JP3487933B2 - Fluorescence observation device - Google Patents

Fluorescence observation device

Info

Publication number
JP3487933B2
JP3487933B2 JP29867294A JP29867294A JP3487933B2 JP 3487933 B2 JP3487933 B2 JP 3487933B2 JP 29867294 A JP29867294 A JP 29867294A JP 29867294 A JP29867294 A JP 29867294A JP 3487933 B2 JP3487933 B2 JP 3487933B2
Authority
JP
Japan
Prior art keywords
light
image
observation
fluorescence
fluorescent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29867294A
Other languages
Japanese (ja)
Other versions
JPH07204156A (en
Inventor
克哉 鈴木
榮 竹端
守 金子
雅也 吉原
雅彦 飯田
康弘 植田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP29867294A priority Critical patent/JP3487933B2/en
Publication of JPH07204156A publication Critical patent/JPH07204156A/en
Application granted granted Critical
Publication of JP3487933B2 publication Critical patent/JP3487933B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/043Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances for fluorescence imaging

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Biomedical Technology (AREA)
  • Medical Informatics (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biophysics (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Endoscopes (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、励起光を生体組織の観
察対象部位へ照射して前記励起光による蛍光像を観察す
る蛍光観察装置に関する。 【0002】 【従来の技術】近年、生体組織の観察対象部位へ励起光
を照射し、この励起光によって生体組織から直接発生す
る自家蛍光や生体へ注入しておいた薬物の蛍光を2次元
画像として検出し、その蛍光像から生体組織の変性や癌
等の疾患状態(例えば、疾患の種類や浸潤範囲)を診断
する技術が用いられつつあり、この蛍光観察を行うため
の蛍光観察装置が開発されている。 【0003】生体組織に励起光を照射すると、その励起
光より長い波長の蛍光が発生する。生体における蛍光物
質としては、例えばNADH(ニコチンアミドアデニン
ヌクレオチド),FMN(フラビンモノヌクレオチ
ド),ピリジンヌクレオチド等がある。最近では、この
ような蛍光を発生する生体内因物質と疾患との相互関係
が明確になりつつあり、これらの蛍光により癌等の診断
が可能である。 【0004】また、生体内へ注入する蛍光物質として
は、HpD(ヘマトポルフィリン),Photofrin ,AL
A(δ−amino levulinic acid)等が用いられる。これ
らの蛍光剤は癌などへの集積性があり、これを生体内に
注入して蛍光を観察することで疾患部位を診断できる。
また、モノクローナル抗体に蛍光物質を付加させ、抗原
抗体反応により病変部に蛍光物質を集積させる方法もあ
る。 【0005】励起光としては例えばレーザ光が用いら
れ、励起光を生体組織へ照射することによって観察対象
部位の蛍光像を得る。この励起光による生体組織におけ
る微弱な蛍光を検出して2次元の蛍光画像を生成し、観
察、診断を行う。 【0006】 【発明が解決しようとする課題】前述のような蛍光観察
装置において、従来は蛍光観察用の光源からは常に一定
の光量の励起光が出射され、観察対象部位へ照射される
ようになっている。このため、観察対象部位の状況によ
っては、適切な光量の反射光が得られず、良好な蛍光観
察画像が得られない場合が生じる恐れがある。 【0007】本発明は、これらの事情に鑑みてなされた
もので、観察対象部位に応じて常に適切な光量の励起光
を照射することができ、最適な観察画像を得ることが可
能な蛍光観察装置を提供することを目的としている。 【0008】 【課題を解決するための手段】本発明蛍光観察装置
は、励起光を生体組織の観察対象部位へ照射して前記励
起光による蛍光像を観察する蛍光観察装置において、前
記励起光を発生する光源と、前記励起光の観察対象部位
における反射光の励起光成分を除去するフィルタと、前
記フィルタを介して反射光の蛍光成分を受光する受光素
子と、前記受光素子の出力を基に反射光量を検知し、該
受光素子の出力が所定量となるよう前記光源の出射光量
を調整する光量制御手段とを備えたことを特徴とする。 【0009】 【0010】 【実施例】以下、図面を参照して本発明の実施例を説明
する。図1ないし図3は本発明の第1実施例に係り、図
1は蛍光観察装置の主要部の構成を示す構成説明図、図
2は蛍光観察装置として内視鏡を用いた例の全体構成を
示す構成説明図、図3は生体組織の観察対象部位におけ
る蛍光のスペクトラムを示す特性図である。 【0011】本実施例の蛍光観察装置は、励起光を発生
する蛍光観察用の光源として、例えばHe−Cd(ヘリ
ウム−カドミウム)レーザ光発生手段を有する光源1を
備えている。 【0012】蛍光観察装置として内視鏡を用いた構成例
を図2に示す。蛍光観察装置は、前記光源1とこの光源
1の出射光量を制御する光量制御手段2とを備えた光源
装置3が設けられている。光源装置3には、蛍光観察に
用いる内視鏡4のライトガイドケーブル5が接続され、
ケーブル内に挿通したライトガイド6の入射端が光源1
の出射部に配置されるようになっている。 【0013】内視鏡4は、光源1からの励起光を伝達す
るライトガイド6と、観察対象部位における反射光の蛍
光像を伝達するイメージガイド7とが挿入部内に延設さ
れて構成されている。励起光はライトガイド6により内
視鏡挿入部の先端部8まで伝達されて観察対象部位に照
射され、一方、観察対象部位における蛍光の反射光はイ
メージガイド7により手元側まで伝達され、観察対象部
位の蛍光像を得られるようになっている。 【0014】光源1の光量制御に係る構成を図1に示
す。イメージガイド7の出射端近傍には、励起光成分を
除去するフィルタ(例えば442nmカットフィルタ等の
350〜500nmの波長帯域を除去するフィルタ)9と
フォトダイオード等からなる受光素子10とが設けら
れ、受光素子10によって観察対象部位における反射光
の蛍光成分を受光するようになっている。受光素子10
は光量制御手段2に接続されており、光量制御手段2に
よって受光素子10の出力を基に観察対象部位における
反射光量を検出するようになっている。光量制御手段2
の制御出力は光源1に接続され、光量制御手段2は前記
反射光量に応じて制御信号を光源1に送出し、受光素子
10の出力が所定量となるように光源1の出射光量を制
御するようになっている。 【0015】図1の受光素子等の具体的な配置構成例を
図2に示す。内視鏡4の挿入部基端側の接眼部11に
は、イメージガイド7の出射端が配置され、イメージガ
イド7により伝達された反射光の光路中にプリズム等の
分光素子12が設けられており、分光素子12を介して
前記反射光を受光可能な位置に前記フィルタ9及び受光
素子10が配設されている。なおフィルタ9及び受光素
子10は内視鏡操作部に設けるようにしても良い。受光
素子10は、ライトガイドケーブル5内を挿通された信
号線を介して光源装置3の光量制御手段2に接続されて
いる。 【0016】内視鏡の接眼部11には、蛍光観察用カメ
ラ13が接続されるようになっており、蛍光観察用カメ
ラ13によって観察対象部位の蛍光像を撮像し、蛍光観
察画像を得るようになっている。蛍光観察用カメラ13
には、蛍光像の撮像信号を処理する蛍光画像処理装置1
4、モニタ15が順に接続され、蛍光画像処理装置14
で信号処理されて得られた蛍光観察画像がモニタ15に
表示されるようになっている。 【0017】蛍光観察用カメラ13には、対物レンズ1
6、蛍光成分を通過させるフィルタ17、フィルタ17
を透過した像を増幅するイメージインテンシファイア
(I.I.)18、イメージインテンシファイア18の出力
像を撮像する撮像素子としてのCCD19が設けられ、
CCD19の出力の撮像信号が蛍光画像処理装置14に
送られて信号処理されるようになっている。 【0018】本実施例の蛍光観察装置を用いて蛍光画像
の観察、診断を行う際には、まず、光源1より発生した
励起光としてのレーザ光を内視鏡4のライトガイド6を
通して観察対象部位(被写体)20に照射する。する
と、照射されたレーザ光は観察対象部位20にて反射さ
れ、レーザ光より長い波長の蛍光が発生し、反射光とし
て内視鏡4のイメージガイド7に入射する。この反射光
は、イメージガイド7を通ってイメージガイド7の出射
端より出射され、分光素子12,フィルタ9を介して受
光素子10に入射されると共に、接眼レンズを介して蛍
光観察用カメラ13へ入射される。 【0019】受光素子10は、受光した蛍光の反射光の
光量に応じた出力信号を出力し、光量制御手段2は、前
記受光素子10の出力信号を読み取って反射光の光量を
検出し、この反射光量の値が所定値、例えば常に一定と
なるように光源の出力(照射光)を制御する制御信号を
出力して光源1の出射光量を調整する。 【0020】一方、蛍光観察用カメラ13によって観察
対象部位の蛍光像を撮像し、蛍光画像処理装置14にお
いて撮像信号を処理して蛍光観察画像としてモニタ15
に表示する。 【0021】このとき、フィルタ17として、例えばλ
1 =480〜520nmの帯域通過フィルタとλ2 =63
0nm以上の帯域通過フィルタとを用い、これらのフィル
タを順次光路中に介挿してそれぞれの帯域の蛍光像を撮
像する。 【0022】励起光による観察対象部位における可視領
域の蛍光のスペクトラムは、図3に示すように、励起光
をλ0 とするとλ0 より長い波長の帯域の強度分布とな
り、正常部位では特にλ1 付近で強く、病変部では弱く
なる。よって、特にλ1 付近の蛍光強度から正常部位と
病変部との判別が可能であり、このような蛍光画像によ
って癌等の病変部の診断ができる。 【0023】蛍光画像処理装置14においては、例えば
λ1 とλ2 の蛍光像の画像信号よりλ1 とλ2 における
蛍光強度の比率または差分を求める演算を行い、生体組
織の性状を判別可能な蛍光画像を生成する。 【0024】本実施例では、観察対象部位からの反射光
量を読み取り、観察対象部位の状態が変化しても常に所
定光量(一定の光量)の反射光が得られるように光源の
出射光量を所定の強度に調整する。これにより、観察対
象部位に応じて常に適切な光量の励起光を照射すること
ができ、観察対象部位によらず常に同様の良好な状態で
観察対象部位からの反射光を得て蛍光像を撮像すること
ができ、目的の診断が行えるよう良好な蛍光観察画像を
得ることが可能となる。 【0025】図4は本発明の第2実施例に係る蛍光観察
装置の全体構成を示す構成説明図である。 【0026】第2実施例は、通常の白色照明光による内
視鏡観察と蛍光観察との両方を行う蛍光観察装置の構成
例であり、光量制御に係る受光素子を内視鏡の接眼部と
蛍光観察用カメラとの間に介挿するアダプタ内に設けた
ものである。 【0027】内視鏡4の接眼部には、通常の内視鏡観察
用と蛍光観察用とに被写体像の光路を切換えるアダプタ
21が装着され、このアダプタ21を介して蛍光観察用
カメラ13が接続されるようになっている。アダプタ2
1には、内視鏡4で得られた像を切換える切換ミラー2
2が設けられ、この切換ミラー22の側方に通常の内視
鏡観察像を撮像するCCD23が配置されている。さら
に切換ミラー22の後方には分光素子12を介してフィ
ルタ9及び受光素子10が配設されている。受光素子1
0は、内視鏡内を挿通した信号線を介して光源装置3内
の光量制御手段2に接続され、反射光量に応じた出力信
号を送出するようになっている。 【0028】そして、蛍光観察用カメラ13には蛍光観
察用画像処理装置24が、アダプタ21内のCCD23
には通常観察用画像処理装置25がそれぞれ接続され、
各画像処理装置で生成された観察画像が表示装置26に
表示されるようになっている。 【0029】通常の内視鏡観察を行う場合には、図示し
ない白色光源より照明光を観察対象部位へ照射し、切換
ミラー22を切り換えて内視鏡4で得られた被写体像を
CCD23に入射させて撮像する。そして、通常観察用
画像処理装置25において撮像信号を処理して通常観察
画像として表示装置26に表示する。 【0030】一方、蛍光観察を行う場合には、光源1よ
り励起光を観察対象部位へ照射し、切換ミラー22を切
り換えて内視鏡4で得られた被写体の蛍光像を蛍光観察
用カメラ13に入射させて撮像する。そして、蛍光観察
用画像処理装置24において撮像信号を処理して蛍光観
察画像として表示装置26に表示する。このとき、観察
対象部位からの反射光を受光素子10で受光し、第1実
施例と同様に光量制御手段2によって光源1の出射光量
を制御する。 【0031】このように、光量制御に係る受光素子は内
視鏡の内部に限らず接眼部と蛍光観察用カメラとの間の
アダプタに設けることもできる。従って本実施例によれ
ば、内視鏡接眼部や蛍光観察用カメラ内に新たに受光素
子を取り付けることなく、アダプタを接続することで白
色照明光による内視鏡観察と励起光による蛍光観察とを
切換えることが可能であると共に、このときの受光素子
の出力により、第1実施例と同様に常に所定光量の反射
光が得られるように光源の出射光量を調整することがで
き、良好な蛍光観察画像を得ることができる。 【0032】図5は本発明の第3実施例に係る蛍光観察
装置の蛍光観察用カメラ周辺の構成を示す構成説明図で
ある。 【0033】第3実施例は、光量制御に係る受光素子を
蛍光観察用カメラ内に設けた構成例である。 【0034】内視鏡の接眼部に接続される蛍光観察用カ
メラ28には、対物レンズ16の後方に分光素子12、
フィルタ9及び受光素子10が設けられ、観察対象部位
からの反射光を受光できるようになっている。そして、
分光素子12の後方にフィルタ17、イメージインテン
シファイア18、CCD19が設けられ、蛍光像を撮像
可能になっている。 【0035】蛍光観察用カメラ28内の受光素子10
は、カメラより延出された信号ケーブル29を介して光
源装置3内の光量制御手段2に接続され、反射光量に応
じた出力信号を送出するようになっている。なお、受光
素子10は、蛍光観察用カメラ28から蛍光画像処理装
置14を通してケーブルにより光源装置3の光量制御手
段2に接続するようにしても良い。 【0036】このように、光量制御に係る受光素子を蛍
光観察用カメラ内に設けることもでき、この場合におい
ても、第1実施例と同様に常に所定光量の反射光が得ら
れるように光源の出射光量を調整することができ、良好
な蛍光観察画像を得ることができる。 【0037】ところで、内視鏡を用いた蛍光観察装置に
おいては、内視鏡の接眼部に蛍光観察用のカメラを取り
付けて蛍光像を撮像するのが一般的である。このような
内視鏡に接続される蛍光観察用カメラは、図6に示すよ
うに、カメラ51内に対物光学系52、蛍光成分を通過
させるフィルタ53、撮像素子としてCCD55が設け
られ、さらに、励起光による観察対象部位の蛍光は微弱
なものであるため、蛍光像の増幅手段としてイメージイ
ンテンシファイア(I.I.)54が配設されて構成されて
いる。 【0038】このイメージインテンシファイア54とし
ては、例えばカスケード型I.I.などが一般に用いられる
が、このようなイメージインテンシファイアは大型のも
のであり、イメージインテンシファイア54を設けるこ
とによって蛍光観察用カメラ51が大型化し、また重く
なってしまっていた。このため、蛍光観察用カメラ51
を内視鏡の接眼部11に装着した際に、操作部近傍を通
常の内視鏡観察時のように手で把持して操作することが
困難であり、カメラ部を支持する支持手段が必要となっ
ていた。すなわち、図6に示すような蛍光観察用カメラ
51の部分を支持するアーム等の支持部材56を画像処
理装置本体57とか図示しない天井や診断を行うベッド
等の一部に取り付け、このような支持手段によってカメ
ラ部を支えることで術者への負担を軽減することが行わ
れていた。しかし、支持部材のために内視鏡単体に比べ
て操作性が劣ってしまうという不具合があった。 【0039】以下に、蛍光像の増幅手段を小型化し蛍光
観察用カメラの小型化が実現可能な蛍光観察装置の構成
例を示す。 【0040】図7及び図8は蛍光像の増幅手段を小型化
した蛍光観察装置の第1の構成例に係り、図7は蛍光観
察用カメラ周辺の概略構成を示す構成説明図、図8は蛍
光像の増幅手段としてのMCPの概略構成及び作用を説
明するための作用説明図である。 【0041】蛍光観察を行う際に内視鏡4の接眼部11
に接続される蛍光観察用カメラ31は、対物レンズ1
6、蛍光成分を通過させるフィルタ17、フィルタ17
を透過した像を増幅する増幅手段としてのMCP(Micr
o Channel Plate,例えば近接集束型MCP-I.I. などと
も称する)32、MCP32の出力像を撮像するCCD
19を備えて構成されており、撮像信号を蛍光観察用画
像処理装置24へ出力するようになっている。 【0042】内視鏡4のイメージガイド内を通過した観
察対象部位からの反射光は、接眼部11に取り付けられ
た蛍光観察用カメラ31の対物レンズ16を通過し、フ
ィルタ17によって励起光成分を除去されてMCP32
に入射される。 【0043】MCP32は、図8に示すように薄板に多
数の細孔のチャンネルを有しており、前後に光電面33
と蛍光面34とが設けられている。MCP32に入射さ
れた光は、光電面33を通ってMCPの1つ1つのチャ
ンネル内で電子を発生し、両面の電極に所定電圧35を
加えることで増幅され、蛍光面34を通って出射され
る。ここで、MCP32に入射された蛍光像の光は10
00〜10000倍に増幅されてCCD19へと入射さ
れる。このMCP32により、微弱な観察対象部位の蛍
光像が増幅されて可視光線像となり、CCD19によっ
て撮像される。MCP32は、一般のイメージインテン
シファイアに比べてはるかに小型で、カスケード型I.I.
に匹敵する光束像倍度を有しているため、小さな空間で
微弱な蛍光から目的の強度の光を得ることができる。 【0044】CCD19において蛍光像は電気信号に変
換されて撮像信号として蛍光観察用画像処理装置24へ
出力され、画像処理装置で信号処理されてモニタへ蛍光
観察画像として出力される。 【0045】このように、蛍光像の増幅手段としてイメ
ージインテンシファイアの代わりにMCPをCCDの前
に配設することにより、蛍光像の増幅手段を小型にで
き、蛍光観察用カメラの小型化、軽量化ができるため、
蛍光観察用カメラを内視鏡の接眼部に取り付けた際にカ
メラの支持手段を必要とせず自由に蛍光観察用カメラや
操作部を持って操作することが可能となる。よって、蛍
光観察時の操作性を向上できる。 【0046】図9は蛍光像の増幅手段を小型化した蛍光
観察装置の第2の構成例に係る装置全体の概略構成図で
ある。 【0047】本例は、挿入部先端部にCCDを備えた電
子内視鏡36を用いた装置の例であり、内視鏡36の挿
入部先端部37には、対物光学系38の後側にフィルタ
17、MCP32、CCD19が設けられている。この
内視鏡36が接続される観察装置39には、励起光を発
生する光源1と、MCP32を駆動するMCP駆動部4
0と、蛍光画像の信号処理を行う蛍光画像処理装置14
とが設けられ、光源1からの励起光を内視鏡36のライ
トガイド6へ入射すると共に、内視鏡36で得られた蛍
光像を信号処理してモニタ15へ画像信号として出力
し、蛍光観察画像を表示させるようになっている。 【0048】このように、内視鏡の挿入部先端部内にフ
ィルタ,MCP,CCD等を設けることもでき、この場
合、内視鏡で所望の明るさの蛍光像を得るようにするこ
とが可能となるため装置を小型化でき、より操作性を向
上させることができる。 【0049】図10は蛍光像の増幅手段を小型化した蛍
光観察装置の第3の構成例に係る内視鏡の概略構成図で
ある。 【0050】本例は第2の構成例の変形例であり、内視
鏡の手元側の操作部内にCCDを備えた例である。内視
鏡41の操作部42内には、イメージガイド7の出射端
側にフィルタ17、MCP32、CCD19が設けられ
ている。 【0051】このように、内視鏡の操作部内にフィル
タ,MCP,CCD等を設けることもでき、この場合に
おいても、内視鏡で所望の明るさの蛍光像を得られるよ
うにして装置を小型化でき、より操作性を向上させるこ
とができる。 【0052】図11に蛍光像の増幅手段を小型化した蛍
光観察装置の第4の構成例として、蛍光観察と通常の白
色光等による内視鏡観察とを行う装置の構成を示す。 【0053】本例の蛍光観察装置は、蛍光観察を行うた
めの励起光を発生するHe−Cdレーザ等の蛍光観察用
光源61と、通常の内視鏡観察を行うための照明光を発
生するキセノンランプ等の光源ランプ62を有する通常
観察用光源63とを有しており、これらの光源は2つの
光源からの光を切り換える光源用アダプタ64に接続さ
れている。光源用アダプタ64は、光源61,63から
の光を選択的に切り換えて内視鏡のライトガイドに導く
切換ミラー65と、切換ミラー65の角度を変えるよう
駆動するドライバ66とを備えており、一方に内視鏡4
のライトガイド5の入射端が接続されている。 【0054】内視鏡4の接眼部11には、蛍光観察用と
通常観察用とにカメラを切り換えるカメラ用アダプタ6
7が取り付けられ、このカメラ用アダプタ67を介して
蛍光観察用カメラ68と通常観察用カメラ69とが接続
されている。カメラ用アダプタ67は、内視鏡4で得ら
れた像を蛍光観察用カメラ68または通常観察用カメラ
69へ導くように切り換える切換ミラー70と、切換ミ
ラー70の角度を変えるよう駆動するドライバ71とを
備えている。 【0055】蛍光観察用カメラ68は、モータ72によ
って回転駆動される蛍光成分を通過するフィルタ73
と、蛍光像を増幅するMCP32と、蛍光像を撮像する
CCD74とを備え、内視鏡4で得られた観察対象部位
の蛍光像を撮像するようになっている。前記フィルタ7
3は、蛍光観察用光源61の励起光をカットし励起光よ
り長い波長のある帯域の光を通過する少なくとも1種類
の帯域通過フィルタで、例えば前述のλ1 ,λ2 の帯域
の光を通過するよう2つのフィルタが配置されて円盤状
に形成され、モータ72によって回転することにより順
次2つの帯域の光を通過するようになっている。 【0056】通常観察用カメラ69は、CCD75を備
え、内視鏡4で得られた通常の白色光等の照明光による
観察対象部位の像(通常観察像)を撮像するようになっ
ている。 【0057】蛍光観察用カメラ68には蛍光観察装置7
6が接続され、蛍光像の撮像信号が信号処理されるよう
になっている。蛍光観察装置76には、CCD74の出
力の撮像信号を前述と同様に信号処理して蛍光観察画像
信号を生成する蛍光画像処理部77と、モータ72を駆
動制御してフィルタ73のタイミングを制御するタイミ
ングコントローラ78とを備えている。 【0058】通常観察用カメラ69にはカメラコントロ
ールユニット(CCU)79が接続され、CCU79に
よってCCD75の出力の撮像信号が信号処理されて通
常観察画像信号が生成されるようになっている。 【0059】前記蛍光観察装置76及びCCU79は、
観察画像制御装置80に接続され、蛍光観察画像信号と
通常観察画像信号とをそれぞれ入力するようになってい
る。観察画像制御装置80は、光源用アダプタ64及び
カメラ用アダプタ67のドライバ66,71を駆動制御
して切換ミラー65,70の切換えタイミングを制御す
るタイミングコントローラ81と、タイミングコントロ
ーラ81によるアダプタの切り換え制御に同期して蛍光
観察画像信号と通常観察画像信号とを切り換えるビデオ
切換回路82とを備えている。観察画像制御装置80に
はフットスイッチ83が接続され、このフットスイッチ
83からの画像の切換え指示に基づいてアダプタ及び画
像信号が切り換えられるようになっている。 【0060】観察画像制御装置80の画像出力端にはモ
ニタ84が接続され、ビデオ切換回路82によって選択
された蛍光観察画像信号または通常観察画像信号がモニ
タ84に入力されて蛍光観察画像または通常観察画像が
表示されるようになっている。 【0061】本例の蛍光観察装置において観察を行う際
には、フットスイッチ83により画像の切換え指示を出
力し、アダプタ64,67により光源及びカメラを切り
換え、蛍光観察または通常観察を選択する。 【0062】蛍光観察を行う場合は、アダプタ64,6
7において蛍光観察用光源61及び蛍光観察用カメラ6
8の側に光路を切換えて蛍光像を撮像し、蛍光観察装置
76より蛍光観察画像信号を得てモニタ84に蛍光観察
画像を表示する。一方、通常の内視鏡像の観察を行う場
合は、アダプタ64,67において通常観察用光源63
及び通常観察用カメラ69の側に光路を切換えて通常の
照明光による内視鏡像を撮像し、CCU79より通常観
察画像信号を得てモニタ84に通常観察画像を表示す
る。 【0063】このような構成により、蛍光観察と通常の
白色光等による内視鏡観察とを行うことができる。本例
のように蛍光観察と通常の内視鏡観察とを行う蛍光観察
装置においても、蛍光観察用カメラにおいて蛍光像の増
幅手段としてイメージインテンシファイアの代わりにM
CPを配設することにより、カメラの小型化、軽量化が
可能となり、アダプタ及びカメラを含めた内視鏡操作部
周辺をより小型化でき、蛍光観察時の操作性を向上させ
ることができる。 【0064】[付記]以上詳述したように本発明の実施
態様によれば、以下のような構成を得ることができる。
すなわち、 (1) 励起光を生体組織の観察対象部位へ照射して前
記励起光による蛍光像を観察する蛍光観察装置におい
て、前記励起光を発生する光源と、前記励起光の観察対
象部位における反射光を受光する受光素子と、前記受光
素子の出力を基に反射光量を検知し、該受光素子の出力
が所定量となるよう前記光源の出射光量を調整する光量
制御手段と、を備えたことを特徴とする蛍光観察装置。 【0065】(2) 前記蛍光観察装置は、前記励起光
を挿入部先端側まで伝送するライトガイドと前記蛍光像
を手元側の接眼部まで伝送するイメージガイドとを有す
る内視鏡を備えており、前記受光素子を前記内視鏡の接
眼部内に配設したことを特徴とする付記1に記載の蛍光
観察装置。 【0066】(3) 前記蛍光観察装置は、前記励起光
による観察対象部位の蛍光像を撮像する蛍光観察用カメ
ラを備えており、前記受光素子を前記蛍光観察用カメラ
内に配設したことを特徴とする付記1に記載の蛍光観察
装置。 【0067】(4) 前記蛍光観察装置は、前記励起光
を挿入部先端側まで伝送するライトガイドと前記蛍光像
を手元側の接眼部まで伝送するイメージガイドとを有す
る内視鏡と、前記励起光による観察対象部位の蛍光像を
撮像する蛍光観察用カメラと、前記内視鏡の接眼部と前
記蛍光観察用カメラとの間に介挿され、前記内視鏡の接
眼部まで伝送された像の出射光路を励起光による蛍光像
と白色照明光による光学像とで切換えるアダプタと、を
備えており、前記受光素子を前記アダプタ内に配設した
ことを特徴とする付記1に記載の蛍光観察装置。 【0068】(5) 前記蛍光像の光路中に入射光を二
つに分割する分光素子を設け、この分光素子の一方の出
射面後方に前記受光素子を配設したことを特徴とする付
記1に記載の蛍光観察装置。 【0069】(6) 励起光を生体組織の観察対象部位
へ照射して前記励起光による蛍光像を観察する蛍光観察
装置において、前記励起光を発生する光源と、前記励起
光による観察対象部位の蛍光像を撮像する撮像手段と、
前記蛍光像を増幅する手段としてのMCP(マイクロチ
ャンネルプレート)からなる像増幅素子と、を備えたこ
とを特徴とする蛍光観察装置。 【0070】(7) 前記撮像手段は固体撮像素子を含
んで構成されており、この固体撮像素子の像入射面前方
に前記像増幅素子を配設したことを特徴とする付記6に
記載の蛍光観察装置。 【0071】 【発明の効果】以上説明したように本発明によれば、観
察対象部位に応じて常に適切な光量の励起光を照射する
ことができ、最適な観察画像を得ることが可能となる効
果がある。
DETAILED DESCRIPTION OF THE INVENTION [0001] BACKGROUND OF THE INVENTION 1. Field of the Invention
Irradiate the target site and observe the fluorescence image by the excitation light.
A fluorescent observation device. [0002] 2. Description of the Related Art In recent years, excitation light
Is irradiated, and the excitation light is directly generated from the living tissue.
Auto-fluorescence and the fluorescence of drugs injected into the body
It is detected as an image and the fluorescence image
Diagnose disease states (eg, disease type and invasion range)
Technology is being used to perform this fluorescence observation.
Have been developed. When a living tissue is irradiated with excitation light, the excitation
Fluorescence of a longer wavelength than light is generated. Fluorescent substance in living body
The quality is, for example, NADH (nicotinamide adenine)
Nucleotides), FMN (flavin mononucleotide)
C), pyridine nucleotides and the like. Recently, this
Between disease-causing endogenous substances that produce such fluorescence
Is becoming clearer, and the fluorescence of these is used to diagnose cancer and the like.
Is possible. As a fluorescent substance to be injected into a living body,
Is HpD (Hematoporphyrin), Photofrin, AL
A (δ-amino levulinic acid) and the like are used. this
These fluorescent agents have the ability to accumulate in cancer and the like.
The site of the disease can be diagnosed by injecting and observing the fluorescence.
In addition, a fluorescent substance is added to the monoclonal antibody,
There is also a method to accumulate fluorescent substance in the lesion by antibody reaction.
You. For example, laser light is used as excitation light.
Irradiating the living tissue with excitation light
Obtain a fluorescent image of the site. In the living tissue by this excitation light
A weak fluorescent light to generate a two-dimensional fluorescent image
Diagnosis and diagnosis. [0006] SUMMARY OF THE INVENTION Fluorescence observation as described above
Conventionally, the device is always constant from the light source for fluorescence observation
Of excitation light is emitted and irradiates the observation target site
It has become. For this reason, depending on the situation of the observation target site,
As a result, an appropriate amount of reflected light cannot be obtained, and
There is a possibility that a case where an observation image cannot be obtained may occur. [0007] The present invention has been made in view of these circumstances.
The amount of excitation light that is always appropriate for the observation target
To obtain the best observation image.
It is an object of the present invention to provide an efficient fluorescence observation device. [0008] Means for Solving the Problems The present inventionofFluorescence observation device
Irradiates excitation light to an observation target site of a living tissue to excite the excitation light.
In a fluorescence observation device that observes a fluorescent image caused by light emission,
A light source that generates the excitation light, and an observation target site of the excitation light.
Reflected light atFilter that removes the excitation light component
The fluorescent component of the reflected light through the filterLight receiving element to receive
And the amount of reflected light is detected based on the output of the light receiving element.
The amount of light emitted from the light source so that the output of the light receiving element becomes a predetermined amount.
Light quantity control means for adjusting theIt is characterized by the following. [0009] [0010] Embodiments of the present invention will be described below with reference to the drawings.
I do. 1 to 3 relate to a first embodiment of the present invention.
FIG. 1 is a configuration explanatory view showing a configuration of a main part of the fluorescence observation apparatus, and FIG.
2 shows the overall configuration of an example using an endoscope as a fluorescence observation device
FIG. 3 is an explanatory view showing the configuration, and FIG.
FIG. 4 is a characteristic diagram showing a spectrum of fluorescence. The fluorescence observation apparatus of this embodiment generates excitation light.
As a light source for fluorescence observation, for example, He-Cd (Helicopter)
Light source 1 having a laser light generating means.
Have. Configuration example using an endoscope as a fluorescence observation device
Is shown in FIG. The fluorescence observation device includes the light source 1 and the light source
1. A light source comprising:
A device 3 is provided. The light source device 3 is used for fluorescence observation.
Light guide cable 5 of endoscope 4 to be used is connected,
The incident end of the light guide 6 inserted into the cable is the light source 1
Are arranged at the light-emitting portion. The endoscope 4 transmits excitation light from the light source 1.
Light guide 6 and the fluorescent light
An image guide 7 for transmitting a light image is extended in the insertion portion.
It is composed. Excitation light is generated by the light guide 6
The light is transmitted to the distal end portion 8 of the endoscope insertion portion and illuminates the observation target site.
While the reflected light of the fluorescence
It is transmitted to the hand side by the image guide 7 and the observation target part
Fluorescent images can be obtained. FIG. 1 shows a configuration relating to the light quantity control of the light source 1.
You. In the vicinity of the exit end of the image guide 7, the excitation light component is
Filter to remove (for example, 442nm cut filter etc.)
A filter for removing the wavelength band of 350 to 500 nm) 9
A light receiving element 10 including a photodiode or the like is provided.
Light reflected by the light receiving element 10 at the observation target site.
Are received. Light receiving element 10
Is connected to the light quantity control means 2 and
Therefore, based on the output of the light receiving element 10,
The amount of reflected light is detected. Light intensity control means 2
Is connected to the light source 1 and the light amount control means 2
A control signal is sent to the light source 1 according to the amount of reflected light, and the light receiving element
The output light amount of the light source 1 is controlled so that the output of the light source 10 becomes a predetermined amount.
I will control it. FIG. 1 shows an example of a specific arrangement of the light receiving element and the like.
As shown in FIG. To the eyepiece 11 on the proximal side of the insertion section of the endoscope 4
Is provided with the output end of the image guide 7 and the image guide
In the optical path of the reflected light transmitted by the
A spectroscopic element 12 is provided, and through the spectroscopic element 12
The filter 9 and the light receiving portion are located at positions where the reflected light can be received.
An element 10 is provided. The filter 9 and the light receiving element
The child 10 may be provided in the endoscope operation unit. Light reception
The element 10 receives the signal inserted through the light guide cable 5.
Connected to the light amount control means 2 of the light source device 3 via
I have. The eyepiece 11 of the endoscope has a turtle for fluorescence observation.
Camera 13 is connected to the camera for fluorescence observation.
A fluorescence image of the observation target site is captured by the
Obtain images. Fluorescence observation camera 13
Image processing apparatus 1 for processing an image signal of a fluorescent image
4, the monitor 15 is connected in order, and the fluorescence image processing device 14
The fluorescence observation image obtained by signal processing in
It is displayed. The fluorescence observation camera 13 includes an objective lens 1
6. Filter 17 for passing fluorescent components, Filter 17
Intensifier that amplifies the image transmitted through
(I.I.) 18, output of image intensifier 18
A CCD 19 is provided as an imaging device for capturing an image,
The imaging signal output from the CCD 19 is sent to the fluorescence image processing device 14.
It is sent and signal-processed. Fluorescence image using the fluorescence observation apparatus of this embodiment
When observing and diagnosing light, first,
The laser light as the excitation light is applied to the light guide 6 of the endoscope 4.
And irradiates the portion to be observed (subject) 20 with the light. Do
And the irradiated laser light is reflected at the observation target site 20.
Fluorescence that has a longer wavelength than the laser light
And enters the image guide 7 of the endoscope 4. This reflected light
Exits the image guide 7 through the image guide 7
Emitted from the end and received through the spectral element 12 and the filter 9.
It is incident on the optical element 10 and fired through an eyepiece.
The light enters the light observation camera 13. The light receiving element 10 receives the reflected light of the fluorescent light
An output signal corresponding to the light amount is output, and the light amount control unit 2
The output signal of the light receiving element 10 is read to determine the amount of reflected light.
Detected, and the value of the reflected light amount becomes a predetermined value, for example, always constant.
Control signal to control the output (irradiation light) of the light source
Output to adjust the amount of light emitted from the light source 1. On the other hand, observation by the fluorescence observation camera 13 is performed.
A fluorescent image of the target site is captured, and the fluorescent image processing device 14
And processes the imaging signal to obtain a fluorescence observation image on the monitor 15.
To be displayed. At this time, as the filter 17, for example, λ
1 = 480-520 nm bandpass filter and .lambda.2 = 63
Using a bandpass filter of 0 nm or more,
The fluorescent images in each band by inserting
Image. Visible area at the observation target site by excitation light
As shown in FIG. 3, the spectrum of the fluorescence in the
Is λ0, the intensity distribution of the wavelength band longer than λ0 is
Strong at normal sites, especially around λ1, weak at lesions
Become. Therefore, especially from the fluorescence intensity around λ1,
It is possible to distinguish from a lesion, and such a fluorescent image
Thus, a lesion such as cancer can be diagnosed. In the fluorescence image processing device 14, for example,
From the image signals of the fluorescent images of λ1 and λ2,
Calculate the ratio or difference of the fluorescence intensity
Generate a fluorescent image that can determine the properties of the weave. In this embodiment, the light reflected from the portion to be observed
Read the amount and always check the
Set the light source so that reflected light with a constant light amount (constant light amount) is obtained.
The emitted light quantity is adjusted to a predetermined intensity. This allows you to
Always irradiate an appropriate amount of excitation light according to the target area
In the same good condition regardless of the observation site
Obtaining a fluorescent image by obtaining reflected light from the observation target site
A good fluorescence observation image so that the target diagnosis can be performed.
It is possible to obtain. FIG. 4 shows a fluorescence observation according to the second embodiment of the present invention.
FIG. 2 is a configuration explanatory diagram showing the entire configuration of the device. The second embodiment is based on the ordinary white illumination light.
Configuration of a fluorescence observation device that performs both endoscope observation and fluorescence observation
It is an example, and the light receiving element related to the light amount control is
Provided in the adapter inserted between the camera for fluorescence observation
Things. The eyepiece of the endoscope 4 has a normal endoscope observation.
Adapter that switches the optical path of the subject image for light and fluorescence observation
21 is attached, and for fluorescence observation through this adapter 21
The camera 13 is connected. Adapter 2
1 is a switching mirror 2 for switching an image obtained by the endoscope 4
2 is provided, and a normal endoscope is provided beside the switching mirror 22.
A CCD 23 for taking a mirror observation image is arranged. Further
Behind the switching mirror 22, the light is
A filter 9 and a light receiving element 10 are provided. Light receiving element 1
0 is inside the light source device 3 via a signal line inserted through the endoscope.
Output signal corresponding to the amount of reflected light.
No. is sent. The fluorescence observation camera 13 has a fluorescence observation
The image processing device for inspection 24 is a CCD 23 in the adapter 21.
Is connected to the normal observation image processing device 25, respectively.
The observation image generated by each image processing device is displayed on the display device 26.
It is displayed. When performing normal endoscope observation,
Illumination light is illuminated from the white light source to the observation target site and switched
By switching the mirror 22, the subject image obtained by the endoscope 4 is displayed.
The light is incident on the CCD 23 and imaged. And for normal observation
Normal observation by processing image signals in the image processing device 25
The image is displayed on the display device 26 as an image. On the other hand, when performing fluorescence observation, the light source 1
Excitation light is applied to the observation target site, and the switching mirror 22 is turned off.
Fluorescent observation of the fluorescent image of the subject obtained by the endoscope 4
The image is made incident on the camera 13. And fluorescence observation
The image signal is processed in the image processing device 24 for
It is displayed on the display device 26 as an observation image. At this time, observe
The light reflected from the target site is received by the light receiving element 10 and the first actual
In the same manner as in the embodiment, the light intensity of the light source 1
Control. As described above, the light receiving element related to the light quantity control is internal.
Not only inside the endoscope but also between the eyepiece and the fluorescence observation camera
It can also be provided on the adapter. Therefore, according to this embodiment,
If a new light-receiving element is installed in the eyepiece of the endoscope or the camera for fluorescence observation,
By attaching an adapter without attaching a child, white
Endoscope observation with color illumination light and fluorescence observation with excitation light
It is possible to switch and at this time the light receiving element
, The reflection of a predetermined amount of light is always performed as in the first embodiment.
You can adjust the amount of light emitted from the light source to obtain light.
A good fluorescence observation image can be obtained. FIG. 5 shows a fluorescence observation according to the third embodiment of the present invention.
FIG. 2 is a configuration explanatory diagram showing a configuration around a fluorescence observation camera of the apparatus.
is there. In the third embodiment, a light receiving element relating to light quantity control is used.
It is a configuration example provided in a fluorescence observation camera. A fluorescent observation camera connected to the eyepiece of the endoscope
In the camera 28, the spectroscopic element 12 behind the objective lens 16,
A filter 9 and a light receiving element 10 are provided, and a portion to be observed
It can receive the reflected light from. And
A filter 17 and an image intensity
A sifier 18 and a CCD 19 are provided to capture a fluorescent image.
It is possible. Light receiving element 10 in fluorescence observation camera 28
Is transmitted through the signal cable 29 extended from the camera.
Is connected to the light amount control means 2 in the light source device 3 and responds to the reflected light amount.
The same output signal is sent. In addition, light reception
The element 10 is provided with a fluorescent image processing device from the fluorescent observation camera 28.
The light amount control means of the light source device 3 is connected by a cable through the device 14.
It may be connected to the stage 2. As described above, the light receiving element for controlling the light amount is not
It can also be installed inside a light observation camera, in which case
However, as in the first embodiment, a predetermined amount of reflected light is always obtained.
Light intensity of the light source can be adjusted so that
A fluorescent observation image can be obtained. By the way, a fluorescence observation apparatus using an endoscope is required.
A camera for fluorescence observation on the eyepiece of the endoscope.
It is common to attach a fluorescent image. like this
The fluorescent observation camera connected to the endoscope is shown in FIG.
As described above, the objective optical system 52 passes through the fluorescent component in the camera 51.
Filter 53 and a CCD 55 as an image sensor
In addition, the fluorescence at the observation target site due to the excitation light is weak
Image is used as a means for amplifying the fluorescent image.
Intensifier (I.I.) 54 is arranged and configured
I have. As the image intensifier 54,
For example, cascade type II is generally used
However, such image intensifiers are large
Therefore, it is necessary to provide the image intensifier 54.
As a result, the fluorescence observation camera 51 becomes large and heavy.
Had become. For this reason, the fluorescence observation camera 51
When the camera is attached to the eyepiece 11 of the endoscope,
It can be grasped and operated by hand like usual endoscope observation
Difficult and requires support means to support the camera
I was That is, a fluorescence observation camera as shown in FIG.
A supporting member 56 such as an arm for supporting the portion 51
The main unit 57 or ceiling (not shown) or a bed for diagnosis
Attached to a part of the
It is possible to reduce the burden on the operator by supporting the la part
Had been. However, due to the support member, compared to the endoscope alone
Operability is inferior. In the following, the fluorescent image amplifying means is reduced in size and the fluorescent light is amplified.
Configuration of a fluorescence observation device capable of realizing a compact observation camera
Here is an example. FIGS. 7 and 8 show a compact fluorescent image amplifying means.
FIG. 7 relates to a first example of the configuration of a fluorescence observation apparatus,
FIG. 8 is a configuration explanatory view showing a schematic configuration around the inspection camera, and FIG.
Describes the schematic configuration and operation of the MCP as an optical image amplification means
It is an operation explanatory view for clarifying. When performing the fluorescence observation, the eyepiece 11 of the endoscope 4
Is connected to the objective lens 1
6. Filter 17 for passing fluorescent components, Filter 17
MCP (Micr) as amplifying means to amplify the image transmitted through
o Channel Plate, such as proximity focusing MCP-I.I.
32, CCD for capturing the output image of MCP32
19, and converts the imaging signal into an image for fluorescence observation.
The data is output to the image processing device 24. Viewing through the image guide of the endoscope 4
The reflected light from the target site is attached to the eyepiece 11
Through the objective lens 16 of the fluorescence observation camera 31
The excitation light component is removed by the filter 17 and the MCP 32
Is incident on. The MCP 32 is, as shown in FIG.
It has channels with a number of pores,
And a fluorescent screen 34 are provided. Incident on MCP32
The emitted light passes through the photocathode 33, and each channel of the MCP
Electrons are generated in the channel, and a predetermined voltage 35 is applied to the electrodes on both sides.
The light is amplified by the addition and emitted through the fluorescent screen 34.
You. Here, the light of the fluorescent image incident on the MCP 32 is 10
Amplified from 00 to 10000 times and incident on CCD 19
It is. With this MCP 32, the fluorescence of a weak observation target site is
The light image is amplified to a visible light image, and the CCD 19
Image. MCP32 is a general image intent.
Much smaller and cascaded I.I.
It has a luminous flux image magnification comparable to that of
Light of a desired intensity can be obtained from weak fluorescence. In the CCD 19, the fluorescent image is converted into an electric signal.
Is converted to an image processing signal for fluorescence observation 24 as an imaging signal.
Output, signal processed by image processing device and fluorescent to monitor
It is output as an observation image. Thus, the image is used as a means for amplifying the fluorescent image.
MCP in front of CCD instead of page intensifier
, The size of the fluorescent image amplification means can be reduced.
The fluorescence observation camera can be made smaller and lighter,
When the fluorescence observation camera is attached to the eyepiece of the endoscope,
Cameras for fluorescence observation and
It is possible to operate with the operation unit. Therefore, fireflies
Operability during light observation can be improved. FIG. 9 shows fluorescent light obtained by miniaturizing the fluorescent image amplifying means.
FIG. 9 is a schematic configuration diagram of the entire apparatus according to a second configuration example of the observation apparatus.
is there. In this embodiment, an electric power supply having a CCD at the tip of the insertion portion is used.
This is an example of an apparatus using the child endoscope 36, and the insertion of the endoscope 36 is performed.
A filter is provided on the rear side of the objective optical system
17, MCP 32 and CCD 19 are provided. this
The observation device 39 to which the endoscope 36 is connected emits excitation light.
Light source 1 to be generated and an MCP driving unit 4 for driving the MCP 32
0 and a fluorescent image processing device 14 that performs signal processing of the fluorescent image
The excitation light from the light source 1 is
Incident on the guide 6 and the fluorescent light obtained by the endoscope 36.
Signal processing of light image and output to monitor 15 as image signal
Then, a fluorescence observation image is displayed. As described above, the endoscope is inserted into the distal end portion of the insertion portion of the endoscope.
Filters, MCPs, CCDs, etc. can be provided.
In this case, the endoscope should be used to obtain a fluorescent image of the desired brightness.
This makes it possible to reduce the size of the device and improve operability.
Can be up. FIG. 10 shows a fluorescent image obtained by miniaturizing the fluorescent image amplifying means.
FIG. 7 is a schematic configuration diagram of an endoscope according to a third configuration example of the light observation device.
is there. This example is a modification of the second configuration example,
This is an example in which a CCD is provided in the operation unit on the hand side of the mirror. Introspection
An emission end of the image guide 7 is provided in the operation unit 42 of the mirror 41.
Filter 17, MCP 32, CCD 19
ing. As described above, the fill in the operation section of the endoscope is performed.
Data, MCP, CCD, etc. can be provided.
The fluorescent image of the desired brightness can be obtained with the endoscope.
In this way, the device can be downsized and operability can be further improved.
Can be. FIG. 11 shows a fluorescent image obtained by miniaturizing the fluorescent image amplifying means.
As a fourth configuration example of the light observation device, fluorescence observation and normal white
1 shows a configuration of an apparatus for performing endoscope observation using colored light or the like. The fluorescence observation apparatus of this embodiment performs fluorescence observation.
For fluorescence observation of He-Cd laser etc. that generates excitation light
The light source 61 emits illumination light for performing normal endoscopic observation.
Normally having a light source lamp 62 such as a generated xenon lamp
And a light source 63 for observation.
Connected to the light source adapter 64 for switching the light from the light source
Have been. The light source adapter 64 is connected to the light sources 61 and 63
Selectively switch the light to guide the light to the endoscope
To change the angle between the switching mirror 65 and the switching mirror 65
And a driver 66 for driving.
Of the light guide 5 are connected. The eyepiece 11 of the endoscope 4 has a fluorescent observation
Camera adapter 6 for switching the camera for normal observation
7 is attached, and through this camera adapter 67
Fluorescence observation camera 68 and normal observation camera 69 are connected
Have been. The camera adapter 67 is obtained from the endoscope 4.
Camera 68 for fluorescence observation or camera for normal observation
A switching mirror 70 for switching to lead to
And a driver 71 that drives to change the angle of the
Have. The fluorescent observation camera 68 is driven by a motor 72.
73 that passes through the fluorescent component that is rotationally driven
And an MCP 32 for amplifying the fluorescent image, and capturing the fluorescent image
Observation target part provided with endoscope 4 equipped with CCD74
Are picked up. The filter 7
3 cuts the excitation light of the fluorescence observation light source 61 and
At least one type that passes light in a band with a longer wavelength
, For example, the above-mentioned λ1 and λ2
Two filters are arranged to pass the light of
Formed by the motor 72 and rotated by the motor 72.
The light passes through the next two bands. The normal observation camera 69 has a CCD 75.
The illumination light such as a normal white light obtained by the endoscope 4.
Images of the observation target part (normal observation images) are now taken
ing. The fluorescence observation camera 68 has a fluorescence observation device 7
6 is connected so that the image pickup signal of the fluorescent image is processed.
It has become. The fluorescence observation device 76 has an output of the CCD 74.
Image processing of the force imaging signal as described above
A fluorescent image processing unit 77 for generating a signal and a motor 72 are driven.
Timing to control the timing of the filter 73 by dynamic control
And a switching controller 78. The camera 69 for normal observation has a camera control
Is connected to the CCU 79
Therefore, the image pickup signal output from the CCD 75 is subjected to signal processing and transmitted.
A normal observation image signal is generated. The fluorescence observation device 76 and the CCU 79 are
The fluorescence observation image signal is connected to the observation image control device 80.
The normal observation image signal is input separately.
You. The observation image control device 80 includes a light source adapter 64 and
Drive control of drivers 66 and 71 of camera adapter 67
To control the switching timing of the switching mirrors 65 and 70
Timing controller 81 and a timing controller
Fluorescence in synchronization with adapter switching control by controller 81
Video switching between observation image signal and normal observation image signal
And a switching circuit 82. To the observation image control device 80
Is connected to the foot switch 83, and this foot switch
83 and an image based on the image switching instruction from
The image signal can be switched. The image output terminal of the observation image control device 80
Is connected by the video switching circuit 82
The fluorescence observation image signal or the normal observation image signal
The fluorescence observation image or the normal observation image is input to the
It is displayed. When observing with the fluorescence observation apparatus of this embodiment
Command is issued by the foot switch 83 to switch the image.
And turn off the light source and camera with the adapters 64 and 67.
Alternatively, select fluorescence observation or normal observation. When performing fluorescence observation, the adapters 64 and 6
7, a fluorescence observation light source 61 and a fluorescence observation camera 6
Switch the optical path to the side 8 and take a fluorescent image, and then use a fluorescence observation device
Obtain the fluorescence observation image signal from 76 and observe the fluorescence on the monitor 84
Display an image. On the other hand, when viewing a normal endoscopic image,
In this case, the normal observation light source 63 is
And switching the optical path to the side of the camera 69 for normal observation,
The endoscope image is captured by the illumination light, and is normally viewed from the CCU 79.
Obtain an observation image signal and display a normal observation image on the monitor 84
You. With such a configuration, fluorescence observation and ordinary
Endoscope observation using white light or the like can be performed. This example
Fluorescence observation that performs fluorescence observation and normal endoscope observation like
In the system, the fluorescence image is increased by the fluorescence observation camera.
M instead of image intensifier as width means
By arranging the CP, the size and weight of the camera can be reduced.
Endoscope operation unit including adapter and camera
The surrounding area can be made smaller, and the operability during fluorescence observation can be improved.
Can be [Appendix] As described in detail above, the present invention
According to the aspect, the following configuration can be obtained.
That is, (1) Before irradiating the excitation light to the observation site of the living tissue
In a fluorescence observation device that observes a fluorescence image with the excitation light
A light source for generating the excitation light;
A light receiving element for receiving the reflected light at the elephant site;
The amount of reflected light is detected based on the output of the element, and the output of the
Light amount for adjusting the amount of light emitted from the light source so that is a predetermined amount
And a control unit. (2) The fluorescence observing device is provided with the excitation light
Guide transmitting the light to the tip end of the insertion section and the fluorescent image
Image guide to transmit the image to the eyepiece at hand
An endoscope for connecting the light receiving element to the endoscope.
The fluorescent light according to claim 1, wherein the fluorescent light is arranged in the eye.
Observation device. (3) The fluorescence observing device is provided with the excitation light
Observation turtle that captures a fluorescence image of the observation target site
Camera for the fluorescence observation
The fluorescence observation described in Supplementary Note 1, wherein the fluorescence observation is provided in
apparatus. (4) The fluorescence observing device is provided with the excitation light
Guide transmitting the light to the tip end of the insertion section and the fluorescent image
Image guide to transmit the image to the eyepiece at hand
Endoscope, and a fluorescence image of the observation target site by the excitation light.
A fluorescence observation camera for imaging, and an eyepiece and a front of the endoscope.
The endoscope is inserted between the fluorescent observation camera and the endoscope.
Fluorescence image by excitation light on the exit optical path of the image transmitted to the eye
And an adapter for switching between an optical image using white illumination light and
And the light receiving element is disposed in the adapter.
3. The fluorescence observation device according to claim 1, wherein: (5) Incident light is introduced into the optical path of the fluorescent image.
The splitting element is divided into two
Characterized in that the light receiving element is arranged behind the emitting surface.
2. The fluorescence observation device according to claim 1. (6) Excitation light is applied to the observation target site of the living tissue
Observation to observe the fluorescence image by the excitation light
A light source for generating the excitation light;
Imaging means for capturing a fluorescent image of a site to be observed by light;
MCP (microchip) as a means for amplifying the fluorescent image
An image amplifying element comprising a channel plate).
And a fluorescence observation device. (7) The imaging means includes a solid-state imaging device.
The solid-state image sensor has an image incident surface in front of it.
In addition 6, the image amplifying element is provided.
The fluorescence observation device according to the above. [0071] As described above, according to the present invention,
Always irradiate an appropriate amount of excitation light according to the target site
The optimal observation image can be obtained.
There is fruit.

【図面の簡単な説明】 【図1】図1ないし図3は本発明の第1実施例に係り、
図1は蛍光観察装置の主要部の構成を示す構成説明図 【図2】蛍光観察装置として内視鏡を用いた例の全体構
成を示す構成説明図 【図3】生体組織の観察対象部位における蛍光のスペク
トラムを示す特性図 【図4】本発明の第2実施例に係る蛍光観察装置の全体
構成を示す構成説明図 【図5】本発明の第3実施例に係る蛍光観察装置の蛍光
観察用カメラ周辺の構成を示す構成説明図 【図6】内視鏡を用いた蛍光観察装置の構成例を示す構
成説明図 【図7】図7及び図8は蛍光像の増幅手段を小型化した
蛍光観察装置の第1の構成例に係り、図7は蛍光観察用
カメラ周辺の概略構成を示す構成説明図 【図8】蛍光像の増幅手段としてのMCPの概略構成及
び作用を説明するための作用説明図 【図9】蛍光像の増幅手段を小型化した蛍光観察装置の
第2の構成例に係る装置全体の概略構成図 【図10】蛍光像の増幅手段を小型化した蛍光観察装置
の第3の構成例に係る内視鏡の概略構成図 【図11】蛍光像の増幅手段を小型化した蛍光観察装置
の第4の構成例として、蛍光観察と通常の白色光等によ
る内視鏡観察とを行う装置の構成を示す構成説明図 【符号の説明】 1…光源 2…光量制御手段 3…光源装置 4…内視鏡 6…ライトガイド 7…イメージガイド 9…フィルタ 10…受光素子 13…蛍光観察用カメラ 14…蛍光画像処理装置 20…観察対象部位
BRIEF DESCRIPTION OF THE DRAWINGS FIGS. 1 to 3 relate to a first embodiment of the present invention,
FIG. 1 is a structural explanatory view showing a configuration of a main part of a fluorescence observation apparatus. FIG. 2 is a structural explanatory view showing an overall configuration of an example using an endoscope as a fluorescent observation apparatus. FIG. FIG. 4 is a characteristic diagram showing a spectrum of fluorescence. FIG. 4 is a configuration explanatory view showing an entire configuration of a fluorescence observation device according to a second embodiment of the present invention. FIG. 5 is a fluorescence observation of a fluorescence observation device according to a third embodiment of the present invention. FIG. 6 is an explanatory diagram showing a configuration example of a fluorescence observation device using an endoscope. FIG. 7 and FIG. 8 are miniaturized means for amplifying a fluorescent image. 7 relates to a first configuration example of a fluorescence observation apparatus, and FIG. 7 is a configuration explanatory view showing a schematic configuration around a camera for fluorescence observation. FIG. 8 is a diagram for explaining a schematic configuration and operation of an MCP as a fluorescence image amplification unit. [FIG. 9] A fluorescence observation apparatus in which the fluorescent image amplification means is miniaturized. FIG. 10 is a schematic configuration diagram of an entire apparatus according to a second configuration example. FIG. 10 is a schematic configuration diagram of an endoscope according to a third configuration example of a fluorescence observation device in which a fluorescence image amplifying unit is downsized. As a fourth configuration example of the fluorescence observation apparatus in which the amplification means is downsized, a configuration explanatory view showing the configuration of an apparatus for performing fluorescence observation and endoscope observation using ordinary white light or the like [Explanation of symbols] 1. Light source 2 light amount control means 3 light source device 4 endoscope 6 light guide 7 image guide 9 filter 10 light receiving element 13 fluorescence observation camera 14 fluorescence image processing device 20 observation target site

フロントページの続き (72)発明者 吉原 雅也 東京都渋谷区幡ヶ谷2丁目43番2号 オ リンパス光学工業株式会社内 (72)発明者 飯田 雅彦 東京都渋谷区幡ヶ谷2丁目43番2号 オ リンパス光学工業株式会社内 (72)発明者 植田 康弘 東京都渋谷区幡ヶ谷2丁目43番2号 オ リンパス光学工業株式会社内 (56)参考文献 特開 昭57−89842(JP,A) (58)調査した分野(Int.Cl.7,DB名) A61B 1/00 - 1/32 G01N 21/64 Continued on the front page (72) Inventor Masaya Yoshihara 2-43-2 Hatagaya, Shibuya-ku, Tokyo O-limpus Optical Industry Co., Ltd. (72) Inventor Masahiko Iida 2-43-2 Hatagaya, Shibuya-ku, Tokyo O-limpus Optics (72) Inventor Yasuhiro Ueda 2-43-2 Hatagaya, Shibuya-ku, Tokyo Olympus Optical Co., Ltd. (56) References JP-A-57-89842 (JP, A) (58) Field (Int.Cl. 7 , DB name) A61B 1/00-1/32 G01N 21/64

Claims (1)

(57)【特許請求の範囲】 【請求項1】 励起光を生体組織の観察対象部位へ照射
して前記励起光による蛍光像を観察する蛍光観察装置に
おいて、 前記励起光を発生する光源と、 前記励起光の観察対象部位における反射光の励起光成分
を除去するフィルタと、 前記フィルタを介して反射光の蛍光成分を 受光する受光
素子と、 前記受光素子の出力を基に反射光量を検知し、該受光素
子の出力が所定量となるよう前記光源の出射光量を調整
する光量制御手段と、 を備えたことを特徴とする蛍光観察装置。
(57) [Claim 1] In a fluorescence observation apparatus which irradiates excitation light to an observation target part of a living tissue and observes a fluorescent image by the excitation light, a light source which generates the excitation light; Excitation light component of reflected light at the observation target site of the excitation light
, A light-receiving element for receiving the fluorescent component of the reflected light via the filter, and a light source for detecting the amount of reflected light based on the output of the light-receiving element, so that the output of the light-receiving element becomes a predetermined amount. And a light amount control unit that adjusts the amount of emitted light of the fluorescence observation apparatus.
JP29867294A 1993-12-03 1994-12-01 Fluorescence observation device Expired - Fee Related JP3487933B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29867294A JP3487933B2 (en) 1993-12-03 1994-12-01 Fluorescence observation device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP5-304428 1993-12-03
JP30442893 1993-12-03
JP29867294A JP3487933B2 (en) 1993-12-03 1994-12-01 Fluorescence observation device

Publications (2)

Publication Number Publication Date
JPH07204156A JPH07204156A (en) 1995-08-08
JP3487933B2 true JP3487933B2 (en) 2004-01-19

Family

ID=26561613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29867294A Expired - Fee Related JP3487933B2 (en) 1993-12-03 1994-12-01 Fluorescence observation device

Country Status (1)

Country Link
JP (1) JP3487933B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012090726A (en) * 2010-10-26 2012-05-17 Fujifilm Corp Electronic endoscope system, processor device of electronic endoscope system, and method for controlling illumination light
US10524666B2 (en) 2018-05-09 2020-01-07 Inner Ray, Inc. White excitation light generating device and white excitation light generating method
US11442254B2 (en) 2019-04-05 2022-09-13 Inner Ray, Inc. Augmented reality projection device

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3487382B2 (en) * 1994-12-28 2004-01-19 株式会社デンソー Boiling cooling device
US7179222B2 (en) 1996-11-20 2007-02-20 Olympus Corporation Fluorescent endoscope system enabling simultaneous achievement of normal light observation based on reflected light and fluorescence observation based on light with wavelengths in infrared spectrum
US6293911B1 (en) 1996-11-20 2001-09-25 Olympus Optical Co., Ltd. Fluorescent endoscope system enabling simultaneous normal light observation and fluorescence observation in infrared spectrum
JP3713347B2 (en) * 1996-11-25 2005-11-09 オリンパス株式会社 Fluorescence endoscope device
US6059720A (en) * 1997-03-07 2000-05-09 Asahi Kogaku Kogyo Kabushiki Kaisha Endoscope system with amplification of fluorescent image
US6603552B1 (en) 1999-12-22 2003-08-05 Xillix Technologies Corp. Portable system for detecting skin abnormalities based on characteristic autofluorescence
WO2002007587A2 (en) 2000-07-14 2002-01-31 Xillix Technologies Corporation Compact fluorescent endoscopy video system
DE60236722D1 (en) * 2001-03-16 2010-07-29 Univ Utah Res Found DEVICE AND METHOD FOR THE PHOTODYNAMIC DIAGNOSIS OF TUMOR TISSUE
US20060241496A1 (en) 2002-01-15 2006-10-26 Xillix Technologies Corp. Filter for use with imaging endoscopes
US6899675B2 (en) 2002-01-15 2005-05-31 Xillix Technologies Corp. Fluorescence endoscopy video systems with no moving parts in the camera
JP4576377B2 (en) * 2004-04-30 2010-11-04 株式会社モリタ製作所 Biological observation equipment, intraoral imaging device, and medical instrument
US7798955B2 (en) 2004-10-26 2010-09-21 Olympus Corporation Image generating device for generating a fluorescence image
JP4564331B2 (en) * 2004-10-26 2010-10-20 オリンパス株式会社 Image generation device
US20070122344A1 (en) 2005-09-02 2007-05-31 University Of Rochester Medical Center Office Of Technology Transfer Intraoperative determination of nerve location
US20090303317A1 (en) 2006-02-07 2009-12-10 Novadaq Technologies Inc. Near infrared imaging
EP2051603B1 (en) 2006-07-28 2019-09-11 Novadaq Technologies ULC System and method for deposition and removal of an optical element on an endoscope objective
US20080161744A1 (en) 2006-09-07 2008-07-03 University Of Rochester Medical Center Pre-And Intra-Operative Localization of Penile Sentinel Nodes
US8498695B2 (en) 2006-12-22 2013-07-30 Novadaq Technologies Inc. Imaging system with a single color image sensor for simultaneous fluorescence and color video endoscopy
US8406860B2 (en) 2008-01-25 2013-03-26 Novadaq Technologies Inc. Method for evaluating blush in myocardial tissue
MX2010010292A (en) 2008-03-18 2011-01-25 Novadaq Technologies Inc Imaging system for combined full-color reflectance and near-infrared imaging.
US10219742B2 (en) 2008-04-14 2019-03-05 Novadaq Technologies ULC Locating and analyzing perforator flaps for plastic and reconstructive surgery
EP2687235A3 (en) 2008-05-02 2014-11-05 Novadaq Technologies Inc. Methods for production and use of substance-loaded erythrocytes (S-LES) for observation and treatment of microvascular hemodynamics
US10492671B2 (en) 2009-05-08 2019-12-03 Novadaq Technologies ULC Near infra red fluorescence imaging for visualization of blood vessels during endoscopic harvest
CN102665559B (en) * 2009-12-21 2015-06-24 泰尔茂株式会社 Excitation, detection, and projection system for visualizing target cancer tissue
BR112013022997A2 (en) 2011-03-08 2018-07-03 Novadaq Technologies Inc. full spectrum led illuminator.
US10278585B2 (en) 2012-06-21 2019-05-07 Novadaq Technologies ULC Quantification and analysis of angiography and perfusion
WO2016049756A1 (en) 2014-09-29 2016-04-07 Novadaq Technologies Inc. Imaging a target fluorophore in a biological material in the presence of autofluorescence
CA2963450A1 (en) 2014-10-09 2016-04-14 Novadaq Technologies Inc. Quantification of absolute blood flow in tissue using fluorescence-mediated photoplethysmography
US10390708B2 (en) * 2015-03-02 2019-08-27 Citizen Watch Co., Ltd. Optical measuring device and toothbrush provided with same
WO2017079844A1 (en) 2015-11-13 2017-05-18 Novadaq Technologies Inc. Systems and methods for illumination and imaging of a target
EP4155716A1 (en) 2016-01-26 2023-03-29 Stryker European Operations Limited Image sensor assembly
US10293122B2 (en) 2016-03-17 2019-05-21 Novadaq Technologies ULC Endoluminal introducer with contamination avoidance
USD916294S1 (en) 2016-04-28 2021-04-13 Stryker European Operations Limited Illumination and imaging device
CA3027592A1 (en) 2016-06-14 2017-12-21 John Josef Paul FENGLER Methods and systems for adaptive imaging for low light signal enhancement in medical visualization
EP4242743A3 (en) 2017-02-10 2023-10-18 Stryker European Operations Limited Open-field handheld fluorescence imaging systems and methods

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012090726A (en) * 2010-10-26 2012-05-17 Fujifilm Corp Electronic endoscope system, processor device of electronic endoscope system, and method for controlling illumination light
US10524666B2 (en) 2018-05-09 2020-01-07 Inner Ray, Inc. White excitation light generating device and white excitation light generating method
US11442254B2 (en) 2019-04-05 2022-09-13 Inner Ray, Inc. Augmented reality projection device

Also Published As

Publication number Publication date
JPH07204156A (en) 1995-08-08

Similar Documents

Publication Publication Date Title
JP3487933B2 (en) Fluorescence observation device
JP3283128B2 (en) Fluorescence observation endoscope device
JP3194660B2 (en) Fluorescence observation device
US6422994B1 (en) Fluorescent diagnostic system and method providing color discrimination enhancement
US6603552B1 (en) Portable system for detecting skin abnormalities based on characteristic autofluorescence
JP3962122B2 (en) Endoscope device
JP3435268B2 (en) Fluorescence observation endoscope device
KR101050882B1 (en) Biometric observation system
JPH07250812A (en) Fluorescence diagnosing apparatus
JPH08224208A (en) Fluorescence observing endoscope device
JPH07155290A (en) Endoscope apparatus
JPH06125911A (en) Endoscopic device
JPH10309282A (en) Fluorescent observation device
JPH10225426A (en) Fluorescence observing device
JPH11104060A (en) Fluorescent observation device
JP2003079570A (en) Endoscope apparatus
JP3762646B2 (en) Fluorescence observation equipment
JP7219002B2 (en) Endoscope
JPH10328129A (en) Fluorescent observing device
JPH11104061A (en) Trans-endoscopic fluorescent observation device
JPH11113839A (en) Endoscope device
JP4744279B2 (en) Electronic endoscope device
EP1239771B1 (en) Portable system for detecting skin abnormalities
US20030153811A1 (en) Fluorescence endoscope with inserted/retracted short-pass filter
JP2008043383A (en) Fluorescence observation endoscope instrument

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031015

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071031

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081031

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091031

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101031

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101031

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131031

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees