JPS5857866B2 - Zinc cathode for alkaline batteries - Google Patents

Zinc cathode for alkaline batteries

Info

Publication number
JPS5857866B2
JPS5857866B2 JP48037032A JP3703273A JPS5857866B2 JP S5857866 B2 JPS5857866 B2 JP S5857866B2 JP 48037032 A JP48037032 A JP 48037032A JP 3703273 A JP3703273 A JP 3703273A JP S5857866 B2 JPS5857866 B2 JP S5857866B2
Authority
JP
Japan
Prior art keywords
powder
zinc
lead
cathode
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP48037032A
Other languages
Japanese (ja)
Other versions
JPS49121936A (en
Inventor
勉 高村
吉見 金田
信太郎 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP48037032A priority Critical patent/JPS5857866B2/en
Publication of JPS49121936A publication Critical patent/JPS49121936A/ja
Publication of JPS5857866B2 publication Critical patent/JPS5857866B2/en
Expired legal-status Critical Current

Links

Classifications

    • Y02E60/12

Description

【発明の詳細な説明】 本発明はアルカリ1次電池用東鉛陰極に係わり、特に重
負荷放電特性、低温に訃ける放電性能および貯蔵性能に
優れ、しかも製造工程が容易となる亜鉛陰極に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an East Lead cathode for an alkaline primary battery, and more particularly to a zinc cathode which has excellent heavy load discharge characteristics, discharge performance at low temperatures, and storage performance, and which is easy to manufacture.

金属亜鉛を陰極活物質とし、苛性カリ、苛性ソーダなど
のアルカリ電解液を用いるいわゆる亜鉛アルカリ電池で
は陽極活物質として例えば酸化銀、二酸化マンガン、空
気、酸化ニッケルなどを用いたものであって、広く実用
化されている。
The so-called zinc-alkaline battery uses metal zinc as the cathode active material and an alkaline electrolyte such as caustic potash or caustic soda, and uses silver oxide, manganese dioxide, air, nickel oxide, etc. as the anode active material, and has not been widely put into practical use. has been done.

この種の電池は比較的単純な構造でも高負荷特性が優れ
、低温度でも作動し、初期容量も大きいという理論的可
能性はあるが、現実にはまだ十分な性能が得られなく、
幾多の改良工夫がなされて来ている。
Although it is theoretically possible that this type of battery has excellent high-load characteristics, can operate at low temperatures, and has a large initial capacity despite its relatively simple structure, in reality, sufficient performance has not yet been achieved.
Many improvements have been made.

すなわち亜鉛としては粉末状または繊維状などの微粒体
を使用するとか永化炬鉛粉末の水銀含有量を増すことで
、放電性能、貯蔵寿命を向上させることが広く知られて
いる。
That is, it is widely known that the discharge performance and shelf life can be improved by using fine particles such as powder or fibers as zinc or by increasing the mercury content of the lead powder.

また亜鉛粉末をゲル状の電解液中に分散せしめて使用す
る負極や電解液中に亜鉛酸イオンの溶出するのを防止す
ることで貯蔵寿命の保持と初期容量の増加をはかるため
に硅酸イオンを含有せしめたものがあるが、この場合に
は重負荷特性あるいは低温特性に対しては必ずしも効果
が得られない欠点がある。
In addition, silicate ions are used to maintain shelf life and increase initial capacity by preventing the elution of zincate ions into the negative electrode and electrolyte by dispersing zinc powder in a gel-like electrolyte. However, this method has the disadvantage that it is not necessarily effective in terms of heavy load characteristics or low temperature characteristics.

また電解液中に酸化マグネシウムを添加した例もあり、
これは酸化銀−亜鉛電池の放電によって正極から溶出す
る銀イオンの防止に効果があるとされている。
There are also examples of adding magnesium oxide to the electrolyte.
This is said to be effective in preventing silver ions leaching from the positive electrode due to discharge of a silver-zinc oxide battery.

一方アルカリ電池の負極に用いる戊形式岨鉛陰極として
は亜鉛微粉体と粘結剤とにアルカリ電解液中で亜鉛と接
触しても不溶な無機物例えばカルシウム、マグネシウム
、アルミニウム、硅素、バリウムトよびチタンなどの酸
化物、弗化物、炭酸化物の粉末を加え、水でよく攪1↑
混合し、乾燥した後加圧成形して形成するものがあり、
重負荷特性ならびに低温特性が向上するとされている。
On the other hand, the blank-type lead cathode used as the negative electrode of alkaline batteries is made of fine zinc powder, a binder, and inorganic substances that are insoluble even when they come into contact with zinc in an alkaline electrolyte, such as calcium, magnesium, aluminum, silicon, barium, and titanium. Add oxide, fluoride, and carbonate powder and stir well with water 1↑
Some products are formed by mixing, drying, and then press molding.
It is said to improve heavy load characteristics and low temperature characteristics.

この場合は亜鉛微粉体と粘結剤とが加圧成形により固化
した状態にあるため、電極体中へ高い濃度であるアルカ
リ電解液が浸透するのに極めて長時間を要するとか、液
の浸透が完全でない部分が生ずるとかで、必ずしも予期
した性能が出ないという欠点があった。
In this case, the fine zinc powder and binder are in a solidified state due to pressure molding, so it may take a very long time for the high concentration alkaline electrolyte to penetrate into the electrode body, or the penetration of the solution may be slow. It had the disadvantage that it did not always produce the expected performance because some parts were not perfect.

また添加混合する無機物の粒子な亜鉛微粉体の周囲に均
一に分散せしめることが固体界伺張力の関係で必ずしも
十分ではなく、均一性能の負極体を短時間に成形するこ
とが困難であり、特に分散が不均一だと小形電池に釦い
ては容量のばらつきが大きく、貯蔵後の容量の点でも十
分な効果が得られない欠点がある。
In addition, it is not always sufficient to uniformly disperse zinc fine powder, which is an inorganic particle to be added and mixed, due to solid boundary tension, and it is difficult to mold a negative electrode body with uniform performance in a short time. If the dispersion is non-uniform, the capacity of small batteries will vary greatly, and a sufficient effect will not be obtained in terms of capacity after storage.

本発明は上記のような問題点に鑑みてなされたのであっ
て、重負荷特性、低温放電性能に優れ、かつ初期容量が
犬きぐ、貯蔵寿命が長く、しかも製造方法が簡単なアル
カリ1次電池用廂鉛陰極を提供しようとするものである
The present invention was made in view of the above-mentioned problems, and provides an alkaline primary battery that has excellent heavy load characteristics and low-temperature discharge performance, has an exceptional initial capacity, has a long shelf life, and is easy to manufacture. The purpose is to provide a useful lead cathode.

かかる本発明の骨子を述べれば次の通りである。The gist of the present invention is as follows.

すなわち金属亜鉛粉末を負極活物質として用い、これに
特に酸化亜鉛または水酸化亜鉛を加え、さらにチタン、
マグネシウム、ジルコニウムナトの酸化物または水酸化
物の1種または2種以上の粉末体と耐アルカリ性カルボ
キシ形重合体高分子例えばカルボキシビニールポリマー
、ポリアクリル酸ソーダ、カルボキシエーテルポリマー
なとのゲル化剤とを添加して均一に混合した後、これに
アルカリ電解液例えば苛性カリ、苛性ソーダなどを加え
て攪拌してゲル状の負極活物質を得て、これをアルカリ
電池の陰極として用いるものである。
That is, metallic zinc powder is used as the negative electrode active material, to which zinc oxide or zinc hydroxide is added, and titanium,
One or more powders of oxides or hydroxides of magnesium or zirconium dioxide and a gelling agent such as an alkali-resistant carboxy polymer polymer such as carboxy vinyl polymer, sodium polyacrylate, or carboxy ether polymer. After adding and mixing uniformly, an alkaline electrolyte such as caustic potash or caustic soda is added thereto and stirred to obtain a gel-like negative electrode active material, which is used as a cathode of an alkaline battery.

なト金属屯鉛粉末としては通常水銀アマルガム化亜鉛粉
末を用いる事ができる。
As the metal lead powder, mercury amalgamated zinc powder can usually be used.

また他の試みとして、上記の組成にトいてアルカリ電解
液を加えることなく、有機溶媒例えばl−2ジクロロエ
タン、ベンゼン、アセトンなどに溶かしたポリスチレン
や他の耐アルカリ性結合剤のポリエチレン、四弗化エチ
レンなどを添加混合して組立作業上取扱に便利な形状に
成形したものを陰極体として用いる場合でも所要の効果
が得られる。
In addition, as another attempt, polystyrene or other alkali-resistant binders such as polyethylene, tetrafluoroethylene, etc., dissolved in an organic solvent such as l-2 dichloroethane, benzene, acetone, etc., were used without adding an alkaline electrolyte to the above composition. The desired effect can be obtained even when a cathode body formed by adding and mixing materials such as the above and molded into a shape convenient for assembly and handling is used.

このような本発明の亜鉛陰極の作用効果を種々検討した
結果、亜鉛微粒体に特に酸化亜鉛または水酸化屯鉛粉末
を共存させ、かつ各固体粉末を混合した後、十分なアル
カリ電解液を用いて攪拌混合して得たゲル状となったも
のは、極めて有効な陰極合剤となることが見出されたも
のである。
As a result of various studies on the effects of the zinc cathode of the present invention, we have found that zinc oxide or lead hydroxide powder is made to coexist with zinc fine particles, and after mixing each solid powder, a sufficient amount of alkaline electrolyte is used. The gel-like mixture obtained by stirring and mixing was found to be an extremely effective cathode mixture.

これは酸化亜鉛または水酸化亜鉛粉体が金属亜鉛粉末の
みならず、マグネシア、チタニア、ジルコニア等の混合
酸化物ともよくなじみ、両者間にあってなじみを増す役
割をもつことによるものであることが判った。
It was found that this is due to the fact that zinc oxide or zinc hydroxide powder is compatible not only with metallic zinc powder but also with mixed oxides such as magnesia, titania, and zirconia, and has the role of increasing compatibility between the two. .

また使用するアルカリ電解液0ま予め酸化亜鉛を適量溶
解させて訃〈ことが望ましい。
It is also desirable to dissolve an appropriate amount of zinc oxide in the alkaline electrolyte used beforehand.

このアルカリ電解液を直ちに用いてゲル化する際、酸化
亜鉛の部分溶解によりマグネシアチタニア等の間に十分
な量の電解液が均一に浸透し、吸込まれることが判った
It has been found that when this alkaline electrolyte is immediately used to form a gel, a sufficient amount of the electrolyte uniformly permeates between magnesia titania and the like due to the partial dissolution of zinc oxide and is absorbed.

この効果のために亜鉛微粒体の周囲に常に十分多量の電
解液が存在し、重負荷放電時め分極も小さく、反応表向
が犬きくなり低温時の放電性能が向上する。
Due to this effect, a sufficiently large amount of electrolyte is always present around the zinc fine particles, the polarization is small during heavy load discharge, the reaction surface is sharpened, and the discharge performance at low temperatures is improved.

また上記酸化物はアルカリ電解液中で表面電導性が犬な
ることが見出されtこ。
It has also been found that the above oxides have poor surface conductivity in an alkaline electrolyte.

これらが亜鉛微粒体周辺を包囲する結果、徂鉛做粒子体
同志の直接接触に1つで起る粒子の巨大化や電極の変形
が生じることがない。
As a result of these surrounding the zinc fine particles, the enlargement of the particles and the deformation of the electrode, which would otherwise occur due to direct contact between the zinc particles, do not occur.

このように本発明の東鉛陰極は重負荷特性、低温特性、
保持特性に優れている上、亜鉛陰極の変形を生じること
もなく、さらに製造工程にかいて電解液を陰極内に注入
する際、注液時間が短縮され、かつ充分な電解液が均一
に保持されるなどの効果を有する。
In this way, the East Lead cathode of the present invention has heavy load characteristics, low temperature characteristics,
In addition to having excellent retention properties, it does not cause deformation of the zinc cathode, and when injecting electrolyte into the cathode during the manufacturing process, the injection time is shortened, and sufficient electrolyte is maintained uniformly. It has the effect of being

さらにマグネシア、チタニア等はアルカリ電解液中に溶
解する東鉛イオンを吸着する性質を有することから、電
解液中に含まれる東鉛イオンの濃度が減少し、陰極活物
質である亜鉛微粒子体の溶解が生ずるが、亜鉛酸化物ま
たは水酸化物の屁入によって、東鉛微粒体に代り電解液
中に溶解してその減少量を補充することなどから、長期
間にわたって高い電池容量が維持されることが判った。
Furthermore, since magnesia, titania, etc. have the property of adsorbing Azuma lead ions dissolved in the alkaline electrolyte, the concentration of Azuma lead ions contained in the electrolyte decreases, and the zinc fine particles that are the cathode active material dissolve. However, by injecting zinc oxide or hydroxide, it dissolves in the electrolyte instead of the Azuma lead fine particles and replenishes the reduced amount, so a high battery capacity can be maintained over a long period of time. It turns out.

一方、長期間使用する場合には、使用条件を含め種々の
環境の下にふ−いて振動、衝撃などの物理的要因からく
る電極の変形、破損が起きたり、金網などの集電体と活
物質とが電気的接触を悪くして電気抵抗が増加したりし
て利用率が低下したり、作動中の分極が大きくなること
を防いで好ましい結果を与える物質として、フッ素樹脂
、ポリエチレン、ポリスチレンなどの高分子化合物から
成る結合剤があることが明らかになった。
On the other hand, when used for a long period of time, the electrodes may be deformed or damaged due to physical factors such as vibration and shock due to various environments including usage conditions, and the electrodes may become connected to current collectors such as wire mesh. Fluororesin, polyethylene, polystyrene, etc. are used as substances that provide favorable results by preventing poor electrical contact with other substances, increasing electrical resistance and lowering the utilization rate, and increasing polarization during operation. It has been revealed that there is a binder made of high molecular weight compounds.

以下本発明をその実施例について説明する。The present invention will be described below with reference to embodiments thereof.

実施例 1 組成 10%水銀アマルガム化亜鉛粉末 93゜5部(
100メツシュ通過) (重量) 酸化亜鉛粉末 2 酸化マグネシウム粉末 3 カルボキシビニールポリマー粉末1.5 10%水銀アマルガムイ回鴎倒分未 93.5部(1
00メツシュ通過) (重量) 実施例 組成 酸化前鉛粉末 2 酸化チタン粉末 3 カルボキシビニールポリマー粉末1゜5 実施例 3 組成 10%水眼アマルガム化炬鉛粉末 93゜5部
(100メツシュ通過) (重量) 酸化前鉛粉末 2 酸化ジルコニウム粉末 3 カルボキシビニールポリマー粉末1゜5 実施例 4 組e、 10%水銀アマルガム化東鉛粉末 93゜5
部(100メツシュ通過) (重量) 水酸仕組鉛粉末 2 酸化マグネシウム 3 カルボキシビニールポリマー粉末1゜5 実施例 5 組成 io%水銀アマルガム化亜鉛粉末 93゜5部
(100メツシュ通過) (重量) 酸化徂鉛粉末 2 水酸化マグネシウム粉末 3 カルボキシビニールポリマ→9$ 1.56
* 実施例 * 組成 10%水銀アマルガム炬鉛粉末 93゜5
部(100メツシュ通過) (重量)酸化前鉛粉
末 2 酸化マグネシウム粉末 2 酸化ジルコニウム粉末 1 カルボキシビニールポリマー粉末 1゜5以上実施例1
゜2,3,4,5,6の各組成をガラス製vミキサーを
用いて30分以上かけて十分に攪拌混合し、これら混合
粉末体100部に、酸化匝鉛5%含有の35%KOH水
溶液70部の割合で加え、窒素ガス雰囲気中で均一によ
く攪拌してゲル状の炬鉛負極分散体を得た。
Example 1 Composition 10% mercury amalgamated zinc powder 93°5 parts (
(passed through 100 meshes) (weight) Zinc oxide powder 2 Magnesium oxide powder 3 Carboxy vinyl polymer powder 1.5 10% mercury amalgamation unresolved 93.5 parts (1
(passed through 100 meshes) (weight) Example composition Pre-oxidized lead powder 2 Titanium oxide powder 3 Carboxy vinyl polymer powder 1°5 Example 3 Composition 10% water-grained amalgamated lead powder 93° 5 parts (passed through 100 meshes) (weight) ) Pre-oxidized lead powder 2 Zirconium oxide powder 3 Carboxyvinyl polymer powder 1゜5 Example 4 Set e, 10% mercury amalgamated East Lead powder 93゜5
parts (passed through 100 meshes) (weight) Hydroxylated lead powder 2 Magnesium oxide 3 carboxyvinyl polymer powder 1°5 Example 5 Composition io% mercury amalgamated zinc powder 93°5 parts (passed through 100 meshes) (weight) Oxidation range Lead powder 2 Magnesium hydroxide powder 3 Carboxy vinyl polymer → 9$ 1.56
*Example* Composition 10% mercury amalgam lead powder 93゜5
parts (passed through 100 meshes) (weight) Lead powder before oxidation 2 Magnesium oxide powder 2 Zirconium oxide powder 1 Carboxy vinyl polymer powder 1°5 or more Example 1
゜Each composition of 2, 3, 4, 5, and 6 was thoroughly stirred and mixed using a glass V-mixer over 30 minutes or more, and 100 parts of these mixed powders were added with 35% KOH containing 5% lead oxide. 70 parts of the aqueous solution was added and stirred uniformly and well in a nitrogen gas atmosphere to obtain a gelled lead negative electrode dispersion.

これを負極合剤とし、正極には酸化水銀95部、黒鉛4
部、ポリステレフ1部の混合物を2 t orJcr?
tで成形したものを用い、ナイロン不織布の隔離体を介
在してH−C形電池に組立でた。
This was used as a negative electrode mixture, and the positive electrode contained 95 parts of mercury oxide and 4 parts of graphite.
2 t or Jcr?
Using the t-molded product, an H-C type battery was assembled with a nylon nonwoven fabric separator interposed therebetween.

これに対し従来品は組成として 化屯鉛粉末を用い、他
は同様の方法で組立てた。
In contrast, the conventional product used lead oxide powder as its composition and was assembled using the same method.

これ等の電池を25℃と0℃にち−ける5000抵抗に
よる連続放電を行ない009v終止とした場合の放電持
続時間を測定し、その結果を次の表にまとめて示す この表に示すように従来品に比べ各実施例に釦ける持続
時間が長くなってむり、しかも平均作動電圧として各実
施例では25°Gでの1゜23Vに対し、従来品はl。
These batteries were continuously discharged at 25°C and 0°C using a 5,000 resistance resistor, and the discharge duration was measured when the final voltage was 009V.The results are summarized in the table below. Compared to the conventional product, the button duration for each embodiment is longer, and the average operating voltage for each embodiment is 1°23V at 25°G, whereas the conventional product is 1°.

205vと放電持続時間トよび作動中の分極の低減の効
果が明らかとなった。
The effect of reducing polarization during operation at 205 V and discharge duration became clear.

また25℃での放電持続時間に対する0℃の放電持続時
間の割合が従来品では約5割になるのに対し、各実施例
では約6割までに向上している。
Furthermore, while the ratio of the discharge duration at 0° C. to the discharge duration at 25° C. is approximately 50% in the conventional product, this has been improved to approximately 60% in each of the Examples.

一方同一電池の貯蔵後の特性を上記の25℃の条件で調
べたとこう、表2に示すような結果が得られ、本発明に
よるものは極めて効果的であることが判つtこ。
On the other hand, when the characteristics of the same battery after storage were examined under the above-mentioned conditions of 25°C, the results shown in Table 2 were obtained, indicating that the battery according to the present invention is extremely effective.

Claims (1)

【特許請求の範囲】[Claims] 1 金属亜鉛粉末に酸化亜鉛または水酸化亜鉛の粉末と
Mg、Ti、Zrの酸化物もしくは水酸化物の1種また
は2種以上の粉末とアルカリ電解液中で安定なゲル化剤
粉末とを加えた混合体から成ることを特徴としたアルカ
リ1次電池用亜鉛陰極。
1 Adding zinc oxide or zinc hydroxide powder, one or more powders of oxides or hydroxides of Mg, Ti, and Zr, and gelling agent powder stable in an alkaline electrolyte to metal zinc powder. A zinc cathode for an alkaline primary battery, characterized in that it consists of a mixture of:
JP48037032A 1973-03-31 1973-03-31 Zinc cathode for alkaline batteries Expired JPS5857866B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP48037032A JPS5857866B2 (en) 1973-03-31 1973-03-31 Zinc cathode for alkaline batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP48037032A JPS5857866B2 (en) 1973-03-31 1973-03-31 Zinc cathode for alkaline batteries

Publications (2)

Publication Number Publication Date
JPS49121936A JPS49121936A (en) 1974-11-21
JPS5857866B2 true JPS5857866B2 (en) 1983-12-22

Family

ID=12486280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP48037032A Expired JPS5857866B2 (en) 1973-03-31 1973-03-31 Zinc cathode for alkaline batteries

Country Status (1)

Country Link
JP (1) JPS5857866B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0317318Y2 (en) * 1982-12-20 1991-04-12

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0617847A4 (en) * 1991-12-16 1996-01-24 Matsi Inc Collapsing foam anode backing for zinc-air battery.
US5458988A (en) * 1993-08-10 1995-10-17 Matsi, Inc. Metal-air-cells having improved anode assemblies
JP4914983B2 (en) * 2001-06-11 2012-04-11 Dowaエレクトロニクス株式会社 Negative electrode composition for alkaline battery, zinc alloy powder used in the composition, and alkaline battery using the composition
US20210135223A1 (en) * 2017-11-08 2021-05-06 Sharp Kabushiki Kaisha Negative electrode for batteries, battery, and method for producing battery

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4836640A (en) * 1971-09-10 1973-05-30

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4836640A (en) * 1971-09-10 1973-05-30

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0317318Y2 (en) * 1982-12-20 1991-04-12

Also Published As

Publication number Publication date
JPS49121936A (en) 1974-11-21

Similar Documents

Publication Publication Date Title
US3870564A (en) Alkaline cell
JPS6113561A (en) Method of geling cathode of alkaline battery and cathode blend
JP3215446B2 (en) Zinc alkaline battery
JP3215447B2 (en) Zinc alkaline battery
US5682592A (en) Fabrication method for paste-type metal hydride electrode
JPS5857866B2 (en) Zinc cathode for alkaline batteries
JPH07254406A (en) Unamalgamated zinc alkaline battery
JPH0222984B2 (en)
JP3022758B2 (en) Alkaline manganese battery
US2931846A (en) Electric battery plate
US2692215A (en) Alkaline dry cell
JPS61240579A (en) Manufacture of cadmium negative plate for alkaline storage battery
CN105742578A (en) Preparation method for negative electrode slurry of nickel-metal hydride battery additionally provided with carbon nanotubes
US1020568A (en) Alkaline battery.
JP3249398B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JPS5966054A (en) Zinc alkaline battery
JPH0133025B2 (en)
JPS63226881A (en) Nonaqueous electrolyte cell
JP2003017042A (en) Sealed alkaline-zinc primary battery
JPS5851667B2 (en) Method for producing positive electrode for non-aqueous electrolyte battery
JP2002184395A (en) Electrode for alkaline battery, and alkaline battery
JPS5999660A (en) Silver oxide cell
JP4503791B2 (en) battery
AT302436B (en) HYDROGEN ABSORBING ARRANGEMENT
KR800000822B1 (en) Synthetic method of positive ionizing substances for mecury cell