JPH08224208A - Fluorescence observing endoscope device - Google Patents

Fluorescence observing endoscope device

Info

Publication number
JPH08224208A
JPH08224208A JP7033995A JP3399595A JPH08224208A JP H08224208 A JPH08224208 A JP H08224208A JP 7033995 A JP7033995 A JP 7033995A JP 3399595 A JP3399595 A JP 3399595A JP H08224208 A JPH08224208 A JP H08224208A
Authority
JP
Japan
Prior art keywords
fluorescence
light
image
filter
fluorescence observation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7033995A
Other languages
Japanese (ja)
Inventor
Mamoru Kaneko
守 金子
Hitoshi Ueno
仁士 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP7033995A priority Critical patent/JPH08224208A/en
Publication of JPH08224208A publication Critical patent/JPH08224208A/en
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/043Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances for fluorescence imaging

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Biomedical Technology (AREA)
  • Medical Informatics (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biophysics (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)
  • Endoscopes (AREA)

Abstract

PURPOSE: To detect two kinds of fluorescence of specific wavelength without performing mechanical switching by a rotary filter, etc. CONSTITUTION: The endoscope 4 of this fluorescence observing endoscope device 1 comprises a light guide 10 which introduces a laser beam emitted from a laser 9 to a living body inner cavity, a concave lens 11 which diffuses and illuminates the laser beam, an objective lens 12 which projects the fluorescent image of a lesion 3 on a color image pickup element 5 and an optical filter 13 which transmits specific wavelength of the fluorescent image. The optical filter 13 is provided with transmission characteristic to transmit a green color of 500-540nm and a red color of 640-700nm.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、経内視鏡的に光を照射
し、組織からの蛍光から癌等の病変部を観察診断する蛍
光観察内視鏡装置に関し、特に蛍光の複数の特定波長を
検出し、画像化する蛍光観察内視鏡装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fluorescence observation endoscopic apparatus for irradiating light endoscopically and observing and diagnosing a lesion such as cancer based on fluorescence from a tissue, and more particularly, to specify a plurality of fluorescences. The present invention relates to a fluorescence observation endoscope apparatus that detects a wavelength and forms an image.

【0002】[0002]

【従来の技術】近年、生体からの自家蛍光や生体へ注入
した薬物の蛍光を2次元画像として検出し、その蛍光象
から生体組織の変性や癌等の疾患状態(例えば、疾患の
種類や浸潤範囲)を診断する技術が米国特許45560
57号や5042494号に示されている。
2. Description of the Related Art In recent years, autofluorescence from a living body or fluorescence of a drug injected into a living body is detected as a two-dimensional image, and from the fluorescent image, a disease state such as degeneration of living tissue or cancer (for example, type of disease or infiltration). Range) technology for diagnosing
57 and 5042494.

【0003】生体組織に光を照射するとその励起光より
長い波長の蛍光が発生する。生体内の蛍光物質として
は、例えばNADH(ニコチンアミドアデニンヌクレオ
チド)やFMN(フラビンモノヌクレオチド)、ピリジ
ンヌクレオチド等があり、最近では、これらの生体内因
物質と疾患との相互関係が明確になりつつある。
When light is applied to living tissue, fluorescence having a wavelength longer than that of the excitation light is generated. Examples of fluorescent substances in the living body include NADH (nicotinamide adenine nucleotide), FMN (flavin mononucleotide), pyridine nucleotide, and the like, and recently, the correlation between these endogenous substances and diseases is becoming clear. .

【0004】また、HpD(ヘマトポルフィリン),P
hotofrin,ALA(δ−amino levu
linic acid)等の蛍光剤は、癌への集積性が
あり、これら蛍光剤を生体内に注入することによって、
蛍光観察を行うことによって疾患部位を診断することが
できる。
In addition, HpD (hematoporphyrin), P
photofrin, ALA (δ-amino levu
Fluorescent agents such as linic acid) have the property of accumulating in cancer, and by injecting these fluorescent agents into the living body,
A disease site can be diagnosed by performing fluorescence observation.

【0005】[0005]

【発明が解決しようとする課題】上記の様な蛍光から経
内視鏡的に病変部を診断する技術として、本出願人より
出願された特願平5−304427号がある。これは、
組織から発した自家蛍光をおよそ緑の領域と赤の領域の
2つの帯域で検出し、これを画像間で処理表示してい
る。前記光の領域の切り換えには、回転フィルタが用い
られている。
Japanese Patent Application No. 5-304427 filed by the present applicant is a technique for endoscopically diagnosing a lesion site from the above-mentioned fluorescence. this is,
The autofluorescence emitted from the tissue is detected in two bands, that is, a green region and a red region, and this is processed and displayed between images. A rotary filter is used to switch the light region.

【0006】しかしながら、2つの波長領域の蛍光を検
出するため回転フィルタ等、機械的に切り換えていたた
め、装置が大型でかつ高価となるといった問題がある。
However, there is a problem in that the device is large and expensive because the rotary filter and the like are mechanically switched to detect fluorescence in two wavelength regions.

【0007】本発明は、上記事情に鑑みてなされたもの
であり、回転フィルタ等による機械的切り換えなしで2
つの特定波長の蛍光を検出できる蛍光観察内視鏡装置を
提供することを目的としている。
The present invention has been made in view of the above circumstances, and can be realized without mechanical switching by a rotary filter or the like.
It is an object of the present invention to provide a fluorescence observation endoscope apparatus capable of detecting fluorescence of one specific wavelength.

【0008】[0008]

【課題を解決するための手段および作用】本発明の蛍光
観察内視鏡装置は、経内視鏡的に励起光を体腔内臓器に
照射し、組織からの蛍光を2次元画像として観察する蛍
光観察内視鏡装置において、前記2次元画像を複数の異
なる波長帯域に感度を有し電子信号に変換する撮像素子
の受光側に、前記波長帯域のうち相異なる少なくとも2
つの領域の波長を通過させる光学フィルタを配置させる
ことで、前記光学フィルタにより前記波長帯域のうち相
異なる少なくとも2つの領域の波長を通過させ、回転フ
ィルタ等による機械的切り換えなしで2つの特定波長の
蛍光を検出することを可能とする。
The fluorescence observation endoscope apparatus of the present invention irradiates excitation light to an organ in a body cavity transendoscopically and observes fluorescence from a tissue as a two-dimensional image. In the observation endoscope apparatus, at least two different wavelength bands are provided on the light-receiving side of an image sensor that converts the two-dimensional image into electronic signals having sensitivity in a plurality of different wavelength bands.
By arranging an optical filter that passes wavelengths in two regions, wavelengths in at least two different regions in the wavelength band are passed by the optical filter, and two specific wavelengths can be transmitted without mechanical switching by a rotary filter or the like. It is possible to detect fluorescence.

【0009】[0009]

【実施例】以下、図面を参照しながら本発明の実施例に
ついて述べる。
Embodiments of the present invention will be described below with reference to the drawings.

【0010】図1ないし図4は本発明の第1実施例に係
わり、図1は蛍光により病変部を診断する蛍光観察内視
鏡装置の全体の構成を示す構成図、図2は図1の光学フ
ィルタの干渉フィルタの透過特性を示す特性図、図3は
図1の光学フィルタの色フィルタの透過特性を示す特性
図、図4は図1の光学フィルタの透過特性およびカラー
撮像素子の分光特性を示す特性図である。
1 to 4 relate to a first embodiment of the present invention, FIG. 1 is a block diagram showing the overall configuration of a fluorescence observation endoscope apparatus for diagnosing a lesion by fluorescence, and FIG. 2 is a diagram of FIG. FIG. 3 is a characteristic diagram showing the transmission characteristic of the interference filter of the optical filter, FIG. 3 is a characteristic diagram showing the transmission characteristic of the color filter of the optical filter of FIG. 1, and FIG. 4 is a transmission characteristic of the optical filter of FIG. 1 and the spectral characteristic of the color image sensor. FIG.

【0011】(構成)図1に示すように、本実施例の蛍
光観察内視鏡装置1は、青色や紫外領域の光(励起光)
を発生する光源2と、その励起光を生体内腔に導き病変
部3から発生する蛍光を観察する内視鏡4と、その内視
鏡4に内蔵されているカラー撮像素子5を駆動し病変部
3の蛍光像をビデオ信号に変換するカメラコントロール
ユニット6と、そのビデオ信号を処理し病変部3と正常
部を認識しやすくするイメージプロセッサ7と、イメー
ジプロセッサ7の出力を画像として表示するモニタ8と
より構成される。
(Structure) As shown in FIG. 1, the fluorescence observation endoscope apparatus 1 of the present embodiment has a light (excitation light) in the blue or ultraviolet region.
A light source 2 that emits light, an endoscope 4 that guides the excitation light to a living body lumen and observes fluorescence generated from a lesion 3, and a color imaging device 5 incorporated in the endoscope 4 to drive a lesion. A camera control unit 6 for converting the fluorescent image of the part 3 into a video signal, an image processor 7 for processing the video signal to facilitate recognition of the lesion 3 and a normal part, and a monitor for displaying the output of the image processor 7 as an image. 8 is included.

【0012】前記光源2には、青色や紫外領域の光を発
するエキシマ、He−Cd、アルゴン等のレーザ9が内
蔵されている。前記内視鏡4は、前記レーザ9より発し
たレーザ光を生体内腔に導くライトガイド10と、その
レーザ光を拡散し照明する凹レンズ11と、病変部3の
蛍光像をカラー撮像素子5に投影する対物レンズ12
と、対物レンズ12からの蛍光像のうち特定の波長を透
過する光学フィルタ13とを備えて構成されている。
The light source 2 has a built-in laser 9 such as an excimer, He-Cd, or argon which emits light in the blue or ultraviolet region. The endoscope 4 includes a light guide 10 that guides the laser light emitted from the laser 9 to a living body cavity, a concave lens 11 that diffuses and illuminates the laser light, and a fluorescent image of the lesion 3 on a color image sensor 5. Objective lens 12 for projection
And an optical filter 13 that transmits a specific wavelength in the fluorescence image from the objective lens 12.

【0013】蛍光観察内視鏡装置1の内視鏡4は、レー
ザ9より発したレーザ光を生体内腔に導くライトガイド
10と、そのレーザ光を拡散し照明する凹レンズ11
と、病変部3の蛍光像をカラー撮像素子5に投影する対
物レンズ12と、前記蛍光像のうち特定の波長を透過す
る光学フィルタ13とを備えて構成されている。光学フ
ィルタ13は、500nm〜540nmの緑色と、640nm
〜700nmの赤色を透過する透過特性を有している。
The endoscope 4 of the fluorescence observation endoscope apparatus 1 includes a light guide 10 for guiding the laser light emitted from the laser 9 to the internal cavity of the living body, and a concave lens 11 for diffusing and illuminating the laser light.
The objective lens 12 for projecting the fluorescence image of the lesion 3 on the color image sensor 5 and the optical filter 13 for transmitting a specific wavelength of the fluorescence image. The optical filter 13 has a green color of 500 nm to 540 nm and 640 nm.
It has a transmission characteristic of transmitting a red color of up to 700 nm.

【0014】光学フィルタ13は、図2に示すような透
過特性を有する干渉フィルタと、図3に示すような透過
特性を有する色フィルタとからなり、結局光学フィルタ
13は図4の実線に示すような透過特性を有している。
The optical filter 13 comprises an interference filter having a transmission characteristic as shown in FIG. 2 and a color filter having a transmission characteristic as shown in FIG. 3, and the optical filter 13 is as shown by a solid line in FIG. It has excellent transmission characteristics.

【0015】尚、図示はしていないが前記光源2には白
色光を発生するキセノンランプとレーザ9とキセノンラ
ンプの光を切り換えてライトガイド10に供給する切り
換え手段がある。また、内視鏡4には白色光による像を
撮像する図示しない撮像素子が内蔵されている。
Although not shown, the light source 2 has a switching means for switching the light of the xenon lamp that emits white light, the laser 9 and the light of the xenon lamp to the light guide 10. Further, the endoscope 4 has a built-in image pickup element (not shown) for picking up an image of white light.

【0016】(作用)レーザ9より出射したレーザ光は
内視鏡4に内蔵したライトガイド10に入射され、生体
内腔に導かれる。そのレーザ光は凹レンズ11により拡
散して生体内腔に照射される。そのレーザ光により病変
部3および周辺の正常部より自家蛍光が放出され、これ
を対物レンズ12を通じ、カラー撮像素子5に投影す
る。この時、対物レンズ12とカラー撮像素子5の間に
は光学フィルタ13が配置されており、光学フィルタ1
3は図4の実線のごとく、500nm〜540nmの緑色
と、640nm〜700nmの赤色を透過する。
(Operation) The laser light emitted from the laser 9 is incident on the light guide 10 incorporated in the endoscope 4 and guided to the lumen of the living body. The laser light is diffused by the concave lens 11 and applied to the living body lumen. The laser light causes autofluorescence to be emitted from the lesioned part 3 and the surrounding normal part, and this is projected onto the color image sensor 5 through the objective lens 12. At this time, the optical filter 13 is arranged between the objective lens 12 and the color image pickup device 5, and the optical filter 1
3 transmits a green color of 500 nm to 540 nm and a red color of 640 nm to 700 nm as shown by the solid line in FIG.

【0017】一方、カラー撮像素子の分光感度は、図4
の破線の様に赤、緑、青の各領域に感度を持つ。すなわ
ち、カラー撮像素子5には、前記光学フィルタ13とカ
ラー撮像素子5の重なった部分、つまりカラー撮像素子
5の緑の領域には500nm〜540nmの蛍光が、赤の領
域には640nm〜700nmの蛍光が入射する。このカラ
ー撮像素子5をカメラコントロールユニット6により、
各々カラービデオ信号の例えばRGB信号に変換する。
On the other hand, the spectral sensitivity of the color image sensor is shown in FIG.
It has sensitivity in each region of red, green and blue as shown by the broken line. That is, in the color image pickup device 5, fluorescence of 500 nm to 540 nm is emitted in the overlapping portion of the optical filter 13 and the color image pickup device 5, that is, in the green region of the color image pickup device 5, and 640 nm to 700 nm is emitted in the red region. Fluorescent light enters. This color image sensor 5 is controlled by the camera control unit 6.
Each color video signal is converted into, for example, an RGB signal.

【0018】念のため、R信号は640nm〜700nmの
蛍光であり、G信号は500nm〜540nmの蛍光であ
る。これらRGB信号の各々の重み付けや、直線性の補
正をイメージプロセッサ7で行う。この重み付けは正常
部位と病変部で見分けやすくかつ、誤診が少なくなる様
設定してある。
As a precaution, the R signal is fluorescence from 640 nm to 700 nm, and the G signal is fluorescence from 500 nm to 540 nm. The image processor 7 weights each of these RGB signals and corrects the linearity. This weighting is set so that it is easy to distinguish between a normal part and a lesion part, and misdiagnosis is reduced.

【0019】なお、光学フィルタ13は概略480nm〜
560nmと620nm〜700nm付近の光を含んで透過す
るように構成してもよい。
The optical filter 13 has a wavelength of approximately 480 nm.
You may comprise so that the light of 560 nm and 620 nm-700 nm vicinity may be included and transmitted.

【0020】(効果)以上の様に、光学フィルタ13の
2つの透過する波長領域がカラー撮像素子の分光特性の
R,G,Bのいずれかに対応することで、2つの波長領
域の蛍光をR,G,Bのビデオ信号として取り出せる。
そして、各々の蛍光の波長領域を独立して重み付けや感
度補正が行え、病変部と正常部がより明確に判別しやす
く表示できる。また、蛍光像の撮像のための撮像素子が
1つでよいため、装置の小型化も可能である。
(Effect) As described above, by making the two wavelength regions of the optical filter 13 which are transmitted correspond to any one of the spectral characteristics R, G and B of the color image pickup device, the fluorescence of the two wavelength regions can be detected. It can be extracted as R, G, B video signals.
Then, each fluorescence wavelength region can be independently weighted and sensitivity corrected, and the lesion area and the normal area can be displayed more clearly and easily. Further, since only one image pickup element is required for picking up a fluorescent image, the device can be downsized.

【0021】次に第2実施例について説明する。図5お
よび図6は本発明の第2実施例に係わり、図5は蛍光観
察内視鏡装置の内視鏡の先端の構成を示す構成図、図6
は図5の内視鏡の先端の変形例の構成を示す構成図であ
る。第2実施例は第1実施例とほとんど同じであるの
で、異なる構成のみ説明し同一の構成には同じ符号をつ
け説明は省略する。
Next, a second embodiment will be described. 5 and 6 relate to the second embodiment of the present invention, and FIG. 5 is a configuration diagram showing the configuration of the distal end of the endoscope of the fluorescence observation endoscope apparatus.
FIG. 9 is a configuration diagram showing a configuration of a modified example of the distal end of the endoscope of FIG. 5. Since the second embodiment is almost the same as the first embodiment, only different configurations will be described, the same configurations will be denoted by the same reference numerals, and description thereof will be omitted.

【0022】蛍光から経内視鏡的に病変部を診断する技
術として、特開昭63−234939号公報がある。こ
れは、内視鏡先端部の撮像素子と対物レンズとの間に蛍
光のみを取り出す励起光カット用のフィルタが設けら
れ、さらに、このフィルタがワイヤで可動され光路中に
挿脱できる様になっている。
As a technique for endoscopically diagnosing a lesion from fluorescence, there is JP-A-63-234939. This is because a filter for cutting excitation light that extracts only fluorescence is provided between the image pickup device at the tip of the endoscope and the objective lens, and this filter is moved by a wire so that it can be inserted into and removed from the optical path. ing.

【0023】しかし、励起光カットフィルタをワイヤで
可動する方法は、ワイヤの長さが内視鏡の長さに応じ、
長くなり、また、内視鏡の曲げ等によりワイヤを動かす
抵抗が増加し、このため、追従性や応答性が悪いという
問題がある。
However, in the method of moving the excitation light cut filter with a wire, the length of the wire depends on the length of the endoscope.
In addition, the resistance to move the wire increases due to the lengthening of the endoscope and the like, which causes a problem of poor followability and responsiveness.

【0024】そこで、第2実施例では、撮像素子と対物
レンズの間に蛍光観察用フィルタを圧電アクチュエータ
で自在に挿脱することで、応答性のよい切り換えを可能
にする蛍光観察内視鏡装置について説明する。
In view of this, in the second embodiment, the fluorescence observation endoscope apparatus which enables switching with good response by freely inserting and removing the fluorescence observation filter between the image pickup element and the objective lens by the piezoelectric actuator. Will be described.

【0025】第1実施例では、蛍光像を撮像するカラー
撮像素子5のほかに、白色光像を撮像する図示しない撮
像素子を備えて構成するとしたが、本実施例は第1実施
例の光学フィルタ13を光路中に挿脱することで1つの
カラー撮像素子5で蛍光像および白色光像の両方を切り
換え観察するものである。
In the first embodiment, in addition to the color image pickup device 5 for picking up a fluorescent image, an image pickup device (not shown) for picking up a white light image is provided, but this embodiment is the same as that of the first embodiment. By inserting / removing the filter 13 in / from the optical path, one color image pickup device 5 switches and observes both the fluorescence image and the white light image.

【0026】(構成)図5に示すように、光学フィルタ
ー挿脱装置14は、内視鏡4の観察側先端内部にあり、
これは圧電アクチュエータ15と、圧電アクチュエータ
15を摩擦力で保持するベース16と、回動可能に構成
された回動軸18を有するな光学フィルタ13と、圧電
アクチュエータ15を動作制御する図示しないアクチュ
エータ制御回路より構成される。その他の構成は第1実
施例と同じである。
(Structure) As shown in FIG. 5, the optical filter insertion / removal device 14 is located inside the distal end of the endoscope 4 on the observation side.
This is a piezoelectric actuator 15, a base 16 for holding the piezoelectric actuator 15 by a frictional force, an optical filter 13 having a rotatable shaft 18, and an actuator control (not shown) for controlling the operation of the piezoelectric actuator 15. It is composed of circuits. The other structure is the same as that of the first embodiment.

【0027】(作用〕蛍光観察時は、図5の実線の様
に、光学フィルタ13はカラー撮像素子5と対物レンズ
12の間の光路中に挿入されている。光学フィルタ13
およびカラー撮像素子5は、第1実施例と同様に図4に
示した特性を持っており、500nm〜540nm、640
nm〜700nmの蛍光をビデオ信号のR信号とG信号とし
て出力される。
(Operation) During fluorescence observation, the optical filter 13 is inserted in the optical path between the color image pickup device 5 and the objective lens 12, as indicated by the solid line in FIG.
Also, the color image pickup device 5 has the characteristics shown in FIG. 4 as in the first embodiment, and is 500 nm to 540 nm, 640 nm.
The fluorescence of nm to 700 nm is output as the R and G signals of the video signal.

【0028】一方、白色光観察時には、図示しなアいク
チュエータ制御回路により圧電アクチュエータ15は、
図5の点線の様に移動し、光学フィルタ13は回動軸1
8を中心に回転移動し光路中から除かれる。この時、こ
の動作に同期して光源2が励起光から白色光に切り換え
られ、カラー撮像素子5により通常のカラー画像として
とらえられる。
On the other hand, when observing white light, the piezoelectric actuator 15 is controlled by the actuator control circuit (not shown).
The optical filter 13 moves as shown by the dotted line in FIG.
It is rotated around 8 and removed from the optical path. At this time, the light source 2 is switched from the excitation light to the white light in synchronization with this operation, and is captured by the color image sensor 5 as a normal color image.

【0029】尚、圧電アクチュエータ15は圧電素子よ
りなり、この圧電素子の一端に正または負の電圧を短時
間に加えると、その一端が急速に伸びまたは縮み、その
時圧力により前進または後退する。そして圧電素子とベ
ースの前記摩擦力を越えない様に電圧を戻すと圧電素子
はその位置に保持される。この動作を繰り返すことでし
ゃくとり虫状に前進、後退することができる。
The piezoelectric actuator 15 is composed of a piezoelectric element, and when a positive or negative voltage is applied to one end of this piezoelectric element for a short time, one end thereof expands or contracts rapidly, and at that time, moves forward or backward by pressure. When the voltage is returned so as not to exceed the frictional force between the piezoelectric element and the base, the piezoelectric element is held at that position. By repeating this operation, it is possible to move forward and backward like a scooping insect.

【0030】(効果)このように本実施例では第1実施
例の効果に加え、圧電アクチュエータ15を用いること
で、小型かつ確実に蛍光像と白色光像の切り換えができ
る。
(Effect) As described above, in this embodiment, in addition to the effect of the first embodiment, the use of the piezoelectric actuator 15 makes it possible to switch between a fluorescent image and a white light image in a compact and reliable manner.

【0031】図6は図5の変形例で、カラー撮像素子5
の代りにモノクロの撮像素子を使用した例である。
FIG. 6 shows a modification of FIG. 5, which is a color image pickup device 5.
In this example, a monochrome image sensor is used instead of the.

【0032】(構成)図6の光学フィルター挿脱装置2
0は、第1の圧電アクチュエータ21と、圧電アクチュ
エーター21を摩擦力で保持する第1のベース22と、
回動可能な第1の光学フィルタ23と、第2の圧電アク
チュエータ24と、圧電アクチュエータ24を摩擦力で
保持する第2のベース25と、回動可能な第2の光学フ
ィルタ26と、可視領域に感度のあるモノクロ撮像素子
19とから構成される。他の部分については、第1実施
例と同様であり説明は省略する。
(Structure) Optical filter insertion / removal device 2 of FIG.
0 is a first piezoelectric actuator 21, a first base 22 for holding the piezoelectric actuator 21 by frictional force,
A rotatable first optical filter 23, a second piezoelectric actuator 24, a second base 25 that holds the piezoelectric actuator 24 with a frictional force, a rotatable second optical filter 26, and a visible region. And a monochrome image pickup device 19 having high sensitivity. The other parts are the same as those in the first embodiment, and the description thereof will be omitted.

【0033】(作用)各々の光学フィルタ23,26
は、各々の圧電アクチュエータ21、24により第1の
溝27および第2の溝28に沿って回転移動される。例
えば光学フィルタ23は500nm〜540nmの光を透過
し、光学フィルタ26は640nm〜700nmの光を透過
する。一方、モノクロ撮像素子19は、可視領域全般に
感度を持つ。すなわち、光学フィルタ23,26を圧電
アクチュエーター21,24により順次挿脱すること
で、画像を各波長におけるビデオ信号として取り出せ
る。また、白色光観察の際は、光学フィルタ23,26
の両方とも光路中より除き、光源2よりR,G,Bの光
を順次照射することで白色光像を得る。その他の作用は
第1実施例と同じである。
(Operation) Each optical filter 23, 26
Are rotatively moved along the first groove 27 and the second groove 28 by the respective piezoelectric actuators 21 and 24. For example, the optical filter 23 transmits light of 500 nm to 540 nm, and the optical filter 26 transmits light of 640 nm to 700 nm. On the other hand, the monochrome image pickup device 19 has sensitivity in the entire visible region. That is, by sequentially inserting and removing the optical filters 23 and 26 by the piezoelectric actuators 21 and 24, an image can be taken out as a video signal at each wavelength. When observing white light, the optical filters 23, 26 are used.
Both of them are removed from the optical path, and a white light image is obtained by sequentially irradiating light of R, G, B from the light source 2. Other functions are the same as those in the first embodiment.

【0034】(効果)したがって、第1実施例の効果に
加え、モノクロ撮像素子を使うことで分解能の高い蛍光
画像および白色光画像を得ることができる。
(Effect) Therefore, in addition to the effect of the first embodiment, it is possible to obtain a fluorescence image and a white light image with high resolution by using the monochrome image pickup device.

【0035】次に第3実施例について説明する。図7は
本発明の第3実施例に係る蛍光観察内視鏡装置の内視鏡
の先端の構成を示す構成図である。第3実施例は第1実
施例とほとんど同じであるので、異なる構成のみ説明し
同一の構成には同じ符号をつけ説明は省略する。
Next, a third embodiment will be described. FIG. 7 is a configuration diagram showing the configuration of the distal end of the endoscope of the fluorescence observation endoscope apparatus according to the third embodiment of the present invention. Since the third embodiment is almost the same as the first embodiment, only different configurations will be described, the same configurations will be denoted by the same reference numerals, and description thereof will be omitted.

【0036】第1及び第2実施例のように、励起光の様
な紫外から青色の光をライトガイド10を構成する光フ
ァイバに通すと、そのファイバ自体が蛍光を発生し、励
起光以外の光が生体に照射され、生体からの自家蛍光と
一緒に検出してしまい、蛍光像のコントラスト低下の原
因となる虞がある。
As in the first and second embodiments, when ultraviolet to blue light such as excitation light is passed through the optical fiber constituting the light guide 10, the fiber itself produces fluorescence, and light other than excitation light is emitted. There is a possibility that the living body is irradiated with light and is detected together with the autofluorescence from the living body, which may cause a decrease in the contrast of the fluorescent image.

【0037】そこで、第3実施例では、第1実施例の目
的に加え、ライトガイド照射端側に励起光は通し、それ
以外、特に長波長側の光を吸収または反射するフィルタ
を配置することで、よりコントラストの高い蛍光画像を
提供することを目的としている。
In view of the above, in the third embodiment, in addition to the purpose of the first embodiment, a filter that allows excitation light to pass through the light guide irradiation end side and absorbs or reflects light other than that, particularly on the long wavelength side, is arranged. Therefore, it is intended to provide a fluorescence image with higher contrast.

【0038】図7は光源2から励起光が入射した時、ラ
イトガイドで発生する蛍光を遮断する構成を示してい
る。
FIG. 7 shows a structure for blocking the fluorescence generated in the light guide when the excitation light is incident from the light source 2.

【0039】すなわち、第3実施例においては、図7に
示すように、内視鏡4の先端内にライトガイド10で発
生する蛍光を遮断する蛍光遮断装置29を備えており、
ライトガイド10の蛍光遮断装置29は、光源2の励起
光のみを透過する励起光透過フィルタ30と、励起光透
過フィルタ30を光路中から挿脱させるため回転移動さ
せる圧電アクチュエータ31と、圧電アクチュエータ3
1を摩擦力で保持するベース32とよりなる。その他の
構成は第1実施例と同じである。
That is, in the third embodiment, as shown in FIG. 7, a fluorescence blocking device 29 for blocking the fluorescence generated in the light guide 10 is provided in the tip of the endoscope 4.
The fluorescence blocking device 29 of the light guide 10 includes an excitation light transmission filter 30 that transmits only the excitation light of the light source 2, a piezoelectric actuator 31 that rotationally moves the excitation light transmission filter 30 to insert and remove it from the optical path, and a piezoelectric actuator 3.
The base 32 holds 1 by a frictional force. The other structure is the same as that of the first embodiment.

【0040】(作用)まず、蛍光観察時ライトガイド1
0に励起光、特に青色から紫外光のエネルギの高い光が
入射されると、ライトガイド10の素材に起因する蛍光
が可視領域に発生する。そこで、励起光透過フィルタ3
0で励起光のみを通し、蛍光を除去できる。一方、白色
光観察時は励起光フィルタ30を光路中から除くことで
生体内腔に白色光を照射できる。
(Operation) First, the light guide 1 for fluorescence observation.
When excitation light, in particular, blue light having a high energy of ultraviolet light is incident on 0, fluorescence due to the material of the light guide 10 is generated in the visible region. Therefore, the excitation light transmission filter 3
When it is 0, only excitation light can be passed through and fluorescence can be removed. On the other hand, at the time of observing white light, by removing the excitation light filter 30 from the optical path, white light can be emitted to the living body lumen.

【0041】なお、励起光透過フィルタ30を光路中か
ら挿脱させる圧電アクチュエータ31の作用は、図5に
おける第2実施例の圧電アクチュエータ15と同じであ
るので説明は省略する。
The operation of the piezoelectric actuator 31 for inserting and removing the excitation light transmission filter 30 from the optical path is the same as that of the piezoelectric actuator 15 of the second embodiment shown in FIG.

【0042】(効果)本実施例によればライトガイドの
蛍光による反射光が除去できるので、組織からの自家蛍
光をS/Nよく検出でき、より病変部と正常部の判別能
力が高くなる。
(Effect) According to the present embodiment, since the reflected light due to the fluorescence of the light guide can be removed, the autofluorescence from the tissue can be detected with a good S / N ratio, and the ability to discriminate between the lesion area and the normal area is further enhanced.

【0043】次に第4実施例について説明する。図8お
よび図9は本発明の第4実施例に係わり、図8は蛍光観
察内視鏡装置の構成を示す構成図、図9は図8の光プロ
ーブの構成を示す断面図である。第4実施例は第1実施
例とほとんど同じであるので、異なる構成のみ説明し同
一の構成には同じ符号をつけ説明は省略する。
Next, a fourth embodiment will be described. 8 and 9 relate to the fourth embodiment of the present invention, FIG. 8 is a configuration diagram showing a configuration of a fluorescence observation endoscope apparatus, and FIG. 9 is a sectional view showing a configuration of the optical probe of FIG. Since the fourth embodiment is almost the same as the first embodiment, only different configurations will be described, the same configurations will be denoted by the same reference numerals, and description thereof will be omitted.

【0044】第4実施例は、励起光を内視鏡4のライト
ガイド10の代りに内視鏡4のチャンネルを通した光プ
ローブを使用し励起光を供給する例である。
The fourth embodiment is an example of supplying the excitation light by using an optical probe that passes the excitation light through the channel of the endoscope 4 instead of the light guide 10 of the endoscope 4.

【0045】すなわち、本実施例は、図8に示すよう
に、レーザ9の励起光が内視鏡4のチャンネル33を挿
通する光プローブ34を介し、生体内腔に照射されるよ
うになっている。尚、光源2には白色光源例えばXeラ
ンプ35が内蔵されている。
That is, in this embodiment, as shown in FIG. 8, the excitation light of the laser 9 is applied to the internal cavity of the living body via the optical probe 34 which passes through the channel 33 of the endoscope 4. There is. The light source 2 includes a white light source such as a Xe lamp 35.

【0046】図9に示すように、光プローブ34は励起
光を伝送する光ファイバ36と、励起光のみの波長を通
す励起光透過フィルタ37と、励起光を生体内腔で拡散
させる凹レンズ38と、前記光ファイバ36、励起光透
過フィルタ37、凹レンズ38を固定するパイプ39
と、光ファイバ36を保護するチューブ40とより構成
される。
As shown in FIG. 9, the optical probe 34 includes an optical fiber 36 for transmitting the excitation light, an excitation light transmission filter 37 for transmitting only the wavelength of the excitation light, and a concave lens 38 for diffusing the excitation light in the lumen of the living body. A pipe 39 for fixing the optical fiber 36, the excitation light transmission filter 37, and the concave lens 38.
And a tube 40 that protects the optical fiber 36.

【0047】その他の構成および作用は第1実施例と同
じである。
Other configurations and operations are the same as those in the first embodiment.

【0048】本実施例によれは、励起光専用の光プロー
ブ34を備えているので、第3実施例の様なアクチュエ
ータ31を必要とせずに、第3実施例と同様な効果を得
ることができる。
According to this embodiment, since the optical probe 34 dedicated to the excitation light is provided, the same effect as that of the third embodiment can be obtained without the need of the actuator 31 as in the third embodiment. it can.

【0049】ここで、上記各実施例における白色光およ
び励起光による白色光像および励起光像を取得制御につ
いて説明する。
Now, the acquisition control of the white light image and the excitation light image by the white light and the excitation light in each of the above embodiments will be described.

【0050】図10は白色光像および励起光像の取得制
御を行う蛍光観察内視鏡装置の構成を示す構成図であ
る。
FIG. 10 is a configuration diagram showing a configuration of a fluorescence observation endoscope apparatus for controlling acquisition of a white light image and an excitation light image.

【0051】図10は、蛍光観察のための蛍光観察内視
鏡装置41であり、この蛍光観察内視鏡装置41は、白
色光および励起光を発生するXeランプやレーザおよび
白色光または励起光を選択する切り換え装置を内蔵した
光源42と、その光源42からの光を生体内腔に伝送し
生体組織の白色光像および蛍光像を得る内視鏡43と、
内視鏡43の接眼部44に着脱自在に装着される白色光
像および蛍光像を撮像する白色光像用カメラおよび蛍光
像用高感度カメラ(図示せず)とを内蔵し前記光源42
の光に同期して各々のカメラを切り換える切り換え装置
(図示せず)を有するカメラ45と、前記カメラ45を
駆動しビデオ信号に変換するカメラコントロールユニッ
ト46と、そのビデオ信号を処理し病変部と正常部を認
識しやすくするイメージプロセッサ47と、イメージプ
ロセッサ44の出力を画像として表示するモニタ48
と、白色光像または蛍光像を記録するVTR49、白色
光像または蛍光像をプリントアウトするビデオプリンタ
50と、光源42、カメラコントロールユニット46、
VTR49、ビデオプリンタ50を制御するコントロー
ルユニット51とから構成される。
FIG. 10 shows a fluorescence observation endoscope apparatus 41 for fluorescence observation. This fluorescence observation endoscope apparatus 41 is a Xe lamp or laser for generating white light and excitation light and white light or excitation light. A light source 42 having a built-in switching device for selecting, and an endoscope 43 for transmitting light from the light source 42 to a lumen of a living body to obtain a white light image and a fluorescent image of a living tissue,
The white light image camera for picking up a white light image and a fluorescent image and a high-sensitivity camera for a fluorescent image (not shown) which are detachably attached to the eyepiece portion 44 of the endoscope 43 are built in and the light source 42 is provided.
Camera 45 having a switching device (not shown) for switching each camera in synchronization with the light of the above, a camera control unit 46 for driving the camera 45 and converting it into a video signal, and a lesion part by processing the video signal. An image processor 47 that makes it easy to recognize a normal portion, and a monitor 48 that displays the output of the image processor 44 as an image.
A VTR 49 for recording a white light image or a fluorescent image, a video printer 50 for printing out a white light image or a fluorescent image, a light source 42, a camera control unit 46,
It is composed of a VTR 49 and a control unit 51 for controlling the video printer 50.

【0052】内視鏡43は、細長な挿入部52と、挿入
部52の基端に設けられた操作部53とからなり、コン
トロールユニット51は、内視鏡43の操作部53に組
み込まれている押しボタン状のスイッチA54、スイッ
チB55、モード切り換えスイッチ56により遠隔操作
ができる。図中のボタン57は内視鏡の送気送水および
吸引機能を動作させるためのものである。また、内視鏡
43の操作部53からはユニバーサルケーブル58が延
出しており、このユニバーサルケーブル58の先端は光
源42に着脱自在に接続されている。そして光源42か
らの白色光または励起光は、ユニバーサルケーブル58
および挿入部52内を挿通する図示しないライトガイド
により内視鏡43の先端に伝送され、内視鏡先端より前
方の病変部に照射され、病変部からの白色光像または蛍
光像が挿入部52および操作部53を挿通する図示しな
いイメージガイドにより接眼部44に伝送されカメラ4
5で撮像するようになっている。
The endoscope 43 comprises an elongated insertion portion 52 and an operation portion 53 provided at the base end of the insertion portion 52, and the control unit 51 is incorporated in the operation portion 53 of the endoscope 43. A push button-shaped switch A54, a switch B55, and a mode changeover switch 56 are used for remote operation. The button 57 in the figure is for operating the air and water supply and suction functions of the endoscope. A universal cable 58 extends from the operation section 53 of the endoscope 43, and the end of the universal cable 58 is detachably connected to the light source 42. The white light or the excitation light from the light source 42 is transmitted by the universal cable 58.
And a light guide (not shown) inserted through the insertion section 52 transmits the light to the tip of the endoscope 43, irradiates the lesion area in front of the tip of the endoscope, and a white light image or a fluorescence image from the lesion area is inserted into the insertion section 52. Also, the image is transmitted to the eyepiece unit 44 by an image guide (not shown) which is inserted through the operation unit 53 and the camera 4
The image is taken at 5.

【0053】このような構成により、スイッチA54、
スイッチB55およびモード切り換えスイッチ56を操
作することで、蛍光像と白色光像の切り換え、動画と静
止画が切り換えが可能となる。
With such a configuration, the switch A54,
By operating the switch B55 and the mode switching switch 56, it is possible to switch between the fluorescent image and the white light image and to switch between the moving image and the still image.

【0054】すなわち、まず、モード切り換えスイッチ
56を押すと、表1に示すように、モードが1,2,
3,1……と順次切り換わり、例えば、モード1の状態
でスイッチA54を押すと、白色光像から蛍光像に切り
換わる。この時コントロールユニットは光源42で白色
光から励起光へ切り換わり、カメラ45で白色光像用カ
メラから蛍光用高感度カメラに切り換える。ここで、ス
イッチB55を押すと静止画になり、さらに押すと動画
になる。
That is, first, when the mode changeover switch 56 is pushed, as shown in Table 1, the modes are 1, 2,
3, 1, ..., For example, when the switch A54 is pressed in the mode 1, the white light image is switched to the fluorescent image. At this time, the control unit switches the white light to the excitation light by the light source 42, and switches the white light image camera to the fluorescent high sensitivity camera by the camera 45. Here, pressing the switch B55 produces a still image, and further pressing produces a moving image.

【0055】[0055]

【表1】 モード2では、蛍光用高感度カメラの感度調整が可能で
あり、スイッチA54を押すと、感度は向上しスイッチ
B55を押すと減少する。モード3ではスイッチA5
4、スイッチB55の操作により、VTR49の記録の
ON/OFFおよびビデオプリンタ50によるプリント
アウトができる。尚、各モードと、スイッチの機能の配
列および他の機能はこの限りではない。
[Table 1] In mode 2, the sensitivity of the high-sensitivity camera for fluorescence can be adjusted. When the switch A54 is pressed, the sensitivity is improved, and when the switch B55 is pressed, the sensitivity is decreased. Switch A5 in mode 3
4. By operating the switch B55, the recording of the VTR 49 can be turned on / off and the video printer 50 can print out. It should be noted that each mode, the arrangement of the functions of the switches, and other functions are not limited to this.

【0056】[付記] (付記項1)経内視鏡的に励起光を体腔内臓器に照射
し、組織からの蛍光を2次元画像として観察する蛍光観
察内視鏡装置において、前記2次元画像を複数の異なる
波長帯域に感度を有し電子信号に変換する撮像素子の受
光側に、前記波長帯域のうち相異なる少なくとも2つの
領域の波長を通過させる光学フィルタを配置させた蛍光
観察内視鏡装置。
[Additional remarks] (Additional remark 1) In the fluorescence observation endoscope apparatus for transendoscopically irradiating an organ in a body cavity with excitation light and observing fluorescence from a tissue as a two-dimensional image, the two-dimensional image Fluorescence observation endoscope in which an optical filter for passing wavelengths of at least two different regions in the wavelength band is arranged on the light receiving side of an image sensor that has sensitivity to a plurality of different wavelength bands and converts it into an electronic signal. apparatus.

【0057】(付記項2)前記撮像素子は内視鏡先端部
に配置され、前記光学フィルタは内視鏡対物レンズと前
記撮像素子の光路中に配置されている付記項1記載の蛍
光観察内視鏡装置。
(Additional Item 2) In the fluorescence observation according to Additional Item 1, the image pickup device is arranged at a distal end portion of the endoscope, and the optical filter is arranged in an optical path of the endoscope objective lens and the image pickup device. Endoscope device.

【0058】(付記項3)前記撮像素子は赤、緑、青色
の各々の領域に感度を持つ付記項1記載の蛍光観察内視
鏡装置。
(Additional Item 3) The fluorescence observation endoscope apparatus according to Additional Item 1, wherein the image pickup element has sensitivity in each of red, green and blue regions.

【0059】(付記項4)前記フィルタは前記撮像素子
の赤、緑の領域の一部の波長帯域を透過し、それ以外は
反射または吸収する付記項3記載の蛍光観察内視鏡装
置。
(Additional Item 4) The fluorescence observation endoscope apparatus according to Additional Item 3, wherein the filter transmits a part of wavelength bands of red and green regions of the image pickup device, and reflects or absorbs other wavelength bands.

【0060】(付記項5)前記フィルタの波長は概略4
80nm〜560nmと620nm〜700nm付近の光を含ん
で透過する付記項4記載の蛍光観察内視鏡装置。
(Appendix 5) The wavelength of the filter is approximately 4
5. The fluorescence observation endoscope apparatus according to item 4, which transmits light including wavelengths of 80 nm to 560 nm and 620 nm to 700 nm.

【0061】(付記項6)経内視鏡的に励起光を体腔内
臓器に照射し、組織からの蛍光を2次元画像として観察
する蛍光観察内視鏡装置において、前記内視鏡先端に配
置された2次元画像を電子信号に変換する撮像素子と、
内視鏡対物レンズとの光路の間に、特定の波長領域を透
過する光学フィルタを圧電素子からなる移動可能なアク
チュエータにより挿脱する手段を有した蛍光観察内視鏡
装置。
(Additional Item 6) In a fluorescence observation endoscope apparatus for irradiating an organ in a body cavity with excitation light transendoscopically and observing fluorescence from a tissue as a two-dimensional image, the fluorescence observation endoscope apparatus is arranged at the tip of the endoscope. An image sensor for converting the captured two-dimensional image into an electronic signal,
A fluorescence observation endoscope apparatus having means for inserting and removing an optical filter that transmits a specific wavelength region by a movable actuator composed of a piezoelectric element between an optical path of the endoscope objective lens.

【0062】(付記項7)前記撮像素子は赤、緑、青色
の各々の領域に感度を持つ付記項6記載の蛍光観察内視
鏡装置。
(Additional Item 7) The fluorescence observation endoscope apparatus according to Additional Item 6, wherein the image pickup element has sensitivity in each of red, green, and blue regions.

【0063】(付記項8)前記光学フィルタは前記撮像
素子の赤、緑の領域の一部の波長帯域を透過し、それ以
外は反射または吸収する付記項7記載の蛍光観察内視鏡
装置。
(Additional Item 8) The fluorescence observation endoscope apparatus according to Additional Item 7, wherein the optical filter transmits a part of wavelength bands of red and green regions of the image pickup device and reflects or absorbs the other wavelength bands.

【0064】(付記項9)前記光学フィルタの波長は概
略480nm〜560nmと620nm〜700nm付近の光を
含んで透過する付記8記載の蛍光観察内視鏡装置。
(Supplementary note 9) The fluorescence observation endoscope apparatus according to supplementary note 8, wherein the wavelength of the optical filter is such that light having wavelengths of approximately 480 nm to 560 nm and 620 nm to 700 nm is included and transmitted.

【0065】(付記項10)前記撮像素子は可視領域に
一様に感度を持つ付記項6記載の蛍光観察内視鏡装置。
(Additional Item 10) The fluorescence observation endoscope apparatus according to Additional Item 6, wherein the image pickup element has a uniform sensitivity in the visible region.

【0066】(付記項11)前記光学フィルタおよび前
記アクチュエータは少なくとも2つであり、各々の光学
フィルタの透過波長領域が異なる付記項10記載の蛍光
観察内視鏡装置。
(Additional Item 11) The fluorescence observation endoscope apparatus according to Additional Item 10, wherein the number of the optical filters and the number of the actuators are at least two, and the transmission wavelength regions of the respective optical filters are different.

【0067】(付記項12)前記光学フィルタの波長は
概略480nm〜560nmと620nm〜700nm付近の光
を含んで透過する付記項11記載の蛍光観察内視鏡装
置。
(Additional Item 12) The fluorescence observation endoscope apparatus according to Additional Item 11, wherein the wavelength of the optical filter transmits light including wavelengths of approximately 480 nm to 560 nm and 620 nm to 700 nm.

【0068】(付記項13)経内視鏡的に励起光を体腔
内臓器に照射し、組織からの蛍光を2次元画像として観
察する蛍光観察内視鏡装置において、前記励起光を伝送
する手段の光出射端に励起光のみを透過し、少なくとも
その波長より長い領域を反射または吸収する励起光透過
フィルターを配置した蛍光観察内視鏡装置。
(Supplementary Note 13) A means for transmitting the excitation light in a fluorescence observation endoscope apparatus for transendoscopically irradiating the internal organs with the excitation light and observing the fluorescence from the tissue as a two-dimensional image. The fluorescence observation endoscope apparatus in which an excitation light transmission filter that transmits only excitation light and reflects or absorbs at least a region longer than the wavelength is arranged at the light emission end of the.

【0069】(付記項14)前記励起光伝送手段は、内
視鏡に内蔵されたライトガイドである付記項13記載の
蛍光観察内視鏡装置。
(Additional Item 14) The fluorescence observation endoscope apparatus according to Additional Item 13, wherein the excitation light transmitting means is a light guide built in the endoscope.

【0070】(付記項15)前記励起光伝送手段は内視
鏡のチャンネルを挿通できる太さの光プローブである付
記項13記載の蛍光観察内視鏡装置。
(Additional Item 15) The fluorescence observation endoscope apparatus according to Additional Item 13, wherein the excitation light transmitting means is an optical probe having a thickness capable of being inserted through a channel of the endoscope.

【0071】(付記項16)前記励起光透過フィルタは
450nmより短い波長を含んで透過する付記項13記載
の蛍光観察内視鏡装置。
(Additional Item 16) The fluorescence observation endoscope apparatus according to Additional Item 13, wherein the excitation light transmitting filter transmits a wavelength shorter than 450 nm.

【0072】(付記項17)前記励起光透過フィルタは
光路中に挿脱可能である付記項14記載の蛍光観察内視
鏡装置。
(Additional Item 17) The fluorescence observation endoscope apparatus according to Additional Item 14, wherein the excitation light transmission filter can be inserted into and removed from the optical path.

【0073】(付記項18)前記挿脱手段は圧電素子か
らなる移動可能なアクチュエータである付記項17記載
の蛍光観察内視鏡装置。
(Additional Item 18) The fluorescence observation endoscope apparatus according to Additional Item 17, wherein the inserting / removing means is a movable actuator composed of a piezoelectric element.

【0074】[0074]

【発明の効果】以上説明したように本発明の蛍光観察内
視鏡装置によれば、2次元画像を複数の異なる波長帯域
に感度を有し電子信号に変換する撮像素子の受光側に、
波長帯域のうち相異なる少なくとも2つの領域の波長を
通過させる光学フィルタを配置させているので、光学フ
ィルタにより波長帯域のうち相異なる少なくとも2つの
領域の波長を通過させ、回転フィルタ等による機械的切
り換えなしで2つの特定波長の蛍光を検出することがで
きるという効果がある。
As described above, according to the fluorescence observation endoscope apparatus of the present invention, the two-dimensional image is sensitive to a plurality of different wavelength bands and is converted into an electronic signal on the light receiving side of the image sensor.
Since the optical filters that pass the wavelengths of at least two different regions in the wavelength band are arranged, the optical filters pass the wavelengths of at least two different regions of the wavelength band, and the mechanical switching is performed by the rotary filter or the like. There is an effect that fluorescence of two specific wavelengths can be detected without using.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例に係る蛍光により病変部を
診断する蛍光観察内視鏡装置の全体の構成を示す構成図
FIG. 1 is a configuration diagram showing an overall configuration of a fluorescence observation endoscope apparatus for diagnosing a lesion part by fluorescence according to a first embodiment of the present invention.

【図2】図1の光学フィルタの干渉フィルタの透過特性
を示す特性図
FIG. 2 is a characteristic diagram showing transmission characteristics of an interference filter of the optical filter of FIG.

【図3】図1の光学フィルタの色フィルタの透過特性を
示す特性図
3 is a characteristic diagram showing transmission characteristics of a color filter of the optical filter of FIG.

【図4】図1の光学フィルタの透過特性およびカラー撮
像素子の分光特性を示す特性図
4 is a characteristic diagram showing transmission characteristics of the optical filter of FIG. 1 and spectral characteristics of a color image sensor.

【図5】本発明の第2実施例に係る蛍光観察内視鏡装置
の内視鏡の先端の構成を示す構成図
FIG. 5 is a configuration diagram showing a configuration of a distal end of an endoscope of a fluorescence observation endoscope apparatus according to a second embodiment of the present invention.

【図6】図5の内視鏡の先端の変形例の構成を示す構成
6 is a configuration diagram showing a configuration of a modified example of the distal end of the endoscope of FIG.

【図7】本発明の第3実施例に係る蛍光観察内視鏡装置
の内視鏡の先端の構成を示す構成図
FIG. 7 is a configuration diagram showing a configuration of a distal end of an endoscope of a fluorescence observation endoscope apparatus according to a third embodiment of the present invention.

【図8】本発明の第4実施例に係る蛍光観察内視鏡装置
の構成を示す構成図
FIG. 8 is a configuration diagram showing a configuration of a fluorescence observation endoscope apparatus according to a fourth embodiment of the present invention.

【図9】図8の光プローブの構成を示す断面図9 is a sectional view showing the configuration of the optical probe of FIG.

【図10】白色光像および励起光像の取得制御を行う蛍
光観察内視鏡装置の構成を示す構成図
FIG. 10 is a configuration diagram showing a configuration of a fluorescence observation endoscope apparatus that controls acquisition of a white light image and an excitation light image.

【符号の説明】[Explanation of symbols]

1…蛍光観察内視鏡装置 2…光源 3…病変部 4…内視鏡 5…カラー撮像素子 6…カメラコントロールユニット 7…イメージプロセッサ 8…モニタ 9…レーザ 10…ライトガイド 11…凹レンズ 12…対物レンズ 13…光学フィルタ 1 ... Fluorescence observation endoscope apparatus 2 ... Light source 3 ... Lesion 4 ... Endoscope 5 ... Color image sensor 6 ... Camera control unit 7 ... Image processor 8 ... Monitor 9 ... Laser 10 ... Light guide 11 ... Concave lens 12 ... Objective Lens 13 ... Optical filter

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 経内視鏡的に励起光を体腔内臓器に照射
し、組織からの蛍光を2次元画像として観察する蛍光観
察内視鏡装置において、 前記2次元画像を複数の異なる波長帯域に感度を有し電
子信号に変換する撮像素子の受光側に、前記波長帯域の
うち相異なる少なくとも2つの領域の波長を通過させる
光学フィルターを配置させたことを特徴とする蛍光観察
内視鏡装置。
1. A fluorescence observation endoscope apparatus transendoscopically irradiating excitation light to a body cavity organ to observe fluorescence from a tissue as a two-dimensional image, wherein the two-dimensional image has a plurality of different wavelength bands. A fluorescence observation endoscope apparatus, characterized in that an optical filter for passing wavelengths of at least two different regions of the wavelength band is arranged on the light-receiving side of an image pickup device having sensitivity to convert to an electronic signal. .
JP7033995A 1995-02-22 1995-02-22 Fluorescence observing endoscope device Pending JPH08224208A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7033995A JPH08224208A (en) 1995-02-22 1995-02-22 Fluorescence observing endoscope device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7033995A JPH08224208A (en) 1995-02-22 1995-02-22 Fluorescence observing endoscope device

Publications (1)

Publication Number Publication Date
JPH08224208A true JPH08224208A (en) 1996-09-03

Family

ID=12402065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7033995A Pending JPH08224208A (en) 1995-02-22 1995-02-22 Fluorescence observing endoscope device

Country Status (1)

Country Link
JP (1) JPH08224208A (en)

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002301024A (en) * 2001-04-06 2002-10-15 Asahi Optical Co Ltd Endoscope system and video signal processor
JP2002336196A (en) * 2001-05-16 2002-11-26 Olympus Optical Co Ltd Endoscopic equipment
US6603552B1 (en) 1999-12-22 2003-08-05 Xillix Technologies Corp. Portable system for detecting skin abnormalities based on characteristic autofluorescence
US6821245B2 (en) 2000-07-14 2004-11-23 Xillix Technologies Corporation Compact fluorescence endoscopy video system
US6826424B1 (en) 2000-12-19 2004-11-30 Haishan Zeng Methods and apparatus for fluorescence and reflectance imaging and spectroscopy and for contemporaneous measurements of electromagnetic radiation with multiple measuring devices
US6899675B2 (en) 2002-01-15 2005-05-31 Xillix Technologies Corp. Fluorescence endoscopy video systems with no moving parts in the camera
JP2005342032A (en) * 2004-05-31 2005-12-15 Pentax Corp Objective optical system of endoscope and fluorescence observing endoscope
JP2006051334A (en) * 2004-07-15 2006-02-23 Pentax Corp Electronic endoscope system and electronic endoscope
JP2006075189A (en) * 2004-09-07 2006-03-23 Olympus Corp Detachable filter device and endoscope device
JP2006194646A (en) * 2005-01-11 2006-07-27 Olympus Corp Measuring instrument of deposition concentration of fluorescent agent
JP2007090044A (en) * 2005-08-31 2007-04-12 Olympus Corp Optical imaging apparatus
JP2007307237A (en) * 2006-05-19 2007-11-29 Pentax Corp Endoscope system
WO2008088002A1 (en) 2007-01-18 2008-07-24 Olympus Corporation Fluorescence observing device and fluorescence observing method
US7764381B2 (en) 2006-12-21 2010-07-27 Seiko Epson Corporation Lighting device and optical apparatus
US7798955B2 (en) 2004-10-26 2010-09-21 Olympus Corporation Image generating device for generating a fluorescence image
JP2011002581A (en) * 2009-06-17 2011-01-06 Olympus Corp Diaphragm driving mechanism and endoscope device
US7966051B2 (en) 2005-01-11 2011-06-21 Olympus Corporation Fluorescent agent concentration measuring apparatus, dose control apparatus, administration system, fluorescent agent concentration measuring method, and dose control method
US9386909B2 (en) 2006-07-28 2016-07-12 Novadaq Technologies Inc. System and method for deposition and removal of an optical element on an endoscope objective
US9610021B2 (en) 2008-01-25 2017-04-04 Novadaq Technologies Inc. Method for evaluating blush in myocardial tissue
US9642532B2 (en) 2008-03-18 2017-05-09 Novadaq Technologies Inc. Imaging system for combined full-color reflectance and near-infrared imaging
US9814378B2 (en) 2011-03-08 2017-11-14 Novadaq Technologies Inc. Full spectrum LED illuminator having a mechanical enclosure and heatsink
US9816930B2 (en) 2014-09-29 2017-11-14 Novadaq Technologies Inc. Imaging a target fluorophore in a biological material in the presence of autofluorescence
US9877654B2 (en) 2006-02-07 2018-01-30 Novadaq Technologies Inc. Near infrared imaging
US10041042B2 (en) 2008-05-02 2018-08-07 Novadaq Technologies ULC Methods for production and use of substance-loaded erythrocytes (S-IEs) for observation and treatment of microvascular hemodynamics
US10182709B2 (en) 2002-01-15 2019-01-22 Novadaq Technologies ULC Filter for use with imaging endoscopes
US10219742B2 (en) 2008-04-14 2019-03-05 Novadaq Technologies ULC Locating and analyzing perforator flaps for plastic and reconstructive surgery
US10265419B2 (en) 2005-09-02 2019-04-23 Novadaq Technologies ULC Intraoperative determination of nerve location
US10278585B2 (en) 2012-06-21 2019-05-07 Novadaq Technologies ULC Quantification and analysis of angiography and perfusion
US10293122B2 (en) 2016-03-17 2019-05-21 Novadaq Technologies ULC Endoluminal introducer with contamination avoidance
US10434190B2 (en) 2006-09-07 2019-10-08 Novadaq Technologies ULC Pre-and-intra-operative localization of penile sentinel nodes
US10492671B2 (en) 2009-05-08 2019-12-03 Novadaq Technologies ULC Near infra red fluorescence imaging for visualization of blood vessels during endoscopic harvest
US10631746B2 (en) 2014-10-09 2020-04-28 Novadaq Technologies ULC Quantification of absolute blood flow in tissue using fluorescence-mediated photoplethysmography
US10694152B2 (en) 2006-12-22 2020-06-23 Novadaq Technologies ULC Imaging systems and methods for displaying fluorescence and visible images
US10869645B2 (en) 2016-06-14 2020-12-22 Stryker European Operations Limited Methods and systems for adaptive imaging for low light signal enhancement in medical visualization
USD916294S1 (en) 2016-04-28 2021-04-13 Stryker European Operations Limited Illumination and imaging device
US10980420B2 (en) 2016-01-26 2021-04-20 Stryker European Operations Limited Configurable platform
US10992848B2 (en) 2017-02-10 2021-04-27 Novadaq Technologies ULC Open-field handheld fluorescence imaging systems and methods
US11930278B2 (en) 2015-11-13 2024-03-12 Stryker Corporation Systems and methods for illumination and imaging of a target

Cited By (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6603552B1 (en) 1999-12-22 2003-08-05 Xillix Technologies Corp. Portable system for detecting skin abnormalities based on characteristic autofluorescence
US6821245B2 (en) 2000-07-14 2004-11-23 Xillix Technologies Corporation Compact fluorescence endoscopy video system
US7722534B2 (en) 2000-07-14 2010-05-25 Novadaq Technologies, Inc. Compact fluorescence endoscopy video system
US9968244B2 (en) 2000-07-14 2018-05-15 Novadaq Technologies ULC Compact fluorescence endoscopy video system
US7341557B2 (en) 2000-07-14 2008-03-11 Novadaq Technologies Inc. Compact fluorescence endoscopy video system
US8961403B2 (en) 2000-07-14 2015-02-24 Novadaq Technologies Inc. Compact fluorescence endoscopy video system
US7115841B2 (en) 2000-12-19 2006-10-03 Perceptronix Medical, Inc. Imaging methods for fluorescence and reflectance imaging and spectroscopy and for contemporaneous measurements of electromagnetic radiation with multiple measuring devices
US7253894B2 (en) 2000-12-19 2007-08-07 Perceptronix Medical, Inc. Image detection apparatus for fluorescence and reflectance imaging and spectroscopy and for contemporaneous measurements of electromagnetic radiation with multiple measuring devices
US6826424B1 (en) 2000-12-19 2004-11-30 Haishan Zeng Methods and apparatus for fluorescence and reflectance imaging and spectroscopy and for contemporaneous measurements of electromagnetic radiation with multiple measuring devices
US6898458B2 (en) 2000-12-19 2005-05-24 Haishan Zeng Methods and apparatus for fluorescence and reflectance imaging and spectroscopy and for contemporaneous measurements of electromagnetic radiation with multiple measuring devices
US7190452B2 (en) 2000-12-19 2007-03-13 Perceptronix Medical, Inc. Imaging systems for fluorescence and reflectance imaging and spectroscopy and for contemporaneous measurements of electromagnetic radiation with multiple measuring devices
JP2002301024A (en) * 2001-04-06 2002-10-15 Asahi Optical Co Ltd Endoscope system and video signal processor
JP2002336196A (en) * 2001-05-16 2002-11-26 Olympus Optical Co Ltd Endoscopic equipment
US10182709B2 (en) 2002-01-15 2019-01-22 Novadaq Technologies ULC Filter for use with imaging endoscopes
US6899675B2 (en) 2002-01-15 2005-05-31 Xillix Technologies Corp. Fluorescence endoscopy video systems with no moving parts in the camera
JP4512422B2 (en) * 2004-05-31 2010-07-28 Hoya株式会社 Endoscope objective optical system and fluorescence observation endoscope
JP2005342032A (en) * 2004-05-31 2005-12-15 Pentax Corp Objective optical system of endoscope and fluorescence observing endoscope
JP2006051334A (en) * 2004-07-15 2006-02-23 Pentax Corp Electronic endoscope system and electronic endoscope
JP2006075189A (en) * 2004-09-07 2006-03-23 Olympus Corp Detachable filter device and endoscope device
US7798955B2 (en) 2004-10-26 2010-09-21 Olympus Corporation Image generating device for generating a fluorescence image
JP2006194646A (en) * 2005-01-11 2006-07-27 Olympus Corp Measuring instrument of deposition concentration of fluorescent agent
US7966051B2 (en) 2005-01-11 2011-06-21 Olympus Corporation Fluorescent agent concentration measuring apparatus, dose control apparatus, administration system, fluorescent agent concentration measuring method, and dose control method
US8395775B2 (en) 2005-01-11 2013-03-12 Olympus Corporation Fluorescent agent concentration measuring apparatus, dose control apparatus, administration system, fluorescent agent concentration measuring method, and dose control method
JP2007090044A (en) * 2005-08-31 2007-04-12 Olympus Corp Optical imaging apparatus
US8169470B2 (en) 2005-08-31 2012-05-01 Olympus Medical Systems Corp. Optical imaging device having illumination light filter section
US10265419B2 (en) 2005-09-02 2019-04-23 Novadaq Technologies ULC Intraoperative determination of nerve location
US9877654B2 (en) 2006-02-07 2018-01-30 Novadaq Technologies Inc. Near infrared imaging
JP2007307237A (en) * 2006-05-19 2007-11-29 Pentax Corp Endoscope system
US9386909B2 (en) 2006-07-28 2016-07-12 Novadaq Technologies Inc. System and method for deposition and removal of an optical element on an endoscope objective
US10434190B2 (en) 2006-09-07 2019-10-08 Novadaq Technologies ULC Pre-and-intra-operative localization of penile sentinel nodes
US7764381B2 (en) 2006-12-21 2010-07-27 Seiko Epson Corporation Lighting device and optical apparatus
US11770503B2 (en) 2006-12-22 2023-09-26 Stryker European Operations Limited Imaging systems and methods for displaying fluorescence and visible images
US11025867B2 (en) 2006-12-22 2021-06-01 Stryker European Operations Limited Imaging systems and methods for displaying fluorescence and visible images
US10694151B2 (en) 2006-12-22 2020-06-23 Novadaq Technologies ULC Imaging system with a single color image sensor for simultaneous fluorescence and color video endoscopy
US10694152B2 (en) 2006-12-22 2020-06-23 Novadaq Technologies ULC Imaging systems and methods for displaying fluorescence and visible images
US8049184B2 (en) 2007-01-18 2011-11-01 Olympus Corporation Fluoroscopic device and fluoroscopic method
WO2008088002A1 (en) 2007-01-18 2008-07-24 Olympus Corporation Fluorescence observing device and fluorescence observing method
US11564583B2 (en) 2008-01-25 2023-01-31 Stryker European Operations Limited Method for evaluating blush in myocardial tissue
US9936887B2 (en) 2008-01-25 2018-04-10 Novadaq Technologies ULC Method for evaluating blush in myocardial tissue
US9610021B2 (en) 2008-01-25 2017-04-04 Novadaq Technologies Inc. Method for evaluating blush in myocardial tissue
US10835138B2 (en) 2008-01-25 2020-11-17 Stryker European Operations Limited Method for evaluating blush in myocardial tissue
US9642532B2 (en) 2008-03-18 2017-05-09 Novadaq Technologies Inc. Imaging system for combined full-color reflectance and near-infrared imaging
US10779734B2 (en) 2008-03-18 2020-09-22 Stryker European Operations Limited Imaging system for combine full-color reflectance and near-infrared imaging
US10219742B2 (en) 2008-04-14 2019-03-05 Novadaq Technologies ULC Locating and analyzing perforator flaps for plastic and reconstructive surgery
US10041042B2 (en) 2008-05-02 2018-08-07 Novadaq Technologies ULC Methods for production and use of substance-loaded erythrocytes (S-IEs) for observation and treatment of microvascular hemodynamics
US10492671B2 (en) 2009-05-08 2019-12-03 Novadaq Technologies ULC Near infra red fluorescence imaging for visualization of blood vessels during endoscopic harvest
JP2011002581A (en) * 2009-06-17 2011-01-06 Olympus Corp Diaphragm driving mechanism and endoscope device
US9814378B2 (en) 2011-03-08 2017-11-14 Novadaq Technologies Inc. Full spectrum LED illuminator having a mechanical enclosure and heatsink
US10278585B2 (en) 2012-06-21 2019-05-07 Novadaq Technologies ULC Quantification and analysis of angiography and perfusion
US11284801B2 (en) 2012-06-21 2022-03-29 Stryker European Operations Limited Quantification and analysis of angiography and perfusion
US9816930B2 (en) 2014-09-29 2017-11-14 Novadaq Technologies Inc. Imaging a target fluorophore in a biological material in the presence of autofluorescence
US10488340B2 (en) 2014-09-29 2019-11-26 Novadaq Technologies ULC Imaging a target fluorophore in a biological material in the presence of autofluorescence
US10631746B2 (en) 2014-10-09 2020-04-28 Novadaq Technologies ULC Quantification of absolute blood flow in tissue using fluorescence-mediated photoplethysmography
US11930278B2 (en) 2015-11-13 2024-03-12 Stryker Corporation Systems and methods for illumination and imaging of a target
US10980420B2 (en) 2016-01-26 2021-04-20 Stryker European Operations Limited Configurable platform
US11298024B2 (en) 2016-01-26 2022-04-12 Stryker European Operations Limited Configurable platform
US10293122B2 (en) 2016-03-17 2019-05-21 Novadaq Technologies ULC Endoluminal introducer with contamination avoidance
USD916294S1 (en) 2016-04-28 2021-04-13 Stryker European Operations Limited Illumination and imaging device
US11756674B2 (en) 2016-06-14 2023-09-12 Stryker European Operations Limited Methods and systems for adaptive imaging for low light signal enhancement in medical visualization
US10869645B2 (en) 2016-06-14 2020-12-22 Stryker European Operations Limited Methods and systems for adaptive imaging for low light signal enhancement in medical visualization
US11140305B2 (en) 2017-02-10 2021-10-05 Stryker European Operations Limited Open-field handheld fluorescence imaging systems and methods
US10992848B2 (en) 2017-02-10 2021-04-27 Novadaq Technologies ULC Open-field handheld fluorescence imaging systems and methods

Similar Documents

Publication Publication Date Title
JPH08224208A (en) Fluorescence observing endoscope device
JP3283128B2 (en) Fluorescence observation endoscope device
JP3487933B2 (en) Fluorescence observation device
US6422994B1 (en) Fluorescent diagnostic system and method providing color discrimination enhancement
JP3853931B2 (en) Endoscope
JP4818753B2 (en) Endoscope system
JP3962122B2 (en) Endoscope device
JP3923595B2 (en) Fluorescence observation equipment
KR100927286B1 (en) Endoscopy device and image processing device
JP5372356B2 (en) Endoscope apparatus and method for operating endoscope apparatus
JP3236085B2 (en) Endoscope device
JPH08224240A (en) Fluorescent diagnosing device
JPH07250812A (en) Fluorescence diagnosing apparatus
JPH07155290A (en) Endoscope apparatus
JPH07222712A (en) Fluorescent endoscope system
JP3455289B2 (en) Endoscope device for fluorescence diagnosis
JP3467131B2 (en) Electronic endoscope device for fluorescence diagnosis
JP2005013279A (en) Endoscope apparatus
JPH07108284B2 (en) Extracorporeal observation device
JP3467130B2 (en) Electronic endoscope device for fluorescence diagnosis
JP3490807B2 (en) Electronic endoscope device for fluorescence diagnosis
JP2012213551A (en) Biological information obtaining system and method
JPH10328129A (en) Fluorescent observing device
JPH11113839A (en) Endoscope device
JP2001204683A (en) Fluorescent observation device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040322

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040511