JPS6340023B2 - - Google Patents

Info

Publication number
JPS6340023B2
JPS6340023B2 JP57162186A JP16218682A JPS6340023B2 JP S6340023 B2 JPS6340023 B2 JP S6340023B2 JP 57162186 A JP57162186 A JP 57162186A JP 16218682 A JP16218682 A JP 16218682A JP S6340023 B2 JPS6340023 B2 JP S6340023B2
Authority
JP
Japan
Prior art keywords
nickel
hydroxide
ozone
active material
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57162186A
Other languages
Japanese (ja)
Other versions
JPS5873964A (en
Inventor
Takahisa Oosaki
Tamotsu Shirogami
Juichi Sato
Masao Koyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP6800077A priority Critical patent/JPS544335A/en
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP57162186A priority patent/JPS5873964A/en
Publication of JPS5873964A publication Critical patent/JPS5873964A/en
Publication of JPS6340023B2 publication Critical patent/JPS6340023B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はオゾン酸化法によるアルカリ電池用ニ
ツケル活物質の製造方法の改良に関する。 従来アルカリ電池用ニツケル活物質の製造方法
として、例えば苛性アルカリ溶液と臭素水あるい
は次亜塩素酸塩溶液などの酸化剤との混合溶液中
に硝酸ニツケル、硫酸ニツケルのごときニツケル
塩溶液を加えてニツケル酸化物を生成しこれをニ
ツケル活物質とする方法、あるいは粉末の水酸化
第1ニツケルを乾燥状態でオゾン含有ガスにて酸
化しニツケル酸化物としこれをニツケル活物質と
するオゾン酸化法などがある。 この内オゾン酸化法によるニツケル活物質の製
造法は、粉末の水酸化第1ニツケルに直接オゾン
を接触させてニツケル酸化物とするものであり、
前者に比べ水洗、脱水、乾燥、粉砕の工程が不要
であるばかりか、大量のアルカリ溶液や爆発性の
次亜塩素酸ソーダ溶液などを必要とせず、また反
応後の排ガス処理が容易であるなど工業的に極め
て有効な方法である。しかし従来オゾン酸化によ
るニツケル酸化物の生成は反応効率が低く、酸化
度の高いニツケル活物質を得るには大量のオゾン
と長時間接触させる必要があるため生成ニツケル
活物質が高価となるのみならず、通常この方法で
生成したニツケル酸化物は酸化が不充分で水酸化
第1ニツケルの表面のみが酸化されて粉末中心部
までニツケル酸化物に変化しておらず電気抵抗の
高い水酸化第1ニツケルが中心に残る。従つてこ
れを電池活物質として使用すると電池内部抵抗が
増加するほか電池活物質の容量が小さく、且つ放
電性能の低下も急激になるなどの欠点が認められ
た。 本発明は放電容量が著しく向上し、かつ放電特
性も平担な性能を示すニツケル活物質を少量のオ
ゾン量により効率よく得ることのできるアルカリ
電池用ニツケル活物質の製造方法を提供すること
を目的とする。 本発明は水酸化第1ニツケルに酸化コバルト
と、苛性アルカリとを添加した後、オゾン含有ガ
ス流により酸化せしめたアルカリ電池用ニツケル
活物質の製造方法である。 苛性アルカリとしては苛性カリウム、苛性ソー
ダ、水酸化リチウム、水酸化ルビジウム、水酸化
セシウムなどを用いることができる。つまり、本
発明は水酸化第1ニツケルの酸化時に酸化コバル
トと苛性アルカリとが共存することによりそれら
が相乗的に触媒の如き役割を果して酸化反応を促
進する結果水酸化第1ニツケルの酸化が高効率で
進行し、未反応で排出されるオゾン量が大幅に減
少するとともに、廉価良質なニツケル活物質を合
成するものである。 以下本発明を実施例より説明する。 80メツシユパス水酸化第1ニツケル粉末100g
と酸化コバルト粉末4gと80メツシユパス苛性カ
リウム粉末8gとを充分混合した後、この混合物
を二頭フラスコ中に入れてマグネチツクスターラ
ーを用いてフラスコ内の粉末を撹拌しながらオゾ
ン含有ガスを通過させ、水酸化第1ニツケルを酸
化して黒色のニツケル酸化物を合成しニツケル活
物質を得た。 次に、このニツケル活物質8.0gと鱗状黒鉛1.5
g、ポリスチレン0.5gとを充分混合した後、こ
の粉末1.0gを採取し加圧成形して得たニツケル
陽極と、この陽極に対し3倍の放電容量を有する
亜鉛板を対極として5mA/cm2の定電流放電を30
%苛性カリウム溶液電解液中で行い、終止電圧
1.0Vとした場合の通過オゾン量と放電容量との
関係を調べた。結果を第1表に示す。 また比較例としては、苛性カリウムを加えず80
メツシユパス水酸化第1ニツケル粉末100gと酸
化コバルト粉末4gとを充分混合したもの、80メ
ツシユパス水酸化第1ニツケル粉末100gだけの
もの、および80メツシユパス水酸化第1ニツケル
粉末100gと水酸化コバルト粉末4gと80メツシ
ユパス苛性カリウム粉末8gとを充分混合したも
のをそれぞれ実施例と同様にして二頭フラスコ中
に入れマグネチツクスターラーにてフラスコ内の
粉末を撹拌しながらオゾン含有ガスを通過させ
た。そしてそれぞれ水酸化第1ニツケルを酸化し
て黒色のニツケル酸化物を合成しニツケル活物質
を得た。次にこれらの活物質を用い、実施例と同
様の条件で、通過オゾン量と放電容量との関係を
調べた。この結果も第1表に併記した。
The present invention relates to an improvement in a method for producing nickel active materials for alkaline batteries using an ozone oxidation method. Conventionally, nickel active materials for alkaline batteries have been produced by adding a nickel salt solution such as nickel nitrate or nickel sulfate to a mixed solution of a caustic alkaline solution and an oxidizing agent such as bromine water or a hypochlorite solution. There is a method of generating oxide and using this as a nickel active material, or an ozone oxidation method that oxidizes powdered nickel hydroxide in a dry state with an ozone-containing gas to form nickel oxide, which is used as a nickel active material. . Among these methods, the method for producing nickel active materials using the ozone oxidation method involves directly contacting powdered nickel hydroxide with ozone to form nickel oxide.
Compared to the former, it not only does not require the processes of washing, dehydration, drying, and pulverization, it also does not require large amounts of alkaline solution or explosive sodium hypochlorite solution, and it is easier to treat exhaust gas after the reaction. This is an extremely effective method industrially. However, the conventional production of nickel oxide by ozone oxidation has low reaction efficiency, and to obtain a nickel active material with a high degree of oxidation, it is necessary to contact it with a large amount of ozone for a long time, which not only makes the produced nickel active material expensive. Usually, the nickel oxide produced by this method is insufficiently oxidized, and only the surface of the nickel hydroxide is oxidized, and the center of the powder does not change to nickel oxide, resulting in a high electrical resistance of the nickel oxide hydroxide. remains in the center. Therefore, when this material is used as a battery active material, there are drawbacks such as an increase in battery internal resistance, a small capacity of the battery active material, and a rapid decline in discharge performance. An object of the present invention is to provide a method for producing a nickel active material for alkaline batteries, which can efficiently obtain a nickel active material with significantly improved discharge capacity and uniform discharge characteristics using a small amount of ozone. shall be. The present invention is a method for producing a nickel active material for alkaline batteries, in which cobalt oxide and caustic alkali are added to nickel hydroxide, and then oxidized by an ozone-containing gas flow. As the caustic alkali, caustic potassium, caustic soda, lithium hydroxide, rubidium hydroxide, cesium hydroxide, etc. can be used. In other words, in the present invention, when cobalt oxide and caustic alkali coexist during the oxidation of nickel hydroxide, they synergistically play a role like a catalyst and promote the oxidation reaction, resulting in a high oxidation of nickel hydroxide. The process proceeds efficiently, significantly reduces the amount of unreacted ozone emitted, and synthesizes low-cost, high-quality nickel active materials. The present invention will be explained below using examples. 80 mesh hydroxide 1st nickel powder 100g
After sufficiently mixing 4 g of cobalt oxide powder and 8 g of 80 mesh pass caustic potassium powder, the mixture was placed in a two-headed flask, and while stirring the powder in the flask using a magnetic stirrer, ozone-containing gas was passed through. A black nickel oxide was synthesized by oxidizing the primary nickel hydroxide to obtain a nickel active material. Next, 8.0g of this nickel active material and 1.5g of scaly graphite
After thoroughly mixing 1.0 g of this powder with 0.5 g of polystyrene, a nickel anode obtained by collecting and press-molding the powder and a zinc plate having a discharge capacity three times that of this anode was used as a counter electrode at 5 mA/cm 2 . constant current discharge of 30
% caustic potassium solution electrolyte, final voltage
We investigated the relationship between the amount of ozone passing through and the discharge capacity when the voltage was set to 1.0V. The results are shown in Table 1. In addition, as a comparative example, 80% without adding caustic potassium
80 mesh pass 100g of nickel hydroxide powder and 4 g of cobalt oxide powder mixed together, 80 mesh pass of 100 g of 1st nickel hydroxide powder, and 80 mesh pass of 100 g of nickel hydroxide powder and 4 g of cobalt hydroxide powder. A mixture of 8 g of 80 mesh pass caustic potassium powder and 8 g of caustic potassium powder was placed in a two-headed flask in the same manner as in the example, and the ozone-containing gas was passed through the flask while stirring the powder in the flask with a magnetic stirrer. Then, each nickel hydroxide was oxidized to synthesize a black nickel oxide to obtain a nickel active material. Next, using these active materials, the relationship between the amount of ozone passing through and the discharge capacity was investigated under the same conditions as in the examples. These results are also listed in Table 1.

【表】 さらに第1図に、第1表で示した本発明に係る
実施例(曲線A)、及び比較例である水酸化ニツ
ケル+酸化コバルト(曲線B)、水酸化ニツケル
(曲線C)、水酸化ニツケル+水酸化コバルト+苛
性カリウム(曲線D)のそれぞれの場合の通過オ
ゾン量と放電容量との関係を示した。これら第1
表及び第1図からわかるように、本発明の製造方
法によれば、従来法に比べ少量のオゾン量で高い
放電容量の活物質を得ることができる。 また添加物としての酸化コバルトが、水酸化第
1ニツケルの酸化時のみでなく酸化後のニツケル
酸化物の特性にまで関与するために、本発明方法
によるニツケル活物質を用いた電池は比較例のニ
ツケル活物質を用いた電池に比較してより平担な
放電特性を持ち、放電容量も増加していることが
確められた。尚、苛性アルカリとして苛性ソー
ダ、水酸化リチウム、水酸化ルビジウム、水酸化
セシウムなどを用いても同じような効果が得られ
た。 以上の如く本発明方法は水酸化第1ニツケルの
酸化時に酸化コバルトと苛性アルカリとが共存す
ることによつて酸化反応が促進され、水酸化第1
ニツケルの酸化が高効率が進行するとともに、そ
れら添加物により生成後のニツケル活物質も放電
容量が大きく、放電曲線が平担な特性を持つなど
その工業的価値は極めて大である。
[Table] Furthermore, FIG. 1 shows examples according to the present invention shown in Table 1 (curve A), comparative examples of nickel hydroxide + cobalt oxide (curve B), nickel hydroxide (curve C), The relationship between the amount of ozone passing through and the discharge capacity in each case of nickel hydroxide + cobalt hydroxide + caustic potassium (curve D) is shown. These first
As can be seen from the table and FIG. 1, according to the manufacturing method of the present invention, an active material with a high discharge capacity can be obtained with a smaller amount of ozone than in the conventional method. Furthermore, since cobalt oxide as an additive is involved not only in the oxidation of nickel hydroxide but also in the properties of nickel oxide after oxidation, the battery using the nickel active material according to the method of the present invention is different from the comparative example. It was confirmed that the battery had smoother discharge characteristics and increased discharge capacity compared to batteries using nickel active materials. Similar effects were also obtained using caustic soda, lithium hydroxide, rubidium hydroxide, cesium hydroxide, etc. as the caustic alkali. As described above, in the method of the present invention, cobalt oxide and caustic alkali coexist during oxidation of nickel hydroxide, the oxidation reaction is promoted, and nickel hydroxide is oxidized.
Not only does the oxidation of nickel proceed with high efficiency, but the nickel active material produced by these additives also has a large discharge capacity and a flat discharge curve, making it extremely valuable industrially.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法及び従来法によるニツケル
活物質の放電容量と通過オゾン量との関係を示し
た特性図である。
FIG. 1 is a characteristic diagram showing the relationship between the discharge capacity and the amount of ozone passing through nickel active materials according to the method of the present invention and the conventional method.

Claims (1)

【特許請求の範囲】[Claims] 1 水酸化第1ニツケルに酸化コバルトと、苛性
アルカリとを添加した後、オゾンガスにより酸化
せしめることを特徴とするアルカリ電池用ニツケ
ル活物質の製造方法。
1. A method for producing a nickel active material for an alkaline battery, which comprises adding cobalt oxide and caustic alkali to nickel hydroxide, and then oxidizing it with ozone gas.
JP57162186A 1977-06-10 1982-09-20 Manufacture of nickel active mass for alkaline battery Granted JPS5873964A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP6800077A JPS544335A (en) 1977-06-10 1977-06-10 Method of making nickel active material for alkali cell
JP57162186A JPS5873964A (en) 1977-06-10 1982-09-20 Manufacture of nickel active mass for alkaline battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP6800077A JPS544335A (en) 1977-06-10 1977-06-10 Method of making nickel active material for alkali cell
JP57162186A JPS5873964A (en) 1977-06-10 1982-09-20 Manufacture of nickel active mass for alkaline battery

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP6800077A Division JPS544335A (en) 1977-06-10 1977-06-10 Method of making nickel active material for alkali cell

Publications (2)

Publication Number Publication Date
JPS5873964A JPS5873964A (en) 1983-05-04
JPS6340023B2 true JPS6340023B2 (en) 1988-08-09

Family

ID=59858828

Family Applications (2)

Application Number Title Priority Date Filing Date
JP6800077A Granted JPS544335A (en) 1977-06-10 1977-06-10 Method of making nickel active material for alkali cell
JP57162186A Granted JPS5873964A (en) 1977-06-10 1982-09-20 Manufacture of nickel active mass for alkaline battery

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP6800077A Granted JPS544335A (en) 1977-06-10 1977-06-10 Method of making nickel active material for alkali cell

Country Status (1)

Country Link
JP (2) JPS544335A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0476721U (en) * 1990-11-19 1992-07-03

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4612213A (en) * 1982-08-25 1986-09-16 The United States Of America As Represented By The Secretary Of The Navy Nickel oxide battery cathode prepared by ozonation
EP0571630B1 (en) * 1991-10-21 2002-01-30 Yuasa Corporation Method for production of nickel plate and alkali storage battery
DE4439987C2 (en) * 1994-11-09 1997-02-27 Starck H C Gmbh Co Kg Process for the preparation of manganese (III) -containing nickel hydroxide and its use
US6991875B2 (en) 2002-08-28 2006-01-31 The Gillette Company Alkaline battery including nickel oxyhydroxide cathode and zinc anode

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3911094A (en) * 1974-01-28 1975-10-07 Esb Inc Method of preparing stable NiOOH

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0476721U (en) * 1990-11-19 1992-07-03

Also Published As

Publication number Publication date
JPS6112345B2 (en) 1986-04-08
JPS5873964A (en) 1983-05-04
JPS544335A (en) 1979-01-13

Similar Documents

Publication Publication Date Title
CN110224133B (en) High-nickel ternary cathode material and preparation method and application thereof
JPS6340023B2 (en)
JP2680673B2 (en) Non-aqueous electrolyte battery manufacturing method
JPH0750606B2 (en) Non-aqueous electrolyte battery and method for producing positive electrode active material thereof
JPH0221098B2 (en)
JPH10316432A (en) Production of nickel oxyhydroxide and nonaqueous electrolytic battery
JPS6137732B2 (en)
JPH10321228A (en) Positive electrode active material for lithium battery, its manufacture, and lithium battery using it
US1885451A (en) Process of preparing an active mass for cathodes of electric alkaline accumulators
JPH10284075A (en) Manufacture of positive electrode active material for alkaline battery
JPH02234356A (en) Sealed-type alkali battery
JPH0576745B2 (en)
US976279A (en) Process for making material for alkaline batteries.
US1284426A (en) Process of making storage-battery electrodes and filling mass therefor.
JPS58198856A (en) Manufacture of negative cadmium plate for alkaline storage battery
JPS59872A (en) Manufacture of enclosed nickel-cadmium storage battery
JP2553624B2 (en) Paste type cadmium negative electrode
JPS59128765A (en) Nonaqueous electrolyte battery
JPH09115522A (en) Positive electrode mixture for battery
US1496528A (en) Production of electrodes for galvanic batteries
JP2001052694A (en) Nickel hydroxide powder in cobalt solid solution for positive electrode active material of alkaline storage battery, and manufacture of the powder
JPS6211461B2 (en)
JPS58153710A (en) Manufacture of zinc-amalgam powder with superior property
JPH04129171A (en) Manufacture of nickel-hydrogen storage battery
JPH0320860B2 (en)