,
A positive electrode active material was prepared by changing the treatment amount of nickel hydroxide to 10 kg.

【0058】作成した正極活物質を用いて上記と同様の
試験電池を作成し、上記と同様の測定を行った。その結
果を(表1)に示す。
Using the positive electrode active material thus prepared, a test battery similar to the above was prepared, and the same measurement was performed. The results are shown in (Table 1).

【0059】比較例が水酸化ニッケルの処理量が多くな
ることにより0.2C放電時の水酸化ニッケル利用率や
1C放電時の水酸化ニッケル利用率が低下したのに対し
て、本実施例の製造方法で製造した正極活物質は水酸化
ニッケル利用率が高く、また水酸化ニッケルの処理量が
多くなっても安定した水酸化ニッケル利用率を示した。
さらに、高温過放電後の1C放電時の水酸化ニッケル利
用率の低下は認められなかった。
In the comparative example, the nickel hydroxide utilization rate at the time of 0.2 C discharge and the nickel hydroxide utilization rate at the time of 1 C discharge were reduced due to the increase in the treatment amount of nickel hydroxide. The positive electrode active material produced by the production method had a high nickel hydroxide utilization rate, and showed a stable nickel hydroxide utilization rate even when the amount of nickel hydroxide treated was large.
Further, no decrease in the nickel hydroxide utilization rate during 1C discharge after high-temperature overdischarge was observed.

【0060】[0060]

【表1】 [Table 1]

【0061】(実施例2)まず、一般式Na3〔Co
(CO33〕で示されるトリカルボナトコバルト酸ナト
リウム化合物を作成した。
Example 2 First, the general formula Na 3 [Co
(CO 3 ) 3 ] to produce a sodium tricarbonatocobaltate compound.

【0062】0℃程度に冷却した硝酸コバルト水溶液
に、過酸化水素水を混合して、混合溶液とした。この混
合溶液を0℃程度に冷却した炭酸水素ナトリウムを入れ
た水溶液(炭酸水素ナトリウムの溶解量以上の量が必要
であるために粉末が残っている)に十分に攪拌しなが
ら、また、水溶液温度を保ちながら徐々に添加した。生
成した沈殿物を吸引濾過して、少量の冷水で洗浄し、エ
タノール、エーテルで洗浄し、五酸化リンを入れたデシ
ケータ中で乾燥し、トリカルボナトコバルト酸ナトリウ
ムを作成した。ここではコバルトとして硝酸コバルトを
用いたが、硫酸コバルトや塩化コバルト、酢酸コバルト
等の水溶性コバルト塩を用いても同様の効果を得ること
ができる。
An aqueous solution of hydrogen peroxide was mixed with an aqueous solution of cobalt nitrate cooled to about 0 ° C. to obtain a mixed solution. While sufficiently stirring this mixed solution in an aqueous solution containing sodium bicarbonate cooled to about 0 ° C. (powder is required because the amount of sodium bicarbonate is equal to or more than the dissolution amount of sodium bicarbonate), Was gradually added. The precipitate formed was filtered by suction, washed with a small amount of cold water, washed with ethanol and ether, and dried in a desiccator containing phosphorus pentoxide to prepare sodium tricarbonatocobaltate. Here, cobalt nitrate is used as cobalt, but the same effect can be obtained by using a water-soluble cobalt salt such as cobalt sulfate, cobalt chloride, or cobalt acetate.

【0063】第1工程として炭酸水素ナトリウムを溶解
した水溶液に上記所定量のトリカルボナトコバルト酸ナ
トリウムと水酸化ニッケル粉末を、水酸化ニッケル粉末
重量100に対してトリカルボナトコバルト酸ナトリウ
ムの水酸化コバルト換算重量が10となる量のトリカル
ボナトコバルト酸ナトリウムを入れて、攪拌混合し、混
合溶液とした。
As a first step, the above-mentioned predetermined amounts of sodium tricarbonatocobaltate and nickel hydroxide powder are added to an aqueous solution in which sodium hydrogencarbonate is dissolved. An amount of sodium tricarbonatocobaltate having an amount of 10 in terms of cobalt was added and mixed with stirring to obtain a mixed solution.

【0064】第2工程として、上記混合水溶液を90℃
で1時間加熱攪拌し、水酸化ニッケル粒子表面にコバル
ト化合物層を形成した。この工程においてトリカルボナ
トコバルト酸ナトリウムが分解し、水酸化ニッケルの粒
子表面にオキシ水酸化コバルトを主体とした層を形成し
た。
In the second step, the mixed aqueous solution is heated to 90 ° C.
For 1 hour to form a cobalt compound layer on the surface of the nickel hydroxide particles. In this step, sodium tricarbonatocobaltate was decomposed to form a layer mainly composed of cobalt oxyhydroxide on the surface of the nickel hydroxide particles.

【0065】第3工程として、上記オキシ水酸化コバル
ト層を形成した水酸化ニッケル粉末を回収して、10重
量%の水酸化リチウム水溶液中に投入し、100℃で1
時間加熱攪拌した後、水洗、乾燥して正極活物質を作成
した。なお水酸化リチウムはコバルトに対して2倍モル
量用いた。
In the third step, the nickel hydroxide powder on which the above-mentioned cobalt oxyhydroxide layer was formed was recovered, put into a 10% by weight aqueous solution of lithium hydroxide, and heated at 100 ° C. for 1 hour.
After heating and stirring for an hour, the product was washed with water and dried to prepare a positive electrode active material. Note that lithium hydroxide was used in an amount twice as much as that of cobalt.

【0066】上記作成方法で、水酸化ニッケル重量を1
00g,1kg,10kgとして処理量の影響を調べ
た。
According to the above-described method, the weight of nickel hydroxide was reduced to 1
The effect of the treatment amount was examined at 00 g, 1 kg, and 10 kg.

【0067】第3工程でオキシ水酸化コバルトはLiC
oO2のコバルト複合酸化物に変わった。混合した水酸
化ニッケルもこの工程で若干酸化されるが、実施例1と
同様にコバルトのような高次酸化化合物はほとんど生成
せず、X線解析の結果ではβ型の水酸化ニッケルの回折
パターンを示した。
In the third step, cobalt oxyhydroxide is LiC
It was changed to oO 2 cobalt composite oxide. Although the mixed nickel hydroxide is slightly oxidized in this step, almost no higher-order oxidized compound such as cobalt is formed similarly to Example 1, and the result of X-ray analysis shows the diffraction pattern of β-type nickel hydroxide. showed that.

【0068】第2工程として、コバルト化合物層を形成
した水酸化ニッケル粉末を回収することなく、第1工程
で混合した水溶液に水酸化リチウム水溶液を攪拌しなが
ら徐々に添加し、さらに、加熱して水酸化リチウムと反
応させても前述の方法と同様の効果を得ることができ
た。
In the second step, the lithium hydroxide aqueous solution was gradually added to the aqueous solution mixed in the first step while stirring without recovering the nickel hydroxide powder on which the cobalt compound layer was formed, and further heated. The same effect as in the above method could be obtained even when the reaction was carried out with lithium hydroxide.

【0069】上記作成した正極活物質を用いて、実施例
1と同様の電池を作成し、実施例1と同様の測定を行っ
た。その結果も(表1)に示す。
Using the positive electrode active material prepared above, a battery similar to that of Example 1 was prepared, and the same measurement as that of Example 1 was performed. The results are also shown in (Table 1).

【0070】水酸化ナトリウムを用いた実施例1に比
べ、水酸化ニッケル利用率は若干低下したが、水酸化ニ
ッケルの処理量が多くなっても、高くて安定した水酸化
ニッケル利用率を示した。この利用率が低下したのは、
Na0.6CoO2に比べてLiCoO2の電気抵抗が大き
いためであると考える。
Although the nickel hydroxide utilization rate was slightly lower than that of Example 1 using sodium hydroxide, the nickel hydroxide utilization rate was high and stable even when the treatment amount of nickel hydroxide was increased. . This drop in utilization was due to
Compared to Na 0.6 CoO 2 considered to be due electric resistance of LiCoO 2 is large.

【0071】また、高温過放電後、1C放電時の水酸化
ニッケル利用率も高い値を示した。
After the high temperature overdischarge, the nickel hydroxide utilization at the time of 1C discharge also showed a high value.

【0072】(実施例3)硫酸コバルト水溶液と過酸化
水素水を混合し、コバルト塩混合溶液とした。
Example 3 An aqueous solution of cobalt sulfate was mixed with an aqueous solution of hydrogen peroxide to prepare a mixed solution of cobalt salts.

【0073】第1工程として、炭酸水素アンモニウムを
溶解した水溶液中に水酸化ニッケルを分散混合し、この
溶液に上記コバルト塩混合溶液を十分に攪拌しながら徐
々に滴下、混合し、コバルト錯体と水酸化ニッケル粉末
の混合溶液とした。この工程では水に可溶な多数のコバ
ルト錯体が生成されたが、それら錯体化合物を特定する
ことはできなかった。
As a first step, nickel hydroxide is dispersed and mixed in an aqueous solution in which ammonium hydrogen carbonate is dissolved, and the above-mentioned cobalt salt mixed solution is gradually dropped and mixed into this solution with sufficient stirring to obtain a cobalt complex and water. A mixed solution of nickel oxide powder was used. In this step, a number of water-soluble cobalt complexes were produced, but the complex compounds could not be identified.

【0074】第2工程として、上記コバルト錯体と水酸
化ニッケル粉末の混合水溶液を90℃で1時間加熱攪拌
し、水酸化ニッケル粒子表面にコバルト化合物層を形成
した。
In the second step, the mixed aqueous solution of the cobalt complex and the nickel hydroxide powder was heated and stirred at 90 ° C. for 1 hour to form a cobalt compound layer on the surface of the nickel hydroxide particles.

【0075】第3工程として、上記コバルト化合物層を
形成した水酸化ニッケル粉末を回収して、10重量%の
水酸化リチウム水溶液中に入れ、100℃で1時間加熱
攪拌した後、水洗、乾燥して正極活物質を作成した。
In the third step, the nickel hydroxide powder on which the above-mentioned cobalt compound layer was formed was recovered, put into a 10% by weight aqueous solution of lithium hydroxide, heated and stirred at 100 ° C. for 1 hour, washed with water and dried. Thus, a positive electrode active material was prepared.

【0076】上記の作成方法で、水酸化ニッケル重量を
100g,1kg,10kgとして処理量の影響を調べ
た。
The influence of the treatment amount was examined by setting the weight of nickel hydroxide to 100 g, 1 kg, and 10 kg by the above-mentioned preparation method.

【0077】第3工程でオキシ水酸化コバルトはLiC
oO2のコバルト複合酸化物に変わる。混合した水酸化
ニッケルもこの工程で若干酸化されるが、実施例1と同
様にコバルトのような高次酸化化合物はほとんど生成せ
ず、X線解析の結果ではβ型の水酸化ニッケルの回折パ
ターンを示した。
In the third step, cobalt oxyhydroxide is converted to LiC
It is changed to oO 2 cobalt composite oxide. Although the mixed nickel hydroxide is slightly oxidized in this step, almost no higher-order oxidized compound such as cobalt is formed similarly to Example 1, and the result of X-ray analysis shows the diffraction pattern of β-type nickel hydroxide. showed that.

【0078】第2工程として、コバルト化合物層を形成
した水酸化ニッケル粉末を回収することなく、第1工程
で混合した水溶液に水酸化リチウム水溶液を攪拌しなが
ら徐々に添加し、さらに、加熱して水酸化リチウムと反
応させても前述の方法と同様の効果を得ることができ
た。
In the second step, the lithium hydroxide aqueous solution was gradually added to the aqueous solution mixed in the first step while stirring without recovering the nickel hydroxide powder on which the cobalt compound layer was formed, and further heated. The same effect as in the above method could be obtained even when the reaction was carried out with lithium hydroxide.

【0079】上記で作成した正極活物質を用いて、実施
例1と同様の電池を作成した。そして実施例1と同様の
測定を行った結果を(表1)に示す。
Using the positive electrode active material prepared as described above, a battery similar to that of Example 1 was prepared. The results of the same measurements as in Example 1 are shown in (Table 1).

【0080】実施例2と同様の結果を得ることができ、
水酸化ニッケルの処理量が多くなっても、高くて安定し
た水酸化ニッケル利用率を示した。
The same results as in Example 2 can be obtained.
Even when the treatment amount of nickel hydroxide was large, the nickel hydroxide utilization rate was high and stable.

【0081】また、高温過放電後、1C放電時の水酸化
ニッケル利用率も高い値を示した。
After the high-temperature overdischarge, the nickel hydroxide utilization at the time of 1C discharge also showed a high value.

【0082】(実施例4)水酸化ニッケル粉末10kg
を用いて、水酸化ニッケル粉末重量100に対して水酸
化コバルト粉末10を混合し、この混合粉末に40重量
%の水酸化ナトリウム水溶液を1.5リットル混合し
た。
Example 4 10 kg of nickel hydroxide powder
Was used, and cobalt hydroxide powder 10 was mixed with nickel hydroxide powder weight 100, and 1.5 liter of a 40% by weight aqueous sodium hydroxide solution was mixed with the mixed powder.

【0083】次に、混合しながら二酸化炭素ガスを混合
した空気を通じて110℃で1時間加熱処理した。処理
後、水洗、乾燥して正極活物質を作成した。
Next, a heat treatment was performed at 110 ° C. for 1 hour through air mixed with carbon dioxide gas while mixing. After the treatment, the product was washed with water and dried to prepare a positive electrode active material.

【0084】加熱処理時の空気と二酸化炭素ガスの混合
割合を変えて正極活物質を作成し、その影響を調べた。
A positive electrode active material was prepared by changing the mixing ratio of air and carbon dioxide gas during the heat treatment, and the effect was examined.

【0085】作成した正極活物質を用いて実施例1と同
様の試験電池を作成し、実施例1と同様の測定を行っ
た。その結果を図2に示す。空気中の二酸化炭素濃度は
0.03%とした。水酸化ニッケル処理時の二酸化炭素
濃度を高くすることにより0.2C放電時および1C放
電時の水酸化ニッケルの利用率を高くすることができる
とともに、高温過放電後の1C放電時の水酸化ニッケル
利用率も向上することができた。これは二酸化炭素を添
加することにより中間生成物的な水溶性のコバルト錯体
が生成されたためではないかと考えられる。
Using the positive electrode active material thus prepared, a test battery similar to that of Example 1 was prepared, and the same measurement as in Example 1 was performed. The result is shown in FIG. The concentration of carbon dioxide in the air was 0.03%. By increasing the concentration of carbon dioxide during the nickel hydroxide treatment, it is possible to increase the utilization rate of nickel hydroxide during 0.2C discharge and 1C discharge, and to increase nickel hydroxide during 1C discharge after high-temperature overdischarge. The utilization rate could be improved. This is probably because the addition of carbon dioxide produced a water-soluble cobalt complex as an intermediate product.

【0086】しかし、図2で明らかな通り、二酸化炭素
濃度が5容積%より高い場合、水酸化ニッケル利用率は
低下した。これは水酸化ナトリウムと二酸化炭素が反応
し、水酸化ナトリウム処理の効果、つまりコバルト水酸
化物との反応性が低下したためであると考えられる。
However, as is apparent from FIG. 2, when the carbon dioxide concentration was higher than 5% by volume, the nickel hydroxide utilization decreased. This is considered to be because sodium hydroxide and carbon dioxide reacted, and the effect of sodium hydroxide treatment, that is, the reactivity with cobalt hydroxide was reduced.

【0087】このことより二酸化炭素の濃度は0.1〜
10容積%が適量である。以上の実施例では、負極とし
て水素吸蔵合金を用いたニッケル−水素蓄電池について
述べたが、負極としてカドミウムや亜鉛を用いたアルカ
リ蓄電池においても同様の効果を得ることができる。
Thus, the concentration of carbon dioxide is 0.1 to
10% by volume is an appropriate amount. In the above embodiments, the nickel-hydrogen storage battery using the hydrogen storage alloy as the negative electrode has been described. However, the same effect can be obtained in an alkaline storage battery using cadmium or zinc as the negative electrode.

【0088】[0088]

【発明の効果】本発明によれば、水酸化ニッケルの利用
率および大電流での放電特性に優れ、かつ、特性の安定
した正極活物質を得ることができる。
According to the present invention, it is possible to obtain a positive electrode active material which is excellent in the utilization rate of nickel hydroxide and the discharge characteristics under a large current and has stable characteristics.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明での円筒型電池の基本構成図FIG. 1 is a basic configuration diagram of a cylindrical battery according to the present invention.

【図2】正極活物質処理ガス中の二酸化炭素濃度と水酸
化ニッケル利用率との関係図
FIG. 2 is a diagram showing the relationship between the concentration of carbon dioxide in the processing gas for the positive electrode active material and the utilization rate of nickel hydroxide

【符号の説明】[Explanation of symbols]

1 正極板 2 負極板 3 セパレータ 4 電池ケース 5 封口板 6 正極端子キャップ 7 安全弁 8 絶縁ガスケット 9 正極リード体 Reference Signs List 1 positive electrode plate 2 negative electrode plate 3 separator 4 battery case 5 sealing plate 6 positive electrode terminal cap 7 safety valve 8 insulating gasket 9 positive electrode lead body

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】正極と、負極と、アルカリ電解液とから構
成されるアルカリ蓄電池であり、前記正極は水酸化ニッ
ケルを主とする活物質を備え、その活物質の粒子表面は
コバルト複合酸化物で被覆されていて、前記複合酸化物
は、一般式[Co(NH36]CO3、および[Co
(NH362(CO33で示される化合物(ヘキサア
ンミンコバルト炭酸塩)を出発物質として合成して得ら
れる一般式M XCoO2(xは0<x≦1,MはLi,N
a,Kのうちの少なくとも1種の元素)で示されるもの
であるアルカリ蓄電池。
1. A structure comprising a positive electrode, a negative electrode, and an alkaline electrolyte.
The alkaline storage battery is formed, and the positive electrode is a nickel hydroxide
It has an active material mainly composed of Kel, and the particle surface of the active material is
Coated with a cobalt composite oxide, said composite oxide
Is represented by the general formula [Co (NHThree)6] COThree, And [Co
(NHThree)6]Two(COThree)ThreeCompound represented by (hexa
(Mn cobalt carbonate) as a starting material.
General formula M XCoOTwo(X is 0 <x ≦ 1, M is Li, N
a) at least one element of K)
Is an alkaline storage battery.
【請求項2】一般式[Co(NH36]CO3および
[Co(NH362(CO33で示される化合物(ヘ
キサアンミンコバルト炭酸塩)の水溶液に水酸化ニッケ
ルを主とする粉末を入れて混合する工程と、この混合水
溶液を70℃以上に加熱攪拌して、水酸化ニッケルを主
とする粉末表面にコバルト化合物からなる被覆層を設け
る工程と、これを水酸化アルカリとともに90〜150
℃に加熱して一般式MXCoO2(xは0<x≦1,Mは
Li,Na,Kのうちの少なくとも1種の元素)で示さ
れるコバルト複合酸化物の被覆層を合成する工程とを有
するアルカリ蓄電池用正極の製造法。
2. Nickel hydroxide is added to an aqueous solution of a compound represented by the general formulas [Co (NH 3 ) 6 ] CO 3 and [Co (NH 3 ) 6 ] 2 (CO 3 ) 3 (hexamminecobalt carbonate). A step of adding and mixing the main powder, a step of heating and stirring the mixed aqueous solution at 70 ° C. or more to form a coating layer made of a cobalt compound on the surface of the powder mainly composed of nickel hydroxide, and 90-150 with alkali
Step of synthesizing a coating layer of a cobalt composite oxide represented by the general formula M x CoO 2 (x is 0 <x ≦ 1, M is at least one element of Li, Na, and K) by heating to ° C. A method for producing a positive electrode for an alkaline storage battery, comprising:
【請求項3】正極と、負極と、アルカリ電解液とから構
成されるアルカリ蓄電池であり、前記正極は水酸化ニッ
ケルを主とする活物質を備え、その活物質の粒子表面は
コバルト複合酸化物で被覆されていて、その複合酸化物
は、一般式M3[Co(CO33](MはLi,Na,
K,のうちの少なくとも1種)で示される化合物(トリ
カルボナトコバルト酸塩)を出発活物質として合成して
得られる一般式MXCoO2(xは0<x≦1,MはL
i,Na,Kのうちの少なくとも1種の元素)で示され
るものであるアルカリ蓄電池。
3. An alkaline storage battery comprising a positive electrode, a negative electrode, and an alkaline electrolyte, wherein the positive electrode comprises an active material mainly composed of nickel hydroxide, and the surface of the active material particles is a cobalt composite oxide. And the composite oxide is represented by the general formula M 3 [Co (CO 3 ) 3 ] (M is Li, Na,
K, at least a compound represented by one) (commonly obtained by combining tricarbocyanine isocyanatomethyl cobalt salt) as the starting active material formula M X CoO 2 (x is 0 <x ≦ 1, M of the L
or at least one element of i, Na and K).
【請求項4】一般式M3[Co(CO33](MはL
i,Na,Kのうちの少なくとも1種の元素)で示され
る化合物を炭酸水素アルカリ水溶液に溶解し、これに水
酸化ニッケルを主とする粉末を入れて混合する工程と、
この混合水溶液を60℃以上に加熱攪拌して、水酸化ニ
ッケルを主とする粉末表面にコバルト化合物からなる被
覆層を設ける工程と、これを水酸化アルカリとともに9
0〜150℃に加熱して一般式MXCoO2(xは0<x
≦1,MはLi,Na,Kのうちの少なくとも1種の元
素)で示されるコバルト複合酸化物被覆層を合成する工
程とを有するアルカリ蓄電池用正極の製造法。
4. The general formula M 3 [Co (CO 3 ) 3 ] (M is L
dissolving a compound represented by at least one element selected from i, Na, and K) in an aqueous alkali hydrogen carbonate solution, adding a powder mainly composed of nickel hydroxide thereto, and mixing;
A step of heating and stirring the mixed aqueous solution to 60 ° C. or higher to form a coating layer made of a cobalt compound on the surface of the powder mainly composed of nickel hydroxide;
Was heated to 0 to 150 ° C. general formula M X CoO 2 (x is 0 <x
≦ 1, M is at least one element selected from the group consisting of Li, Na, and K) and a step of synthesizing a cobalt composite oxide coating layer represented by the following formula:
【請求項5】一般式M3〔Co(CO33〕(MはL
i,Na,Kのうちの少なくとも1種の元素)で示され
る化合物を炭酸水素アルカリ水溶液に溶解し、これに水
酸化ニッケルを主とする粉末を入れて混合する工程と、
この混合溶液にさらに水酸化アルカリを添加して90〜
150℃に加熱し、一般式MXCoO2(xは0<x≦
1、MはLi,Na,Kのうちの少なくとも1種の元
素)で示されるコバルト複合酸化物被覆層を合成する工
程とを有するアルカリ蓄電池用正極の製造法。
5. The general formula M 3 [Co (CO 3 ) 3 ] (M is L
dissolving a compound represented by at least one element selected from i, Na, and K) in an aqueous alkali hydrogen carbonate solution, adding a powder mainly composed of nickel hydroxide thereto, and mixing;
An alkali hydroxide is further added to this mixed solution,
It was heated to 0.99 ° C., the general formula M X CoO 2 (x is 0 <x ≦
1. a method of producing a positive electrode for an alkaline storage battery, the method comprising: synthesizing a cobalt composite oxide coating layer represented by the following formula:
【請求項6】水酸化ニッケルを主とする粉末を分散また
は混合した炭酸水素アルカリもしくは炭酸アルカリ(ア
ルカリはLi,Na,K,アンモニアのうちの少なくと
も1種)水溶液にコバルト塩と酸化剤の混合水溶液を混
合する工程と、この混合水溶液を60℃以上に加熱攪拌
して、水酸化ニッケルを主とする粉末の表面にコバルト
化合物からなる被覆層を設ける工程と、被覆層を設けた
粉末を水酸化アルカリとともに90〜150℃に加熱し
て一般式MXCoO2(xは0<x≦1,MはLi,N
a,Kのうちの少なくとも1種の元素)で示されるコバ
ルト複合酸化物被覆層を合成する工程とからなるアルカ
リ蓄電池用正極の製造法。
6. A mixture of a cobalt salt and an oxidizing agent in an aqueous solution of alkali hydrogen carbonate or alkali carbonate (alkali is at least one of Li, Na, K and ammonia) in which a powder mainly composed of nickel hydroxide is dispersed or mixed. Mixing the aqueous solution, heating and stirring the mixed aqueous solution at 60 ° C. or higher to form a coating layer made of a cobalt compound on the surface of the powder mainly composed of nickel hydroxide, formula M X CoO 2 (x is heated to 90 to 150 ° C. with alkali oxide is 0 <x ≦ 1, M is Li, N
a step of synthesizing a cobalt composite oxide coating layer represented by at least one of a and K).
【請求項7】水酸化ニッケルを主とする粉末を分散また
は混合した炭酸水素アルカリもしくは炭酸アルカリ(ア
ルカリはLi,Na,K,アンモニアのうちの少なくと
も1種)水溶液にコバルト塩と酸化剤の混合水溶液を混
合する工程と、この混合水溶液に水酸化アルカリを添加
して、90〜150℃に加熱し、一般式MXCoO2(x
は0<x≦1,MはLi,Na,Kのうちの少なくとも
1種の元素)で示されるコバルト複合酸化物被覆層を合
成する工程とからなるアルカリ蓄電池用正極の製造法。
7. A mixture of a cobalt salt and an oxidizing agent in an aqueous solution of alkali hydrogen carbonate or alkali carbonate (alkali is at least one of Li, Na, K and ammonia) in which a powder mainly composed of nickel hydroxide is dispersed or mixed. and mixing the aqueous solution, by adding an alkali hydroxide to the aqueous mixture was heated to 90 to 150 ° C., the general formula M X CoO 2 (x
Is a step of synthesizing a cobalt composite oxide coating layer represented by the following formula: 0 <x ≦ 1, M is at least one element of Li, Na, and K).
【請求項8】水酸化ニッケルを主とする粉末と水酸化コ
バルト粉末もしくは酸化コバルト粉末を水酸化アルカ
リ、二酸化炭素、酸化剤、水の共存下で加熱し、一般式
XCoO2(xは0<x≦1,MはLi,Na,Kのう
ちの少なくとも1種の元素)で示されるコバルト複合酸
化物粉末を合成、混合するアルカリ蓄電池用正極の製造
法。
8. A powder mainly composed of nickel hydroxide and a cobalt hydroxide powder or a cobalt oxide powder are heated in the presence of alkali hydroxide, carbon dioxide, an oxidizing agent and water to obtain a compound of the general formula M X CoO 2 (x: 0 <x ≦ 1, M is at least one element selected from the group consisting of Li, Na, and K).
【請求項9】一般式MXCoO2(xは0<x≦1,Mは
Li,Na,Kのうちの少なくとも1種の元素)で示さ
れるコバルト複合酸化物粉末が水酸化ニッケルを主とす
る粉末表面を被覆する請求項8に記載のアルカリ蓄電池
用正極の製造法。
9. A cobalt composite oxide powder represented by the general formula: M X CoO 2 (x is 0 <x ≦ 1, M is at least one element of Li, Na and K) is mainly nickel hydroxide. The method for producing a positive electrode for an alkaline storage battery according to claim 8, wherein the powder surface is coated.
【請求項10】コバルト複合酸化物の添加量は、アルカ
リ蓄電池用正極活物質である水酸化ニッケルに対して2
〜30重量%である請求項1または3記載のアルカリ蓄
電池。
10. The addition amount of the cobalt composite oxide is 2 to nickel hydroxide which is a positive electrode active material for an alkaline storage battery.
The alkaline storage battery according to claim 1, wherein the content of the alkaline storage battery is about 30% by weight.
JP9139488A 1997-05-29 1997-05-29 Alkaline storage battery and its manufacture Pending JPH10334911A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9139488A JPH10334911A (en) 1997-05-29 1997-05-29 Alkaline storage battery and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9139488A JPH10334911A (en) 1997-05-29 1997-05-29 Alkaline storage battery and its manufacture

Publications (1)

Publication Number Publication Date
JPH10334911A true JPH10334911A (en) 1998-12-18

Family

ID=15246434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9139488A Pending JPH10334911A (en) 1997-05-29 1997-05-29 Alkaline storage battery and its manufacture

Country Status (1)

Country Link
JP (1) JPH10334911A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1111701A1 (en) * 1999-12-23 2001-06-27 Alcatel Non-sintered nickel electrode for secondary battery with alkali electrolyte
JP2002338252A (en) * 2001-05-10 2002-11-27 Sony Corp Beta type nickel oxy hydroxide and manufacturing method therefor, positive electrode for battery and battery
JP2008305638A (en) * 2007-06-06 2008-12-18 Gs Yuasa Corporation:Kk Alkaline storage battery
KR101050346B1 (en) 2002-10-10 2011-07-19 니폰 가가쿠 고교 가부시키가이샤 Lithium Cobalt Composite Oxide and Manufacturing Method Thereof and Non-aqueous Electrolyte Secondary Battery

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1111701A1 (en) * 1999-12-23 2001-06-27 Alcatel Non-sintered nickel electrode for secondary battery with alkali electrolyte
FR2803104A1 (en) * 1999-12-23 2001-06-29 Cit Alcatel NON-FRITTED NICKEL ELECTRODE FOR ALKALINE ELECTROLYTE SECONDARY ELECTROCHEMICAL GENERATOR
US6348284B1 (en) 1999-12-23 2002-02-19 Alcatel Non-sintered nickel electrode for a secondary electro-chemical cell having an alkaline electrolyte
JP2002338252A (en) * 2001-05-10 2002-11-27 Sony Corp Beta type nickel oxy hydroxide and manufacturing method therefor, positive electrode for battery and battery
KR101050346B1 (en) 2002-10-10 2011-07-19 니폰 가가쿠 고교 가부시키가이샤 Lithium Cobalt Composite Oxide and Manufacturing Method Thereof and Non-aqueous Electrolyte Secondary Battery
JP2008305638A (en) * 2007-06-06 2008-12-18 Gs Yuasa Corporation:Kk Alkaline storage battery

Similar Documents

Publication Publication Date Title
JP5344146B2 (en) Anode active material for lithium secondary battery having core-shell layer structure, method for producing the same, and lithium secondary battery using the same
JP4161382B2 (en) Process for producing two-layer structured particulate composition
JP3624539B2 (en) Method for producing lithium nickelate positive electrode plate and lithium battery
WO2023092989A1 (en) Ferrous manganese phosphate, and preparation method therefor and use thereof
JP3702353B2 (en) Method for producing positive electrode active material for lithium battery and lithium battery
JP4496704B2 (en) Manufacturing method of nickel metal hydride battery
JP3232990B2 (en) Alkaline storage battery and method for manufacturing the same
JP2003173775A (en) Nonaqueous electrolyte secondary battery
JP4412936B2 (en) Cobalt oxyhydroxide, method for producing the same, and alkaline storage battery using the same
JP2004071304A (en) Positive active material for alkaline storage battery, positive electrode using it, and alkaline storage battery
JP2002216752A (en) Cobalt compound, method for manufacturing the same, positive electrode plate for alkaline storage battery using the same and alkaline storage battery
JPH10334911A (en) Alkaline storage battery and its manufacture
JP2013037879A (en) Positive electrode active material for lithium ion secondary battery, lithium ion secondary battery including the positive electrode active material, and method for producing lithium manganese silver complex oxide
JP2001185138A (en) Positive electrode active material for alkaline storage battery and manufacturing method therefor
JPH11312519A (en) Compound nickel hydroxide active material containing mn, and preparation thereof
JP4055269B2 (en) Manganese oxide and method for producing the same, lithium manganese composite oxide using manganese oxide, and method for producing the same
JP4273568B2 (en) Lithium manganese composite oxide particulate composition and its production and application to lithium ion secondary battery
JPH10326616A (en) Alkaline storage battery
JPH10284075A (en) Manufacture of positive electrode active material for alkaline battery
JPH10326617A (en) Manufacture of positive electrode active material for alkaline secondary battery, paste type nickel electrode and alkaline secondary battery
JP2004296299A (en) Alkaline storage battery
JP2003346794A (en) Alkaline battery positive electrode active material, its manufacturing method, alkaline battery positive electrode using the same, and alkaline battery using positive electrode
JP7192397B2 (en) Lithium-cobalt-manganese composite oxide and lithium secondary battery containing the same
JPH10188975A (en) Positive electrode material for silver oxide battery and its manufacture
JP3518259B2 (en) Nickel-hydrogen storage battery and method for producing positive electrode active material thereof