JP2714092B2 - Manufacturing method of positive electrode for non-aqueous secondary battery - Google Patents

Manufacturing method of positive electrode for non-aqueous secondary battery

Info

Publication number
JP2714092B2
JP2714092B2 JP1001591A JP159189A JP2714092B2 JP 2714092 B2 JP2714092 B2 JP 2714092B2 JP 1001591 A JP1001591 A JP 1001591A JP 159189 A JP159189 A JP 159189A JP 2714092 B2 JP2714092 B2 JP 2714092B2
Authority
JP
Japan
Prior art keywords
manganese oxide
manganese
battery
positive electrode
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1001591A
Other languages
Japanese (ja)
Other versions
JPH02183963A (en
Inventor
修弘 古川
俊之 能間
祐司 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP1001591A priority Critical patent/JP2714092B2/en
Publication of JPH02183963A publication Critical patent/JPH02183963A/en
Application granted granted Critical
Publication of JP2714092B2 publication Critical patent/JP2714092B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明はリチウム或いはリチウム合金を負極活物質と
する非水系二次電池に係り、特に正極の製造法に関する
ものである。
The present invention relates to a nonaqueous secondary battery using lithium or a lithium alloy as a negative electrode active material, and more particularly to a method for producing a positive electrode.

(ロ)従来の技術 非水系一次電池の正極活物質としては二酸化マンガン
が代表的なものとして知られており、既に実用化されて
いる。
(B) Conventional technology Manganese dioxide is known as a representative positive electrode active material for non-aqueous primary batteries, and has already been put to practical use.

この二酸化マンガンは可逆性に難があるため非水系二
次電池の正極活物質としては不適当であり、そのため改
質されたマンガン酸化物が種々提案されている。
This manganese dioxide is not suitable as a positive electrode active material of a non-aqueous secondary battery because of its poor reversibility, and various modified manganese oxides have been proposed.

例えば特願昭61−258940号、特願昭62−19330号或い
は特願昭63−60785号に開示されているように、二酸化
マンガンとリチウム塩との混合物を熱処理してその結晶
構造中にリチウムを含有したマンガン酸化物が提案され
ている。
For example, as disclosed in Japanese Patent Application No. 61-258940, Japanese Patent Application No. 62-19330 or Japanese Patent Application No. 63-60785, a mixture of manganese dioxide and a lithium salt is subjected to a heat treatment so that lithium is contained in the crystal structure. Has been proposed.

これらのマンガン酸化物は熱処理温度によって、生成
するリチウム含有マンガン酸化物の構造が異なり、熱処
理温度250〜300℃ではX線回折図において2θ=22℃、
31.5゜、37゜、42゜、55゜付近にピークを有する結晶構
造のマンガン酸化物となり、300〜430℃ではLi2MnO3
含有したマンガン酸化物となり、そして800〜900℃では
スピネル型構造を有するマンガン酸化物となる。
These manganese oxides differ in the structure of the generated lithium-containing manganese oxide depending on the heat treatment temperature. At a heat treatment temperature of 250 to 300 ° C., 2θ = 22 ° C.
It becomes a manganese oxide having a crystal structure with peaks around 31.5 ゜, 37 ゜, 42 ゜, and 55 ゜, becomes a manganese oxide containing Li 2 MnO 3 at 300 to 430 ° C, and has a spinel structure at 800 to 900 ° C. Manganese oxide having

又、これらの改良法では二酸化マンガンとリチウム塩
とを固相同志で反応させるため、二酸化マンガン粒子の
内部までは改質が及ばず、深い深度での充放電サイクル
では劣化が早いという欠点があった。
In addition, in these improved methods, since manganese dioxide and lithium salt react in a solid phase, the inside of the manganese dioxide particles cannot be modified, and there is a drawback that deterioration is rapid in a charge / discharge cycle at a deep depth. Was.

そこで、二酸化マンガン粒子の内部まで改質を進める
ために、リチウム塩を溶解した水溶液中に二酸化マンガ
ンを浸漬し、水分を蒸発乾固した後に熱処理し、二酸化
マンガン粒子の細孔内部にまで改質反応を進める方法が
提案された。
Therefore, in order to promote the modification to the inside of the manganese dioxide particles, manganese dioxide is immersed in an aqueous solution in which a lithium salt is dissolved, the moisture is evaporated to dryness, and then heat treatment is performed to modify the inside of the pores of the manganese dioxide particles. A way to drive the reaction was proposed.

(ハ)発明が解決しようとする課題 本発明は前述せる従来技術をさらに改善し、可逆性に
優れた正極を得ることを目的とする。
(C) Problems to be Solved by the Invention It is an object of the present invention to further improve the above-described prior art and obtain a positive electrode having excellent reversibility.

(ニ)課題を解決するための手段 本発明の要旨とするところは、 2価のマンガン塩と、リチウム塩とをアルカリ水溶液
中で反応させてリチウムを含有したマンガン水酸化物を
得、 ついでこのマンガン水酸化物を酸化雰囲気中で酸化処
理し、 その後、250℃以上の温度で熱処理して得たリチウム
含有マンガン酸化物を活物質として用いることを特徴と
する非水系二次電池用正極の製造法にある。
(D) Means for Solving the Problems The gist of the present invention is to react a divalent manganese salt with a lithium salt in an aqueous alkaline solution to obtain a lithium-containing manganese hydroxide. Manufacture of a positive electrode for non-aqueous secondary batteries, characterized in that manganese hydroxide is oxidized in an oxidizing atmosphere, and then a lithium-containing manganese oxide obtained by heat treatment at a temperature of 250 ° C. or more is used as an active material. In the law.

(ホ)作用 アルカリ水溶液中で2価のマンガン塩とリチウム塩と
を反応させると、リチウムを含有したマンガン水酸化物
LiXMn(OH)2+Xが生成する。このマンガン水酸化物が生
成する反応において、水溶液中のイオンの状態でMnとLi
が混合されるため結晶粒子内部まで均一にLiを含んだマ
ンガン水酸化物が得られる。このようにして得たマンガ
ン水酸化物を空気或いは酸素で酸化処理した後、熱処理
することにより、水溶液系反応で混入した余分な水分が
除去されると同時に、Liイオンと二酸化マンガンの反応
が起こり結晶内部までLiイオンを含有したマンガン酸化
物が得られる。
(E) Action When a divalent manganese salt and a lithium salt are reacted in an alkaline aqueous solution, a lithium-containing manganese hydroxide is obtained.
Li X Mn (OH) 2 + X is formed. In the reaction that produces manganese hydroxide, Mn and Li are converted to ions in the aqueous solution.
Is mixed, so that a manganese hydroxide containing Li evenly inside the crystal grains is obtained. The manganese hydroxide thus obtained is oxidized with air or oxygen, and then heat-treated to remove excess water mixed in with the aqueous solution reaction, and at the same time, the reaction between Li ions and manganese dioxide occurs. A manganese oxide containing Li ions up to the inside of the crystal is obtained.

尚、得られるマンガン酸化物の結晶構造は熱処理温度
によって影響を受け、熱処理温度250〜300℃ではX線回
折図において2θ=22゜、31.5゜、37゜、42゜、55゜付
近にピークを有する結晶構造のマンガン酸化物となり、
300〜430℃ではLi2MnO3を含有したマンガン酸化物とな
り、そして800〜900℃ではスピネル型構造を有するマン
ガン酸化物となる。又、アルカリ水溶液中で2価のマン
ガン塩とリチウム塩を反応させる方法としては、2価の
マンガン塩とLiOH水溶液を混合する方法が好ましい。
Note that the crystal structure of the obtained manganese oxide is affected by the heat treatment temperature. At a heat treatment temperature of 250 to 300 ° C., peaks appear near 2θ = 22 °, 31.5 °, 37 °, 42 °, and 55 ° in the X-ray diffraction diagram. It becomes a manganese oxide with a crystalline structure,
At 300 to 430 ° C, it becomes a manganese oxide containing Li 2 MnO 3 , and at 800 to 900 ° C, it becomes a manganese oxide having a spinel structure. As a method of reacting a divalent manganese salt and a lithium salt in an alkaline aqueous solution, a method of mixing a divalent manganese salt and a LiOH aqueous solution is preferable.

(ヘ)実施例 以下本発明の実施例について詳述する。(F) Examples Hereinafter, examples of the present invention will be described in detail.

実施例1 硝酸マンガン140gを蒸留水500ml中に溶解させた液
に、4N−LiOH水溶液500mlを撹はんしながら加える。生
成した白色の水酸化マンガンの沈澱を含む溶液中に酸素
を200ml/分の流量で10時間吹きこみ、酸化処理を行う。
酸化処理で生成する褐色の沈澱をブフナロウト上で充分
に蒸留水で洗浄しながら瀘過する。瀘別された沈澱物を
乾燥した後、細かく粉砕し、空気中において温度375℃
で20時間の熱処理を行った。
Example 1 To a solution of 140 g of manganese nitrate dissolved in 500 ml of distilled water, 500 ml of a 4N-LiOH aqueous solution is added with stirring. Oxygen is blown into the solution containing the formed precipitate of white manganese hydroxide at a flow rate of 200 ml / min for 10 hours.
The brown precipitate formed by the oxidation treatment is filtered on a Buchner funnel while thoroughly washing with distilled water. The precipitate separated by filtration was dried, then pulverized finely, and heated to 375 ° C in air.
For 20 hours.

熱処理して得られたマンガン酸化物を原子吸光法によ
り分析した結果、Li:Mn=1:2のモル比でLiを含んでいる
ことがわかった。
The manganese oxide obtained by the heat treatment was analyzed by atomic absorption spectrometry, and it was found that the manganese oxide contained Li at a molar ratio of Li: Mn = 1: 2.

このLiを含有するマンガン酸化物90重量%と導電剤と
してのアセチレンブラック6重量%及びフッ素樹脂粉末
4重量%を混合して正極合剤とし、この合剤を成型圧5
トン/cm2で直径20.0mmに加圧成形した後、更に200〜300
℃の温度で真空熱処理をして正極とする。負極は所定厚
みのLi板を直径20mmに打ち抜き、集電体を介して負極缶
に圧着した。
90% by weight of the Li-containing manganese oxide, 6% by weight of acetylene black as a conductive agent, and 4% by weight of a fluororesin powder were mixed to form a positive electrode mixture.
After pressed into a diameter 20.0mm tons / cm 2, further 200 to 300
Vacuum heat treatment is performed at a temperature of ° C. to form a positive electrode. For the negative electrode, a Li plate having a predetermined thickness was punched to a diameter of 20 mm, and was pressed to a negative electrode can via a current collector.

セパレータはポリプロピレン製微孔性薄板を用い、電
解液にはプロピレンカーボネートとジメトキシエタンと
の混合溶媒にLiClO4を1モル/溶解したものを使用し
た。
The separator used was a polypropylene microporous thin plate, and the electrolyte used was a mixture of propylene carbonate and dimethoxyethane in which LiClO 4 was dissolved at 1 mol / mol.

電池寸法は直径24mm、高さ3.0mmであった。この電池
を(A1)とする。
The battery dimensions were 24 mm in diameter and 3.0 mm in height. This battery is designated as (A1).

実施例2 マンガン酸化物を得るための熱処理温度を、空気中で
250℃、20時間とすることを除いては、実施例1と同様
の工程でマンガン酸化物を作製し、得られたマンガン酸
化物を(M2)とする。
Example 2 The heat treatment temperature for obtaining manganese oxide was set in air.
A manganese oxide was prepared in the same manner as in Example 1 except that the temperature was set at 250 ° C. for 20 hours, and the obtained manganese oxide was designated as (M2).

得られたマンガン酸化物(M2)をX線回折したとこ
ろ、Li2MnO3の存在は確認できず、回折角2θ=22゜、3
1.5゜、37゜、42゜、55゜付近にピークが認められた。
実施例1のマンガン酸化物(M1)の代わりに、このマン
ガン酸化物(M2)を用いて実施例1と同様の工程で電池
を試作した。この電池を(A2)とする。
When the obtained manganese oxide (M2) was subjected to X-ray diffraction, the presence of Li 2 MnO 3 was not confirmed, and the diffraction angle 2θ = 22 °, 3
Peaks were observed around 1.5 ゜, 37 ゜, 42 ゜ and 55 ゜.
Using this manganese oxide (M2) instead of the manganese oxide (M1) of Example 1, a battery was prototyped in the same process as in Example 1. This battery is designated as (A2).

実施例3 マンガン酸化物を得るための熱処理温度を空気中で65
0℃で6時間、850℃で14時間とすることを除いては実施
例1と同様の工程でマンガン酸化物を作成し、得られた
マンガン酸化物を(M3)とする。このマンガン酸化物
(M3)をX線回折したところ、スピネル型の構造を示す
パターンが得られた。
Example 3 The heat treatment temperature for obtaining manganese oxide was 65 in air.
A manganese oxide was prepared in the same manner as in Example 1 except that the temperature was set at 0 ° C. for 6 hours and at 850 ° C. for 14 hours, and the obtained manganese oxide was designated as (M3). When the manganese oxide (M3) was subjected to X-ray diffraction, a pattern showing a spinel structure was obtained.

実施例1のマンガン酸化物(M1)の代わりにこのマン
ガン酸化物(M3)を用いて、実施例1と同様の工程で電
池を試作した。この電池を(A3)とする。
Using this manganese oxide (M3) instead of the manganese oxide (M1) of Example 1, a battery was prototyped in the same process as in Example 1. This battery is designated as (A3).

実施例4 硝酸マンガン140g及び硝酸リチウム60gを水500mlに溶
解し、これに4N−NaOH水溶液500mlを撹はんしながら加
える。生成した白色の水酸化マンガンの沈澱を含む溶液
中に、酸素ガスを200ml/分の流量で10時間吹き込み、酸
化処理を行う。酸化処理で生成する褐色の沈澱をブフナ
ロウト上で蒸留水を用いて十分に洗浄しながら瀘過す
る。瀘別した沈澱物を乾燥した後、細かく粉砕し、空気
中において温度375℃で20時間の熱処理を行う。熱処理
して得られたマンガン酸化物をX線回折したところLi2M
nO3とMnO2のピークが認められた。また、原子吸光分析
によるLiとMnの組成比はLi:Mn=1:2であった。こうして
得られたマンガン酸化物を(M4)とする。実施例1のマ
ンガン酸化物(M1)の代わりに、このマンガン酸化物
(M4)を用いて、実施例1と同様の工程で電池を試作し
た。この電池を(A4)とする。
Example 4 140 g of manganese nitrate and 60 g of lithium nitrate are dissolved in 500 ml of water, and 500 ml of a 4N-NaOH aqueous solution is added thereto with stirring. Oxygen gas is blown into the solution containing the precipitated white manganese hydroxide precipitate at a flow rate of 200 ml / min for 10 hours to perform oxidation treatment. The brown precipitate formed by the oxidation treatment is filtered on a Buchner funnel with thorough washing with distilled water. After the precipitate separated by filtration is dried, the precipitate is finely ground and heat-treated in air at 375 ° C. for 20 hours. X-ray diffraction of the manganese oxide obtained by heat treatment revealed that Li 2 M
Peaks of nO 3 and MnO 2 were observed. The composition ratio of Li and Mn by atomic absorption analysis was Li: Mn = 1: 2. The manganese oxide thus obtained is designated as (M4). Using this manganese oxide (M4) instead of the manganese oxide (M1) of Example 1, a battery was prototyped in the same process as in Example 1. This battery is designated as (A4).

比較例1 LiOH10gを水200mlに溶解させた水溶液中に、MnO280g
を10時間浸漬させた後、水を蒸発乾固させ、空気中にお
いて375゜で20時間熱処理する。こうして得られたマン
ガン酸化物を実施例1のマンガン酸化物(M1)の代わり
に用いて、実施例1と同様の工程で電池を試作した。こ
の電池を(B1)とする。
Comparative Example 1 80 g of MnO 2 was placed in an aqueous solution in which 10 g of LiOH was dissolved in 200 ml of water.
Is immersed for 10 hours, water is evaporated to dryness, and heat treatment is performed in air at 375 ° C. for 20 hours. Using the manganese oxide thus obtained in place of the manganese oxide (M1) of Example 1, a battery was prototyped in the same process as in Example 1. This battery is referred to as (B1).

比較例2 LiOH10gを水200ml中に溶解させた水溶液中に、MnO280
gを10時間浸漬した後、水を蒸発乾固させ、空気中にお
いて250℃で20時間焼成する。こうして得られたマンガ
ン酸化物を実施例1のマンガン酸化物(M1)の代わりに
用いて、実施例1と同様の工程で電池を試作した。この
電池を(B2)とする。
Comparative Example 2 MnO 2 80 was added to an aqueous solution in which 10 g of LiOH was dissolved in 200 ml of water.
After soaking the g for 10 hours, the water is evaporated to dryness and calcined in air at 250 ° C. for 20 hours. Using the manganese oxide thus obtained in place of the manganese oxide (M1) of Example 1, a battery was prototyped in the same process as in Example 1. This battery is designated as (B2).

比較例3 LiOH10gを水200ml中に溶解させた水溶液中に、MnO280
gを10時間浸漬させた後、水を蒸発乾固させ、空気中に
おいて650℃で6時間、850℃で14時間熱処理する。こう
して得られたマンガン酸化物を実施例1のマンガン酸化
物(M1)の代わりに用いて、実施例1と同様の工程で電
池を試作した。この電池を(B3)とする。
Comparative Example 3 MnO 2 80 was added to an aqueous solution in which 10 g of LiOH was dissolved in 200 ml of water.
After soaking the g for 10 hours, the water is evaporated to dryness and heat-treated in air at 650 ° C. for 6 hours and at 850 ° C. for 14 hours. Using the manganese oxide thus obtained in place of the manganese oxide (M1) of Example 1, a battery was prototyped in the same process as in Example 1. This battery is designated as (B3).

比較例4 MnO280gとLiOH10gを乳鉢で充分に混合した後、空気中
において375℃で20時間熱処理した。こうして得られた
マンガン酸化物を、実施例1のマンガン酸化物(M1)の
代わりに用いて、実施例1と同様の工程で電池を試作し
た。この電池を(C1)とする。
Comparative Example 4 After sufficiently mixing 80 g of MnO 2 and 10 g of LiOH in a mortar, the mixture was heat-treated in air at 375 ° C. for 20 hours. Using the manganese oxide thus obtained in place of the manganese oxide (M1) of Example 1, a battery was prototyped in the same process as in Example 1. This battery is designated as (C1).

比較例5 MnO280gとLiOH10gを乳鉢で充分に混合した後、空気中
において250℃で20時間熱処理した。こうして得られた
マンガン酸化物を実施例1のマンガン酸化物(M1)の代
わりに用いて実施例1と同様の工程で電池を試作した。
この電池を(C2)とする。
Comparative Example 5 After sufficiently mixing 80 g of MnO 2 and 10 g of LiOH in a mortar, the mixture was heat-treated in the air at 250 ° C. for 20 hours. Using the manganese oxide thus obtained in place of the manganese oxide (M1) of Example 1, a battery was prototyped in the same process as in Example 1.
This battery is designated as (C2).

比較例6 MnO280gとLiOH10gを乳鉢で充分に混合した後、空気中
において650℃で6時間、850℃で14時間熱処理する。こ
うして得られたマンガン酸化物を実施例1のマンガン酸
化物(M1)の代わりに用いて実施例1と同様の工程で電
池を試作した。この電池を(C3)とする。
Comparative Example 6 80 g of MnO 2 and 10 g of LiOH were thoroughly mixed in a mortar, and then heat-treated in air at 650 ° C. for 6 hours and at 850 ° C. for 14 hours. Using the manganese oxide thus obtained in place of the manganese oxide (M1) of Example 1, a battery was prototyped in the same process as in Example 1. This battery is designated as (C3).

第1図は、実施例1〜4および比較例1〜6で試作し
た扁平型非水電解液電池の半断面図を示し、(1)
(2)はステンレス製の正負極缶であって、これらはポ
リプロピレン製の絶縁パッキング(3)により隔離され
ている。(4)は本発明の要旨とする正極であって、正
極缶(1)の内底面に固着せる正極集電体(5)に圧接
されている。(6)は負極であって、負極缶(2)に内
底面に固着せる負極集電体(7)に圧着されている。
(8)はポリプロピレン製微孔性薄膜よりなるセパレー
タである。
FIG. 1 shows a half cross-sectional view of a flat nonaqueous electrolyte battery prototyped in Examples 1 to 4 and Comparative Examples 1 to 6, and (1)
(2) stainless steel positive and negative electrode cans, which are separated by a polypropylene insulating packing (3). Reference numeral (4) denotes a positive electrode according to the present invention, which is pressed against a positive electrode current collector (5) fixed to the inner bottom surface of the positive electrode can (1). Reference numeral (6) denotes a negative electrode, which is pressure-bonded to a negative electrode current collector (7) fixed to the inner bottom surface of the negative electrode can (2).
(8) is a separator made of a polypropylene microporous thin film.

第2図乃至第4図はこれらの電池の充放電サイクル特
性図を示す。尚、充放電条件はいずれも電流3mAで8時
間放電し、電流3mAで充電し充電終止電圧4.0Vとした。
2 to 4 show charge / discharge cycle characteristics of these batteries. In each of the charge and discharge conditions, the battery was discharged at a current of 3 mA for 8 hours, charged at a current of 3 mA, and set to a charge termination voltage of 4.0 V.

第2図より本発明電池(A1)および(A4)は、従来の
方法で得られたマンガン酸化物(結晶構造はいずれもLi
2MnO3を含むマンガン酸化物である)を用いた比較電池
(B1)および(C1)よりも特性が向上している。これは
本発明によるLiを含有したマンガン酸化物はその結晶内
部まで改質が進んでおり、可逆性が改善されていること
に起因している。また、(A1)と(A4)では用いたマン
ガン酸化物の製造の出発物質が異なるものの電池特性に
は大差はない。
From FIG. 2, the batteries (A1) and (A4) of the present invention were obtained by using the manganese oxide (crystal structure was Li
( MnO 3 is a manganese oxide containing MnO 3 ), the characteristics are better than those of the comparative batteries (B1) and (C1). This is due to the fact that the manganese oxide containing Li according to the present invention has been modified to the inside of the crystal, and the reversibility has been improved. In (A1) and (A4), although the starting materials for producing the manganese oxide used are different, there is no significant difference in battery characteristics.

同様に第3図に示されるように、本発明電池(A2)は
従来法による比較電池(B2)および(C2)よりも特性が
良い。この場合のマンガン酸化物の結晶構造はX線回折
角で2θ=22゜、31.5゜、37゜、42゜、55゜付近にピー
クを持ったものである。
Similarly, as shown in FIG. 3, the battery of the present invention (A2) has better characteristics than the comparative batteries (B2) and (C2) according to the conventional method. In this case, the crystal structure of the manganese oxide has peaks in the vicinity of 2θ = 22 °, 31.5 °, 37 °, 42 °, and 55 ° in the X-ray diffraction angle.

第4図でも本発明電池(A3)は従来法による電池(B
3)および(C3)より特性が向上している。この場合の
マンガン酸化物の結晶構造はいずれもスピネル型であ
る。
Also in FIG. 4, the battery of the present invention (A3) is a battery (B
The characteristics are improved over 3) and (C3). In this case, the crystal structure of the manganese oxide is spinel type.

(ト)発明の効果 本発明の如く、アルカリ水溶液中で2価のマンガン塩
とリチウム塩とを反応させて得られるLi含有のマンガン
水酸化物を酸素あるいは空気で酸化した後、250℃以上
の温度で熱処理して得られるLi含有のマンガン酸化物
は、その熱処理温度および熱処理後の結晶構造にかかわ
らず、従来法によるLi塩とMnO2を混合し熱処理して得ら
れるLi含有マンガン酸化物、あるいはMnO2をLiOH水溶液
に浸漬した後、水分を蒸発乾固し、熱処理して得られる
Li含有マンガン酸化物よりも、非水系二次電池の正極活
物質としての可逆性に優れ、その結果、電池の充放電サ
イクル特性を大幅に改善することができる。
(G) Effect of the invention As in the present invention, a Li-containing manganese hydroxide obtained by reacting a divalent manganese salt and a lithium salt in an alkaline aqueous solution is oxidized with oxygen or air, and then heated to 250 ° C. or more. Li-containing manganese oxide obtained by heat treatment at a temperature, regardless of the heat treatment temperature and the crystal structure after heat treatment, Li-containing manganese oxide obtained by mixing and heat-treating Li salt and MnO 2 by a conventional method, Alternatively, after immersing MnO 2 in an aqueous solution of LiOH, evaporating the water to dryness and heat treating it
It is more reversible as a positive electrode active material of a non-aqueous secondary battery than a Li-containing manganese oxide, and as a result, the charge / discharge cycle characteristics of the battery can be significantly improved.

なお、本発明の製造法において、原料として用いる2
価のMn塩、Li塩、塩基の種類および混合比、酸化処理の
時間、熱処理温度は記載された実施例に限定されるもの
ではない。原料の混合比を変えることにより、得られる
Liを含有したマンガン酸化物のLiとMnとの比を種々変化
させることができる。
In the production method of the present invention, 2
The types and mixing ratios of the valent Mn salt, Li salt, base, oxidation treatment time, and heat treatment temperature are not limited to the examples described. It can be obtained by changing the mixing ratio of the raw materials
The ratio of Li to Mn of the manganese oxide containing Li can be varied.

また、本発明は固体電解質を用いた非水系二次電池に
も適用しうるものである。
Further, the present invention is also applicable to a non-aqueous secondary battery using a solid electrolyte.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明電池の半断面図、第2図乃至第4図は電
池の充放電特性を示す。 (1)……正極缶、(2)……負極缶、(3)……絶縁
パッキング、(4)……正極、(5)……正極集電体、
(6)……リチウム負極、(7)……負極集電体、
(8)……セパレータ。
FIG. 1 is a half sectional view of the battery of the present invention, and FIGS. 2 to 4 show the charge / discharge characteristics of the battery. (1) Positive electrode can, (2) Negative electrode can, (3) Insulating packing, (4) Positive electrode, (5) Positive electrode current collector,
(6) a lithium negative electrode, (7) a negative electrode current collector,
(8) ... separator.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】2価のマンガン塩と、リチウム塩とをアル
カリ水溶液中で反応させてリチウムを含有したマンガン
水酸化物を得、 ついでこのマンガン水酸化物を酸化雰囲気中で酸化処理
し、 その後、250℃以上の温度で熱処理して得たリチウム含
有マンガン酸化物を活物質として用いることを特徴とす
る非水系二次電池用正極の製造法。
A manganese hydroxide containing lithium is obtained by reacting a divalent manganese salt with a lithium salt in an alkaline aqueous solution, and then oxidizing the manganese hydroxide in an oxidizing atmosphere. A method for producing a positive electrode for a non-aqueous secondary battery, comprising using a lithium-containing manganese oxide obtained by heat treatment at a temperature of 250 ° C. or higher as an active material.
JP1001591A 1989-01-06 1989-01-06 Manufacturing method of positive electrode for non-aqueous secondary battery Expired - Fee Related JP2714092B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1001591A JP2714092B2 (en) 1989-01-06 1989-01-06 Manufacturing method of positive electrode for non-aqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1001591A JP2714092B2 (en) 1989-01-06 1989-01-06 Manufacturing method of positive electrode for non-aqueous secondary battery

Publications (2)

Publication Number Publication Date
JPH02183963A JPH02183963A (en) 1990-07-18
JP2714092B2 true JP2714092B2 (en) 1998-02-16

Family

ID=11505753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1001591A Expired - Fee Related JP2714092B2 (en) 1989-01-06 1989-01-06 Manufacturing method of positive electrode for non-aqueous secondary battery

Country Status (1)

Country Link
JP (1) JP2714092B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3364968B2 (en) * 1992-09-01 2003-01-08 株式会社デンソー Battery
US5494762A (en) * 1992-01-16 1996-02-27 Nippondenso Co., Ltd. Non-aqueous electrolyte lithium secondary cell
EP1084515A1 (en) * 1998-05-11 2001-03-21 Duracell Inc. Lithiated manganese oxide

Also Published As

Publication number Publication date
JPH02183963A (en) 1990-07-18

Similar Documents

Publication Publication Date Title
US6159636A (en) Mixtures of lithium manganese oxide spinel as cathode active material
JP3356295B2 (en) Manganese oxide compounds
US6190800B1 (en) Lithiated manganese dioxide
US6048643A (en) Process for preparing lithium intercalation compounds
JPH0746607B2 (en) Non-aqueous secondary battery
JPH05299092A (en) Nonaqueous electrolytic lithium secondary battery and manufacture thereof
JP3702353B2 (en) Method for producing positive electrode active material for lithium battery and lithium battery
KR100417251B1 (en) Method for preparing lithium manganese spinel oxide having improved electrochemical performance
JPH01209663A (en) Nonaqueous secondary battery
JP3647758B2 (en) Non-aqueous battery positive electrode material, method for producing the same, and battery using the same
JP4558229B2 (en) Lithium titanate, method for producing the same, and use thereof
JP2714092B2 (en) Manufacturing method of positive electrode for non-aqueous secondary battery
JP3671531B2 (en) Lithium nickelate as positive electrode active material for lithium secondary battery and method for producing the same
JP4769998B2 (en) Method for producing lithium manganese composite oxide
JP2003272623A (en) Positive electrode active material for lithium secondary battery and its manufacturing method as well as lithium secondary battery using it
JP4650648B2 (en) Method for producing lithium manganese composite oxide
JP2001328814A (en) Lithium-manganese composite oxide, method for producing the same and secondary battery
JPH0817471A (en) Non-aqueous electrolytic secondary battery
JPH11317225A (en) Positive active material for lithium secondary battery and its manufacture
JP2002338246A (en) Method for manufacturing lithium/manganese compound oxide and lithium cell formed using lithium/manganese compound oxide
JPH09110431A (en) Production of lithium-manganese oxide based on limno2
JP2003054952A (en) Method of producing lithium-manganese complex oxide and lithium battery obtained by using the lithium- manganese complex oxide
JP2001093527A (en) Positive electrode activating material for nonaqueous electrolytic secondary battery and its manufacturing method
KR20010081180A (en) Method of preparing positive active material for lithium secondary battery
JPH0722020A (en) Manufacture of lithium-manganese composite oxide and application thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees