JPH08224209A - Fluorescence observing device - Google Patents

Fluorescence observing device

Info

Publication number
JPH08224209A
JPH08224209A JP7035444A JP3544495A JPH08224209A JP H08224209 A JPH08224209 A JP H08224209A JP 7035444 A JP7035444 A JP 7035444A JP 3544495 A JP3544495 A JP 3544495A JP H08224209 A JPH08224209 A JP H08224209A
Authority
JP
Japan
Prior art keywords
image
fluorescence
light
wavelength
observation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7035444A
Other languages
Japanese (ja)
Other versions
JP3560671B2 (en
Inventor
Hitoshi Ueno
仁士 上野
Mamoru Kaneko
守 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP03544495A priority Critical patent/JP3560671B2/en
Publication of JPH08224209A publication Critical patent/JPH08224209A/en
Application granted granted Critical
Publication of JP3560671B2 publication Critical patent/JP3560671B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/043Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances for fluorescence imaging

Abstract

PURPOSE: To display both an ordinary observing image and a fluorescence observing image simultaneously without switching a light source or an image pickup means. CONSTITUTION: A light source device 1 is provided with a laser 6 for excitation which generates excitation light for fluorescence observation, and an R/G/B laser 7 which generates R/G/B light for ordinary observation, and the excitation light and the R/G/B light form one optical axis, and it irradiates a part to be observed via an endoscope 2. The fluorescent image and the ordinary image of the part to be observed are made incident on a camera 3 via the endoscope 2, and divided into three optical paths, and they transmit band-pass filters 13, 14 and a laser cut filter 15, and the fluorescent image and the ordinary image of wavelength bands λ1, λ2 are image-picked up, and the fluorescece observing image and the ordinary observing image are generated by an image processing part 4. In such a case, the wavelength bands of the excitation light and R/G/B color light and the wavelength bands λ1, λ2 of detected fluorescence are set so as not to provide the wavelength band in which they are superimposed mutually.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、励起光を生体組織の観
察対象部位へ照射して励起光による蛍光像を得る蛍光観
察装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fluorescence observation apparatus for irradiating a site of a living tissue to be observed with excitation light to obtain a fluorescence image by the excitation light.

【0002】[0002]

【従来の技術】近年、生体組織の観察対象部位へ励起光
を照射し、この励起光によって生体組織から直接発生す
る自家蛍光や生体へ注入しておいた薬物の蛍光を2次元
画像として検出し、その蛍光像から生体組織の変性や癌
等の疾患状態(例えば、疾患の種類や浸潤範囲)を診断
する技術が用いられつつあり、この蛍光観察を行うため
の蛍光観察装置が開発されている。
2. Description of the Related Art In recent years, excitation light is irradiated to a region of a living tissue to be observed, and autofluorescence generated directly from the living tissue by this excitation light or fluorescence of a drug injected into a living body is detected as a two-dimensional image. , Techniques for diagnosing disease states such as degeneration of living tissue and cancer (eg, type of disease and infiltration range) from the fluorescence image are being used, and a fluorescence observation apparatus for performing this fluorescence observation has been developed. .

【0003】自家蛍光においては、生体組織に励起光を
照射すると、その励起光より長い波長の蛍光が発生す
る。生体における蛍光物質としては、例えばNADH
(ニコチンアミドアデニンヌクレオチド),FMN(フ
ラビンモノヌクレオチド),ピリジンヌクレオチド等が
ある。最近では、このような蛍光を発生する生体内因物
質と疾患との相互関係が明確になりつつあり、これらの
蛍光により癌等の診断が可能である。
In autofluorescence, when a living tissue is irradiated with excitation light, fluorescence having a wavelength longer than that of the excitation light is generated. Examples of the fluorescent substance in the living body include NADH
(Nicotinamide adenine nucleotide), FMN (flavin mononucleotide), pyridine nucleotide and the like. Recently, the mutual relationship between such endogenous substances that generate fluorescence and diseases has been clarified, and cancer and the like can be diagnosed by these fluorescences.

【0004】また、薬物の蛍光においては、生体内へ注
入する蛍光物質としては、HpD(ヘマトポルフィリ
ン),Photofrin ,ALA(δ−amino levulinic aci
d)等が用いられる。これらの薬物は癌などへの集積性
があり、これを生体内に注入して蛍光を観察することで
疾患部位を診断できる。また、モノクローナル抗体に蛍
光物質を付加させ、抗原抗体反応により病変部に蛍光物
質を集積させる方法もある。
In the fluorescence of drugs, fluorescent substances to be injected into the living body include HpD (hematoporphyrin), Photofrin, ALA (δ-amino levulinic aci).
d) etc. are used. These drugs have the property of accumulating in cancer and the like, and by injecting them into a living body and observing fluorescence, the disease site can be diagnosed. There is also a method in which a fluorescent substance is added to a monoclonal antibody and the fluorescent substance is accumulated in the lesion by an antigen-antibody reaction.

【0005】励起光としては例えばレーザ光が用いら
れ、励起光を生体組織へ照射することによって観察対象
部位の蛍光像を得る。この励起光による生体組織におけ
る微弱な蛍光を検出して2次元の蛍光画像を生成し、観
察、診断を行う。
Laser light, for example, is used as the excitation light, and a fluorescent image of the site to be observed is obtained by irradiating the living tissue with the excitation light. Weak fluorescence in the living tissue due to this excitation light is detected to generate a two-dimensional fluorescence image, and observation and diagnosis are performed.

【0006】このような蛍光観察装置においては、一般
に通常画像と蛍光画像とを対比させて診断を行う。この
ために、通常観察用の光源装置及び撮像手段と蛍光観察
用の光源装置及び撮像手段とを交換して使用している。
従来の装置では、例えば特開昭63−122421号公
報に開示されているように、通常照明光と励起光とを照
射光切換え手段を用いて交互に照射し、得られた通常画
像と蛍光画像とを照射光切換え手段に同期させて交互に
取り込んでメモリに蓄え、通常画像と蛍光画像を同時表
示するような構成となっていた。
In such a fluorescence observation apparatus, diagnosis is generally performed by comparing a normal image with a fluorescence image. For this reason, the light source device and the image pickup means for normal observation and the light source device and the image pickup means for fluorescence observation are used in exchange.
In a conventional apparatus, for example, as disclosed in Japanese Patent Laid-Open No. 63-122421, the normal illumination light and the excitation light are alternately irradiated using the irradiation light switching means, and the obtained normal image and fluorescence image are obtained. And are alternately fetched in synchronism with the irradiation light switching means and stored in the memory, and the normal image and the fluorescent image are simultaneously displayed.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、従来の
構成では、得られる通常画像と蛍光画像は、交互に撮像
されるため、リアルタイム表示ではなく、両画像の撮影
時間のズレから表示画像にズレが生じ、観察部位がずれ
てしまうおそれがあった。また、通常画像と蛍光画像を
高速で切換えて撮像するようにした場合は、各画像が時
分割されてしまうため表示の際に画面数を多く取ること
ができず、表示画像が暗くなってしまう問題点を有して
いた。
However, in the conventional configuration, the normal image and the fluorescent image obtained are alternately imaged, so that the display image is deviated from the time difference between the two images rather than the real-time display. There was a risk that the observation site would be displaced. Further, when the normal image and the fluorescent image are switched at high speed to capture the images, each image is time-divided, so that a large number of screens cannot be taken at the time of display, and the displayed image becomes dark. I had a problem.

【0008】本発明は、これらの事情に鑑みてなされた
もので、通常観察画像と蛍光観察画像を、光源や撮像手
段を切換えることなく、両方同時にリアルタイム表示す
ることができ、両画像にズレがなくかつ明るい画像を得
ることのできる蛍光観察装置を提供することを目的とし
ている。
The present invention has been made in view of these circumstances, and both the normal observation image and the fluorescence observation image can be simultaneously displayed in real time without switching the light source and the image pickup means, and the images are misaligned. It is an object of the present invention to provide a fluorescence observation apparatus capable of obtaining a bright image without a light.

【0009】[0009]

【課題を解決するための手段】本発明による蛍光観察装
置は、体腔内組織を照明する照明光を発生する光源と、
前記組織からの前記照明光の反射により得られる通常画
像と前記組織を前記照明光により励起して得られる蛍光
像とをそれぞれ撮像する撮像手段と、を有する装置にお
いて、前記光源は、前記蛍光像の属する波長領域と前記
通常画像を構成する波長領域とが互いに分離するような
波長の照明光を発生してなるものである。
A fluorescence observation apparatus according to the present invention comprises a light source for generating illumination light for illuminating tissue in a body cavity,
In a device having a normal image obtained by reflection of the illumination light from the tissue and an image capturing unit for capturing a fluorescence image obtained by exciting the tissue with the illumination light, the light source is the fluorescence image. Is generated by generating illumination light having a wavelength such that the wavelength region to which the normal image belongs and the wavelength region forming the normal image are separated from each other.

【0010】[0010]

【作用】光源より蛍光像の属する波長領域と通常画像を
構成する波長領域とが互いに分離するような波長の照明
光を発生して体腔内組織を照明することにより、蛍光像
と通常画像とを同時に得ることが可能となる。
The fluorescent light image and the normal image are illuminated by illuminating the tissue in the body cavity by generating illumination light having a wavelength such that the wavelength region to which the fluorescent image belongs and the wavelength region forming the normal image are separated from each other by the light source. It is possible to obtain at the same time.

【0011】[0011]

【実施例】以下、図面を参照して本発明の実施例を説明
する。図1及び図2は本発明の第1実施例に係り、図1
は蛍光観察装置の概略構成を示す構成説明図、図2は観
察部位へ照射する各照明光及び生体組織から検出される
蛍光の波長帯域と各フィルタの透過波長特性との関係を
示す特性図である。
Embodiments of the present invention will be described below with reference to the drawings. 1 and 2 relate to a first embodiment of the present invention.
FIG. 2 is a configuration explanatory view showing a schematic configuration of a fluorescence observation apparatus, and FIG. 2 is a characteristic diagram showing a relationship between a wavelength band of fluorescence detected from each illumination light and living tissue irradiated to an observation site and a transmission wavelength characteristic of each filter. is there.

【0012】図1に示すように、本実施例の蛍光観察装
置は、励起光とRGBの3原色の照明光(以下RGB光
と称する)とを発生する光源装置1と、光源装置1から
の励起光とRGB光とを生体内の観察部位に照射して、
励起光による蛍光像とRGB光による通常像とを検出し
生体外に伝達する内視鏡2と、内視鏡2で得られた蛍光
像と通常像とを撮影し電気信号に変換するカメラ3と、
カメラ3からの画像信号を処理し、蛍光画像と通常画像
とを生成する画像処理部4と、画像処理部4により生成
された蛍光画像と通常画像とを同時にまたはそれぞれ別
に表示するCRTモニタ等からなる表示部5とを備えて
主要部が構成されている。
As shown in FIG. 1, the fluorescence observation apparatus of the present embodiment includes a light source device 1 for generating excitation light and illumination light of three primary colors of RGB (hereinafter referred to as RGB light), and a light source device 1 for emitting light. Irradiating excitation light and RGB light to the observation site in the living body,
An endoscope 2 that detects and transmits a fluorescent image by excitation light and a normal image by RGB light to the outside of a living body, and a camera 3 that captures the fluorescent image and the normal image obtained by the endoscope 2 and converts them into an electric signal. When,
From an image processing unit 4 that processes an image signal from the camera 3 to generate a fluorescence image and a normal image, and a CRT monitor that displays the fluorescence image and the normal image generated by the image processing unit 4 simultaneously or separately. The main part is configured by including the display unit 5.

【0013】光源装置1は、蛍光を励起するための励起
光を発生する励起用レーザ6と、通常像を得るためのR
GB光を発生するRGBレーザ7と、励起用レーザ6,
RGBレーザ7の光軸を1つに合成するミラー8及びダ
イクロイックミラー9とを備えて構成される。
The light source device 1 includes an excitation laser 6 for generating excitation light for exciting fluorescence, and an R for obtaining a normal image.
RGB laser 7 for generating GB light, excitation laser 6,
It comprises a mirror 8 and a dichroic mirror 9 which combine the optical axes of the RGB lasers 7 into one.

【0014】内視鏡2は、生体内へ挿入する細長の挿入
部を有し、光源装置1からの励起光及びRGB光を挿入
部先端まで伝達するライトガイド21を含む照明光学系
と、観察部位の蛍光像及び通常像を手元側の接眼部まで
伝達するイメージガイド22を含む観察光学系とを備え
て構成される。
The endoscope 2 has an elongated insertion portion to be inserted into a living body, and an illumination optical system including a light guide 21 for transmitting the excitation light and the RGB light from the light source device 1 to the tip of the insertion portion, and observation. An observation optical system including an image guide 22 for transmitting the fluorescent image of the region and the normal image to the eyepiece on the hand side.

【0015】カメラ3は、内視鏡2の接眼部に接続さ
れ、内視鏡2より入射する蛍光像及び通常像を3つの光
路に分割するダイクロイックミラー10,ダイクロイッ
クミラー11,ミラー12と、蛍光を検出する波長帯域
λ1 を透過するバンドパスフィルタ13と、蛍光を検出
する波長帯域λ2 を透過するバンドパスフィルタ14
と、励起用レーザ6からの励起光の波長帯域のみを遮断
するレーザカットフィルタ15と、バンドパスフィルタ
13を透過した蛍光像を増幅するイメージインテンシフ
ァイア(図中ではI.I.と略記する)16と、バンドパス
フィルタ14を透過した蛍光像を増幅するイメージイン
テンシファイア17と、イメージインテンシファイア1
6の出力像を撮像するCCD18と、イメージインテン
シファイア17の出力像を撮像するCCD19と、レー
ザカットフィルタ15を透過した蛍光像を含む通常像を
撮像するCCD20とを備えて構成される。
The camera 3 is connected to the eyepiece of the endoscope 2 and divides the fluorescence image and the normal image incident from the endoscope 2 into three optical paths, a dichroic mirror 11, a mirror 12 and a mirror 12. A bandpass filter 13 that transmits the wavelength band λ1 for detecting fluorescence and a bandpass filter 14 that transmits the wavelength band λ2 for detecting fluorescence.
A laser cut filter 15 that blocks only the wavelength band of the excitation light from the excitation laser 6, and an image intensifier (abbreviated as II in the figure) 16 that amplifies the fluorescence image that has passed through the bandpass filter 13. , An image intensifier 17 for amplifying the fluorescence image transmitted through the bandpass filter 14, and an image intensifier 1
The CCD 18 for picking up the output image of the image No. 6, the CCD 19 for picking up the output image of the image intensifier 17, and the CCD 20 for picking up the normal image including the fluorescent image transmitted through the laser cut filter 15.

【0016】光源装置1において、励起用レーザ6によ
り励起光λ0 を発生する。また、RGBレーザ7により
赤色光λR ,緑色光λG ,青色光λB の3色を同時に発
振することで生成される白色光を発生する。そして、こ
れらの光をミラー8及びダイクロイックミラー9により
反射及び透過して1つの光軸上に合成して配置し、内視
鏡2のライトガイド21に導光する。ライトガイド21
に導光された4色のレーザ光は、内視鏡2内部を通って
挿入部先端部まで伝達され、生体内の観察部位に照射さ
れる。
In the light source device 1, the excitation laser 6 generates excitation light λ 0. Further, white light generated by simultaneously oscillating three colors of red light λR, green light λG, and blue light λB by the RGB laser 7 is generated. Then, these lights are reflected and transmitted by the mirror 8 and the dichroic mirror 9, combined and arranged on one optical axis, and guided to the light guide 21 of the endoscope 2. Light guide 21
The four-color laser light guided to the inside of the endoscope 2 is transmitted to the distal end portion of the insertion portion through the inside of the endoscope 2 and is irradiated to the observation site in the living body.

【0017】そして、観察部位からの励起光による蛍光
像とRGB光による通常像は、内視鏡2のイメージガイ
ド22を通じて手元側の接眼部まで伝達され、カメラ3
に入射される。カメラ3に入射された蛍光像と通常像
は、ダイクロイックミラー10,ダイクロイックミラー
11,ミラー12により透過及び反射して3つの光路に
分割される。分割された3つの光は、それぞれバンドパ
スフィルタ13,バンドパスフィルタ14,レーザカッ
トフィルタ15を透過する。
Then, the fluorescence image due to the excitation light from the observation site and the normal image due to the RGB light are transmitted to the eyepiece on the near side through the image guide 22 of the endoscope 2, and the camera 3
Is incident on. The fluorescence image and the normal image incident on the camera 3 are transmitted and reflected by the dichroic mirror 10, the dichroic mirror 11 and the mirror 12, and are divided into three optical paths. The three divided lights pass through the bandpass filter 13, the bandpass filter 14, and the laser cut filter 15, respectively.

【0018】図2は励起用レーザ,RGBレーザより発
生される各照明光及び生体組織から検出される蛍光の波
長帯域と、各フィルタの透過波長特性との関係を示した
ものである。
FIG. 2 shows the relationship between the wavelength bands of the illumination light generated by the excitation laser and the RGB laser and the fluorescence detected from the living tissue, and the transmission wavelength characteristics of each filter.

【0019】図2の(a)に示すように、励起光λ0 ,
赤色光λR ,緑色光λG ,青色光λB の各波長帯域と、
蛍光を検出する波長帯域λ1 及びλ2 とは、それぞれ重
なり合う波長帯域を持たないように各帯域が設定されて
いる。そして、図2の(b)及び(c)に示すように、
バンドパスフィルタ13の透過波長帯域はλ1 、バンド
パスフィルタ14の透過波長帯域はλ2 となっている。
すなわち、バンドパスフィルタ13を透過した光は、λ
1 の波長帯域の成分しか持たない光であり、観察部位よ
り出た蛍光のうち、検出するλ1 の波長帯域よりなる蛍
光像である。また、バンドパスフィルタ14を透過した
光は、λ2 の波長帯域の成分しか持たない光であり、観
察部位より出た蛍光のうち、検出するλ2 の波長帯域よ
りなる蛍光像である。また、レーザカットフィルタ15
は、励起光λ0 の波長帯域をカットするフィルタであ
り、レーザカットフィルタ15を透過した光は励起光λ
0 の波長帯域を持たない光であり、R,G,Bの各色光
よりなる通常像である。
As shown in FIG. 2A, the pumping light λ 0,
Each wavelength band of red light λ R, green light λ G, and blue light λ B,
The wavelength bands λ1 and λ2 for detecting fluorescence are set so that they do not have overlapping wavelength bands. Then, as shown in (b) and (c) of FIG.
The transmission wavelength band of the bandpass filter 13 is λ1, and the transmission wavelength band of the bandpass filter 14 is λ2.
That is, the light transmitted through the bandpass filter 13 has a wavelength of λ
It is light having only a component in the wavelength band of 1 and is a fluorescence image of the wavelength band of λ1 to be detected among the fluorescence emitted from the observation site. Further, the light transmitted through the bandpass filter 14 is light having only a component in the wavelength band of λ2, and is a fluorescence image of the wavelength band of λ2 to be detected among the fluorescence emitted from the observation site. Also, the laser cut filter 15
Is a filter that cuts the wavelength band of the excitation light λ 0, and the light transmitted through the laser cut filter 15 is the excitation light λ 0.
It is a light that does not have a wavelength band of 0, and is a normal image composed of R, G, and B color lights.

【0020】バンドパスフィルタ13を透過した蛍光像
は、イメージインテンシファイア16で増幅された後に
CCD18で撮像されてビデオ信号に変換される。また
同様に、バンドパスフィルタ14を透過した蛍光像は、
イメージインテンシファイア17で増幅された後にCC
D19で撮像されてビデオ信号に変換される。レーザカ
ットフィルタ15を透過した通常像は、そのままCCD
20で撮像されてビデオ信号に変換される。
The fluorescent image transmitted through the band pass filter 13 is amplified by the image intensifier 16 and then picked up by the CCD 18 to be converted into a video signal. Similarly, the fluorescence image transmitted through the bandpass filter 14 is
CC after being amplified by the image intensifier 17
An image is captured at D19 and converted into a video signal. The normal image that has passed through the laser cut filter 15 is the CCD as it is.
The image is picked up at 20 and converted into a video signal.

【0021】CCD18及びCCD19で得られた蛍光
像のビデオ信号は画像処理部4に入力される。画像処理
部4では、2つの波長帯域の蛍光像のビデオ信号を演算
処理して蛍光観察画像を生成する。
The video signal of the fluorescent image obtained by the CCD 18 and the CCD 19 is input to the image processing section 4. The image processing unit 4 performs an arithmetic process on the video signals of the fluorescence images in the two wavelength bands to generate a fluorescence observation image.

【0022】励起光による観察部位における可視領域の
蛍光は、励起光λ0 より長い波長の帯域の強度分布とな
り、正常部位では特にλ1 付近で強く、病変部では弱く
なる。よって、特にλ1 付近の蛍光強度から正常部位と
病変部との判別が可能であり、このような蛍光画像によ
って癌等の病変部の診断ができる。従って、画像処理部
4においては、例えばλ1 とλ2 の蛍光像の画像信号よ
りλ1 とλ2 における蛍光強度の比率または差分を求め
る演算を行い、生体組織の性状を判別可能な蛍光観察画
像を生成する。
Fluorescence in the visible region at the observation site due to the excitation light has an intensity distribution in a wavelength band longer than the excitation light λ0, and is strong particularly in the vicinity of λ1 in the normal region and weak in the lesion site. Therefore, it is possible to distinguish between a normal site and a lesion based on the fluorescence intensity especially near λ 1, and a lesion such as cancer can be diagnosed by such a fluorescence image. Therefore, in the image processing unit 4, for example, an operation for obtaining the ratio or difference of the fluorescence intensities in λ1 and λ2 is performed from the image signals of the fluorescence images of λ1 and λ2, and a fluorescence observation image capable of discriminating the properties of the biological tissue is generated. .

【0023】また、CCD20で得られた通常像のビデ
オ信号は通常観察画像として画像処理部4に入力され
る。画像処理部4は、蛍光観察画像信号と通常観察画像
信号とを合成して同時に出力したり、または蛍光観察画
像信号と通常観察画像信号をそれぞれ別々に出力し、こ
れらの画像信号を表示部5に送る。そして、表示部5に
おいて蛍光観察画像及び通常観察画像が同時にまたは別
々に表示される。
The video signal of the normal image obtained by the CCD 20 is input to the image processing section 4 as a normal observation image. The image processing unit 4 synthesizes the fluorescence observation image signal and the normal observation image signal and outputs them simultaneously, or outputs the fluorescence observation image signal and the normal observation image signal separately, and displays these image signals. Send to. Then, on the display unit 5, the fluorescence observation image and the normal observation image are displayed simultaneously or separately.

【0024】このように本実施例の蛍光観察装置では、
通常観察用の光源としてRGBレーザを利用し、RGB
レーザの各色光の波長帯域と、励起用レーザの励起光の
波長帯域と、診断用の蛍光画像を生成するために検出す
る蛍光の複数の波長帯域とのそれぞれが重なり合わない
ように配置するようにしている。従って本実施例によれ
ば、通常観察用と蛍光観察用とで光源や撮像手段を切り
換える必要がなく、通常観察用と蛍光観察用の照明光を
同時に照射して通常像と蛍光像とを同時に撮像すること
が可能となり、蛍光観察画像と通常観察画像をリアルタ
イムで両方同時に表示し観察することができる。
As described above, in the fluorescence observation apparatus of this embodiment,
RGB laser is used as a light source for normal observation.
Arrange so that the wavelength bands of each color light of the laser, the wavelength band of the excitation light of the excitation laser, and the wavelength bands of the fluorescence detected to generate the fluorescence image for diagnosis do not overlap. I have to. Therefore, according to the present embodiment, it is not necessary to switch the light source and the image pickup means between the normal observation and the fluorescence observation, and the illumination light for the normal observation and the fluorescence observation are simultaneously irradiated to simultaneously generate the normal image and the fluorescence image. It becomes possible to take an image, and both the fluorescence observation image and the normal observation image can be simultaneously displayed in real time for observation.

【0025】このため、蛍光観察画像と通常観察画像と
の間で時間的なズレが生じることなく、常に同一の観察
部位を見ることができる。また、両画像を表示する際に
画像の画面数を多くとることができるため、明るい画像
を得ることができる。よって、蛍光観察による診断能を
向上させることができる。
Therefore, it is possible to always see the same observation site without any time difference between the fluorescence observation image and the normal observation image. Moreover, since a large number of screens can be displayed for displaying both images, a bright image can be obtained. Therefore, the diagnostic ability by fluorescence observation can be improved.

【0026】また、励起光とRGB光との切換え手段、
及び蛍光像と通常像との切換え手段が不要なため、装置
を小型化することができる。
Also, means for switching between excitation light and RGB light,
Further, since the means for switching between the fluorescent image and the normal image is unnecessary, the device can be downsized.

【0027】なお、第1実施例の変形例として、励起用
レーザ6の波長帯域を変更することも可能である。励起
用レーザ6の出射光の波長がRGBレーザ7の発する3
色の光の波長のうちの1つと同じ波長を持つような場合
は、励起用レーザ6をRGBレーザ7で兼ねることがで
きるため、励起用レーザ6,ミラー8,ダイクロイック
ミラー9,レーザカットフィルタ15が不要となる。こ
のため、装置の小型化を図ることができる。
As a modification of the first embodiment, it is possible to change the wavelength band of the pumping laser 6. The wavelength of the light emitted from the excitation laser 6 is 3 emitted by the RGB laser 7.
In the case of having the same wavelength as one of the wavelengths of the colored light, the RGB laser 7 can also serve as the excitation laser 6, and therefore the excitation laser 6, the mirror 8, the dichroic mirror 9, and the laser cut filter 15 can be used. Is unnecessary. Therefore, the size of the device can be reduced.

【0028】また、励起用レーザ6の波長が可視光領域
以外にあるような場合は、レーザカットフィルタ15は
不要となる。
If the wavelength of the excitation laser 6 is outside the visible light range, the laser cut filter 15 is unnecessary.

【0029】次に、蛍光観察装置の他の構成例を示す。
蛍光観察装置において、生体内臓器の癌等の疾患の状態
を蛍光観察により診断する場合、診断に適した励起光の
波長及び検出する蛍光の波長は臓器特有のものであるた
め、従来の装置では観察対象の臓器が異なる毎に励起波
長及び検出波長を変えるような構成となっていた。しか
し、このような構成では観察する臓器に合わせて励起波
長及び検出波長を予め交換して蛍光観察を行うために診
断時の操作が煩雑であった。また、励起波長及び検出波
長が観察部位に適合していないことに気付かずに診断を
行うと正確な診断ができないおそれがある。
Next, another configuration example of the fluorescence observation apparatus will be shown.
In a fluorescence observation apparatus, when diagnosing a disease state such as cancer of a living body organ by fluorescence observation, the wavelength of excitation light suitable for diagnosis and the wavelength of fluorescence to be detected are organ-specific; The excitation wavelength and the detection wavelength are changed for each different organ to be observed. However, in such a configuration, since the excitation wavelength and the detection wavelength are exchanged in advance according to the organ to be observed and the fluorescence observation is performed, the operation at the time of diagnosis is complicated. Further, if the diagnosis is made without noticing that the excitation wavelength and the detection wavelength do not match the observed region, there is a possibility that accurate diagnosis cannot be made.

【0030】そこで、観察部位を判別してその臓器に適
した励起波長及び検出波長を自動的に選択することが可
能で、診断時の操作性を向上させると共に観察部位の正
確な診断を行うことのできる蛍光観察装置の構成例を実
施例として以下に示す。
Therefore, it is possible to discriminate the observation site and automatically select the excitation wavelength and the detection wavelength suitable for the organ, thereby improving the operability at the time of diagnosis and performing accurate diagnosis of the observation site. An example of the structure of a fluorescence observation apparatus that can be used is shown below as an example.

【0031】図3ないし図5は本発明の第2実施例に係
り、図3は蛍光観察装置の概略構成を示す構成説明図、
図4は検出波長切換え用フィルタを示す構成説明図、図
5は励起波長切換え用フィルタを示す構成説明図であ
る。
3 to 5 relate to a second embodiment of the present invention, and FIG. 3 is a structural explanatory view showing a schematic structure of a fluorescence observation apparatus,
FIG. 4 is a structural explanatory view showing a detection wavelength switching filter, and FIG. 5 is a structural explanatory view showing an excitation wavelength switching filter.

【0032】図3に示すように、本実施例の蛍光観察装
置は、励起光を発生する光源装置31と、光源装置31
からの励起光を生体内の観察部位に照射して、励起光に
よる蛍光像を検出し生体外に伝達する内視鏡32と、接
続された内視鏡の種類(例えば、上部消化管用、下部消
化管用、気管支用等)を検出する内視鏡種類検出手段3
3と、内視鏡種類検出手段33からの信号を入力し、接
続された内視鏡の種類を判別する内視鏡判別回路34
と、内視鏡判別回路34からの信号により励起波長及び
検出波長を決定し、それぞれの波長の切換えを制御する
波長切換制御手段35と、波長切換制御手段35からの
信号を受けて蛍光検出波長を切換える検出波長切換手段
36と、内視鏡32で得られた蛍光像を撮影し電気信号
に変換するカメラ37と、カメラ37からの画像信号を
処理し蛍光画像を生成する蛍光画像処理部38と、蛍光
画像処理部38により生成された蛍光画像を表示する表
示部39とを備えて構成されている。
As shown in FIG. 3, the fluorescence observation apparatus of this embodiment has a light source device 31 for generating excitation light and a light source device 31.
Endoscope 32 that irradiates the observation site in the living body with the excitation light from the body and detects the fluorescence image by the excitation light and transmits the fluorescence image outside the living body, and the type of the connected endoscope (for example, for upper digestive tract, lower Endoscope type detecting means 3 for detecting gastrointestinal tract, bronchus, etc.
3 and a signal from the endoscope type detection means 33, and an endoscope discrimination circuit 34 for discriminating the type of the connected endoscope.
And a wavelength switching control unit 35 that determines the excitation wavelength and the detection wavelength based on a signal from the endoscope discrimination circuit 34 and controls switching of the respective wavelengths, and a fluorescence detection wavelength upon receiving a signal from the wavelength switching control unit 35. Detection wavelength switching means 36 for switching between the two, a camera 37 for capturing the fluorescence image obtained by the endoscope 32 and converting it into an electric signal, and a fluorescence image processing section 38 for processing the image signal from the camera 37 to generate a fluorescence image. And a display unit 39 for displaying the fluorescence image generated by the fluorescence image processing unit 38.

【0033】内視鏡種類検出手段33は、内視鏡32の
接眼部に設けたバーコードラベル40と、このバーコー
ドラベル40を読み取るための接眼部に取り付けられる
バーコードスキャナ41とを備えて構成される。
The endoscope type detecting means 33 includes a bar code label 40 provided on the eyepiece part of the endoscope 32 and a bar code scanner 41 attached to the eyepiece part for reading the bar code label 40. It is equipped with.

【0034】検出波長切換手段36は、内視鏡32から
入射する蛍光像を2つの光路に分割するダイクロイック
ミラー42,ミラー43と、検出する蛍光の波長帯域を
選択的に透過する検出波長切換フィルタ44と、検出波
長切換フィルタ44を回転駆動するフィルタ駆動部45
とを備えて構成される。
The detection wavelength switching means 36 includes a dichroic mirror 42 and a mirror 43 for dividing the fluorescence image incident from the endoscope 32 into two optical paths, and a detection wavelength switching filter for selectively transmitting the wavelength band of the fluorescence to be detected. 44, and a filter drive unit 45 that rotationally drives the detection wavelength switching filter 44.
And is configured.

【0035】カメラ37は、検出波長切換手段36から
入射する2つの蛍光像をそれぞれ増幅するイメージイン
テンシファイア16,17と、イメージインテンシファ
イア16の出力像を撮像するCCD18と、イメージイ
ンテンシファイア17の出力像を撮像するCCD19と
を備えて構成される。
The camera 37 includes image intensifiers 16 and 17 for amplifying the two fluorescence images incident from the detection wavelength switching means 36, a CCD 18 for capturing an output image of the image intensifier 16, and an image intensifier. A CCD 19 for picking up the output image of 17 is provided.

【0036】光源装置31は、数種類の波長を含む光を
発生する多波長光源(例えば水銀ランプ等)46と、出
射する励起光の波長帯域を選択的に透過する励起波長切
換フィルタ47と、励起波長切換フィルタ47を回転駆
動するフィルタ駆動部48とを備えて構成される。
The light source device 31 includes a multi-wavelength light source (for example, a mercury lamp) 46 for generating light containing several kinds of wavelengths, an excitation wavelength switching filter 47 for selectively transmitting a wavelength band of emitted excitation light, and an excitation light source. A filter drive unit 48 that rotationally drives the wavelength switching filter 47 is provided.

【0037】本実施例では、内視鏡32を内視鏡種類検
出手段33に接続すると、内視鏡接眼部に取り付けられ
た内視鏡の種類を示すバーコードラベル40がバーコー
ドスキャナ41により読み取られ、バーコードの情報が
内視鏡判別回路34に送られる。内視鏡判別回路34
は、前記バーコードの情報より接続された内視鏡の種類
を判別して、内視鏡種類の情報を波長切換制御手段35
に伝達する。波長切換制御手段35は、判別された内視
鏡の種類から観察する臓器に適した検出波長を選択し、
検出波長切換手段36内のフィルタ駆動部45に制御信
号を送出して検出波長切換フィルタ44を回転させる。
In this embodiment, when the endoscope 32 is connected to the endoscope type detecting means 33, the barcode label 40 indicating the type of the endoscope attached to the endoscope eyepiece is displayed on the barcode scanner 41. And the information of the barcode is sent to the endoscope discrimination circuit 34. Endoscope discrimination circuit 34
Discriminates the type of the connected endoscope from the information of the bar code, and outputs the information of the endoscope type to the wavelength switching control means 35.
To communicate. The wavelength switching control means 35 selects a detection wavelength suitable for an organ to be observed from the determined types of endoscopes,
A control signal is sent to the filter driving unit 45 in the detection wavelength switching means 36 to rotate the detection wavelength switching filter 44.

【0038】検出波長切換フィルタ44は、図4に示す
ように、円盤状のフィルタ枠に異なる透過波長帯域を持
つ6枚のバンドパスフィルタ44a〜44fが配設され
て構成されており、内視鏡の種類に応じて、イメージイ
ンテンシファイア16,17の前に44aと44bの領
域、44cと44dの領域、44eと44fの領域のい
ずれかを選択的に配置することで、蛍光像の検出波長帯
域を変えることができる。
As shown in FIG. 4, the detection wavelength switching filter 44 is constructed by disposing six bandpass filters 44a to 44f having different transmission wavelength bands in a disk-shaped filter frame. Depending on the type of mirror, by selectively arranging one of the regions 44a and 44b, the regions 44c and 44d, and the regions 44e and 44f in front of the image intensifiers 16 and 17, detection of a fluorescence image is possible. The wavelength band can be changed.

【0039】また、前記検出波長帯域の切換えと共に、
波長切換制御手段35は、判別された内視鏡の種類から
観察する臓器に適した励起波長を選択し、光源装置31
内のフィルタ駆動部48に制御信号を送出して励起波長
切換フィルタ47を回転させる。
Further, when the detection wavelength band is switched,
The wavelength switching control means 35 selects an excitation wavelength suitable for the organ to be observed from the determined types of endoscopes, and the light source device 31.
A control signal is sent to the internal filter drive section 48 to rotate the excitation wavelength switching filter 47.

【0040】励起波長切換フィルタ47は、図5に示す
ように、円盤状のフィルタ枠に3枚の異なる透過波長帯
域を持つバンドパスフィルタ47a,47b,47cが
配設されて構成されており、内視鏡の種類に応じて、多
波長光源46の前に47a,47b,47cのいずれか
の領域を配置することで、観察部位へ照射する励起波長
帯域を変えることができる。
As shown in FIG. 5, the excitation wavelength switching filter 47 comprises a disc-shaped filter frame and three bandpass filters 47a, 47b, 47c having three different transmission wavelength bands. Depending on the type of endoscope, by arranging any of the regions 47a, 47b, 47c in front of the multi-wavelength light source 46, the excitation wavelength band irradiated to the observation site can be changed.

【0041】このように観察部位に適した励起波長及び
検出波長が選択された後、光源装置31より励起光が内
視鏡32のライトガイド21に導光され、ライトガイド
21を通じて観察部位に照射される。観察部位より出た
蛍光は、内視鏡32のイメージガイド22を通じて接眼
部まで伝達され、検出波長切換手段36に入射される。
検出波長切換手段36に入射された蛍光像は、ダイクロ
イックミラー42,ミラー43により透過及び反射して
2つの光路に分割され、検出波長切換フィルタ44中の
選択されたいずれかのバンドパスフィルタをそれぞれ透
過する。この2つの蛍光像は、イメージインテンシファ
イア16,17によりそれぞれ増幅され、CCD18,
19により撮像されてビデオ信号に変換される。
After the excitation wavelength and the detection wavelength suitable for the observation site are selected in this way, the excitation light is guided from the light source device 31 to the light guide 21 of the endoscope 32, and is irradiated to the observation site through the light guide 21. To be done. The fluorescence emitted from the observation site is transmitted to the eyepiece through the image guide 22 of the endoscope 32 and is incident on the detection wavelength switching means 36.
The fluorescence image incident on the detection wavelength switching means 36 is transmitted and reflected by the dichroic mirror 42 and the mirror 43 to be divided into two optical paths, and one of the selected bandpass filters in the detection wavelength switching filter 44 is respectively passed. To Penetrate. The two fluorescence images are amplified by the image intensifiers 16 and 17, respectively, and the CCD 18 and
The image is picked up by 19 and converted into a video signal.

【0042】CCD18及びCCD19で得られた2つ
の波長帯域の蛍光像のビデオ信号は、蛍光画像処理部3
8に入力され、蛍光画像処理部38において第1実施例
の画像処理部4と同様の演算処理が施されて蛍光観察画
像が生成される。そして、蛍光画像処理部38の出力が
表示部39へ送られ、蛍光観察画像が表示部39に表示
される。
The video signals of the fluorescent images in the two wavelength bands obtained by the CCD 18 and the CCD 19 are converted into the fluorescent image processing unit 3
8, and the fluorescence image processing unit 38 performs the same arithmetic processing as that of the image processing unit 4 of the first embodiment to generate a fluorescence observation image. Then, the output of the fluorescence image processing unit 38 is sent to the display unit 39, and the fluorescence observation image is displayed on the display unit 39.

【0043】このように本実施例の蛍光観察装置では、
接続した内視鏡の用途別の種類を判別することによって
観察部位を判別し、観察する臓器に適した励起波長及び
検出波長を自動的に選択して切換えることが可能になっ
ており、これにより、複数種類の臓器について各臓器に
応じた正確な蛍光診断を煩雑な操作なく行うことができ
る。
As described above, in the fluorescence observation apparatus of this embodiment,
It is possible to distinguish the observation site by distinguishing the type of connected endoscope, and to automatically select and switch the excitation wavelength and detection wavelength suitable for the organ to be observed. Therefore, accurate fluorescence diagnosis according to each organ can be performed for a plurality of types of organs without complicated operations.

【0044】なお、内視鏡種類検出手段33は、内視鏡
のライトガイド部と光源装置との接続部分に設けるよう
にしても良い。また、バーコードを用いたものに限ら
ず、他の光学的センサによるもの、磁気センサによるも
の、機械的な接触によるものなどで内視鏡の種類を判別
する構成としても良い。
The endoscope type detecting means 33 may be provided at the connecting portion between the light guide portion of the endoscope and the light source device. Further, the type of the endoscope is not limited to the one using the barcode, but may be a type using another optical sensor, a magnetic sensor, a mechanical contact, or the like to determine the type of the endoscope.

【0045】また、検出波長切換フィルタ44と励起波
長切換フィルタ47のバンドパスフィルタの数を変更す
ることで、検出波長及び励起波長の選択数を変えること
ができる。
Further, by changing the number of bandpass filters of the detection wavelength switching filter 44 and the excitation wavelength switching filter 47, the selection number of the detection wavelength and the excitation wavelength can be changed.

【0046】また、検出波長切換手段と励起波長切換手
段は、どちらか一方を備えるだけでも良い。
Further, either the detection wavelength switching means or the excitation wavelength switching means may be provided with either one.

【0047】図6は本発明の第3実施例に係る蛍光観察
装置の概略構成を示す構成説明図である。第3実施例
は、接続された内視鏡の種類と内視鏡挿入部の挿入長と
から異なる部位の臓器(食道と胃、直腸と結腸等)を判
別可能とした構成例である。
FIG. 6 is a structural explanatory view showing the schematic structure of a fluorescence observation apparatus according to the third embodiment of the present invention. The third embodiment is a configuration example in which different organs (esophagus and stomach, rectum and colon, etc.) can be discriminated from the type of connected endoscope and the insertion length of the endoscope insertion portion.

【0048】図6に示すように、本実施例の蛍光観察装
置は、励起光を発生する光源装置51と、内視鏡32の
挿入部に取り付けられた挿入部の挿入長を測定するセン
サ群52と、センサ群52の出力信号を受けて挿入長を
検出する挿入長検出回路53と、内視鏡種類検出手段3
3と挿入長検出回路53からの情報を基に内視鏡の種類
と観察臓器部位を判別する観察部位判別回路54とを備
えて構成されている。その他の部分の構成は前記第2実
施例と同様であり、同一構成要素には同一符号を付して
説明を省略する。
As shown in FIG. 6, the fluorescence observation apparatus of this embodiment includes a light source device 51 for generating excitation light and a sensor group for measuring the insertion length of the insertion part attached to the insertion part of the endoscope 32. 52, an insertion length detection circuit 53 that receives an output signal of the sensor group 52 and detects an insertion length, and endoscope type detection means 3
3 and an observation site discriminating circuit 54 for discriminating the type of endoscope and the observed organ region based on the information from the insertion length detection circuit 53. The configuration of the other parts is the same as that of the second embodiment, and the same components are designated by the same reference numerals and the description thereof will be omitted.

【0049】光源装置51は、異なる波長の光を発生す
る3つのレーザA55,レーザB56,レーザC57
と、前記レーザからの3つの光のうちいずれか1つの光
を内視鏡32のライトガイド21へ導くための可動ミラ
ー58,可動ミラー59,ミラー60と、前記可動ミラ
ー58,59を駆動する可動ミラー駆動部61とを備え
て構成される。
The light source device 51 includes three lasers A55, B56 and C57 which generate lights of different wavelengths.
And a movable mirror 58, a movable mirror 59, a mirror 60 for guiding any one of the three lights from the laser to the light guide 21 of the endoscope 32, and the movable mirrors 58, 59. And a movable mirror drive unit 61.

【0050】内視鏡32を内視鏡種類検出手段33に接
続すると、第2実施例と同様に、バーコードスキャナ4
1によりバーコードの情報が読み取られ、観察部位判別
回路54に送られて接続された内視鏡の種類が判別され
る。そして、この内視鏡種類判別結果を基に、波長切換
制御手段35により検出波長切換手段36内のフィルタ
駆動部45を介して検出波長切換フィルタ44が駆動制
御されて検出波長が切換えられる。
When the endoscope 32 is connected to the endoscope type detecting means 33, the bar code scanner 4 is used as in the second embodiment.
The barcode information is read by 1 and sent to the observation region determination circuit 54 to determine the type of the connected endoscope. Then, based on this endoscope type discrimination result, the wavelength switching control means 35 drives and controls the detection wavelength switching filter 44 via the filter driving section 45 in the detection wavelength switching means 36 to switch the detection wavelength.

【0051】また、波長切換制御手段35によって、光
源装置51内の可動ミラー駆動部61に制御信号が送ら
れて可動ミラー58及び59が駆動制御され、レーザA
55,レーザB56,レーザC57のうち観察臓器に適
した波長のレーザが選択されて内視鏡32のライトガイ
ド21に照射される。
Further, the wavelength switching control means 35 sends a control signal to the movable mirror driving section 61 in the light source device 51 to drive and control the movable mirrors 58 and 59, and the laser A
A laser having a wavelength suitable for the observed organ is selected from among 55, laser B56, and laser C57, and the light guide 21 of the endoscope 32 is irradiated with the selected laser.

【0052】次に、内視鏡32の挿入部を患者体腔内に
挿入すると、挿入部に設けたセンサ群52の各光センサ
により挿入部周囲の明るさが感知され、各光センサの出
力が挿入長検出回路53へ送られる。挿入長検出回路5
3は、明るさを感知していない光センサが挿入部先端側
から何番目まであるかを検出することによって挿入部の
挿入長を検出する。観察部位判別回路54は、挿入長検
出結果を基に、内視鏡32が観察している部位を予測
し、観察部位の情報を波長切換制御手段35に伝達す
る。例えば、内視鏡の種類が上部消化管用の場合には、
挿入長より観察部位が食道、胃などのいずれであるかを
判断する。そして、観察部位検出結果を基に、波長切換
制御手段35により検出波長及び励起波長が再び切換え
られる。
Next, when the insertion part of the endoscope 32 is inserted into the body cavity of the patient, the brightness around the insertion part is sensed by each optical sensor of the sensor group 52 provided in the insertion part, and the output of each optical sensor is output. It is sent to the insertion length detection circuit 53. Insertion length detection circuit 5
3 detects the insertion length of the insertion part by detecting the number of the optical sensor that does not sense the brightness from the tip side of the insertion part. The observation part discrimination circuit 54 predicts the part observed by the endoscope 32 based on the insertion length detection result, and transmits the information of the observation part to the wavelength switching control means 35. For example, if the type of endoscope is for the upper digestive tract,
The insertion length determines whether the observation site is the esophagus, stomach, or the like. Then, the detection wavelength and the excitation wavelength are switched again by the wavelength switching control means 35 based on the observation site detection result.

【0053】以降の蛍光像の撮影及び蛍光観察画像の生
成に関する動作は、前記第2実施例と同様に行われ、表
示部39に蛍光観察画像が表示される。
Subsequent operations relating to the photographing of the fluorescence image and the generation of the fluorescence observation image are performed in the same manner as in the second embodiment, and the fluorescence observation image is displayed on the display unit 39.

【0054】このように本実施例によれば、内視鏡挿入
部の挿入長を検出することにより、観察臓器を予測でき
るため、蛍光観察に適した励起波長,検出波長が、同一
の内視鏡で観察できる臓器毎(胃と食道、結腸と直腸
等)に異なる場合でも、各臓器部位に適した励起波長及
び検出波長を自動的に選択でき、診断時の作業性が良好
で、かつ観察部位に応じた正確な蛍光診断を行うことが
できる。
As described above, according to this embodiment, since the organ to be observed can be predicted by detecting the insertion length of the endoscope insertion portion, the endoscope having the same excitation wavelength and detection wavelength suitable for fluorescence observation is used. Even if it is different for each organ that can be observed with a mirror (stomach and esophagus, colon and rectum, etc.), the excitation wavelength and detection wavelength that are suitable for each organ site can be automatically selected, and workability during diagnosis is good and observation is possible. Accurate fluorescence diagnosis can be performed according to the site.

【0055】なお、本実施例で用いた光源装置51は、
図3に示した第2実施例の光源装置31と交換可能であ
る。
The light source device 51 used in this embodiment is
It is possible to replace the light source device 31 of the second embodiment shown in FIG.

【0056】また、本実施例においても、内視鏡種類検
出手段33は、内視鏡のライトガイド部と光源装置との
接続部分に設けるようにしても良い。
Also in this embodiment, the endoscope type detecting means 33 may be provided at the connecting portion between the light guide portion of the endoscope and the light source device.

【0057】また、センサ群は、光センサの代わりに圧
力センサを設け、圧力センサにより圧力がかかっている
か否かで挿入長を判別する構成としても良い。また、図
6には6個のセンサを示したが、センサの数はこれより
多くても少なくても良い。
Further, the sensor group may have a structure in which a pressure sensor is provided instead of the optical sensor, and the insertion length is determined depending on whether pressure is applied by the pressure sensor. Although six sensors are shown in FIG. 6, the number of sensors may be larger or smaller than this.

【0058】図7は本発明の第4実施例に係る蛍光観察
装置の概略構成を示す構成説明図である。第4実施例
は、蛍光観察画像から観察臓器を判別し、その臓器に適
した励起波長及び検出波長を選別するようにした構成例
である。
FIG. 7 is a structural explanatory view showing the schematic structure of a fluorescence observation apparatus according to the fourth embodiment of the present invention. The fourth embodiment is a configuration example in which an observed organ is discriminated from a fluorescence observation image and an excitation wavelength and a detection wavelength suitable for the organ are selected.

【0059】図7に示すように、本実施例の蛍光観察装
置は、励起光を発生する光源装置51と、励起光を生体
内の観察部位に照射して励起光による蛍光像を得る内視
鏡2と、内視鏡2の接眼部に取り付けられ、蛍光検出波
長を切換える検出波長切換手段36と、内視鏡2で得ら
れた蛍光像を撮影するカメラ37と、カメラ37からの
画像信号を処理し蛍光画像を生成する蛍光画像処理部3
8と、蛍光観察画像を表示する表示部39とを備えると
共に、蛍光画像処理部38からの蛍光観察画像を基に画
像の特徴を認識する画像認識部65と、認識された画像
から観察部位を判別する観察部位判別回路66と、観察
部位判別回路66からの信号により励起波長及び検出波
長を決定し、それぞれの波長の切換えを制御する波長切
換制御手段35とを備えて構成されている。
As shown in FIG. 7, the fluorescence observation apparatus of the present embodiment has a light source device 51 for generating excitation light and an endoscopy for irradiating the observation site in the living body with the excitation light to obtain a fluorescence image by the excitation light. The mirror 2, a detection wavelength switching unit 36 attached to the eyepiece of the endoscope 2 for switching the fluorescence detection wavelength, a camera 37 for capturing the fluorescence image obtained by the endoscope 2, and an image from the camera 37. Fluorescent image processing unit 3 for processing signals and generating fluorescent images
8 and a display unit 39 that displays a fluorescence observation image, an image recognition unit 65 that recognizes image features based on the fluorescence observation image from the fluorescence image processing unit 38, and an observation site from the recognized image. The observation part discriminating circuit 66 for discriminating and the wavelength switching control means 35 for controlling the switching of the respective wavelengths by determining the excitation wavelength and the detection wavelength by the signal from the observation region discriminating circuit 66 are provided.

【0060】本実施例では、まず、任意の励起波長及び
検出波長で励起光の照射及び蛍光像の撮影を行い、蛍光
画像処理部38で体腔内観察部位の蛍光観察画像を生成
する。生成された蛍光観察画像は画像認識部65に伝達
される。
In the present embodiment, first, the excitation light is irradiated and the fluorescence image is photographed at an arbitrary excitation wavelength and detection wavelength, and the fluorescence image processing section 38 generates a fluorescence observation image of the observation site in the body cavity. The generated fluorescence observation image is transmitted to the image recognition unit 65.

【0061】画像認識部65は、ニューラルネットを用
いたパーセプトロンとか、Back Propagation法(以下略
してBP法と称する)等の画像パターン認識法により、
蛍光観察画像から食道、胃、大腸、気管支等の臓器を認
識できるように、予め各臓器の観察画像を使用して学習
させており、各臓器の画像の特徴が記憶されている。そ
して、画像認識部65は、蛍光画像処理部38より伝達
された蛍光観察画像の各画素毎の信号に重み付けをし、
その総和をとることで画像パターンを認識する。
The image recognition unit 65 uses a perceptron using a neural network or an image pattern recognition method such as Back Propagation method (abbreviated as BP method below).
In order to recognize the organs such as the esophagus, stomach, large intestine, and bronchus from the fluorescence observation image, the observation image of each organ is used for learning, and the features of the image of each organ are stored. Then, the image recognition unit 65 weights the signal for each pixel of the fluorescence observation image transmitted from the fluorescence image processing unit 38,
The image pattern is recognized by taking the sum.

【0062】例えば、食道においては、管腔であるため
観察画像は中央付近になるにしたがい暗くなる。一方、
胃においては、観察画像は全体的に明るいか一方側が暗
いなど、食道とは画像パターンが明らかに異なる。そこ
で本実施例では、このような画像の違いを、パーセプト
ロンとかBP法等を用いて画像パターン認識を行うこと
によって判別し、観察している臓器を判別する。
For example, in the esophagus, since it is a lumen, the observed image becomes darker toward the center. on the other hand,
In the stomach, the image pattern is clearly different from that of the esophagus, such that the observed image is generally bright or dark on one side. Therefore, in the present embodiment, such an image difference is discriminated by performing image pattern recognition using a perceptron, a BP method, or the like, and the organ being observed is discriminated.

【0063】画像認識部65で認識された画像パターン
信号は、観察部位判別回路66に送られ、観察部位判別
回路66において画像パターンより観察臓器が判別され
る。この観察臓器の情報は、波長切換制御手段35に伝
達され、前述の実施例と同様に観察する臓器に適した励
起波長及び検出波長に切換えられる。
The image pattern signal recognized by the image recognizing section 65 is sent to the observation region discriminating circuit 66, and the observation region discriminating circuit 66 discriminates the observed organ from the image pattern. The information of the observed organ is transmitted to the wavelength switching control means 35 and switched to the excitation wavelength and the detection wavelength suitable for the organ to be observed, as in the above-mentioned embodiment.

【0064】以降の蛍光像の撮影及び蛍光観察画像の生
成に関する動作は、前記第2実施例と同様に行われ、表
示部39に蛍光観察画像が表示される。
Subsequent operations relating to the photographing of the fluorescence image and the generation of the fluorescence observation image are performed in the same manner as in the second embodiment, and the fluorescence observation image is displayed on the display unit 39.

【0065】このように本実施例によれば、蛍光観察画
像の画像パターンを認識することで自動的に観察臓器を
判別することができるため、煩雑な作業なしに各臓器部
位に適した励起波長及び検出波長を選択でき、観察部位
に応じた正確な蛍光診断を行うことができる。
As described above, according to this embodiment, the organ to be observed can be automatically discriminated by recognizing the image pattern of the fluorescence observation image. Therefore, the excitation wavelength suitable for each organ site can be obtained without complicated work. Also, the detection wavelength can be selected, and accurate fluorescence diagnosis according to the observation site can be performed.

【0066】なお、画像認識部65において行う画像パ
ターン認識は、白色光源を用いた通常観察時に行うよう
にしても良い。
The image pattern recognition performed by the image recognizing section 65 may be performed during normal observation using a white light source.

【0067】次に、第5実施例として、光源のレーザ出
力の測定及び記録が可能な蛍光観察装置の構成例を説明
する。図8は本発明の第5実施例に係る蛍光観察装置の
概略構成を示す構成説明図である。
Next, as a fifth embodiment, a configuration example of a fluorescence observation apparatus capable of measuring and recording the laser output of the light source will be described. FIG. 8 is a configuration explanatory view showing a schematic configuration of the fluorescence observation apparatus according to the fifth embodiment of the present invention.

【0068】本実施例の蛍光観察装置は、励起光を発生
する光源装置71と、励起光を生体内の観察部位に照射
して励起光による蛍光像を得る内視鏡2と、内視鏡2で
得られた蛍光像を撮影するカメラ72と、カメラ72か
らの画像信号を処理し蛍光観察画像を生成する蛍光画像
処理部73と、蛍光観察画像を表示する表示部39とを
備えると共に、蛍光観察画像を記録するビデオテープレ
コーダ(VTR)74と、患者情報を記録するデータレ
コーダ75とを備えて構成されている。
The fluorescence observation apparatus of this embodiment includes a light source device 71 for generating excitation light, an endoscope 2 for irradiating the observation site in the living body with the excitation light to obtain a fluorescence image by the excitation light, and an endoscope. The camera 72 that captures the fluorescence image obtained in 2; a fluorescence image processing unit 73 that processes the image signal from the camera 72 to generate a fluorescence observation image; and a display unit 39 that displays the fluorescence observation image, It comprises a video tape recorder (VTR) 74 for recording a fluorescence observation image and a data recorder 75 for recording patient information.

【0069】光源装置71は、励起光としてレーザ光を
発生する励起用レーザ76と、励起用レーザ76からの
レーザ光を2方向に分割するハーフミラー77と、分割
された一方のレーザ光を検出する光センサ78と、光セ
ンサ78で検出された光量よりレーザ出力を測定する出
力測定器79とを備えて構成される。
The light source device 71 detects an excitation laser 76 for generating a laser beam as excitation light, a half mirror 77 for dividing the laser beam from the excitation laser 76 into two directions, and one of the divided laser beams. And an output measuring device 79 for measuring the laser output from the amount of light detected by the optical sensor 78.

【0070】蛍光画像処理部73は、蛍光観察画像を生
成するイメージプロセッサ80と、生成された蛍光観察
画像にレーザ光の出力データを重ね合わせるスーパーイ
ンポーズ部81と、光源装置71から送られてくるレー
ザ光の出力データをデータレコーダ75とスーパーイン
ポーズ部81とに送るコンピュータ82とを備えて構成
される。
The fluorescence image processing section 73 is sent from the image processor 80 for generating a fluorescence observation image, the superimposing section 81 for superimposing the output data of the laser light on the generated fluorescence observation image, and the light source device 71. It comprises a computer 82 for sending output data of the incoming laser light to a data recorder 75 and a superimposing section 81.

【0071】光源装置71において、励起用レーザ76
から出射したレーザ光は、ハーフミラー77を通過して
内視鏡のライトガイド21に導光されると共に、ハーフ
ミラー77により反射されて光センサ78に入射する。
光センサ78において、入射したレーザ光の光量が検出
され、この検出光量を基に出力測定器79によって励起
用レーザ76のレーザ出力が測定される。
In the light source device 71, the excitation laser 76
The laser light emitted from passes through the half mirror 77, is guided to the light guide 21 of the endoscope, and is reflected by the half mirror 77 to enter the optical sensor 78.
The optical sensor 78 detects the amount of incident laser light, and the output measuring device 79 measures the laser output of the excitation laser 76 based on the detected amount of light.

【0072】測定されたレーザ出力データは、蛍光画像
処理部73に送られ、コンピュータ82を介してスーパ
ーインポーズ部81に入力されてイメージプロセッサ8
0で生成された蛍光観察画像と重ね合わされ、VTR7
4に記録される。また、このレーザ出力データは、コン
ピュータ82よりデータレコーダ75にも送られ、患者
情報と共に記録される。なお、スーパーインポーズ部8
1でレーザ出力データを重畳した蛍光観察画像を表示部
39に出力して表示することもできる。
The measured laser output data is sent to the fluorescence image processing unit 73 and is input to the superimposing unit 81 via the computer 82 to be input to the image processor 8.
VTR7
Recorded in 4. The laser output data is also sent from the computer 82 to the data recorder 75 and recorded together with the patient information. In addition, superimposing section 8
The fluorescence observation image on which the laser output data is superimposed in 1 can be output to the display unit 39 and displayed.

【0073】このように本実施例によれば、レーザ出力
データをコンピュータを通じ自動的に記録するようにし
ているため、煩雑な操作なく簡単で、かつ、入力ミスな
くデータを記録することができる。
As described above, according to this embodiment, since the laser output data is automatically recorded through the computer, the data can be recorded easily without any complicated operation and without any input error.

【0074】[付記]以上詳述したように本発明の実施
態様によれば、以下のような構成を得ることができる。
すなわち、 (1) 体腔内組織を照明する照明光を発生する光源
と、前記組織からの前記照明光の反射により得られる通
常画像と前記組織を前記照明光により励起して得られる
蛍光像とをそれぞれ撮像する撮像手段と、を有する蛍光
観察装置において、前記光源は、前記蛍光像の属する波
長帯域と前記通常画像を構成する波長帯域とが互いに分
離するような波長の照明光を発生してなることを特徴と
する蛍光観察装置。
[Supplementary Note] As described in detail above, according to the embodiment of the present invention, the following configuration can be obtained.
That is, (1) a light source that generates illumination light for illuminating a tissue in a body cavity, a normal image obtained by reflection of the illumination light from the tissue, and a fluorescence image obtained by exciting the tissue with the illumination light. In a fluorescence observation apparatus having imaging means for respectively capturing images, the light source generates illumination light having a wavelength such that a wavelength band to which the fluorescent image belongs and a wavelength band forming the normal image are separated from each other. A fluorescence observation device characterized by the above.

【0075】(2) 前記光源は3原色のレーザ光であ
る照明光を発生するRGB光源であることを特徴とする
付記1に記載の蛍光観察装置。
(2) The fluorescence observation apparatus according to appendix 1, wherein the light source is an RGB light source that generates illumination light that is laser light of three primary colors.

【0076】付記2の構成のように、RGB光源によ
り、通常画像を得るための3原色の照明光と、体腔内組
織を励起し蛍光を発生させるための前記3原色の照明光
の波長帯域のうちいずれかに属する励起光とを発生し、
前記蛍光像の属する波長帯域と前記通常画像を構成する
波長帯域とが互いに分離するようにして両画像を撮像す
ることにより、光源や撮像手段を切換えることなく蛍光
像と通常画像を同時に得ることが可能であると共に、励
起光発生用の光源を特に設けずに光源の構成を簡略化で
きるため装置構成を小型化できる。
As in the structure of appendix 2, the RGB light sources are used to generate illumination light of three primary colors for obtaining a normal image and wavelength bands of the illumination light of the three primary colors for exciting tissue in the body cavity to generate fluorescence. Generate excitation light that belongs to one of the
By capturing both images so that the wavelength band to which the fluorescent image belongs and the wavelength band forming the normal image are separated from each other, it is possible to obtain the fluorescent image and the normal image at the same time without switching the light source or the image pickup means. In addition, the structure of the light source can be simplified without providing a light source for generating the excitation light, so that the device structure can be downsized.

【0077】(3) 前記光源は、前記体腔内組織を励
起し蛍光を発生させるための励起光である照明光を発生
させるレーザ光源と、前記通常画像を得るための3原色
のレーザ光である照明光を発生させるRGB光源と、を
備えることを特徴とする付記1に記載の蛍光観察装置。
(3) The light source is a laser light source for generating illumination light which is excitation light for exciting the tissue in the body cavity to generate fluorescence, and three primary color laser lights for obtaining the normal image. The fluorescence observation apparatus according to appendix 1, further comprising: an RGB light source that generates illumination light.

【0078】付記3の構成のように、レーザ光源より発
生する励起光の波長帯域と、RGB光源より発生する3
原色の照明光の波長帯域と、撮像手段において検出する
複数の特定波長帯域からなる蛍光像の波長帯域とが、互
いに重なり合わないようにすることにより、蛍光像の属
する波長帯域と通常画像を構成する波長帯域とが互いに
分離され、光源や撮像手段を切換えることなく蛍光像と
通常画像を同時に得ることができる。
As in the structure of Appendix 3, the wavelength band of the excitation light generated by the laser light source and the wavelength band of the excitation light generated by the RGB light source 3
The wavelength band of the primary color illumination light and the wavelength band of the fluorescent image formed of a plurality of specific wavelength bands detected by the image pickup means are prevented from overlapping each other, thereby forming the wavelength band to which the fluorescent image belongs and the normal image. The wavelength band of the light is separated from each other, and the fluorescent image and the normal image can be obtained at the same time without switching the light source or the image pickup means.

【0079】(4) 前記蛍光像は特定の波長帯域に属
する複数の特定波長蛍光像からなり、前記撮像手段は、
前記複数の特定波長蛍光像を分離して撮像することを特
徴とする付記1に記載の蛍光観察装置。
(4) The fluorescent image is composed of a plurality of specific wavelength fluorescent images belonging to a specific wavelength band, and the imaging means is
The fluorescence observation apparatus according to appendix 1, wherein the plurality of specific wavelength fluorescence images are separated and imaged.

【0080】(5) 前記撮像手段により撮像する蛍光
像の特定波長帯域は、赤の領域と緑の領域に分布を持つ
ことを特徴とする付記4に記載の蛍光観察装置。
(5) The fluorescence observation apparatus according to appendix 4, wherein the specific wavelength band of the fluorescent image picked up by the image pickup means has a distribution in a red region and a green region.

【0081】(6) 体腔内組織を励起し蛍光を発生さ
せるための励起光を発生する光源と、前記励起光を体腔
内組織に導光し、前記励起光により発生した組織からの
蛍光像を伝達する内視鏡と、前記光源より出射する励起
光の波長帯域を選択的に切換える励起波長切換え手段
と、前記内視鏡により伝達される蛍光像から特定の波長
帯域を選択的に切換えて検出する検出波長切換え手段
と、前記蛍光像の特定波長帯域と前記励起光の波長帯域
とを選択する波長選択手段と、前記波長選択手段からの
情報を受け、観察部位に応じて前記蛍光像の特定波長帯
域と前記励起光の波長帯域の少なくとも一方の波長を切
換える波長切換え制御手段と、を備えたことを特徴とす
る蛍光観察装置。
(6) A light source for generating excitation light for exciting the tissue in the body cavity to generate fluorescence, and guiding the excitation light to the tissue in the body cavity to display a fluorescence image from the tissue generated by the excitation light. An endoscope for transmission, excitation wavelength switching means for selectively switching the wavelength band of the excitation light emitted from the light source, and detection by selectively switching a specific wavelength band from the fluorescence image transmitted by the endoscope. Detecting wavelength switching means, a wavelength selecting means for selecting a specific wavelength band of the fluorescent image and a wavelength band of the excitation light, and information from the wavelength selecting means to identify the fluorescent image according to an observation site. A fluorescence observation apparatus comprising: a wavelength switching control unit that switches at least one of the wavelength band and the wavelength band of the excitation light.

【0082】付記6の構成によれば、観察する臓器に合
わせて、自動的に励起波長及び検出波長を各臓器の蛍光
観察に適した波長に切換えることができ、煩雑な波長切
換えの操作を行う必要がなく、正確な蛍光診断を行うこ
とが可能となる。
According to the structure of appendix 6, the excitation wavelength and the detection wavelength can be automatically switched to the wavelength suitable for the fluorescence observation of each organ according to the organ to be observed, and a complicated wavelength switching operation is performed. It is possible to perform accurate fluorescence diagnosis without the need.

【0083】(7) 前記波長選択手段は、前記内視鏡
の種類を判別する内視鏡種類判別手段である付記6に記
載の蛍光観察装置。
(7) The fluorescence observation apparatus according to appendix 6, wherein the wavelength selection means is an endoscope type determination means for determining the type of the endoscope.

【0084】(8) 前記波長選択手段は、前記内視鏡
により観察している臓器を判別する観察部位判別手段で
ある付記6に記載の蛍光観察装置。
(8) The fluorescence observation apparatus according to appendix 6, wherein the wavelength selection means is an observation site discrimination means for discriminating an organ being observed by the endoscope.

【0085】(9) 前記観察部位判別手段は、前記内
視鏡により得られる観察画像を基に画像認識を行い、前
記観察画像中の臓器を判別する画像認識手段である付記
8に記載の蛍光観察装置。
(9) The observation part discriminating means is an image recognizing means for discriminating an organ in the observation image by performing image recognition based on the observation image obtained by the endoscope, Observation device.

【0086】(10) 前記観察部位判別手段は、前記
内視鏡の種類を判別する内視鏡種類判別手段と、前記内
視鏡の挿入部の生体内挿入長を検出する挿入長検出手段
と、を有して構成される付記8に記載の蛍光観察装置。
(10) The observation part discriminating means includes an endoscope type discriminating means for discriminating the type of the endoscope, and an insertion length detecting means for detecting an in-vivo insertion length of the insertion portion of the endoscope. 9. The fluorescence observation apparatus according to supplementary note 8 configured to include:

【0087】[0087]

【発明の効果】以上説明したように本発明によれば、通
常観察画像と蛍光観察画像を、光源や撮像手段を切換え
ることなく、両方同時にリアルタイム表示することがで
き、両画像にズレがなくかつ明るい画像を得ることが可
能となる効果がある。
As described above, according to the present invention, both the normal observation image and the fluorescence observation image can be simultaneously displayed in real time without switching the light source or the image pickup means, and both images are not displaced. There is an effect that a bright image can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例に係る蛍光観察装置の概略
構成を示す構成説明図
FIG. 1 is a structural explanatory view showing a schematic structure of a fluorescence observation apparatus according to a first embodiment of the present invention.

【図2】第1実施例の構成における観察部位へ照射する
各照明光及び生体組織から検出される蛍光の波長帯域と
各フィルタの透過波長特性との関係を示す特性図
FIG. 2 is a characteristic diagram showing a relationship between a wavelength band of each illumination light illuminating an observation site and fluorescence detected from living tissue and a transmission wavelength characteristic of each filter in the configuration of the first embodiment.

【図3】本発明の第2実施例に係る蛍光観察装置の概略
構成を示す構成説明図
FIG. 3 is a structural explanatory view showing a schematic structure of a fluorescence observation apparatus according to a second embodiment of the present invention.

【図4】第2実施例において設けられる検出波長切換え
用フィルタを示す構成説明図
FIG. 4 is a structural explanatory view showing a detection wavelength switching filter provided in a second embodiment.

【図5】第2実施例において設けられる励起波長切換え
用フィルタを示す構成説明図
FIG. 5 is a structural explanatory view showing an excitation wavelength switching filter provided in a second embodiment.

【図6】本発明の第3実施例に係る蛍光観察装置の概略
構成を示す構成説明図
FIG. 6 is a structural explanatory view showing a schematic structure of a fluorescence observation apparatus according to a third embodiment of the present invention.

【図7】本発明の第4実施例に係る蛍光観察装置の概略
構成を示す構成説明図
FIG. 7 is a structural explanatory view showing a schematic structure of a fluorescence observation apparatus according to a fourth embodiment of the present invention.

【図8】本発明の第5実施例に係る蛍光観察装置の概略
構成を示す構成説明図
FIG. 8 is a structural explanatory view showing a schematic structure of a fluorescence observation apparatus according to a fifth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…光源装置 2…内視鏡 3…カメラ 4…画像処理部 5…表示部 6…励起用レーザ 7…RGBレーザ 13,14…バンドパスフィルタ 15…レーザカットフィルタ 16,17…イメージインテンシファイア 18,19,20…CCD DESCRIPTION OF SYMBOLS 1 ... Light source device 2 ... Endoscope 3 ... Camera 4 ... Image processing part 5 ... Display part 6 ... Excitation laser 7 ... RGB laser 13, 14 ... Band pass filter 15 ... Laser cut filter 16, 17 ... Image intensifier 18, 19, 20 ... CCD

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 体腔内組織を照明する照明光を発生する
光源と、 前記組織からの前記照明光の反射により得られる通常画
像と前記組織を前記照明光により励起して得られる蛍光
像とをそれぞれ撮像する撮像手段と、を有する蛍光観察
装置において、 前記光源は、前記蛍光像の属する波長領域と前記通常画
像を構成する波長領域とが互いに分離するような波長の
照明光を発生してなることを特徴とする蛍光観察装置。
1. A light source for generating illumination light for illuminating a tissue in a body cavity, a normal image obtained by reflection of the illumination light from the tissue, and a fluorescence image obtained by exciting the tissue with the illumination light. In a fluorescence observation apparatus having imaging means for respectively capturing images, the light source generates illumination light having a wavelength such that a wavelength region to which the fluorescent image belongs and a wavelength region forming the normal image are separated from each other. A fluorescence observation device characterized by the above.
JP03544495A 1995-02-23 1995-02-23 Fluorescence observation device Expired - Fee Related JP3560671B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03544495A JP3560671B2 (en) 1995-02-23 1995-02-23 Fluorescence observation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03544495A JP3560671B2 (en) 1995-02-23 1995-02-23 Fluorescence observation device

Publications (2)

Publication Number Publication Date
JPH08224209A true JPH08224209A (en) 1996-09-03
JP3560671B2 JP3560671B2 (en) 2004-09-02

Family

ID=12442007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03544495A Expired - Fee Related JP3560671B2 (en) 1995-02-23 1995-02-23 Fluorescence observation device

Country Status (1)

Country Link
JP (1) JP3560671B2 (en)

Cited By (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09294707A (en) * 1996-04-30 1997-11-18 Fuji Photo Film Co Ltd Endoscope
JPH09308697A (en) * 1996-03-19 1997-12-02 Matsushita Electric Ind Co Ltd Method, system for fluorescent diagnosis and fluorescent diagnostic treatment system
JPH10295632A (en) * 1997-04-30 1998-11-10 Asahi Optical Co Ltd Fluorescent diagnostic device
JP2001017379A (en) * 1999-07-09 2001-01-23 Fuji Photo Film Co Ltd Fluorescent diagnostic device
US6179777B1 (en) 1997-11-27 2001-01-30 Asahi Kogaku Kogyo Kabushiki Kaisha Fluorescent diagnosing apparatus including optical path switching member
JP2001517519A (en) * 1997-09-29 2001-10-09 ボストン サイエンティフィック コーポレイション Visible display for intervention devices
JP2001517993A (en) * 1997-03-25 2001-10-09 ラディ・メディカル・システムズ・アクチェボラーグ Pressure measuring device
JP2002238839A (en) * 2001-02-16 2002-08-27 Olympus Optical Co Ltd Endoscope system
JP2002336196A (en) * 2001-05-16 2002-11-26 Olympus Optical Co Ltd Endoscopic equipment
US6603552B1 (en) 1999-12-22 2003-08-05 Xillix Technologies Corp. Portable system for detecting skin abnormalities based on characteristic autofluorescence
JP2003250752A (en) * 2002-03-04 2003-09-09 Pentax Corp Fluorescent diagnostic system
JP2004187716A (en) * 2002-12-06 2004-07-08 Pentax Corp Diagnosis assisting apparatus
KR100443812B1 (en) * 2001-12-12 2004-08-09 박경순 Apparatus of fluorescence endoscope and spectrum analysis
JP2004525697A (en) * 2001-03-16 2004-08-26 ユニバーシティ・オブ・ユタ・リサーチ・ファウンデーション Device and method for photodynamic diagnosis of tumor tissue
US6821245B2 (en) 2000-07-14 2004-11-23 Xillix Technologies Corporation Compact fluorescence endoscopy video system
US6826424B1 (en) 2000-12-19 2004-11-30 Haishan Zeng Methods and apparatus for fluorescence and reflectance imaging and spectroscopy and for contemporaneous measurements of electromagnetic radiation with multiple measuring devices
US6899675B2 (en) 2002-01-15 2005-05-31 Xillix Technologies Corp. Fluorescence endoscopy video systems with no moving parts in the camera
JP2005348902A (en) * 2004-06-09 2005-12-22 Olympus Corp Endoscope apparatus
JP2007319442A (en) * 2006-06-01 2007-12-13 Fujifilm Corp Capsule endoscope system and image processing unit
US7333189B2 (en) 2002-01-18 2008-02-19 Pentax Corporation Spectroscopic diagnostic methods and system
JPWO2005104926A1 (en) * 2004-04-30 2008-03-13 株式会社モリタ製作所 In-vivo observation equipment, intraoral imaging equipment, and medical treatment equipment
US7404929B2 (en) 2002-01-18 2008-07-29 Newton Laboratories, Inc. Spectroscopic diagnostic methods and system based on scattering of polarized light
JP2008259722A (en) * 2007-04-13 2008-10-30 Hoya Corp Fluorescent endoscope system and light source unit
JP2008259591A (en) * 2007-04-10 2008-10-30 Hamamatsu Photonics Kk Light source device for fluorescence observation and fluorescence observation instrument using the same
JP2008259595A (en) * 2007-04-10 2008-10-30 Hamamatsu Photonics Kk Fluorescence observation apparatus
JP2009279171A (en) * 2008-05-22 2009-12-03 Fujinon Corp Fluorescent image obtainment method and apparatus
JP2009279170A (en) * 2008-05-22 2009-12-03 Fujinon Corp Fluorescent image obtainment method and apparatus
JP2010068924A (en) * 2008-09-17 2010-04-02 Fujinon Corp Method and apparatus for image acquisition
JP2010125271A (en) * 2008-12-01 2010-06-10 Fujifilm Corp Photo tomographical image providing apparatus
JPWO2009028136A1 (en) * 2007-08-29 2010-11-25 パナソニック株式会社 Fluorescence observation equipment
WO2011074448A1 (en) * 2009-12-15 2011-06-23 オリンパス株式会社 Light control device, control device, optical scope and optical scanning device
WO2011080996A1 (en) * 2009-12-28 2011-07-07 オリンパス株式会社 Image processing device, electronic apparatus, program, and image processing method
JP2011200572A (en) * 2010-03-26 2011-10-13 Fujifilm Corp Electronic endoscope system
WO2011126065A1 (en) * 2010-04-07 2011-10-13 オリンパス株式会社 Fluorescence observation device
WO2011129255A1 (en) * 2010-04-12 2011-10-20 オリンパス株式会社 Fluorescence observation device and fluorescence image processing method
JP2012152333A (en) * 2011-01-25 2012-08-16 Fujifilm Corp Endoscope system and method of controlling light source thereof
JP2012217673A (en) * 2011-04-11 2012-11-12 Fujifilm Corp Endoscopic diagnosis system
JP2013162978A (en) * 2012-02-13 2013-08-22 Aichi Prefecture Detection system for detection target region
CN103431833A (en) * 2013-05-24 2013-12-11 中国科学院苏州生物医学工程技术研究所 Medical multiband narrow band imaging system
JP2014014716A (en) * 2013-10-17 2014-01-30 Fujifilm Corp Endoscopic apparatus
JP2015150277A (en) * 2014-02-17 2015-08-24 株式会社長田中央研究所 Periodontal pocket depth measuring device and periodontal pocket depth measuring method
US9386909B2 (en) 2006-07-28 2016-07-12 Novadaq Technologies Inc. System and method for deposition and removal of an optical element on an endoscope objective
JP2016182235A (en) * 2015-03-26 2016-10-20 パナソニックIpマネジメント株式会社 Skin diagnosis device
WO2017047141A1 (en) * 2015-09-14 2017-03-23 オリンパス株式会社 Endoscope device and endoscope system
US9610021B2 (en) 2008-01-25 2017-04-04 Novadaq Technologies Inc. Method for evaluating blush in myocardial tissue
US9642532B2 (en) 2008-03-18 2017-05-09 Novadaq Technologies Inc. Imaging system for combined full-color reflectance and near-infrared imaging
KR20170062830A (en) 2015-11-30 2017-06-08 한국전기연구원 Endoscope system using multi wavelength light source
US9816930B2 (en) 2014-09-29 2017-11-14 Novadaq Technologies Inc. Imaging a target fluorophore in a biological material in the presence of autofluorescence
US9814378B2 (en) 2011-03-08 2017-11-14 Novadaq Technologies Inc. Full spectrum LED illuminator having a mechanical enclosure and heatsink
JP2017225755A (en) * 2016-06-24 2017-12-28 富士フイルム株式会社 Endoscope apparatus
US9877654B2 (en) 2006-02-07 2018-01-30 Novadaq Technologies Inc. Near infrared imaging
WO2018034075A1 (en) * 2016-08-19 2018-02-22 ソニー株式会社 Imaging system
US10041042B2 (en) 2008-05-02 2018-08-07 Novadaq Technologies ULC Methods for production and use of substance-loaded erythrocytes (S-IEs) for observation and treatment of microvascular hemodynamics
JP2018175871A (en) * 2017-04-14 2018-11-15 キヤノンメディカルシステムズ株式会社 Imaging device and control program of same
US10182709B2 (en) 2002-01-15 2019-01-22 Novadaq Technologies ULC Filter for use with imaging endoscopes
US10219742B2 (en) 2008-04-14 2019-03-05 Novadaq Technologies ULC Locating and analyzing perforator flaps for plastic and reconstructive surgery
US10265419B2 (en) 2005-09-02 2019-04-23 Novadaq Technologies ULC Intraoperative determination of nerve location
US10278585B2 (en) 2012-06-21 2019-05-07 Novadaq Technologies ULC Quantification and analysis of angiography and perfusion
US10293122B2 (en) 2016-03-17 2019-05-21 Novadaq Technologies ULC Endoluminal introducer with contamination avoidance
US10434190B2 (en) 2006-09-07 2019-10-08 Novadaq Technologies ULC Pre-and-intra-operative localization of penile sentinel nodes
US10492671B2 (en) 2009-05-08 2019-12-03 Novadaq Technologies ULC Near infra red fluorescence imaging for visualization of blood vessels during endoscopic harvest
US10631746B2 (en) 2014-10-09 2020-04-28 Novadaq Technologies ULC Quantification of absolute blood flow in tissue using fluorescence-mediated photoplethysmography
US10694152B2 (en) 2006-12-22 2020-06-23 Novadaq Technologies ULC Imaging systems and methods for displaying fluorescence and visible images
US10869645B2 (en) 2016-06-14 2020-12-22 Stryker European Operations Limited Methods and systems for adaptive imaging for low light signal enhancement in medical visualization
USD916294S1 (en) 2016-04-28 2021-04-13 Stryker European Operations Limited Illumination and imaging device
US10980420B2 (en) 2016-01-26 2021-04-20 Stryker European Operations Limited Configurable platform
US10992848B2 (en) 2017-02-10 2021-04-27 Novadaq Technologies ULC Open-field handheld fluorescence imaging systems and methods
JP2022000163A (en) * 2018-06-04 2022-01-04 富士フイルム株式会社 Image processing apparatus, endoscope system, and image processing method
US11930278B2 (en) 2015-11-13 2024-03-12 Stryker Corporation Systems and methods for illumination and imaging of a target

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008043383A (en) * 2006-08-11 2008-02-28 Pentax Corp Fluorescence observation endoscope instrument
JP6340084B2 (en) * 2014-03-21 2018-06-06 ハイパーメツド・イメージング・インコーポレイテツド Compact optical sensor

Cited By (103)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09308697A (en) * 1996-03-19 1997-12-02 Matsushita Electric Ind Co Ltd Method, system for fluorescent diagnosis and fluorescent diagnostic treatment system
JPH09294707A (en) * 1996-04-30 1997-11-18 Fuji Photo Film Co Ltd Endoscope
JP2001517993A (en) * 1997-03-25 2001-10-09 ラディ・メディカル・システムズ・アクチェボラーグ Pressure measuring device
JPH10295632A (en) * 1997-04-30 1998-11-10 Asahi Optical Co Ltd Fluorescent diagnostic device
JP2001517519A (en) * 1997-09-29 2001-10-09 ボストン サイエンティフィック コーポレイション Visible display for intervention devices
US6179777B1 (en) 1997-11-27 2001-01-30 Asahi Kogaku Kogyo Kabushiki Kaisha Fluorescent diagnosing apparatus including optical path switching member
JP2001017379A (en) * 1999-07-09 2001-01-23 Fuji Photo Film Co Ltd Fluorescent diagnostic device
US6603552B1 (en) 1999-12-22 2003-08-05 Xillix Technologies Corp. Portable system for detecting skin abnormalities based on characteristic autofluorescence
US7341557B2 (en) 2000-07-14 2008-03-11 Novadaq Technologies Inc. Compact fluorescence endoscopy video system
US7722534B2 (en) 2000-07-14 2010-05-25 Novadaq Technologies, Inc. Compact fluorescence endoscopy video system
US9968244B2 (en) 2000-07-14 2018-05-15 Novadaq Technologies ULC Compact fluorescence endoscopy video system
US6821245B2 (en) 2000-07-14 2004-11-23 Xillix Technologies Corporation Compact fluorescence endoscopy video system
US8961403B2 (en) 2000-07-14 2015-02-24 Novadaq Technologies Inc. Compact fluorescence endoscopy video system
US7253894B2 (en) 2000-12-19 2007-08-07 Perceptronix Medical, Inc. Image detection apparatus for fluorescence and reflectance imaging and spectroscopy and for contemporaneous measurements of electromagnetic radiation with multiple measuring devices
US6826424B1 (en) 2000-12-19 2004-11-30 Haishan Zeng Methods and apparatus for fluorescence and reflectance imaging and spectroscopy and for contemporaneous measurements of electromagnetic radiation with multiple measuring devices
US6898458B2 (en) 2000-12-19 2005-05-24 Haishan Zeng Methods and apparatus for fluorescence and reflectance imaging and spectroscopy and for contemporaneous measurements of electromagnetic radiation with multiple measuring devices
US7115841B2 (en) 2000-12-19 2006-10-03 Perceptronix Medical, Inc. Imaging methods for fluorescence and reflectance imaging and spectroscopy and for contemporaneous measurements of electromagnetic radiation with multiple measuring devices
US7190452B2 (en) 2000-12-19 2007-03-13 Perceptronix Medical, Inc. Imaging systems for fluorescence and reflectance imaging and spectroscopy and for contemporaneous measurements of electromagnetic radiation with multiple measuring devices
JP4624575B2 (en) * 2001-02-16 2011-02-02 オリンパス株式会社 Endoscope system
JP2002238839A (en) * 2001-02-16 2002-08-27 Olympus Optical Co Ltd Endoscope system
JP2004525697A (en) * 2001-03-16 2004-08-26 ユニバーシティ・オブ・ユタ・リサーチ・ファウンデーション Device and method for photodynamic diagnosis of tumor tissue
JP2002336196A (en) * 2001-05-16 2002-11-26 Olympus Optical Co Ltd Endoscopic equipment
KR100443812B1 (en) * 2001-12-12 2004-08-09 박경순 Apparatus of fluorescence endoscope and spectrum analysis
US10182709B2 (en) 2002-01-15 2019-01-22 Novadaq Technologies ULC Filter for use with imaging endoscopes
US6899675B2 (en) 2002-01-15 2005-05-31 Xillix Technologies Corp. Fluorescence endoscopy video systems with no moving parts in the camera
US7333189B2 (en) 2002-01-18 2008-02-19 Pentax Corporation Spectroscopic diagnostic methods and system
US7404929B2 (en) 2002-01-18 2008-07-29 Newton Laboratories, Inc. Spectroscopic diagnostic methods and system based on scattering of polarized light
JP2003250752A (en) * 2002-03-04 2003-09-09 Pentax Corp Fluorescent diagnostic system
JP2004187716A (en) * 2002-12-06 2004-07-08 Pentax Corp Diagnosis assisting apparatus
JPWO2005104926A1 (en) * 2004-04-30 2008-03-13 株式会社モリタ製作所 In-vivo observation equipment, intraoral imaging equipment, and medical treatment equipment
JP4576377B2 (en) * 2004-04-30 2010-11-04 株式会社モリタ製作所 Biological observation equipment, intraoral imaging device, and medical instrument
JP2005348902A (en) * 2004-06-09 2005-12-22 Olympus Corp Endoscope apparatus
US10265419B2 (en) 2005-09-02 2019-04-23 Novadaq Technologies ULC Intraoperative determination of nerve location
US9877654B2 (en) 2006-02-07 2018-01-30 Novadaq Technologies Inc. Near infrared imaging
JP2007319442A (en) * 2006-06-01 2007-12-13 Fujifilm Corp Capsule endoscope system and image processing unit
US9386909B2 (en) 2006-07-28 2016-07-12 Novadaq Technologies Inc. System and method for deposition and removal of an optical element on an endoscope objective
US10434190B2 (en) 2006-09-07 2019-10-08 Novadaq Technologies ULC Pre-and-intra-operative localization of penile sentinel nodes
US11025867B2 (en) 2006-12-22 2021-06-01 Stryker European Operations Limited Imaging systems and methods for displaying fluorescence and visible images
US11770503B2 (en) 2006-12-22 2023-09-26 Stryker European Operations Limited Imaging systems and methods for displaying fluorescence and visible images
US10694151B2 (en) 2006-12-22 2020-06-23 Novadaq Technologies ULC Imaging system with a single color image sensor for simultaneous fluorescence and color video endoscopy
US10694152B2 (en) 2006-12-22 2020-06-23 Novadaq Technologies ULC Imaging systems and methods for displaying fluorescence and visible images
JP2008259591A (en) * 2007-04-10 2008-10-30 Hamamatsu Photonics Kk Light source device for fluorescence observation and fluorescence observation instrument using the same
JP2008259595A (en) * 2007-04-10 2008-10-30 Hamamatsu Photonics Kk Fluorescence observation apparatus
JP2008259722A (en) * 2007-04-13 2008-10-30 Hoya Corp Fluorescent endoscope system and light source unit
JPWO2009028136A1 (en) * 2007-08-29 2010-11-25 パナソニック株式会社 Fluorescence observation equipment
US10835138B2 (en) 2008-01-25 2020-11-17 Stryker European Operations Limited Method for evaluating blush in myocardial tissue
US11564583B2 (en) 2008-01-25 2023-01-31 Stryker European Operations Limited Method for evaluating blush in myocardial tissue
US9936887B2 (en) 2008-01-25 2018-04-10 Novadaq Technologies ULC Method for evaluating blush in myocardial tissue
US9610021B2 (en) 2008-01-25 2017-04-04 Novadaq Technologies Inc. Method for evaluating blush in myocardial tissue
US10779734B2 (en) 2008-03-18 2020-09-22 Stryker European Operations Limited Imaging system for combine full-color reflectance and near-infrared imaging
US9642532B2 (en) 2008-03-18 2017-05-09 Novadaq Technologies Inc. Imaging system for combined full-color reflectance and near-infrared imaging
US10219742B2 (en) 2008-04-14 2019-03-05 Novadaq Technologies ULC Locating and analyzing perforator flaps for plastic and reconstructive surgery
US10041042B2 (en) 2008-05-02 2018-08-07 Novadaq Technologies ULC Methods for production and use of substance-loaded erythrocytes (S-IEs) for observation and treatment of microvascular hemodynamics
JP2009279171A (en) * 2008-05-22 2009-12-03 Fujinon Corp Fluorescent image obtainment method and apparatus
JP2009279170A (en) * 2008-05-22 2009-12-03 Fujinon Corp Fluorescent image obtainment method and apparatus
JP2010068924A (en) * 2008-09-17 2010-04-02 Fujinon Corp Method and apparatus for image acquisition
JP2010125271A (en) * 2008-12-01 2010-06-10 Fujifilm Corp Photo tomographical image providing apparatus
US10492671B2 (en) 2009-05-08 2019-12-03 Novadaq Technologies ULC Near infra red fluorescence imaging for visualization of blood vessels during endoscopic harvest
WO2011074448A1 (en) * 2009-12-15 2011-06-23 オリンパス株式会社 Light control device, control device, optical scope and optical scanning device
US9335269B2 (en) 2009-12-15 2016-05-10 Olympus Corporation Optical control device, control device, optical scope, and scanning optical device
WO2011080996A1 (en) * 2009-12-28 2011-07-07 オリンパス株式会社 Image processing device, electronic apparatus, program, and image processing method
CN102695446A (en) * 2009-12-28 2012-09-26 奥林巴斯株式会社 Image processing device, electronic apparatus, program, and image processing method
US8913111B2 (en) 2009-12-28 2014-12-16 Olympus Corporation Image processing device, electronic apparatus, information storage device, and image processing method
JP2011200572A (en) * 2010-03-26 2011-10-13 Fujifilm Corp Electronic endoscope system
US8818062B2 (en) 2010-04-07 2014-08-26 Olympus Corporation Fluoroscopy device
CN102843951A (en) * 2010-04-07 2012-12-26 奥林巴斯株式会社 Fluorescence observation device
JP2011217886A (en) * 2010-04-07 2011-11-04 Olympus Corp Fluorescence observation device
WO2011126065A1 (en) * 2010-04-07 2011-10-13 オリンパス株式会社 Fluorescence observation device
US8421034B2 (en) 2010-04-12 2013-04-16 Olympus Corporation Fluoroscopy apparatus and fluorescence image processing method
CN102843952A (en) * 2010-04-12 2012-12-26 奥林巴斯株式会社 Fluorescence observation device and fluorescence image processing method
JP2011218003A (en) * 2010-04-12 2011-11-04 Olympus Corp Fluorescence observation device and method for processing fluorescent image
WO2011129255A1 (en) * 2010-04-12 2011-10-20 オリンパス株式会社 Fluorescence observation device and fluorescence image processing method
JP2012152333A (en) * 2011-01-25 2012-08-16 Fujifilm Corp Endoscope system and method of controlling light source thereof
US9814378B2 (en) 2011-03-08 2017-11-14 Novadaq Technologies Inc. Full spectrum LED illuminator having a mechanical enclosure and heatsink
JP2012217673A (en) * 2011-04-11 2012-11-12 Fujifilm Corp Endoscopic diagnosis system
JP2013162978A (en) * 2012-02-13 2013-08-22 Aichi Prefecture Detection system for detection target region
US11284801B2 (en) 2012-06-21 2022-03-29 Stryker European Operations Limited Quantification and analysis of angiography and perfusion
US10278585B2 (en) 2012-06-21 2019-05-07 Novadaq Technologies ULC Quantification and analysis of angiography and perfusion
CN103431833A (en) * 2013-05-24 2013-12-11 中国科学院苏州生物医学工程技术研究所 Medical multiband narrow band imaging system
JP2014014716A (en) * 2013-10-17 2014-01-30 Fujifilm Corp Endoscopic apparatus
JP2015150277A (en) * 2014-02-17 2015-08-24 株式会社長田中央研究所 Periodontal pocket depth measuring device and periodontal pocket depth measuring method
US9816930B2 (en) 2014-09-29 2017-11-14 Novadaq Technologies Inc. Imaging a target fluorophore in a biological material in the presence of autofluorescence
US10488340B2 (en) 2014-09-29 2019-11-26 Novadaq Technologies ULC Imaging a target fluorophore in a biological material in the presence of autofluorescence
US10631746B2 (en) 2014-10-09 2020-04-28 Novadaq Technologies ULC Quantification of absolute blood flow in tissue using fluorescence-mediated photoplethysmography
JP2016182235A (en) * 2015-03-26 2016-10-20 パナソニックIpマネジメント株式会社 Skin diagnosis device
WO2017047141A1 (en) * 2015-09-14 2017-03-23 オリンパス株式会社 Endoscope device and endoscope system
US11930278B2 (en) 2015-11-13 2024-03-12 Stryker Corporation Systems and methods for illumination and imaging of a target
KR20170062830A (en) 2015-11-30 2017-06-08 한국전기연구원 Endoscope system using multi wavelength light source
US10980420B2 (en) 2016-01-26 2021-04-20 Stryker European Operations Limited Configurable platform
US11298024B2 (en) 2016-01-26 2022-04-12 Stryker European Operations Limited Configurable platform
US10293122B2 (en) 2016-03-17 2019-05-21 Novadaq Technologies ULC Endoluminal introducer with contamination avoidance
USD916294S1 (en) 2016-04-28 2021-04-13 Stryker European Operations Limited Illumination and imaging device
US11756674B2 (en) 2016-06-14 2023-09-12 Stryker European Operations Limited Methods and systems for adaptive imaging for low light signal enhancement in medical visualization
US10869645B2 (en) 2016-06-14 2020-12-22 Stryker European Operations Limited Methods and systems for adaptive imaging for low light signal enhancement in medical visualization
JP2017225755A (en) * 2016-06-24 2017-12-28 富士フイルム株式会社 Endoscope apparatus
US11221296B2 (en) 2016-08-19 2022-01-11 Sony Corporation Imaging system
WO2018034075A1 (en) * 2016-08-19 2018-02-22 ソニー株式会社 Imaging system
JP2018027272A (en) * 2016-08-19 2018-02-22 ソニー株式会社 Imaging System
US11788966B2 (en) 2016-08-19 2023-10-17 Sony Group Corporation Imaging system
US11140305B2 (en) 2017-02-10 2021-10-05 Stryker European Operations Limited Open-field handheld fluorescence imaging systems and methods
US10992848B2 (en) 2017-02-10 2021-04-27 Novadaq Technologies ULC Open-field handheld fluorescence imaging systems and methods
JP2018175871A (en) * 2017-04-14 2018-11-15 キヤノンメディカルシステムズ株式会社 Imaging device and control program of same
JP2022000163A (en) * 2018-06-04 2022-01-04 富士フイルム株式会社 Image processing apparatus, endoscope system, and image processing method

Also Published As

Publication number Publication date
JP3560671B2 (en) 2004-09-02

Similar Documents

Publication Publication Date Title
JP3560671B2 (en) Fluorescence observation device
JP5197916B2 (en) Endoscope device
JP4689767B2 (en) Fluorescence imaging apparatus and method of operating fluorescence imaging apparatus
JP3962122B2 (en) Endoscope device
KR100927286B1 (en) Endoscopy device and image processing device
JP3923595B2 (en) Fluorescence observation equipment
JP4585050B1 (en) Fluorescence observation equipment
US20060173358A1 (en) Fluorescence observation endoscope apparatus and fluorescence observation method
JPH07250812A (en) Fluorescence diagnosing apparatus
JP4394356B2 (en) Electronic endoscope device
JPH07250804A (en) Fluorescence observer
JPH10328129A (en) Fluorescent observing device
JPH08224240A (en) Fluorescent diagnosing device
JPH1189789A (en) Fluorescent image device
JP2006296635A (en) Endoscope apparatus
JP3467130B2 (en) Electronic endoscope device for fluorescence diagnosis
WO2006028023A1 (en) Removable filter unit and endoscope
JP3490807B2 (en) Electronic endoscope device for fluorescence diagnosis
JPH0966023A (en) Video processor system for electronic endoscope for fluorescent diagnosis
US20100076304A1 (en) Invisible light irradiation apparatus and method for controlling invisible light irradiation apparatus
JP2978053B2 (en) Biological imaging device and blood information calculation processing circuit
JP2655571B2 (en) Imaging device
JP2641654B2 (en) Endoscope device
JP5331394B2 (en) Endoscope device
JP4242578B2 (en) Endoscope device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031204

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040308

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040525

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040526

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080604

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090604

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090604

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100604

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110604

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120604

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120604

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees