JPH08224240A - Fluorescent diagnosing device - Google Patents

Fluorescent diagnosing device

Info

Publication number
JPH08224240A
JPH08224240A JP7033996A JP3399695A JPH08224240A JP H08224240 A JPH08224240 A JP H08224240A JP 7033996 A JP7033996 A JP 7033996A JP 3399695 A JP3399695 A JP 3399695A JP H08224240 A JPH08224240 A JP H08224240A
Authority
JP
Japan
Prior art keywords
fluorescence
image
light
tissue
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7033996A
Other languages
Japanese (ja)
Inventor
Mamoru Kaneko
守 金子
Hitoshi Ueno
仁士 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP7033996A priority Critical patent/JPH08224240A/en
Publication of JPH08224240A publication Critical patent/JPH08224240A/en
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/043Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances for fluorescence imaging

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Biomedical Technology (AREA)
  • Medical Informatics (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biophysics (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Endoscopes (AREA)

Abstract

PURPOSE: To provide a fluorescent diagnosing device capable of measuring the fluorescent spectrum of a lesion part without generating bleeding in endoscopic fashion and performing the viable inspection of lesion tissue more surely than ever. CONSTITUTION: Cups 7a, 7b for vital inspection are provided at the tip of a lengthy coil sheath 14 insertible to the channel of an endoscope, and they are opened/closed by the operation of a hand side operating part via an operating wire 11. Optical fibers 3 whose tip faces 3A are mounted on the feet of the cups 7a, 7b are inserted to the coil sheath 14, and their rear terminals are connected to an analyzer 4, and when exciting light from a laser 17 is transmitted and the cups 7a, 7b are opened, target tissue is irradiated with the exciting light from the tip faces 3A, and also, fluorescence from the target tissue is fetched, and it is inputted to a spectroscope 18 which separates the fluorescence, and it is judged whether a part is a normal part or the lesion part by the analysis of a spectrum waveform by a computer 5, and a result is displayed on a color monitor 6.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は経内視鏡的に光を照射
し、対象組織からの自家蛍光から癌等の病変部を観察及
び生検する蛍光診断装置に関連する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fluorescence diagnostic apparatus for irradiating light endoscopically and observing and biopsying a lesion such as cancer from autofluorescence from a target tissue.

【0002】[0002]

【従来の技術】近年、生体からの自家蛍光や生体へ注入
した薬物の蛍光を2次元画像として検出し、その蛍光像
から生体組織の変性や癌等の疾患状態(例えば、疾患の
種類や浸潤範囲)を診断する技術が米国特許45560
57号や5042494号に示されている。
2. Description of the Related Art In recent years, autofluorescence from a living body or fluorescence of a drug injected into a living body is detected as a two-dimensional image, and from the fluorescence image, degeneration of living tissue or a disease state such as cancer (for example, type of disease or infiltration). Range) technology for diagnosing
57 and 5042494.

【0003】生体組織に光を照射するとその励起光より
長い波長の蛍光が発生する。生体内の蛍光物質として
は、例えばNADH(ニコチンアミドアデニンヌクレオ
チド)やFMN(フラビンモノヌクレオチド),ピリジ
ンヌクレオチド等があり、最近では、これらの生体内因
物質と疾患との相互関係が明確になりつつある。
When light is applied to living tissue, fluorescence having a wavelength longer than that of the excitation light is generated. Examples of fluorescent substances in the living body include NADH (nicotinamide adenine nucleotide), FMN (flavin mononucleotide), pyridine nucleotide, and the like, and recently, the correlation between these endogenous substances and diseases is becoming clear. .

【0004】この様な蛍光から経内視鏡的に、病変部を
診断する技術として、本出願人より出願された特願平5
−304427がある。これは組織に442nmの青色の
励起光を照射した時、発生する自家蛍光が正常と異常で
そのスペクトルに差があることを利用し画像化するもの
である。この従来例では自家蛍光の緑と赤の領域の画像
を比較演算し、癌部を擬似カラー表示したものである。
As a technique for endoscopically diagnosing a lesion from such fluorescence, Japanese Patent Application No. Hei 5 (1999) filed by the present applicant.
There is -304427. This is to perform imaging by utilizing the fact that autofluorescence generated when tissue is irradiated with 442 nm blue excitation light has a difference in spectrum between normal and abnormal. In this conventional example, the images of the green and red regions of autofluorescence are compared and calculated, and the cancerous part is displayed in pseudo color.

【0005】また、特開平6−38967号公報には癌
等の病変部の自家蛍光及びHpDの蛍光から判別し、そ
の組織を取り除く方法が示されている。この先行例は、
メスや生検針に光ファイバが組み込まれ、手術中、癌の
転移を診断し、切除するものである。
Further, Japanese Unexamined Patent Publication No. 6-38967 discloses a method of removing the tissue by discriminating it from autofluorescence of a lesion such as cancer and fluorescence of HpD. This precedent is
An optical fiber is incorporated into a scalpel or a biopsy needle to diagnose and metastasize cancer during surgery.

【0006】[0006]

【発明が解決しようとする問題点】開腹手術時、組織を
蛍光スペクトルから切除する方法が示されている。しか
しながら、本先行例においては、経内視鏡的に組織のス
ペクトルを測定し、組織を生検するものではなかった。
また、本先行例においては、メスや生検針の先端に光プ
ローブが付属されたものである。開腹手術においては前
記メス、生検を軽く押し当てスペクトルを測定した後切
除可能であるが経内視鏡的にメスや生検針を挿入した場
合、メスや針により出血を伴なう可能性がある。
A method of excising tissue from the fluorescence spectrum during laparotomy has been shown. However, in this prior example, the tissue spectrum was not measured endoscopically and the tissue was not biopsied.
Further, in this prior art example, an optical probe is attached to the tip of a scalpel or a biopsy needle. In laparotomy, the scalpel and biopsy can be lightly pressed to measure the spectrum and then resected, but if a scalpel or biopsy needle is inserted endoscopically, bleeding may occur with the scalpel or needle. is there.

【0007】蛍光測定においては出血は特にノイズとな
り、血中ヘモグロビンの強い光の吸収により、蛍光が検
出できないことが考えられる。
In the fluorescence measurement, bleeding becomes particularly noisy, and it is considered that the fluorescence cannot be detected due to the strong absorption of hemoglobin in blood.

【0008】本発明は上述した点に鑑みてなされたもの
で、経内視鏡的に、出血することなく病変部の蛍光スペ
クトルを測定でき、病変組織をより確実に生検できる蛍
光診断装置を提供することを目的とする。
The present invention has been made in view of the above points, and provides a fluorescence diagnostic apparatus which can endoscopically measure a fluorescence spectrum of a lesion portion without bleeding and can more reliably biopsy a lesion tissue. The purpose is to provide.

【0009】[0009]

【問題点を解決する手段及び作用】体腔内臓器を観察す
る内視鏡のチャンネル内に挿通可能な細長の挿入部と、
前記挿入部の先端に設けられた組織を採取するための開
閉可能なカップと、挿入部の手元側に設けられた前記カ
ップを開閉操作する操作部と、前記挿入部内に組み込ま
れ、前記カップの根本付近に光の出射端を配置され前記
カップを開いた状態では、伝送した励起光を照射し、か
つ対象組織側からの蛍光を取り込み可能とする光ファイ
バとを有する生検鉗子と;前記光ファイバへ励起光を入
射する光源装置と;前記蛍光を前記光ファイバを通じ検
出し、スペクトルに分解する分光器と;前記スペクトル
を解析し、対象組織の性状を診断するための解析装置
と;前記解析装置による解析情報を表示する表示装置
と;から構成され、カップを開くことにより出血させる
前に光ファイバの先端面から生検しようとする対象組織
側に励起光を照射し、かつ対象組織からの蛍光を取り込
むことができるので、取り込んだ蛍光のスペクトル波形
の解析により対象組織が正常部位か病変部位であるかを
判断できるので、この判断結果により病変部位である可
能性が高い部位のみを生検を行うようにすることにより
病変組織をより確実に生検できる。
[Means and Actions for Solving Problems] An elongated insertion part that can be inserted into a channel of an endoscope for observing an organ in a body cavity,
An openable and closable cup for collecting tissue provided at the tip of the insertion section, an operation section for opening and closing the cup provided on the proximal side of the insertion section, and an operation section incorporated in the insertion section, A biopsy forceps having an optical fiber for irradiating the transmitted excitation light and capable of taking in fluorescence from the target tissue side in a state where the light emitting end is arranged near the root and the cup is opened; A light source device for injecting excitation light into a fiber; a spectroscope for detecting the fluorescence through the optical fiber and decomposing it into a spectrum; an analyzing device for analyzing the spectrum and diagnosing the property of a target tissue; A display device for displaying analysis information by the device; and irradiating excitation light from the distal end surface of the optical fiber to the target tissue side to be biopsied before bleeding by opening the cup, Since the fluorescence from the target tissue can be captured, it is possible to determine whether the target tissue is a normal site or a lesion site by analyzing the spectral waveform of the captured fluorescence. By performing the biopsy only on the site, the diseased tissue can be more surely biopsied.

【0010】[0010]

【実施例】以下、図面を参照して本発明の実施例を具体
的に説明する。図1は本発明の第1実施例の蛍光診断装
置1を示す。この第1実施例の蛍光診断装置1は生検機
能と光診断機能とを備えた鉗子を利用したものであり、
より具体的には光プローブを内蔵した生検鉗子を利用し
たものである。
Embodiments of the present invention will be specifically described below with reference to the drawings. FIG. 1 shows a fluorescence diagnostic apparatus 1 according to the first embodiment of the present invention. The fluorescence diagnostic apparatus 1 according to the first embodiment uses forceps having a biopsy function and an optical diagnostic function,
More specifically, a biopsy forceps having an optical probe is used.

【0011】図1に示す第1実施例の蛍光診断装置1
は、蛍光により対象組織の性状を判断しつつ、その部位
を生検する機能を備えた生検鉗子としての光診断機能付
生検鉗子2と、この光診断機能付生検鉗子2に内蔵され
た光ファイバ3に励起光を供給すると共に、対象組織か
らの蛍光を検出する分析装置4と、この分析装置4から
のデータを解析し、組織の性状(癌か、ポリープか、正
常か等)を判別するコンピュータ5と、その結果を表示
する表示手段としてのカラーモニタ6と、前記光診断機
能付生検鉗子2が挿通されるチャンネルを有する図示し
ない内視鏡及びその周辺機器(内視鏡に照明光を供給す
る光源装置等)とから構成される。
A fluorescence diagnostic apparatus 1 of the first embodiment shown in FIG.
Is a biopsy forceps 2 with an optical diagnostic function as a biopsy forceps having a function of biopsying the site of the target tissue while determining the property of the target tissue by fluorescence, and is incorporated in the biopsy forceps 2 with an optical diagnostic function. The analyzer 4 which supplies the excitation light to the optical fiber 3 and detects the fluorescence from the target tissue, and the data from the analyzer 4 are analyzed to analyze the tissue properties (cancer, polyp, normal, etc.). A computer 5 for discriminating the result, a color monitor 6 as display means for displaying the result, an endoscope (not shown) having a channel through which the biopsy forceps 2 with an optical diagnostic function is inserted, and its peripheral devices (endoscope). And a light source device for supplying illumination light).

【0012】前記光診断機能付生検鉗子2は、内視鏡の
チャンネル内に挿通される細長の鉗子挿入部の先端部に
対象となる組織をつまみ取るための1対のカップ7a,
7bを設けて生検部が形成され、この鉗子挿入部の後端
側の操作部には前記カップ7a,7bを開閉するために
指掛9を設けた操作部材10とこの操作部材10に対し
て摺動自在の操作用スライダ8とが形成されている。
The biopsy forceps 2 with an optical diagnostic function comprises a pair of cups 7a for picking up a target tissue at the tip of an elongated forceps insertion portion which is inserted into a channel of an endoscope.
7b is provided to form a biopsy section, and an operation member 10 provided with a finger hook 9 for opening and closing the cups 7a and 7b is provided on the operation section on the rear end side of the forceps insertion section. And an operating slider 8 that is slidable are formed.

【0013】そして、前記操作用スライダ8の動きと連
動して前記カップ7a,7bを開閉させるため、力を伝
達するワイヤ11が鉗子挿入部内に挿通され、このワイ
ヤ11の後端は操作用スライダ8に固定され、このワイ
ヤ11の先端はカップ7a,7bを開閉させるために、
該カップ7a,7bと連結され、リンク機構を形成する
リンク12a,12bと継ぎ部13を介して連結されて
いる。
In order to open and close the cups 7a and 7b in conjunction with the movement of the operating slider 8, a wire 11 for transmitting a force is inserted into the forceps insertion portion, and the rear end of the wire 11 is the operating slider. 8 is fixed, and the tip of the wire 11 opens and closes the cups 7a and 7b.
It is connected to the cups 7a and 7b, and is connected to the links 12a and 12b forming a link mechanism via a joint portion 13.

【0014】前記鉗子挿入部は例えば密巻きコイルによ
るコイルシース14で形成され、このコイルシース14
内にワイヤ11及び光ファイバ3が挿通され、このコイ
ルシース14により屈曲自在の状態で保護している。こ
のコイルシース13の後端側は斜め後方に分岐する分岐
部を設けたシース固定部材15の先端側に固定され、こ
のシース固定部材15の後方側に指掛9を設けた操作部
材10と、この操作部材10に対して摺動可能で、かつ
ワイヤ11の後端が固定された操作用スライダ8とが設
けてある。
The forceps insertion portion is formed of a coil sheath 14 made of, for example, a tightly wound coil.
The wire 11 and the optical fiber 3 are inserted inside, and the coil sheath 14 protects the wire 11 and the optical fiber 3 in a bendable state. The rear end side of the coil sheath 13 is fixed to the distal end side of a sheath fixing member 15 provided with a branch portion that branches obliquely rearward, and the operating member 10 provided with a finger hook 9 on the rear side of the sheath fixing member 15, There is provided an operating slider 8 which is slidable with respect to the operating member 10 and has a rear end of the wire 11 fixed.

【0015】また、シース固定部材15の斜め後方に分
岐する分岐部に設けた中空孔には光ファイバ3が挿通さ
れ、分岐部から後端側に延出され、コネクタケーブル1
6を介して分析装置4と接続される。
Further, the optical fiber 3 is inserted into a hollow hole provided in a branch portion which is branched obliquely rearward of the sheath fixing member 15, and is extended from the branch portion to the rear end side.
It is connected to the analyzer 4 via 6.

【0016】また、前記分析装置4は組織の蛍光を励起
するための光源としてのレーザ(装置)17と、組織か
らの蛍光をスペクトルに分離する分光器18とを有し、
コネクタケーブル16が接続された状態では光ファイバ
3の端面とレーザ17とが対向し、この間の光路中にレ
ーザ光と蛍光を分離するダイクロイックミラー19が配
置され、レーザ17から出射されたレーザ光を透過す
る。また、光ファイバ3で伝送された蛍光はダイクロイ
ックミラー19で反射され、対向する分光器18に励起
光をカットするフィルタ20を介して入射される。前記
レーザ17は例えばHe−Cdレーザで形成され、この
He−Cdレーザは442nmの波長のレーザ光を励起光
として発生する。
The analyzer 4 has a laser (device) 17 as a light source for exciting the fluorescence of the tissue, and a spectroscope 18 for separating the fluorescence from the tissue into a spectrum.
In the state where the connector cable 16 is connected, the end face of the optical fiber 3 and the laser 17 face each other, and a dichroic mirror 19 for separating the laser light and the fluorescence is arranged in the optical path between them, and the laser light emitted from the laser 17 is To Penetrate. The fluorescence transmitted by the optical fiber 3 is reflected by the dichroic mirror 19 and is incident on the opposing spectroscope 18 through the filter 20 that cuts the excitation light. The laser 17 is formed of, for example, a He-Cd laser, and this He-Cd laser generates laser light having a wavelength of 442 nm as excitation light.

【0017】この実施例では光診断機能付生検鉗子2に
内蔵された光ファイバ3の先端側はカップ7a,7bの
根本部にその光ファイバ3の先端面3Aが位置するよう
に取り付けられ、この状態ではカップ7a,7bが開い
た場合には光ファイバ3の先端面3Aが露出する。そし
て、生検しようとする組織側に先端面3Aから励起光を
照射できると共に、組織側からの蛍光を取り込むことが
できる構造にしていることが特徴となっている(換言す
ると、生検処置により出血が伴う前に、蛍光観察を行う
ことができるようにしている)。
In this embodiment, the tip side of the optical fiber 3 incorporated in the biopsy forceps 2 with an optical diagnostic function is attached so that the tip surface 3A of the optical fiber 3 is located at the roots of the cups 7a and 7b. In this state, when the cups 7a and 7b are opened, the tip surface 3A of the optical fiber 3 is exposed. The tissue side to be biopsied is characterized by having a structure capable of irradiating excitation light from the distal end surface 3A and taking in fluorescence from the tissue side (in other words, by biopsy procedure). Fluorescence observation can be performed before bleeding).

【0018】次に作用を説明する。まず、光診断機能付
生検鉗子2を図示しない、予め生体体腔内に挿入された
内視鏡チャンネルを通し、体腔内まで導入させる。そし
て、病変と思われる組織に光診断機能付生検鉗子2の先
端部のカップ7a,7bを近か付け、操作用スライダ8
を指掛9と反対方向にスライドさせ、前記カップ7a,
7bを開く。さらに開いたまま、そのカップ7a,7b
の根本にある光ファイバ3の先端面3Aを組織と接触さ
せる。
Next, the operation will be described. First, the biopsy forceps 2 with an optical diagnostic function is introduced into a body cavity through an endoscope channel (not shown) that is previously inserted into the body cavity. Then, the cups 7a and 7b at the tip of the biopsy forceps 2 with an optical diagnostic function are brought close to the tissue that is considered to be a lesion, and the operation slider 8 is used.
Slide in the direction opposite to the finger hook 9 to move the cup 7a,
Open 7b. Further open, the cup 7a, 7b
The tip end surface 3A of the optical fiber 3 at the root of is contacted with the tissue.

【0019】この時、レーザ17より励起光を光ファイ
バ3に入射し、組織に照射する。組織からの自家蛍光
を、前記光ファイバ3で受け、ダイクロイックミラー1
9で蛍光を反射し、励起光をフィルタ20によりカット
した後、分光器18に入射する。つまり、前記ダイクロ
イックミラー19は励起光を透過し、それより長い波長
の蛍光を反射する。
At this time, the excitation light from the laser 17 is incident on the optical fiber 3 to irradiate the tissue. The optical fiber 3 receives the autofluorescence from the tissue, and the dichroic mirror 1
The fluorescence is reflected at 9 and the excitation light is cut by the filter 20, and then enters the spectroscope 18. That is, the dichroic mirror 19 transmits the excitation light and reflects the fluorescence having a longer wavelength.

【0020】分光器18によりスペクトルに分離し、か
つそのスペクトル強度をコンピュータ5側に送り、コン
ピュータ5で蛍光の波長域全体におけるスペクトル波形
強度を算出すると共に、正常部位と、病変部等の異常部
位とで顕著な差異を示す2つの波長でのスペクトル波長
強度の解析を行い、対象組織が正常部位であるか病変部
等の異常部位であるかの解析結果をカラーモニタ6に表
示する。術者はその解析結果により異常部位である可能
性が高い場合に(出血を伴う)生検処置を行うようにす
ることにより病変組織をより確実に生検できるし、むや
みに多くの部位から生検を行う必要が無くなるので、患
者に対する苦痛を軽減することもできる。
The spectrum is separated by the spectroscope 18, and the spectrum intensity is sent to the computer 5 side, and the computer 5 calculates the spectrum waveform intensity in the entire wavelength range of fluorescence, and at the same time, the normal site and the abnormal site such as a lesion site. The spectral wavelength intensities at the two wavelengths that show a marked difference are analyzed, and the analysis result as to whether the target tissue is a normal site or an abnormal site such as a lesion is displayed on the color monitor 6. The surgeon can perform a biopsy procedure (with bleeding) if the abnormal site is highly likely to be an abnormal site, so that the diseased tissue can be biopsied more reliably, and the biopsy can be performed from many sites unnecessarily. Since it is not necessary to carry out a test, the patient's pain can be reduced.

【0021】この実施例によれば以下の効果がある。実
際の生検処置により出血させる前に対象組織が正常であ
るかと異常であるかが判断できるので、病変組織をより
確実に生検することができる環境を実現できる。
According to this embodiment, the following effects can be obtained. Since it can be determined by the actual biopsy procedure whether the target tissue is normal or abnormal before bleeding, it is possible to realize an environment in which the diseased tissue can be biopsied more reliably.

【0022】次に生検鉗子を用いないで、内視鏡を用い
て蛍光診断を行う第2実施例の蛍光診断装置を図2を参
照して説明する。図2ないし図4の装置では補助光源手
段或いは補助光源の機能を備えたものである。まず、そ
の背景を説明する。
Next, a fluorescence diagnostic apparatus of a second embodiment for performing fluorescence diagnosis using an endoscope without using biopsy forceps will be described with reference to FIG. The apparatus shown in FIGS. 2 to 4 has a function of auxiliary light source means or auxiliary light source. First, the background will be described.

【0023】従来例では蛍光観察時は励起用光源とその
ための高感度カメラを接続し、通常観察時は白色光源と
そのためのカメラに接続後切り換え観察していた。蛍光
観察では微弱な蛍光を検出しているため、近接させて観
察していた。しかしながら胃等の広い空間内に挿入した
際、接眼と組織までの距離が遠くなり、暗い画像とな
り、オリエンテーションがつけづらい。または出血時は
光の吸収のため暗くなる等の問題があった。
In the conventional example, an excitation light source and a high-sensitivity camera therefor are connected during fluorescence observation, and during normal observation, switching is performed after connecting to a white light source and a camera therefor. Since weak fluorescence was detected in the fluorescence observation, the observation was performed in close proximity. However, when it is inserted into a wide space such as the stomach, the distance between the eyepiece and the tissue becomes large, resulting in a dark image, and orientation is difficult to attach. Also, when bleeding, there was a problem that it became dark due to the absorption of light.

【0024】そこで本実施例は、その様な時でも蛍光観
察の条件(例えばカメラの感度、レーザ強度)を変える
ことなく、反射光での撮像を可能とするような良好なオ
リエンテーションを実現することを目的とし、この目的
を達成する補助光源手段を備えた蛍光診断装置を以下の
ような構成にしている。
In view of this, the present embodiment realizes a good orientation that enables imaging with reflected light without changing the conditions for fluorescence observation (such as camera sensitivity and laser intensity) even in such a case. In order to achieve this object, a fluorescence diagnostic apparatus provided with an auxiliary light source means has the following configuration.

【0025】図2に示す第2実施例の蛍光診断装置21
は、蛍光を励起するためのレーザ22と、蛍光観察時の
補助光源であるレーザダイオード(以下、LDと略記)
23とが内蔵された光源装置24と、前記光源装置24
からの光を体腔内に照射するためのライトガイド25
と、その蛍光及び反射光を2次元のイメージ像として伝
送するイメージガイド26とが内蔵された内視鏡27
と、前記内視鏡27から得られた蛍光像、反射光像をビ
デオ信号に変換するカメラ28と、前記ビデオ信号を処
理する処理装置29と、表示装置としてのカラーモニタ
30より構成される。
The fluorescence diagnostic apparatus 21 of the second embodiment shown in FIG.
Is a laser 22 for exciting fluorescence and a laser diode (hereinafter abbreviated as LD) which is an auxiliary light source during fluorescence observation.
And a light source device 24 in which 23 is incorporated.
Light guide 25 for irradiating light from the inside of the body cavity
An endoscope 27 having a built-in image guide 26 for transmitting the fluorescence and reflected light as a two-dimensional image image.
A camera 28 for converting the fluorescent image and the reflected light image obtained from the endoscope 27 into a video signal, a processing device 29 for processing the video signal, and a color monitor 30 as a display device.

【0026】光源装置24は、励起光を発生するレーザ
22と、反射光による撮像のための照明光を発生するL
D23と、LD23を駆動するドライバ31と、前記ド
ライバ31とレーザ22をコントロールするコントロー
ラ32と、これら光をライトガイド25に導光するレン
ズ33,34,35,36と、レーザ22の光とLD2
3の光を透過及び反射により合成する合成手段を形成す
るダイクロイックミラー37とから構成される。前記レ
ーザ22は例えばHe−Cdレーザで形成され、このH
e−Cdレーザは442nmの波長のレーザ光を励起光と
して発生する。
The light source device 24 generates a laser 22 for generating excitation light and an L for generating illumination light for imaging with reflected light.
D23, a driver 31 for driving the LD 23, a controller 32 for controlling the driver 31 and the laser 22, lenses 33, 34, 35, 36 for guiding these lights to the light guide 25, light of the laser 22, and LD2.
And a dichroic mirror 37 that forms a combining means for combining the three lights by transmitting and reflecting. The laser 22 is formed of, for example, a He-Cd laser.
The e-Cd laser emits laser light having a wavelength of 442 nm as excitation light.

【0027】前記内視鏡27は、体腔38内に挿入可能
な細長の挿入部41と、この挿入部41の後端に形成さ
れた操作部42と、この操作部42の後端に形成された
接眼部43と、操作部42の側部から延出されたライト
ガイドケーブル44とを有し、このライトガイドケーブ
ル44の端部のコネクタ45を光源装置24に着脱自在
で接続することができる。
The endoscope 27 is formed with an elongated insertion portion 41 that can be inserted into the body cavity 38, an operation portion 42 formed at the rear end of the insertion portion 41, and a rear end of the operation portion 42. And a light guide cable 44 extending from the side of the operation unit 42, and the connector 45 at the end of the light guide cable 44 can be detachably connected to the light source device 24. it can.

【0028】挿入部41内にはライトガイド25が挿通
され、このライトガイド25の後端側はライトガイドケ
ーブル44内を挿通され、コネクタ45を光源装置24
に接続することにより、レーザ22からのレーザ光が端
面に供給され、このレーザ光は伝送されて挿入部41の
先端側の端面からさらに拡散する照明レンズ46を経て
対向する組織47側に励起光としてのレーザ光を照射す
る。
The light guide 25 is inserted into the insertion portion 41, the rear end side of the light guide 25 is inserted into the light guide cable 44, and the connector 45 is connected to the light source device 24.
The laser light from the laser 22 is supplied to the end face by connecting to the end face, the laser light is transmitted, and the excitation light is transmitted from the end face on the distal end side of the insertion portion 41 to the tissue 47 side facing through the illumination lens 46 that diffuses further. As a laser beam.

【0029】この照明レンズ46が取り付けられた照明
窓に隣接して観察窓が設けてあり、この観察窓には対物
レンズ48が取り付けてあり、レーザ光が照射された組
織47側の像を結像位置に結ぶ。この結像位置にはイメ
ージガイド26の先端面が配置され、この像は伝送され
て接眼部43側の後端面に伝送される。この後端面に対
向して接眼部43内に接眼レンズ49が配置されてい
る。この接眼部43には着脱自在のカメラ28を到着す
ることができる。
An observation window is provided adjacent to the illumination window to which the illumination lens 46 is attached, and an objective lens 48 is attached to the observation window to form an image on the side of the tissue 47 irradiated with laser light. Connect to the image position. The front end face of the image guide 26 is arranged at this image forming position, and this image is transmitted and transmitted to the rear end face on the eyepiece 43 side. An eyepiece lens 49 is arranged in the eyepiece portion 43 so as to face the rear end surface. A detachable camera 28 can arrive at the eyepiece 43.

【0030】このカメラ28内には、前記接眼レンズ4
9に対向して配置され、蛍光を励起する励起光を遮断す
る励起光カットフィルタ50と、この励起光カットフィ
ルタ50を通して結像させるためのレンズ51と、蛍光
の特定波長を通過する複数のフィルタ52a(図2では
光路中に配置された状態の1つのフィルタ52aのみ示
す)を設けた回転フィルタ52と、この回転フィルタ5
2の複数のフィルタ52aを光路中に配置するように切
換えるために、回転フィルタ52を回転させるモータ5
3と、光路中のフィルタ52aを通った蛍光を増倍する
イメージインテンシファイヤ54と、このイメージイン
テンシファイヤ54で増倍された蛍光による像を電気的
なビデオ信号に変換するCCD55とを有する。
In the camera 28, the eyepiece lens 4
9, an excitation light cut filter 50 that blocks excitation light that excites fluorescence, a lens 51 that forms an image through the excitation light cut filter 50, and a plurality of filters that pass a specific wavelength of fluorescence. 52a (only one filter 52a arranged in the optical path is shown in FIG. 2), and the rotary filter 5
The motor 5 for rotating the rotary filter 52 in order to switch the plurality of two filters 52a to be arranged in the optical path.
3, an image intensifier 54 that multiplies the fluorescence that has passed through the filter 52a in the optical path, and a CCD 55 that converts the image of the fluorescence that has been multiplied by the image intensifier 54 into an electrical video signal. .

【0031】前記処理装置29は前記モータ53を駆動
コントロールし、フィルタ52aを切換えるタイミング
ローラ56と、前記CCD55の信号を処理し、病変部
を見やすくする画像処理を行う画像処理装置57とより
構成される。この画像処理装置57はオリエンテーショ
ン時、つまりLD23を点灯させた場合には回転フィル
タ52を通してCCD55により撮像された像を色成分
画像として擬似カラーで表示する信号処理も行う。
The processing device 29 is composed of a timing roller 56 for driving and controlling the motor 53 and switching the filter 52a, and an image processing device 57 for processing the signal of the CCD 55 and performing image processing for making it easy to see the lesion. It The image processing device 57 also performs signal processing for displaying the image captured by the CCD 55 through the rotary filter 52 in the pseudo color as a color component image during orientation, that is, when the LD 23 is turned on.

【0032】なお、LD23による発光は観察位置の確
認、位置付けなどのオリエンテーション時に術者の操作
で行うことができる。より具体的にはスイッチなどの操
作により、励起光に対し、独立にON,OFF(点灯,
消灯)できる。
The light emission by the LD 23 can be performed by an operator at the time of orientation such as confirmation of the observation position and positioning. More specifically, by operating a switch or the like, the excitation light is independently turned on and off (lighting,
You can turn it off.

【0033】また、このLD23の光は回転フィルタ5
2に組み込まれているフィルタ52aで抽出される特定
の蛍光の波長(例えば緑と赤の波長)と一致している。
さらにその光の照度は低く、レーザ22により蛍光観察
時における典型的な使用状態で、回転フィルタ52に組
み込まれているフィルタ52aを透過する特定の蛍光の
強度とほぼ等しい反射光が、オリエンテーション時にフ
ィルタ52aに入射される程度の低照度の光源である。
The light from the LD 23 is reflected by the rotary filter 5
It matches the wavelength (for example, the green and red wavelengths) of the specific fluorescence extracted by the filter 52a incorporated in the No. 2 filter.
Further, the illuminance of the light is low, and in a typical use state during fluorescence observation by the laser 22, reflected light that is substantially equal to the intensity of specific fluorescence transmitted through the filter 52a incorporated in the rotary filter 52 is filtered during orientation. It is a light source with low illuminance that is incident on the light 52a.

【0034】次に作用を説明する。蛍光観察時はレーザ
22より励起光となる波長のレーザ光をレンズ33,3
4,35を通し内視鏡27のライトガイド25に入射
し、拡散する照明レンズ46により体腔38内の照明レ
ンズ46前方に拡散、照射する。この時、組織47側か
らは蛍光が発生し、これを対物レンズ48、イメージガ
イド26、接眼レンズ49を経て、カメラ28に入射さ
れる。
Next, the operation will be described. At the time of fluorescence observation, the laser light of the wavelength which becomes the excitation light is emitted from the laser 22 to the lenses 33,
The light enters the light guide 25 of the endoscope 27 through 4, 35, and is diffused and illuminated by the illuminating lens 46 that diffuses in front of the illuminating lens 46 in the body cavity 38. At this time, fluorescence is generated from the tissue 47 side, and the fluorescence is incident on the camera 28 through the objective lens 48, the image guide 26, and the eyepiece lens 49.

【0035】つまり、カメラ28内では励起光カットフ
ィルタ50により蛍光のみを通し、回転フィルタ52に
組み込まれたフィルタ(例えば緑色、または赤色のフィ
ルタ)52aで特定の蛍光を抽出し、これをイメージイ
ンテンシファイヤ54で約数千〜数万倍に増幅した後、
CCDカメラ55で受ける。この時、回転フィルタ52
をモータ53により回転フィルタ52に組み込まれたフ
ィルタ52aを切換え、各々のフィルタ52aで得られ
たビデオ信号を画像処理装置57で病変部が強調される
様に各々の信号の重み付け等の処理を行い、カラーモニ
タ30で例えば擬似カラーで表示する。
That is, in the camera 28, only the fluorescence is passed by the excitation light cut filter 50, and the specific fluorescence is extracted by the filter (for example, green or red filter) 52a incorporated in the rotary filter 52, and this is imaged. After amplifying the tensioner 54 by several thousand to tens of thousands times,
It is received by the CCD camera 55. At this time, the rotary filter 52
The motor 52 switches the filter 52a incorporated in the rotary filter 52, and the video signals obtained by the respective filters 52a are subjected to processing such as weighting of each signal so that the lesion is emphasized by the image processing device 57. , Are displayed in pseudo color on the color monitor 30, for example.

【0036】一方、オリエンテーション時は、前記回転
フィルタ52に組み込まれたフィルタ52aの透過強度
と等しい波長で発光するLD23を、コントローラ32
とドライバ31で点灯させ、ダイクロイックミラー37
で反射させ、前記レーザ22の光と合成する。
On the other hand, at the time of orientation, the controller 32 controls the LD 23 that emits light with a wavelength equal to the transmission intensity of the filter 52a incorporated in the rotary filter 52.
And driver 31 to turn on the light, and dichroic mirror 37
It is reflected by and is combined with the light of the laser 22.

【0037】これらの光は前述と同様に、内視鏡27に
導光され、その反射光を、対物レンズ48、イメージガ
イド26で受ける。LD23の波長は励起光カットフィ
ルタ50、回転フィルタ52を通過するのでLD23に
照射された像は反射光像としてイメージインテンシファ
イヤ54で増倍され、CCD55で受光される。そし
て、反射光による画像で体腔内の様子が擬似カラーでカ
ラーモニタ30に表示されるので、その画像を観察する
ことによりオリエンテーションがつけやすくなる。
Similar to the above, these lights are guided to the endoscope 27, and the reflected light is received by the objective lens 48 and the image guide 26. Since the wavelength of the LD 23 passes through the excitation light cut filter 50 and the rotation filter 52, the image irradiated on the LD 23 is multiplied by the image intensifier 54 as a reflected light image and is received by the CCD 55. Then, since the inside of the body cavity is displayed in pseudo color on the color monitor 30 by the image of the reflected light, the orientation can be easily attached by observing the image.

【0038】従って、この実施例は以下の効果を有す
る。蛍光観察時、空間が広くなったり、出血したりして
蛍光像が暗くなった時、LDの様な低照度の光源で照射
することで、イメージインテンシファイヤへの焼付けな
く、体腔内を観察でき、オリエンテーションがつけやす
くなる。なお、LD23の代わりにLEDを用いても良
い。
Therefore, this embodiment has the following effects. During fluorescent observation, when the fluorescent image becomes dark due to widening of the space or bleeding, by illuminating with a low-illumination light source such as LD, you can observe the inside of the body cavity without burning to the image intensifier. You can do it, and it will be easier to orient. An LED may be used instead of the LD 23.

【0039】図2の実施例の変形例を図3及び図4にそ
れぞれに示す。図3及び図4の変形例はレーザ22の波
長を青色領域の光として、LD48,52を緑と赤色領
域の光として体腔内に照射し、それら反射光をRGBの
ビデオ信号として検出することで、通常の白色光に近い
観察を可能とするのもで、図3は光源装置24′の構成
を示し、図4はカメラ28′の構成を示す。
Modifications of the embodiment of FIG. 2 are shown in FIGS. 3 and 4, respectively. The modified examples of FIGS. 3 and 4 irradiate the laser 22 as light in the blue region and the LDs 48 and 52 as light in the green and red regions into the body cavity, and detect the reflected light as RGB video signals. 3 shows the structure of the light source device 24 ', and FIG. 4 shows the structure of the camera 28' because it enables observation close to normal white light.

【0040】図3に示す光源装置24′は図2の光源装
置24において、LD23の代わりに緑色領域の光を発
生するLD58を用い、さらにレンズ36とダイクロイ
ックミラー37との間に、赤色領域の光は反射し、それ
以外は透過するダイクロイックミラー59を配置し、こ
のダイクロイックミラー59に対向して赤色領域の光を
発生するLD60及びレンズ61を配置した構成にして
いる。LD58と60はドライバ31により駆動され、
共に低照度の光を発生する。
A light source device 24 'shown in FIG. 3 uses an LD 58 which emits light in a green region in place of the LD 23 in the light source device 24 in FIG. 2, and further includes a red region between the lens 36 and the dichroic mirror 37. A dichroic mirror 59 that reflects light and transmits the other light is disposed, and an LD 60 and a lens 61 that face the dichroic mirror 59 and generate light in a red region are disposed. The LDs 58 and 60 are driven by the driver 31,
Both emit light of low illuminance.

【0041】この変形例ではレーザ22の波長を青色領
域の光としたので、レンズ34と35との間に配置した
ダイクロイックミラー37は青色光は透過し、それより
波長の長い光は反射するものである。
In this modification, since the wavelength of the laser 22 is light in the blue region, the dichroic mirror 37 arranged between the lenses 34 and 35 transmits blue light and reflects light having a longer wavelength. Is.

【0042】この構成ではLD58と60の各光をレン
ズ36及び61とダイクロイックミラー59による透過
及び反射により合成し、ダイクロイックミラー37でレ
ーザ22の光をレンズ33、34を経てさらに合成し、
レンズ35で集光してライトガイド25に入射すること
ができるようにしている。
In this structure, the respective lights of the LDs 58 and 60 are combined by transmitting and reflecting by the lenses 36 and 61 and the dichroic mirror 59, and the light of the laser 22 is further combined by the dichroic mirror 37 through the lenses 33 and 34,
The lens 35 collects the light and allows it to enter the light guide 25.

【0043】また、コントローラ32には、スイッチ3
2aが接続され、このスイッチ32aをONとすること
でコントローラ32はLD58,60を動作させる。つ
まり、スイッチ32aによりレーザ22の光と独立にL
D58,60を動作/非動作を制御できる。その他の構
成は図2の光源装置24と同様である。
The controller 32 has a switch 3
2a is connected, and the controller 32 operates the LDs 58 and 60 by turning on the switch 32a. In other words, the switch 32a causes L
It is possible to control operation / non-operation of D58 and D60. Other configurations are similar to those of the light source device 24 of FIG.

【0044】一方、図4に示すカメラ28′内には、前
記レーザ22の青色領域波長は反射し、それ以上長い波
長を透過させるダイクロイックミラー64と、このダイ
クロイックミラー64を透過した光をさらに、緑色は反
射し、それ以上長い波長は透過させるダイクロイックミ
ラー65と、前記青色領域の像をビデオ信号に変換する
CCD66と、前記緑色領域の像を増倍するイメージイ
ンテンシファイヤ67と、それをビデオ信号に変換する
CCD68と、前記赤色領域の像を増倍するイメージイ
ンテンシファイヤ69と、それをビデオ信号に変換する
CCD70とを有する。
On the other hand, in the camera 28 'shown in FIG. 4, a dichroic mirror 64 that reflects the wavelength of the blue region of the laser 22 and transmits a longer wavelength, and a light that has passed through the dichroic mirror 64 are further added. A dichroic mirror 65 that reflects green light and transmits longer wavelengths, a CCD 66 that converts the image in the blue region into a video signal, an image intensifier 67 that multiplies the image in the green region, and a video signal It has a CCD 68 for converting it into a signal, an image intensifier 69 for multiplying the image in the red region, and a CCD 70 for converting it into a video signal.

【0045】また、レンズ71〜75は内視鏡27から
の像を、CCD66、イメージインテンシファイヤ6
7,69に投影するものである。またフィルタ76,7
7は、各々LD58の波長を含み、緑色の領域の特定波
長を透過するものと、LD60の波長を含み、赤色の領
域の特定波長を透過するものである。
Further, the lenses 71 to 75 transfer the image from the endoscope 27 to the CCD 66 and the image intensifier 6.
It is projected on 7,69. In addition, the filters 76, 7
7 includes the wavelength of the LD 58 and transmits a specific wavelength in the green region, and 7 includes the wavelength of the LD 60 and transmits a specific wavelength in the red region.

【0046】CCD66、68、70により光電変換さ
れた信号は画像処理装置57に入力され、蛍光観察時は
病変部を識別し易い表示が行えるような画像処理を行
い、オリエンテーション時はCCD66、68、70の
出力信号を色成分の画像信号と見なしてカラー画像化す
る信号処理を行い、カラーモニタ30に表示する。
The signals photoelectrically converted by the CCDs 66, 68, 70 are input to the image processing device 57, and image processing is performed so that a lesion can be easily identified during fluorescence observation, and CCDs 66, 68 during orientation, The output signal of 70 is regarded as a color component image signal, signal processing is performed to form a color image, and the color signal is displayed on the color monitor 30.

【0047】次に作用を説明する。蛍光観察時は図2と
ほぼ同様であるが、図2の実施例では回転フィルタによ
り緑と赤色の特定波長を得たのに対し、図3及び図4の
変形例では、ダイクロイックミラー65とフィルタ7
6,77により特定波長に分け、それぞれをイメージイ
ンテンシファイヤ67(緑用)、69(赤用)と、CC
D68(緑用)、70(赤用)で受ける。
Next, the operation will be described. The fluorescence observation is almost the same as in FIG. 2, but in the embodiment of FIG. 2, specific wavelengths of green and red are obtained by the rotary filter, whereas in the modified examples of FIGS. 3 and 4, the dichroic mirror 65 and the filter are used. 7
6 and 77 to divide into specific wavelengths, and image intensifiers 67 (for green), 69 (for red) and CC
Received with D68 (for green) and 70 (for red).

【0048】そして、例えばCCD68と70で受光し
たイメージ画像における同一の部位をそれぞれ比較し、
病変部等の異常な部位の可能性が高い部位に対してはそ
の部分の色を変え、その際、病変部の可能性が高いと判
断される結果に応じて色の色彩或いは表示色を変更する
などして擬似カラーで表示する。例えば、正常と判断し
た部位は白色で表示し、病変部の可能性があるとある確
率で判断される部位に対しては赤或いは緑色を付け、そ
の確率が高い場合ほど彩度を上げて表示するなどして病
変部の可能性がある部分を見やすく表示する。
Then, for example, the same portions in the image images received by the CCDs 68 and 70 are compared,
Change the color of the part that is likely to be an abnormal part, such as a lesion, and change the color or display color depending on the result that is judged to be the part that is likely to be a lesion. Display in pseudo color, for example. For example, the part that is judged to be normal is displayed in white, and the part that is judged to have a possibility of being a lesion is colored red or green, and the higher the probability, the higher the saturation is displayed. Doing so makes it easier to see the potential lesions.

【0049】一方、オリエンテーション時は、ユーザは
スイッチ32aをONしてコントローラ32の指示によ
り、ドライバ31でLD58,60を発光させる。
On the other hand, at the time of orientation, the user turns on the switch 32a and causes the driver 31 to cause the LDs 58 and 60 to emit light according to an instruction from the controller 32.

【0050】そしてLD58,60の光をレーザ22の
光と合わせてライトガイド25に入射し、体腔内の臓器
等に照射する。この反射光をイメージガイド26で受
け、接眼レンズ49やレンズ71〜75及びダイクロイ
ックミラー64,65及びフィルタ76,77により青
色領域の像は、CCD66に投影され、緑色領域の像は
イメージインテンシファイヤ67で増倍され、CCD6
8に投影され、赤色領域の像はイメージインテンシファ
イヤ69で増倍されCCD70に投影される。これら各
々で得られた像はRGB信号として画像処理回路57で
処理され、カラーモニタ30にカラーで表示される。
The light from the LDs 58 and 60 is incident on the light guide 25 together with the light from the laser 22 to irradiate an organ or the like in the body cavity. The reflected light is received by the image guide 26, and the image in the blue region is projected on the CCD 66 by the eyepiece lens 49, the lenses 71 to 75, the dichroic mirrors 64 and 65, and the filters 76 and 77, and the image in the green region is image intensifier. Multiplied by 67, CCD6
8, the image in the red area is multiplied by the image intensifier 69 and projected on the CCD 70. The image obtained by each of these is processed by the image processing circuit 57 as an RGB signal and displayed in color on the color monitor 30.

【0051】この場合の表示は通常の白色照明のもとで
の撮像によるカラー表示したものと殆ど同様の条件とな
るので、白色照明のもとで観察した場合の色調で観察す
ることができる。
Since the display in this case has almost the same condition as that of the color display by the image pickup under the normal white illumination, it can be observed with the color tone when observed under the white illumination.

【0052】この変形例は以下の効果を有する。青、
緑、赤の3原色を照射受光することで白色光観察に近い
色の判別ができるので、よりオリエンテーションが向上
する。
This modified example has the following effects. Blue,
By illuminating and receiving the three primary colors of green and red, it is possible to discriminate colors similar to white light observation, so that orientation is further improved.

【0053】次に本発明の第3実施例を説明する。この
実施例は自家蛍光像と励起光による反射光源の両方を同
時にモニタに示すことで、病変部と出血部、影等の違い
を容易に判別可能にする蛍光診断装置である。まず、そ
の背景を説明する。
Next, a third embodiment of the present invention will be described. This embodiment is a fluorescence diagnostic apparatus capable of easily discriminating a difference between a lesion area, a bleeding area, a shadow, etc. by showing both an autofluorescence image and a reflection light source by excitation light on a monitor at the same time. First, the background will be described.

【0054】従来では蛍光観察時には自家蛍光のスペク
トルの緑と赤の領域の波長の画像を撮影し、画像間で処
理表示していた。また、特公平3−58729号公報の
従来例では、励起画像で蛍光画像を規格するのもを開示
している。
Conventionally, during fluorescence observation, images of wavelengths in the green and red regions of the autofluorescence spectrum were photographed and processed and displayed between the images. Further, the conventional example of Japanese Patent Publication No. 3-58729 discloses that a fluorescence image is standardized with an excitation image.

【0055】蛍光観察時、病変部、出血部、影が正常部
に対し暗くなり、それらの区別が難しい。一方、蛍光の
色々な変動を補正する方法として反射光源で蛍光像を規
格化する方法が提案されているが、反射光源において病
変部は明るいが、出血部、影は依然として暗くなる。
During fluorescence observation, lesions, bleeding, and shadows are darker than normal, making it difficult to distinguish them. On the other hand, as a method of correcting various fluctuations of fluorescence, a method of standardizing a fluorescence image with a reflection light source has been proposed. In the reflection light source, a lesion part is bright, but a bleeding part and a shadow are still dark.

【0056】この状態で規格化した場合、出血部と影の
部分は暗い像で規格化することとなり、その部位はノイ
ズの多い画質の悪いものとなる。
When the standardization is performed in this state, the bleeding part and the shadow part are standardized by a dark image, and the part is noisy and the image quality is poor.

【0057】そこで、本実施例では病変部と出血部及び
影との区別が容易に可能となる蛍光診断装置を提供する
ことを目的として、この目的を達成するために蛍光像
と、反射光像の両方を2つの画像として同一モニタ上に
表示することで、病変部と出血部及び影との区別が容易
に可能となる構成にしている。以下に図5を参照して具
体的に説明する。
Therefore, in this embodiment, for the purpose of providing a fluorescence diagnostic apparatus capable of easily distinguishing a lesion area from a bleeding area and a shadow, in order to achieve this purpose, a fluorescence image and a reflected light image are obtained. By displaying both of them as two images on the same monitor, it is possible to easily distinguish the lesion area from the bleeding area and the shadow. This will be specifically described below with reference to FIG.

【0058】図5に示す蛍光診断装置81は、レーザ2
2を内蔵した光源装置82と、この光源装置82から出
射した励起光を導光して体腔内の対象とする組織側に照
射するライトガイド25及び組織からの自家蛍光及び反
射光像を伝送するイメージガイド26とを内蔵した内視
鏡27と、前記自家蛍光像を撮像するイメージインテン
シファイヤ67,69、CCD68,70及び前記反射
光像を撮像するCCD66と、その光学系(レンズ71
〜75、ダイクロイックミラー64,65、フィルタ7
6,77)が、内蔵されたカメラ83と、自家蛍光像に
対応するビデオ信号を生成する処理する画像処理装置5
7と、反射光象用CCD66を駆動し、反射光象に対応
するビデオ信号を生成するCCU84と、前記2つのビ
デオ信号をスーパーインポーズするスーパーインポーズ
回路85と、スーパーインポーズ回路85を通したビデ
オ信号により自家蛍光像86と反射光像87を表示画面
に並べて表示するモニタ30とから構成される。
The fluorescence diagnostic apparatus 81 shown in FIG.
2, a light source device 82 having a built-in light source, a light guide 25 that guides the excitation light emitted from the light source device 82 and irradiates the target tissue inside the body cavity, and an autofluorescence and reflected light image from the tissue. An endoscope 27 having a built-in image guide 26, image intensifiers 67 and 69 for picking up the autofluorescent image, CCDs 68 and 70, and a CCD 66 for picking up the reflected light image, and its optical system (lens 71).
~ 75, dichroic mirrors 64, 65, filter 7
6, 77), and a built-in camera 83, and an image processing device 5 for processing to generate a video signal corresponding to an autofluorescence image.
7, a CCU 84 for driving the reflected image CCD 66 to generate a video signal corresponding to the reflected image, a superimpose circuit 85 for superimposing the two video signals, and a superimpose circuit 85. The auto-fluorescent image 86 and the reflected light image 87 are arranged side by side on the display screen by the video signal.

【0059】次にこの実施例の作用を説明する。まず、
光源装置82により励起光を内視鏡27のライトガイド
25を通じ照射し、組織からの自家蛍光及び反射光をイ
メージガイド26を通じカメラ83で検出する。この
時、励起光の反射光はCCD66で撮影し、自家蛍光の
緑及び赤の特定波長をイメージインテンシファイヤ6
7,69、CCD68,70で撮影する。そして、反射
光像と蛍光像は各々ビデオ信号に変換した後、スーパー
インポーズ回路85で合成され、モニタ30上に並べて
表示される。
Next, the operation of this embodiment will be described. First,
Excitation light is emitted from the light source device 82 through the light guide 25 of the endoscope 27, and autofluorescence and reflected light from the tissue are detected by the camera 83 through the image guide 26. At this time, the reflected light of the excitation light is photographed by the CCD 66, and the image intensifier 6 detects the specific wavelengths of the autofluorescent green and red.
7, 69 and CCD 68, 70. Then, after the reflected light image and the fluorescent image are converted into video signals, they are combined by the superimposing circuit 85 and displayed side by side on the monitor 30.

【0060】この実施例によれば以下の効果がある。蛍
光像において病変部及び出血部及び影は暗い像として検
出されるため、その区別が難しかった。しかしながら、
反射光像においては病変部は、正常部同様明るい反射像
となり、それに対し出血部、影は暗くなる。したがっ
て、蛍光像及び反射像の両方の画像を同時にモニタで表
示することで容易に判別がつきやすい。また、反射光像
化では生検鉗子が見やすいので、精度の高い生検も可能
になると考えられる。
According to this embodiment, the following effects can be obtained. Since the lesion area, the bleeding area, and the shadow are detected as dark images in the fluorescence image, it is difficult to distinguish them. However,
In the reflected light image, the lesion area has a bright reflection image as in the normal area, whereas the bleeding area and the shadow are dark. Therefore, by displaying both the fluorescent image and the reflected image on the monitor at the same time, it is easy to make a distinction. Further, since it is easy to see the biopsy forceps in reflected light imaging, it is considered that a highly accurate biopsy can be performed.

【0061】なお、例えば図2の内視鏡27はファイバ
バンドルを用いてイメージガイド26を形成している
が、リレー光学系によりイメージガイド或いは光学像伝
送手段を形成した内視鏡の場合にも適用できる。なお、
上述した各実施例等を部分的等で組み合わせて異なる実
施例等を構成しても良く、それらの実施例等も本発明に
属する。
Although the image guide 26 is formed by using the fiber bundle in the endoscope 27 of FIG. 2, for example, in the case of an endoscope in which an image guide or an optical image transmitting means is formed by a relay optical system. Applicable. In addition,
Different embodiments and the like may be configured by partially combining the above-described embodiments and the like, and these embodiments and the like also belong to the present invention.

【0062】[付記] 2.組織蛍光を発生させるための励起光を発生する光源
と、組織からの蛍光を2次元画像として検出するイメー
ジガイドを持った内視鏡と、前記内視鏡と接続し、2次
元画像の蛍光像のうち少なくとも1つの特定波長の蛍光
像を撮像する撮像手段を持ったカメラとからなる蛍光診
断装置において、前記光源に、前記少なくとも1つの特
定波長の一部を含んだ波長の照明光を発生する低照度光
源が組み込まれ、前記励起光と前記照明光を合成する合
成手段と、前記照明光が励起光に対し独立にON,OF
Fできる制御装置とからなる蛍光診断装置。
[Additional Notes] 2. A fluorescence image of a two-dimensional image connected to the endoscope, which has a light source for generating excitation light for generating tissue fluorescence, an endoscope having an image guide for detecting fluorescence from tissue as a two-dimensional image In a fluorescence diagnostic device comprising a camera having an image pickup unit for picking up a fluorescent image of at least one specific wavelength among the above, the illumination light having a wavelength including a part of the at least one specific wavelength is generated in the light source. A low illuminance light source is incorporated, and a synthesizing unit for synthesizing the excitation light and the illumination light, and the illumination light is turned on and off independently of the excitation light.
A fluorescence diagnostic device comprising a control device capable of performing F.

【0063】3.前記低照度光源は緑と赤の波長を含む
領域の波長であり、前記励起光は青の波長帯域に含まれ
る波長であり、前記撮像手段は前記青、緑、赤のそれぞ
れの波長に対応した画像を撮像する前記付記2記載の蛍
光診断装置。
3. The low-illuminance light source has a wavelength in a region including green and red wavelengths, the excitation light has a wavelength included in a blue wavelength band, and the imaging unit corresponds to each of the blue, green, and red wavelengths. The fluorescence diagnostic apparatus according to appendix 2, which captures an image.

【0064】4.前記低照度光源はLEDまたはLDで
ある前記付記2記載の蛍光診断装置。 5.前記合成手段は光の波長により反射透過するダイク
ロイックミラーである前記付記2記載の蛍光診断装置。
4. The fluorescence diagnostic apparatus according to Appendix 2, wherein the low-illuminance light source is an LED or an LD. 5. 3. The fluorescence diagnostic apparatus according to appendix 2, wherein the synthesizing means is a dichroic mirror that reflects and transmits depending on the wavelength of light.

【0065】6.前記励起光はHe−Cdレーザによる
442nmの光である前記付記2記載の蛍光診断装置。
6. The fluorescence diagnostic apparatus according to appendix 2, wherein the excitation light is light of 442 nm emitted from a He-Cd laser.

【0066】7.組織蛍光を発生させるための励起光を
発生する光源と、前記励起光を体腔内に照射し、組織か
らの蛍光を2次元画像として検出するイメージガイドを
持った内視鏡と、前記内視鏡と接続し、2次元画像の蛍
光像のうち少なくとも1つの特定波長の蛍光像を撮像す
る撮像手段を持ったカメラとからなる蛍光診断装置にお
いて、前記カメラ内に前記励起光による組織からの反射
光を2次元画像として撮像する第2の撮像手段を加え持
ち、前記蛍光像と前記反射光像の両方を同一画面上に合
成するためのスーパーインポーズ手段と、それを表示す
る表示手段を持った蛍光診断装置。
7. An endoscope having a light source for generating excitation light for generating tissue fluorescence, an endoscope having an image guide for irradiating the excitation light into a body cavity and detecting fluorescence from a tissue as a two-dimensional image, and the endoscope. And a camera having an image pickup means for picking up at least one fluorescence image of a specific wavelength out of the fluorescence image of the two-dimensional image, the reflected light from the tissue due to the excitation light in the camera. A second image pickup means for picking up the image as a two-dimensional image, and a superimpose means for combining both the fluorescent image and the reflected light image on the same screen, and a display means for displaying the superimposed image. Fluorescence diagnostic device.

【0067】[0067]

【発明の効果】以上述べたように本発明によれば、体腔
内臓器を観察する内視鏡のチャンネル内に挿通可能な細
長の挿入部と、前記挿入部の先端に設けられた組織を採
取するための開閉可能なカップと、挿入部の手元側に設
けられた前記カップを開閉操作する操作部と、前記挿入
部内に組み込まれ、前記カップの根本付近に光の出射端
を配置され前記カップを開いた状態では、伝送した励起
光を照射し、かつ対象組織側からの蛍光を取り込み可能
とする光ファイバとを有する生検鉗子と;前記光ファイ
バへ励起光を入射する光源装置と;前記蛍光を前記光フ
ァイバを通じ検出し、スペクトルに分解する分光器と;
前記スペクトルを解析し、対象組織の性状を診断するた
めの解析装置と;前記解析装置による解析情報を表示す
る表示装置と;から蛍光診断装置が構成されているの
で、生検しようとする部位を実際に生検する前に光ファ
イバの先端面から励起光を照射し、かつ蛍光を取り込ん
で病変部であるか否かをの蛍光診断ができ、その結果に
より病変部である可能性が高い場合に実際に生検を行う
ことができるので、病変部をより確実に生検することが
できる。
As described above, according to the present invention, a slender insertion portion that can be inserted into a channel of an endoscope for observing an organ in a body cavity and a tissue provided at the tip of the insertion portion are collected. A cup that can be opened and closed, an operation unit that opens and closes the cup provided on the proximal side of the insertion unit, and is incorporated into the insertion unit, and the light emission end is arranged near the root of the cup. In the opened state, a biopsy forceps having an optical fiber for irradiating the transmitted excitation light and capable of taking in fluorescence from the target tissue side; a light source device for making the excitation light incident on the optical fiber; A spectroscope that detects fluorescence through the optical fiber and decomposes it into a spectrum;
Since the fluorescence diagnostic apparatus is composed of an analyzing device for analyzing the spectrum and diagnosing the property of the target tissue; and a display device for displaying analysis information by the analyzing device; When the excitation light is irradiated from the tip surface of the optical fiber before the actual biopsy, and the fluorescence can be captured to make a fluorescence diagnosis of whether or not there is a lesion, and the result shows that there is a high possibility that it is a lesion. Since the biopsy can be actually performed, the lesion can be more surely biopsied.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例の蛍光診断装置の構成図。FIG. 1 is a configuration diagram of a fluorescence diagnostic apparatus according to a first embodiment of the present invention.

【図2】本発明の第2実施例の蛍光診断装置の構成図。FIG. 2 is a configuration diagram of a fluorescence diagnostic apparatus according to a second embodiment of the present invention.

【図3】第2実施例の変形例における光源装置の構成
図。
FIG. 3 is a configuration diagram of a light source device in a modification of the second embodiment.

【図4】第2実施例の変形例におけるカメラの構成図。FIG. 4 is a configuration diagram of a camera according to a modification of the second embodiment.

【図5】本発明の第3実施例の蛍光診断装置の構成図。FIG. 5 is a configuration diagram of a fluorescence diagnostic apparatus according to a third embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…蛍光診断装置 2…光診断機能付生検鉗子 3…光ファイバ 3A…先端面 4…分析装置 5…コンピュータ 6…カラーモニタ 7a,7b…カップ 8…操作スライダ 9…指掛 10…操作部材 11…操作ワイヤ 12a,12b…リンク 13…継ぎ部 14…コイルシース 15…シース固定部材 16…中継ケーブル 17…レーザ 18…分光器 19…ダイクロイックミラー 20…フィルタ 21…蛍光診断装置 23…LD 25…ライトガイド 26…イメージガイド 27…内視鏡 28…カメラ 29…処理装置 30…カラーモニタ 57…画像処理装置 DESCRIPTION OF SYMBOLS 1 ... Fluorescence diagnostic device 2 ... Biopsy forceps with optical diagnostic function 3 ... Optical fiber 3A ... Tip surface 4 ... Analytical device 5 ... Computer 6 ... Color monitor 7a, 7b ... Cup 8 ... Operation slider 9 ... Finger rest 10 ... Operation member 11 ... Operation wire 12a, 12b ... Link 13 ... Joint part 14 ... Coil sheath 15 ... Sheath fixing member 16 ... Relay cable 17 ... Laser 18 ... Spectrometer 19 ... Dichroic mirror 20 ... Filter 21 ... Fluorescence diagnostic device 23 ... LD 25 ... Light Guide 26 ... Image guide 27 ... Endoscope 28 ... Camera 29 ... Processing device 30 ... Color monitor 57 ... Image processing device

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 体腔内臓器を観察する内視鏡のチャンネ
ル内に挿通可能な細長の挿入部と、前記挿入部の先端に
設けられた組織を採取するための開閉可能なカップと、
挿入部の手元側に設けられた前記カップを開閉操作する
操作部と、前記挿入部内に組み込まれ、前記カップの根
本付近に光の出射端を配置され前記カップを開いた状態
では、伝送した励起光を照射し、かつ対象組織側からの
蛍光を取り込み可能とする光ファイバとを有する生検鉗
子と;前記光ファイバへ励起光を入射する光源装置と;
前記蛍光を前記光ファイバを通じ検出し、スペクトルに
分解する分光器と;前記スペクトルを解析し、対象組織
の性状を診断するための解析装置と;前記解析装置によ
る解析情報を表示する表示装置と;から構成される蛍光
診断装置。
1. An elongated insertion part that can be inserted into a channel of an endoscope for observing an organ in a body cavity, and an openable and closable cup for collecting tissue provided at the tip of the insertion part,
An operating part for opening and closing the cup provided on the proximal side of the insertion part, and a built-in inside the insertion part, in which the light emission end is arranged near the base of the cup and the cup is opened, the transmitted excitation is A biopsy forceps having an optical fiber that irradiates light and can capture fluorescence from the target tissue side; a light source device that makes excitation light incident on the optical fiber;
A spectroscope that detects the fluorescence through the optical fiber and decomposes it into a spectrum; an analyzer that analyzes the spectrum and diagnoses the properties of the target tissue; and a display that displays analysis information by the analyzer. Fluorescence diagnostic device composed of.
JP7033996A 1995-02-22 1995-02-22 Fluorescent diagnosing device Pending JPH08224240A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7033996A JPH08224240A (en) 1995-02-22 1995-02-22 Fluorescent diagnosing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7033996A JPH08224240A (en) 1995-02-22 1995-02-22 Fluorescent diagnosing device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2005158160A Division JP2005305182A (en) 2005-05-30 2005-05-30 Optical diagnostic apparatus

Publications (1)

Publication Number Publication Date
JPH08224240A true JPH08224240A (en) 1996-09-03

Family

ID=12402091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7033996A Pending JPH08224240A (en) 1995-02-22 1995-02-22 Fluorescent diagnosing device

Country Status (1)

Country Link
JP (1) JPH08224240A (en)

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6603552B1 (en) 1999-12-22 2003-08-05 Xillix Technologies Corp. Portable system for detecting skin abnormalities based on characteristic autofluorescence
JP2004525697A (en) * 2001-03-16 2004-08-26 ユニバーシティ・オブ・ユタ・リサーチ・ファウンデーション Device and method for photodynamic diagnosis of tumor tissue
US6821245B2 (en) 2000-07-14 2004-11-23 Xillix Technologies Corporation Compact fluorescence endoscopy video system
US6826424B1 (en) 2000-12-19 2004-11-30 Haishan Zeng Methods and apparatus for fluorescence and reflectance imaging and spectroscopy and for contemporaneous measurements of electromagnetic radiation with multiple measuring devices
US6899675B2 (en) 2002-01-15 2005-05-31 Xillix Technologies Corp. Fluorescence endoscopy video systems with no moving parts in the camera
JP2005319212A (en) * 2004-05-11 2005-11-17 Pentax Corp Fluorescence endoscope apparatus
JP2006087764A (en) * 2004-09-27 2006-04-06 Kyocera Corp Led fiber light source device and endoscope using the same
JP2008086605A (en) * 2006-10-03 2008-04-17 Pentax Corp Endoscope processor, self-fluorescence image display program, and endoscope system
EP1918743A1 (en) 2006-11-06 2008-05-07 Fujikura, Ltd. Multi-core fiber
JP2008264578A (en) * 2002-05-08 2008-11-06 Kuresuto Japan Kk Optically excited fluorescein detector suitable for measuring physical property of cartilage tissue
EP2107401A2 (en) 2008-04-01 2009-10-07 Fujikura, Ltd. Silica-based single core optical fiber, silica-based multi core optical fiber, and fabrication method for the same
JP2010088929A (en) * 1998-03-09 2010-04-22 Spectrascience Inc Optical biopsy system and methods for tissue diagnosis
JP2016501583A (en) * 2012-11-26 2016-01-21 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Spiral biopsy device
US9386909B2 (en) 2006-07-28 2016-07-12 Novadaq Technologies Inc. System and method for deposition and removal of an optical element on an endoscope objective
US9610021B2 (en) 2008-01-25 2017-04-04 Novadaq Technologies Inc. Method for evaluating blush in myocardial tissue
US9642532B2 (en) 2008-03-18 2017-05-09 Novadaq Technologies Inc. Imaging system for combined full-color reflectance and near-infrared imaging
US9814378B2 (en) 2011-03-08 2017-11-14 Novadaq Technologies Inc. Full spectrum LED illuminator having a mechanical enclosure and heatsink
US9816930B2 (en) 2014-09-29 2017-11-14 Novadaq Technologies Inc. Imaging a target fluorophore in a biological material in the presence of autofluorescence
US9877654B2 (en) 2006-02-07 2018-01-30 Novadaq Technologies Inc. Near infrared imaging
US10041042B2 (en) 2008-05-02 2018-08-07 Novadaq Technologies ULC Methods for production and use of substance-loaded erythrocytes (S-IEs) for observation and treatment of microvascular hemodynamics
US10182709B2 (en) 2002-01-15 2019-01-22 Novadaq Technologies ULC Filter for use with imaging endoscopes
US10219742B2 (en) 2008-04-14 2019-03-05 Novadaq Technologies ULC Locating and analyzing perforator flaps for plastic and reconstructive surgery
US10265419B2 (en) 2005-09-02 2019-04-23 Novadaq Technologies ULC Intraoperative determination of nerve location
US10278585B2 (en) 2012-06-21 2019-05-07 Novadaq Technologies ULC Quantification and analysis of angiography and perfusion
US10293122B2 (en) 2016-03-17 2019-05-21 Novadaq Technologies ULC Endoluminal introducer with contamination avoidance
US10434190B2 (en) 2006-09-07 2019-10-08 Novadaq Technologies ULC Pre-and-intra-operative localization of penile sentinel nodes
US10492671B2 (en) 2009-05-08 2019-12-03 Novadaq Technologies ULC Near infra red fluorescence imaging for visualization of blood vessels during endoscopic harvest
US10631746B2 (en) 2014-10-09 2020-04-28 Novadaq Technologies ULC Quantification of absolute blood flow in tissue using fluorescence-mediated photoplethysmography
US10694152B2 (en) 2006-12-22 2020-06-23 Novadaq Technologies ULC Imaging systems and methods for displaying fluorescence and visible images
JP2020148547A (en) * 2019-03-12 2020-09-17 株式会社日立ハイテクサイエンス Spectrofluorometer and observation method
US10869645B2 (en) 2016-06-14 2020-12-22 Stryker European Operations Limited Methods and systems for adaptive imaging for low light signal enhancement in medical visualization
USD916294S1 (en) 2016-04-28 2021-04-13 Stryker European Operations Limited Illumination and imaging device
US10980420B2 (en) 2016-01-26 2021-04-20 Stryker European Operations Limited Configurable platform
US10992848B2 (en) 2017-02-10 2021-04-27 Novadaq Technologies ULC Open-field handheld fluorescence imaging systems and methods
US11930278B2 (en) 2015-11-13 2024-03-12 Stryker Corporation Systems and methods for illumination and imaging of a target

Cited By (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010088929A (en) * 1998-03-09 2010-04-22 Spectrascience Inc Optical biopsy system and methods for tissue diagnosis
US6603552B1 (en) 1999-12-22 2003-08-05 Xillix Technologies Corp. Portable system for detecting skin abnormalities based on characteristic autofluorescence
US7341557B2 (en) 2000-07-14 2008-03-11 Novadaq Technologies Inc. Compact fluorescence endoscopy video system
US6821245B2 (en) 2000-07-14 2004-11-23 Xillix Technologies Corporation Compact fluorescence endoscopy video system
US7722534B2 (en) 2000-07-14 2010-05-25 Novadaq Technologies, Inc. Compact fluorescence endoscopy video system
US8961403B2 (en) 2000-07-14 2015-02-24 Novadaq Technologies Inc. Compact fluorescence endoscopy video system
US9968244B2 (en) 2000-07-14 2018-05-15 Novadaq Technologies ULC Compact fluorescence endoscopy video system
US6898458B2 (en) 2000-12-19 2005-05-24 Haishan Zeng Methods and apparatus for fluorescence and reflectance imaging and spectroscopy and for contemporaneous measurements of electromagnetic radiation with multiple measuring devices
US7115841B2 (en) 2000-12-19 2006-10-03 Perceptronix Medical, Inc. Imaging methods for fluorescence and reflectance imaging and spectroscopy and for contemporaneous measurements of electromagnetic radiation with multiple measuring devices
US7190452B2 (en) 2000-12-19 2007-03-13 Perceptronix Medical, Inc. Imaging systems for fluorescence and reflectance imaging and spectroscopy and for contemporaneous measurements of electromagnetic radiation with multiple measuring devices
US7253894B2 (en) 2000-12-19 2007-08-07 Perceptronix Medical, Inc. Image detection apparatus for fluorescence and reflectance imaging and spectroscopy and for contemporaneous measurements of electromagnetic radiation with multiple measuring devices
US6826424B1 (en) 2000-12-19 2004-11-30 Haishan Zeng Methods and apparatus for fluorescence and reflectance imaging and spectroscopy and for contemporaneous measurements of electromagnetic radiation with multiple measuring devices
JP2004525697A (en) * 2001-03-16 2004-08-26 ユニバーシティ・オブ・ユタ・リサーチ・ファウンデーション Device and method for photodynamic diagnosis of tumor tissue
US10182709B2 (en) 2002-01-15 2019-01-22 Novadaq Technologies ULC Filter for use with imaging endoscopes
US6899675B2 (en) 2002-01-15 2005-05-31 Xillix Technologies Corp. Fluorescence endoscopy video systems with no moving parts in the camera
JP2008264578A (en) * 2002-05-08 2008-11-06 Kuresuto Japan Kk Optically excited fluorescein detector suitable for measuring physical property of cartilage tissue
JP2005319212A (en) * 2004-05-11 2005-11-17 Pentax Corp Fluorescence endoscope apparatus
JP4495513B2 (en) * 2004-05-11 2010-07-07 Hoya株式会社 Fluorescence endoscope device
JP2006087764A (en) * 2004-09-27 2006-04-06 Kyocera Corp Led fiber light source device and endoscope using the same
US10265419B2 (en) 2005-09-02 2019-04-23 Novadaq Technologies ULC Intraoperative determination of nerve location
US9877654B2 (en) 2006-02-07 2018-01-30 Novadaq Technologies Inc. Near infrared imaging
US9386909B2 (en) 2006-07-28 2016-07-12 Novadaq Technologies Inc. System and method for deposition and removal of an optical element on an endoscope objective
US10434190B2 (en) 2006-09-07 2019-10-08 Novadaq Technologies ULC Pre-and-intra-operative localization of penile sentinel nodes
JP2008086605A (en) * 2006-10-03 2008-04-17 Pentax Corp Endoscope processor, self-fluorescence image display program, and endoscope system
US7418178B2 (en) 2006-11-06 2008-08-26 Fujikura Ltd. Multi-core fiber
EP1918743A1 (en) 2006-11-06 2008-05-07 Fujikura, Ltd. Multi-core fiber
US10694151B2 (en) 2006-12-22 2020-06-23 Novadaq Technologies ULC Imaging system with a single color image sensor for simultaneous fluorescence and color video endoscopy
US10694152B2 (en) 2006-12-22 2020-06-23 Novadaq Technologies ULC Imaging systems and methods for displaying fluorescence and visible images
US11770503B2 (en) 2006-12-22 2023-09-26 Stryker European Operations Limited Imaging systems and methods for displaying fluorescence and visible images
US11025867B2 (en) 2006-12-22 2021-06-01 Stryker European Operations Limited Imaging systems and methods for displaying fluorescence and visible images
US9936887B2 (en) 2008-01-25 2018-04-10 Novadaq Technologies ULC Method for evaluating blush in myocardial tissue
US9610021B2 (en) 2008-01-25 2017-04-04 Novadaq Technologies Inc. Method for evaluating blush in myocardial tissue
US11564583B2 (en) 2008-01-25 2023-01-31 Stryker European Operations Limited Method for evaluating blush in myocardial tissue
US10835138B2 (en) 2008-01-25 2020-11-17 Stryker European Operations Limited Method for evaluating blush in myocardial tissue
US9642532B2 (en) 2008-03-18 2017-05-09 Novadaq Technologies Inc. Imaging system for combined full-color reflectance and near-infrared imaging
US10779734B2 (en) 2008-03-18 2020-09-22 Stryker European Operations Limited Imaging system for combine full-color reflectance and near-infrared imaging
US8208774B2 (en) 2008-04-01 2012-06-26 Fujikura Ltd. Silica-based single core optical fiber, silica-based multi core optical fiber, and fabrication method for the same
US8208775B2 (en) 2008-04-01 2012-06-26 Fujikura Ltd. Silica-based single core optical fiber, silica-based multi core optical fiber, and fabrication method for the same
EP2107401A2 (en) 2008-04-01 2009-10-07 Fujikura, Ltd. Silica-based single core optical fiber, silica-based multi core optical fiber, and fabrication method for the same
US10219742B2 (en) 2008-04-14 2019-03-05 Novadaq Technologies ULC Locating and analyzing perforator flaps for plastic and reconstructive surgery
US10041042B2 (en) 2008-05-02 2018-08-07 Novadaq Technologies ULC Methods for production and use of substance-loaded erythrocytes (S-IEs) for observation and treatment of microvascular hemodynamics
US10492671B2 (en) 2009-05-08 2019-12-03 Novadaq Technologies ULC Near infra red fluorescence imaging for visualization of blood vessels during endoscopic harvest
US9814378B2 (en) 2011-03-08 2017-11-14 Novadaq Technologies Inc. Full spectrum LED illuminator having a mechanical enclosure and heatsink
US11284801B2 (en) 2012-06-21 2022-03-29 Stryker European Operations Limited Quantification and analysis of angiography and perfusion
US10278585B2 (en) 2012-06-21 2019-05-07 Novadaq Technologies ULC Quantification and analysis of angiography and perfusion
JP2016501583A (en) * 2012-11-26 2016-01-21 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Spiral biopsy device
US9816930B2 (en) 2014-09-29 2017-11-14 Novadaq Technologies Inc. Imaging a target fluorophore in a biological material in the presence of autofluorescence
US10488340B2 (en) 2014-09-29 2019-11-26 Novadaq Technologies ULC Imaging a target fluorophore in a biological material in the presence of autofluorescence
US10631746B2 (en) 2014-10-09 2020-04-28 Novadaq Technologies ULC Quantification of absolute blood flow in tissue using fluorescence-mediated photoplethysmography
US11930278B2 (en) 2015-11-13 2024-03-12 Stryker Corporation Systems and methods for illumination and imaging of a target
US10980420B2 (en) 2016-01-26 2021-04-20 Stryker European Operations Limited Configurable platform
US11298024B2 (en) 2016-01-26 2022-04-12 Stryker European Operations Limited Configurable platform
US10293122B2 (en) 2016-03-17 2019-05-21 Novadaq Technologies ULC Endoluminal introducer with contamination avoidance
USD916294S1 (en) 2016-04-28 2021-04-13 Stryker European Operations Limited Illumination and imaging device
US10869645B2 (en) 2016-06-14 2020-12-22 Stryker European Operations Limited Methods and systems for adaptive imaging for low light signal enhancement in medical visualization
US11756674B2 (en) 2016-06-14 2023-09-12 Stryker European Operations Limited Methods and systems for adaptive imaging for low light signal enhancement in medical visualization
US11140305B2 (en) 2017-02-10 2021-10-05 Stryker European Operations Limited Open-field handheld fluorescence imaging systems and methods
US10992848B2 (en) 2017-02-10 2021-04-27 Novadaq Technologies ULC Open-field handheld fluorescence imaging systems and methods
JP2020148547A (en) * 2019-03-12 2020-09-17 株式会社日立ハイテクサイエンス Spectrofluorometer and observation method

Similar Documents

Publication Publication Date Title
JPH08224240A (en) Fluorescent diagnosing device
US6422994B1 (en) Fluorescent diagnostic system and method providing color discrimination enhancement
JP3962122B2 (en) Endoscope device
JP3236085B2 (en) Endoscope device
JP3853931B2 (en) Endoscope
US5769792A (en) Endoscopic imaging system for diseased tissue
JP3317409B2 (en) Imaging device
US6678398B2 (en) Dual mode real-time screening and rapid full-area, selective-spectral, remote imaging and analysis device and process
JP4477230B2 (en) Optical student examination apparatus and tissue diagnosis method
JP3923595B2 (en) Fluorescence observation equipment
JP5405445B2 (en) Endoscope device
JPH07222712A (en) Fluorescent endoscope system
WO2010122884A1 (en) Fluorescence image device and fluorescence image acquiring method
JPH07155285A (en) Fluorescence observing endoscope apparatus
JPH07250812A (en) Fluorescence diagnosing apparatus
JPH08224208A (en) Fluorescence observing endoscope device
JPH0785135B2 (en) Endoscope device
JP2005514144A (en) Apparatus and method for spectroscopic examination of the colon
JP3467130B2 (en) Electronic endoscope device for fluorescence diagnosis
JP3762646B2 (en) Fluorescence observation equipment
JP3490807B2 (en) Electronic endoscope device for fluorescence diagnosis
JPH1189789A (en) Fluorescent image device
US20100076304A1 (en) Invisible light irradiation apparatus and method for controlling invisible light irradiation apparatus
WO2006004038A1 (en) Light source device and fluorescence observation system
JP4495513B2 (en) Fluorescence endoscope device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050207

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050530

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050726

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20050916