JP3560671B2 - Fluorescence observation device - Google Patents

Fluorescence observation device Download PDF

Info

Publication number
JP3560671B2
JP3560671B2 JP03544495A JP3544495A JP3560671B2 JP 3560671 B2 JP3560671 B2 JP 3560671B2 JP 03544495 A JP03544495 A JP 03544495A JP 3544495 A JP3544495 A JP 3544495A JP 3560671 B2 JP3560671 B2 JP 3560671B2
Authority
JP
Japan
Prior art keywords
image
fluorescence
wavelength
switching
observation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03544495A
Other languages
Japanese (ja)
Other versions
JPH08224209A (en
Inventor
仁士 上野
守 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP03544495A priority Critical patent/JP3560671B2/en
Publication of JPH08224209A publication Critical patent/JPH08224209A/en
Application granted granted Critical
Publication of JP3560671B2 publication Critical patent/JP3560671B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/043Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances for fluorescence imaging

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Biomedical Technology (AREA)
  • Medical Informatics (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biophysics (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)
  • Endoscopes (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、励起光を生体組織の観察対象部位へ照射して励起光による蛍光像を得る蛍光観察装置に関する。
【0002】
【従来の技術】
近年、生体組織の観察対象部位へ励起光を照射し、この励起光によって生体組織から直接発生する自家蛍光や生体へ注入しておいた薬物の蛍光を2次元画像として検出し、その蛍光像から生体組織の変性や癌等の疾患状態(例えば、疾患の種類や浸潤範囲)を診断する技術が用いられつつあり、この蛍光観察を行うための蛍光観察装置が開発されている。
【0003】
自家蛍光においては、生体組織に励起光を照射すると、その励起光より長い波長の蛍光が発生する。生体における蛍光物質としては、例えばNADH(ニコチンアミドアデニンヌクレオチド),FMN(フラビンモノヌクレオチド),ピリジンヌクレオチド等がある。最近では、このような蛍光を発生する生体内因物質と疾患との相互関係が明確になりつつあり、これらの蛍光により癌等の診断が可能である。
【0004】
また、薬物の蛍光においては、生体内へ注入する蛍光物質としては、HpD(ヘマトポルフィリン),Photofrin ,ALA(δ−amino levulinic acid)等が用いられる。これらの薬物は癌などへの集積性があり、これを生体内に注入して蛍光を観察することで疾患部位を診断できる。また、モノクローナル抗体に蛍光物質を付加させ、抗原抗体反応により病変部に蛍光物質を集積させる方法もある。
【0005】
励起光としては例えばレーザ光が用いられ、励起光を生体組織へ照射することによって観察対象部位の蛍光像を得る。この励起光による生体組織における微弱な蛍光を検出して2次元の蛍光画像を生成し、観察、診断を行う。
【0006】
このような蛍光観察装置においては、一般に通常画像と蛍光画像とを対比させて診断を行う。このために、通常観察用の光源装置及び撮像手段と蛍光観察用の光源装置及び撮像手段とを交換して使用している。従来の装置では、例えば特開昭63−122421号公報に開示されているように、通常照明光と励起光とを照射光切換え手段を用いて交互に照射し、得られた通常画像と蛍光画像とを照射光切換え手段に同期させて交互に取り込んでメモリに蓄え、通常画像と蛍光画像を同時表示するような構成となっていた。
【0007】
【発明が解決しようとする課題】
蛍光観察装置において、生体内臓器の癌等の疾患の状態を蛍光観察により診断する場合、診断に適した励起光の波長及び検出する蛍光の波長は臓器特有のものであるため、従来の装置では観察対象の臓器が異なる毎に励起波長及び検出波長を変えるような構成となっていた。しかし、このような構成では観察する臓器に合わせて励起波長及び検出波長を予め交換して蛍光観察を行うために診断時の操作が煩雑であった。
【0008】
本発明は、これらの事情に鑑みてなされたもので、観察対象に合わせて、自動的に励起波長又は検出波長、或いは両方を、各観察対象の蛍光観察に適した波長に切り換えることができ、煩雑な波長切り換え操作を行う必要がなく、正確な蛍光診断を行うことができるようにした蛍光観察装置を提供することを目的としている。
【0009】
【課題を解決するための手段】
本発明による蛍光観察装置は、体腔内組織を励起して蛍光を発生させるための励起光を発生する光源と、前記光源より出射する励起光の波長帯域を選択的に切り換える励起波長切換手段と、前記励起波長切換手段により切り換えられた波長帯域の励起光により発生した組織からの蛍光像を検出する内視鏡と、前記内視鏡の種類を判別する判別手段と、前記判別手段からの情報を受け、前記励起波長切換手段による前記波長帯域の切換を制御する波長切換制御手段とを有することを特徴とし、更に、前記検出される蛍光像の検出波長帯域を切り換え選択する検出波長切換手段を備え、前記波長切換制御手段は、前記判別手段からの情報を受け、前記励起波長切換手段による励起光の波長帯域の切換と、前記検出波長切換手段による前記蛍光像の検出波長帯域の切換とを制御することを特徴とする。
【0010】
また、本発明による蛍光観察装置は、体腔内組織を励起して蛍光を発生させるための励起光を発生する光源と、前記光源が発生する励起光によって発生した組織からの蛍光像を検出する内視鏡と、前記検出される蛍光像の検出波長帯域を切り換え選択する検出波長切換手段と、前記内視鏡の種類を判別する判別手段と、前記判別手段からの情報を受け、前記検出波長切換手段による前記蛍光像の検出波長帯域の切換を制御する波長切換制御手段とを有することを特徴とする。
【0011】
【実施例】
以下、図面を参照して本発明の実施例を説明する。
【0012】
まず、本発明の実施例の説明に先立って、本発明の参考例について説明する。 図1及び図2は本発明の参考例に係り、図1は蛍光観察装置の概略構成を示す構成説明図、図2は観察部位へ照射する各照明光及び生体組織から検出される蛍光の波長帯域と各フィルタの透過波長特性との関係を示す特性図である。
【0013】
図1に示すように、本参考例の蛍光観察装置は、励起光とRGBの3原色の照明光(以下RGB光と称する)とを発生する光源装置1と、光源装置1からの励起光とRGB光とを生体内の観察部位に照射して、励起光による蛍光像とRGB光による通常像とを検出し生体外に伝達する内視鏡2と、内視鏡2で得られた蛍光像と通常像とを撮影し電気信号に変換するカメラ3と、カメラ3からの画像信号を処理し、蛍光画像と通常画像とを生成する画像処理部4と、画像処理部4により生成された蛍光画像と通常画像とを同時にまたはそれぞれ別に表示するCRTモニタ等からなる表示部5とを備えて主要部が構成されている。
【0014】
光源装置1は、蛍光を励起するための励起光を発生する励起用レーザ6と、通常像を得るためのRGB光を発生するRGBレーザ7と、励起用レーザ6,RGBレーザ7の光軸を1つに合成するミラー8及びダイクロイックミラー9とを備えて構成される。
【0015】
内視鏡2は、生体内へ挿入する細長の挿入部を有し、光源装置1からの励起光及びRGB光を挿入部先端まで伝達するライトガイド21を含む照明光学系と、観察部位の蛍光像及び通常像を手元側の接眼部まで伝達するイメージガイド22を含む観察光学系とを備えて構成される。
【0016】
カメラ3は、内視鏡2の接眼部に接続され、内視鏡2より入射する蛍光像及び通常像を3つの光路に分割するダイクロイックミラー10,ダイクロイックミラー11,ミラー12と、蛍光を検出する波長帯域λ1 を透過するバンドパスフィルタ13と、蛍光を検出する波長帯域λ2 を透過するバンドパスフィルタ14と、励起用レーザ6からの励起光の波長帯域のみを遮断するレーザカットフィルタ15と、バンドパスフィルタ13を透過した蛍光像を増幅するイメージインテンシファイア(図中ではI.I.と略記する)16と、バンドパスフィルタ14を透過した蛍光像を増幅するイメージインテンシファイア17と、イメージインテンシファイア16の出力像を撮像するCCD18と、イメージインテンシファイア17の出力像を撮像するCCD19と、レーザカットフィルタ15を透過した蛍光像を含む通常像を撮像するCCD20とを備えて構成される。
【0017】
光源装置1において、励起用レーザ6により励起光λ0 を発生する。また、RGBレーザ7により赤色光λR ,緑色光λG ,青色光λB の3色を同時に発振することで生成される白色光を発生する。そして、これらの光をミラー8及びダイクロイックミラー9により反射及び透過して1つの光軸上に合成して配置し、内視鏡2のライトガイド21に導光する。ライトガイド21に導光された4色のレーザ光は、内視鏡2内部を通って挿入部先端部まで伝達され、生体内の観察部位に照射される。
【0018】
そして、観察部位からの励起光による蛍光像とRGB光による通常像は、内視鏡2のイメージガイド22を通じて手元側の接眼部まで伝達され、カメラ3に入射される。カメラ3に入射された蛍光像と通常像は、ダイクロイックミラー10,ダイクロイックミラー11,ミラー12により透過及び反射して3つの光路に分割される。分割された3つの光は、それぞれバンドパスフィルタ13,バンドパスフィルタ14,レーザカットフィルタ15を透過する。
【0019】
図2は励起用レーザ,RGBレーザより発生される各照明光及び生体組織から検出される蛍光の波長帯域と、各フィルタの透過波長特性との関係を示したものである。
【0020】
図2の(a)に示すように、励起光λ0 ,赤色光λR ,緑色光λG ,青色光λB の各波長帯域と、蛍光を検出する波長帯域λ1 及びλ2 とは、それぞれ重なり合う波長帯域を持たないように各帯域が設定されている。そして、図2の(b)及び(c)に示すように、バンドパスフィルタ13の透過波長帯域はλ1 、バンドパスフィルタ14の透過波長帯域はλ2 となっている。すなわち、バンドパスフィルタ13を透過した光は、λ1 の波長帯域の成分しか持たない光であり、観察部位より出た蛍光のうち、検出するλ1 の波長帯域よりなる蛍光像である。また、バンドパスフィルタ14を透過した光は、λ2 の波長帯域の成分しか持たない光であり、観察部位より出た蛍光のうち、検出するλ2 の波長帯域よりなる蛍光像である。また、レーザカットフィルタ15は、励起光λ0 の波長帯域をカットするフィルタであり、レーザカットフィルタ15を透過した光は励起光λ0 の波長帯域を持たない光であり、R,G,Bの各色光よりなる通常像である。
【0021】
バンドパスフィルタ13を透過した蛍光像は、イメージインテンシファイア16で増幅された後にCCD18で撮像されてビデオ信号に変換される。また同様に、バンドパスフィルタ14を透過した蛍光像は、イメージインテンシファイア17で増幅された後にCCD19で撮像されてビデオ信号に変換される。レーザカットフィルタ15を透過した通常像は、そのままCCD20で撮像されてビデオ信号に変換される。
【0022】
CCD18及びCCD19で得られた蛍光像のビデオ信号は画像処理部4に入力される。画像処理部4では、2つの波長帯域の蛍光像のビデオ信号を演算処理して蛍光観察画像を生成する。
【0023】
励起光による観察部位における可視領域の蛍光は、励起光λ0 より長い波長の帯域の強度分布となり、正常部位では特にλ1 付近で強く、病変部では弱くなる。よって、特にλ1 付近の蛍光強度から正常部位と病変部との判別が可能であり、このような蛍光画像によって癌等の病変部の診断ができる。従って、画像処理部4においては、例えばλ1 とλ2 の蛍光像の画像信号よりλ1 とλ2 における蛍光強度の比率または差分を求める演算を行い、生体組織の性状を判別可能な蛍光観察画像を生成する。
【0024】
また、CCD20で得られた通常像のビデオ信号は通常観察画像として画像処理部4に入力される。画像処理部4は、蛍光観察画像信号と通常観察画像信号とを合成して同時に出力したり、または蛍光観察画像信号と通常観察画像信号をそれぞれ別々に出力し、これらの画像信号を表示部5に送る。そして、表示部5において蛍光観察画像及び通常観察画像が同時にまたは別々に表示される。
【0025】
このように本参考例の蛍光観察装置では、通常観察用の光源としてRGBレーザを利用し、RGBレーザの各色光の波長帯域と、励起用レーザの励起光の波長帯域と、診断用の蛍光画像を生成するために検出する蛍光の複数の波長帯域とのそれぞれが重なり合わないように配置するようにしている。従って本参考例によれば、通常観察用と蛍光観察用とで光源や撮像手段を切り換える必要がなく、通常観察用と蛍光観察用の照明光を同時に照射して通常像と蛍光像とを同時に撮像することが可能となり、蛍光観察画像と通常観察画像をリアルタイムで両方同時に表示し観察することができる。
【0026】
このため、蛍光観察画像と通常観察画像との間で時間的なズレが生じることなく、常に同一の観察部位を見ることができる。また、両画像を表示する際に画像の画面数を多くとることができるため、明るい画像を得ることができる。よって、蛍光観察による診断能を向上させることができる。
【0027】
また、励起光とRGB光との切換え手段、及び蛍光像と通常像との切換え手段が不要なため、装置を小型化することができる。
【0028】
なお、当該参考例の変形例として、励起用レーザ6の波長帯域を変更することも可能である。励起用レーザ6の出射光の波長がRGBレーザ7の発する3色の光の波長のうちの1つと同じ波長を持つような場合は、励起用レーザ6をRGBレーザ7で兼ねることができるため、励起用レーザ6,ミラー8,ダイクロイックミラー9,レーザカットフィルタ15が不要となる。このため、装置の小型化を図ることができる。
【0029】
また、励起用レーザ6の波長が可視光領域以外にあるような場合は、レーザカットフィルタ15は不要となる。
【0030】
次に、蛍光観察装置の他の構成例を示す。蛍光観察装置において、生体内臓器の癌等の疾患の状態を蛍光観察により診断する場合、診断に適した励起光の波長及び検出する蛍光の波長は臓器特有のものであるため、従来の装置では観察対象の臓器が異なる毎に励起波長及び検出波長を変えるような構成となっていた。しかし、このような構成では観察する臓器に合わせて励起波長及び検出波長を予め交換して蛍光観察を行うために診断時の操作が煩雑であった。また、励起波長及び検出波長が観察部位に適合していないことに気付かずに診断を行うと正確な診断ができないおそれがある。
【0031】
そこで、観察部位を判別してその臓器に適した励起波長及び検出波長を自動的に選択することが可能で、診断時の操作性を向上させると共に観察部位の正確な診断を行うことのできる蛍光観察装置の構成例を本発明の実施例として以下に示す。
【0032】
図3ないし図5は本発明の第1実施例に係り、図3は蛍光観察装置の概略構成を示す構成説明図、図4は検出波長切換え用フィルタを示す構成説明図、図5は励起波長切換え用フィルタを示す構成説明図である。
【0033】
図3に示すように、本実施例の蛍光観察装置は、励起光を発生する光源装置31と、光源装置31からの励起光を生体内の観察部位に照射して、励起光による蛍光像を検出し生体外に伝達する内視鏡32と、接続された内視鏡の種類(例えば、上部消化管用、下部消化管用、気管支用等)を検出する内視鏡種類検出手段33と、内視鏡種類検出手段33からの信号を入力し、接続された内視鏡の種類を判別する内視鏡判別回路34と、内視鏡判別回路34からの信号により励起波長及び検出波長を決定し、それぞれの波長の切換えを制御する波長切換制御手段35と、波長切換制御手段35からの信号を受けて蛍光検出波長を切換える検出波長切換手段36と、内視鏡32で得られた蛍光像を撮影し電気信号に変換するカメラ37と、カメラ37からの画像信号を処理し蛍光画像を生成する蛍光画像処理部38と、蛍光画像処理部38により生成された蛍光画像を表示する表示部39とを備えて構成されている。
【0034】
内視鏡種類検出手段33は、内視鏡32の接眼部に設けたバーコードラベル40と、このバーコードラベル40を読み取るための接眼部に取り付けられるバーコードスキャナ41とを備えて構成される。
【0035】
検出波長切換手段36は、内視鏡32から入射する蛍光像を2つの光路に分割するダイクロイックミラー42,ミラー43と、検出する蛍光の波長帯域を選択的に透過する検出波長切換フィルタ44と、検出波長切換フィルタ44を回転駆動するフィルタ駆動部45とを備えて構成される。
【0036】
カメラ37は、検出波長切換手段36から入射する2つの蛍光像をそれぞれ増幅するイメージインテンシファイア16,17と、イメージインテンシファイア16の出力像を撮像するCCD18と、イメージインテンシファイア17の出力像を撮像するCCD19とを備えて構成される。
【0037】
光源装置31は、数種類の波長を含む光を発生する多波長光源(例えば水銀ランプ等)46と、出射する励起光の波長帯域を選択的に透過する励起波長切換フィルタ47と、励起波長切換フィルタ47を回転駆動するフィルタ駆動部48とを備えて構成される。
【0038】
本実施例では、内視鏡32を内視鏡種類検出手段33に接続すると、内視鏡接眼部に取り付けられた内視鏡の種類を示すバーコードラベル40がバーコードスキャナ41により読み取られ、バーコードの情報が内視鏡判別回路34に送られる。内視鏡判別回路34は、前記バーコードの情報より接続された内視鏡の種類を判別して、内視鏡種類の情報を波長切換制御手段35に伝達する。波長切換制御手段35は、判別された内視鏡の種類から観察する臓器に適した検出波長を選択し、検出波長切換手段36内のフィルタ駆動部45に制御信号を送出して検出波長切換フィルタ44を回転させる。
【0039】
検出波長切換フィルタ44は、図4に示すように、円盤状のフィルタ枠に異なる透過波長帯域を持つ6枚のバンドパスフィルタ44a〜44fが配設されて構成されており、内視鏡の種類に応じて、イメージインテンシファイア16,17の前に44aと44bの領域、44cと44dの領域、44eと44fの領域のいずれかを選択的に配置することで、蛍光像の検出波長帯域を変えることができる。
【0040】
また、前記検出波長帯域の切換えと共に、波長切換制御手段35は、判別された内視鏡の種類から観察する臓器に適した励起波長を選択し、光源装置31内のフィルタ駆動部48に制御信号を送出して励起波長切換フィルタ47を回転させる。
【0041】
励起波長切換フィルタ47は、図5に示すように、円盤状のフィルタ枠に3枚の異なる透過波長帯域を持つバンドパスフィルタ47a,47b,47cが配設されて構成されており、内視鏡の種類に応じて、多波長光源46の前に47a,47b,47cのいずれかの領域を配置することで、観察部位へ照射する励起波長帯域を変えることができる。
【0042】
このように観察部位に適した励起波長及び検出波長が選択された後、光源装置31より励起光が内視鏡32のライトガイド21に導光され、ライトガイド21を通じて観察部位に照射される。観察部位より出た蛍光は、内視鏡32のイメージガイド22を通じて接眼部まで伝達され、検出波長切換手段36に入射される。検出波長切換手段36に入射された蛍光像は、ダイクロイックミラー42,ミラー43により透過及び反射して2つの光路に分割され、検出波長切換フィルタ44中の選択されたいずれかのバンドパスフィルタをそれぞれ透過する。この2つの蛍光像は、イメージインテンシファイア16,17によりそれぞれ増幅され、CCD18,19により撮像されてビデオ信号に変換される。
【0043】
CCD18及びCCD19で得られた2つの波長帯域の蛍光像のビデオ信号は、蛍光画像処理部38に入力され、蛍光画像処理部38において参考例の画像処理部4と同様の演算処理が施されて蛍光観察画像が生成される。そして、蛍光画像処理部38の出力が表示部39へ送られ、蛍光観察画像が表示部39に表示される。
【0044】
このように本実施例の蛍光観察装置では、接続した内視鏡の用途別の種類を判別することによって観察部位を判別し、観察する臓器に適した励起波長及び検出波長を自動的に選択して切換えることが可能になっており、これにより、複数種類の臓器について各臓器に応じた正確な蛍光診断を煩雑な操作なく行うことができる。
【0045】
なお、内視鏡種類検出手段33は、内視鏡のライトガイド部と光源装置との接続部分に設けるようにしても良い。また、バーコードを用いたものに限らず、他の光学的センサによるもの、磁気センサによるもの、機械的な接触によるものなどで内視鏡の種類を判別する構成としても良い。
【0046】
また、検出波長切換フィルタ44と励起波長切換フィルタ47のバンドパスフィルタの数を変更することで、検出波長及び励起波長の選択数を変えることができる。
【0047】
また、検出波長切換手段と励起波長切換手段は、どちらか一方を備えるだけでも良い。
【0048】
図6は本発明の第2実施例に係る蛍光観察装置の概略構成を示す構成説明図である。第2実施例は、接続された内視鏡の種類と内視鏡挿入部の挿入長とから異なる部位の臓器(食道と胃、直腸と結腸等)を判別可能とした構成例である。
【0049】
図6に示すように、本実施例の蛍光観察装置は、励起光を発生する光源装置51と、内視鏡32の挿入部に取り付けられた挿入部の挿入長を測定するセンサ群52と、センサ群52の出力信号を受けて挿入長を検出する挿入長検出回路53と、内視鏡種類検出手段33と挿入長検出回路53からの情報を基に内視鏡の種類と観察臓器部位を判別する観察部位判別回路54とを備えて構成されている。その他の部分の構成は前記第1実施例と同様であり、同一構成要素には同一符号を付して説明を省略する。
【0050】
光源装置51は、異なる波長の光を発生する3つのレーザA55,レーザB56,レーザC57と、前記レーザからの3つの光のうちいずれか1つの光を内視鏡32のライトガイド21へ導くための可動ミラー58,可動ミラー59,ミラー60と、前記可動ミラー58,59を駆動する可動ミラー駆動部61とを備えて構成される。
【0051】
内視鏡32を内視鏡種類検出手段33に接続すると、第1実施例と同様に、バーコードスキャナ41によりバーコードの情報が読み取られ、観察部位判別回路54に送られて接続された内視鏡の種類が判別される。そして、この内視鏡種類判別結果を基に、波長切換制御手段35により検出波長切換手段36内のフィルタ駆動部45を介して検出波長切換フィルタ44が駆動制御されて検出波長が切換えられる。
【0052】
また、波長切換制御手段35によって、光源装置51内の可動ミラー駆動部61に制御信号が送られて可動ミラー58及び59が駆動制御され、レーザA55,レーザB56,レーザC57のうち観察臓器に適した波長のレーザが選択されて内視鏡32のライトガイド21に照射される。
【0053】
次に、内視鏡32の挿入部を患者体腔内に挿入すると、挿入部に設けたセンサ群52の各光センサにより挿入部周囲の明るさが感知され、各光センサの出力が挿入長検出回路53へ送られる。挿入長検出回路53は、明るさを感知していない光センサが挿入部先端側から何番目まであるかを検出することによって挿入部の挿入長を検出する。観察部位判別回路54は、挿入長検出結果を基に、内視鏡32が観察している部位を予測し、観察部位の情報を波長切換制御手段35に伝達する。例えば、内視鏡の種類が上部消化管用の場合には、挿入長より観察部位が食道、胃などのいずれであるかを判断する。そして、観察部位検出結果を基に、波長切換制御手段35により検出波長及び励起波長が再び切換えられる。
【0054】
以降の蛍光像の撮影及び蛍光観察画像の生成に関する動作は、前記第1実施例と同様に行われ、表示部39に蛍光観察画像が表示される。
【0055】
このように本実施例によれば、内視鏡挿入部の挿入長を検出することにより、観察臓器を予測できるため、蛍光観察に適した励起波長,検出波長が、同一の内視鏡で観察できる臓器毎(胃と食道、結腸と直腸等)に異なる場合でも、各臓器部位に適した励起波長及び検出波長を自動的に選択でき、診断時の作業性が良好で、かつ観察部位に応じた正確な蛍光診断を行うことができる。
【0056】
なお、本実施例で用いた光源装置51は、図3に示した第1実施例の光源装置31と交換可能である。
【0057】
また、本実施例においても、内視鏡種類検出手段33は、内視鏡のライトガイド部と光源装置との接続部分に設けるようにしても良い。
【0058】
また、センサ群は、光センサの代わりに圧力センサを設け、圧力センサにより圧力がかかっているか否かで挿入長を判別する構成としても良い。また、図6には6個のセンサを示したが、センサの数はこれより多くても少なくても良い。
【0059】
図7は本発明の第3実施例に係る蛍光観察装置の概略構成を示す構成説明図である。第3実施例は、蛍光観察画像から観察臓器を判別し、その臓器に適した励起波長及び検出波長を選別するようにした構成例である。
【0060】
図7に示すように、本実施例の蛍光観察装置は、励起光を発生する光源装置51と、励起光を生体内の観察部位に照射して励起光による蛍光像を得る内視鏡2と、内視鏡2の接眼部に取り付けられ、蛍光検出波長を切換える検出波長切換手段36と、内視鏡2で得られた蛍光像を撮影するカメラ37と、カメラ37からの画像信号を処理し蛍光画像を生成する蛍光画像処理部38と、蛍光観察画像を表示する表示部39とを備えると共に、蛍光画像処理部38からの蛍光観察画像を基に画像の特徴を認識する画像認識部65と、認識された画像から観察部位を判別する観察部位判別回路66と、観察部位判別回路66からの信号により励起波長及び検出波長を決定し、それぞれの波長の切換えを制御する波長切換制御手段35とを備えて構成されている。
【0061】
本実施例では、まず、任意の励起波長及び検出波長で励起光の照射及び蛍光像の撮影を行い、蛍光画像処理部38で体腔内観察部位の蛍光観察画像を生成する。生成された蛍光観察画像は画像認識部65に伝達される。
【0062】
画像認識部65は、ニューラルネットを用いたパーセプトロンとか、Back Propagation法(以下略してBP法と称する)等の画像パターン認識法により、蛍光観察画像から食道、胃、大腸、気管支等の臓器を認識できるように、予め各臓器の観察画像を使用して学習させており、各臓器の画像の特徴が記憶されている。そして、画像認識部65は、蛍光画像処理部38より伝達された蛍光観察画像の各画素毎の信号に重み付けをし、その総和をとることで画像パターンを認識する。
【0063】
例えば、食道においては、管腔であるため観察画像は中央付近になるにしたがい暗くなる。一方、胃においては、観察画像は全体的に明るいか一方側が暗いなど、食道とは画像パターンが明らかに異なる。そこで本実施例では、このような画像の違いを、パーセプトロンとかBP法等を用いて画像パターン認識を行うことによって判別し、観察している臓器を判別する。
【0064】
画像認識部65で認識された画像パターン信号は、観察部位判別回路66に送られ、観察部位判別回路66において画像パターンより観察臓器が判別される。この観察臓器の情報は、波長切換制御手段35に伝達され、前述の実施例と同様に観察する臓器に適した励起波長及び検出波長に切換えられる。
【0065】
以降の蛍光像の撮影及び蛍光観察画像の生成に関する動作は、前記第1実施例と同様に行われ、表示部39に蛍光観察画像が表示される。
【0066】
このように本実施例によれば、蛍光観察画像の画像パターンを認識することで自動的に観察臓器を判別することができるため、煩雑な作業なしに各臓器部位に適した励起波長及び検出波長を選択でき、観察部位に応じた正確な蛍光診断を行うことができる。
【0067】
なお、画像認識部65において行う画像パターン認識は、白色光源を用いた通常観察時に行うようにしても良い。
【0068】
次に、第4実施例として、光源のレーザ出力の測定及び記録が可能な蛍光観察装置の構成例を説明する。図8は本発明の第4実施例に係る蛍光観察装置の概略構成を示す構成説明図である。
【0069】
本実施例の蛍光観察装置は、励起光を発生する光源装置71と、励起光を生体内の観察部位に照射して励起光による蛍光像を得る内視鏡2と、内視鏡2で得られた蛍光像を撮影するカメラ72と、カメラ72からの画像信号を処理し蛍光観察画像を生成する蛍光画像処理部73と、蛍光観察画像を表示する表示部39とを備えると共に、蛍光観察画像を記録するビデオテープレコーダ(VTR)74と、患者情報を記録するデータレコーダ75とを備えて構成されている。
【0070】
光源装置71は、励起光としてレーザ光を発生する励起用レーザ76と、励起用レーザ76からのレーザ光を2方向に分割するハーフミラー77と、分割された一方のレーザ光を検出する光センサ78と、光センサ78で検出された光量よりレーザ出力を測定する出力測定器79とを備えて構成される。
【0071】
蛍光画像処理部73は、蛍光観察画像を生成するイメージプロセッサ80と、生成された蛍光観察画像にレーザ光の出力データを重ね合わせるスーパーインポーズ部81と、光源装置71から送られてくるレーザ光の出力データをデータレコーダ75とスーパーインポーズ部81とに送るコンピュータ82とを備えて構成される。
【0072】
光源装置71において、励起用レーザ76から出射したレーザ光は、ハーフミラー77を通過して内視鏡のライトガイド21に導光されると共に、ハーフミラー77により反射されて光センサ78に入射する。光センサ78において、入射したレーザ光の光量が検出され、この検出光量を基に出力測定器79によって励起用レーザ76のレーザ出力が測定される。
【0073】
測定されたレーザ出力データは、蛍光画像処理部73に送られ、コンピュータ82を介してスーパーインポーズ部81に入力されてイメージプロセッサ80で生成された蛍光観察画像と重ね合わされ、VTR74に記録される。また、このレーザ出力データは、コンピュータ82よりデータレコーダ75にも送られ、患者情報と共に記録される。なお、スーパーインポーズ部81でレーザ出力データを重畳した蛍光観察画像を表示部39に出力して表示することもできる。
【0074】
このように本実施例によれば、レーザ出力データをコンピュータを通じ自動的に記録するようにしているため、煩雑な操作なく簡単で、かつ、入力ミスなくデータを記録することができる。
【0075】
[付記]
以上詳述したように本発明の実施態様によれば、以下のような構成を得ることができる。すなわち、
(1) 体腔内組織を照明する照明光を発生する光源と、
前記組織からの前記照明光の反射により得られる通常画像と前記組織を前記照明光により励起して得られる蛍光像とをそれぞれ撮像する撮像手段と、を有する蛍光観察装置において、
前記光源は、前記蛍光像の属する波長帯域と前記通常画像を構成する波長帯域とが互いに分離するような波長の照明光を発生してなることを特徴とする蛍光観察装置。
【0076】
(2) 前記光源は3原色のレーザ光である照明光を発生するRGB光源であることを特徴とする付記1に記載の蛍光観察装置。
【0077】
付記2の構成のように、RGB光源により、通常画像を得るための3原色の照明光と、体腔内組織を励起し蛍光を発生させるための前記3原色の照明光の波長帯域のうちいずれかに属する励起光とを発生し、前記蛍光像の属する波長帯域と前記通常画像を構成する波長帯域とが互いに分離するようにして両画像を撮像することにより、光源や撮像手段を切換えることなく蛍光像と通常画像を同時に得ることが可能であると共に、励起光発生用の光源を特に設けずに光源の構成を簡略化できるため装置構成を小型化できる。
【0078】
(3) 前記光源は、
前記体腔内組織を励起し蛍光を発生させるための励起光である照明光を発生させるレーザ光源と、
前記通常画像を得るための3原色のレーザ光である照明光を発生させるRGB光源と、
を備えることを特徴とする付記1に記載の蛍光観察装置。
【0079】
付記3の構成のように、レーザ光源より発生する励起光の波長帯域と、RGB光源より発生する3原色の照明光の波長帯域と、撮像手段において検出する複数の特定波長帯域からなる蛍光像の波長帯域とが、互いに重なり合わないようにすることにより、蛍光像の属する波長帯域と通常画像を構成する波長帯域とが互いに分離され、光源や撮像手段を切換えることなく蛍光像と通常画像を同時に得ることができる。
【0080】
(4) 前記蛍光像は特定の波長帯域に属する複数の特定波長蛍光像からなり、前記撮像手段は、前記複数の特定波長蛍光像を分離して撮像することを特徴とする付記1に記載の蛍光観察装置。
【0081】
(5) 前記撮像手段により撮像する蛍光像の特定波長帯域は、赤の領域と緑の領域に分布を持つことを特徴とする付記4に記載の蛍光観察装置。
【0082】
(6) 体腔内組織を励起し蛍光を発生させるための励起光を発生する光源と、 前記励起光を体腔内組織に導光し、前記励起光により発生した組織からの蛍光像を伝達する内視鏡と、
前記光源より出射する励起光の波長帯域を選択的に切換える励起波長切換え手段と、
前記内視鏡により伝達される蛍光像から特定の波長帯域を選択的に切換えて検出する検出波長切換え手段と、
前記蛍光像の特定波長帯域と前記励起光の波長帯域とを選択する波長選択手段と、
前記波長選択手段からの情報を受け、観察部位に応じて前記蛍光像の特定波長帯域と前記励起光の波長帯域の少なくとも一方の波長を切換える波長切換え制御手段と、
を備えたことを特徴とする蛍光観察装置。
【0083】
付記6の構成によれば、観察する臓器に合わせて、自動的に励起波長及び検出波長を各臓器の蛍光観察に適した波長に切換えることができ、煩雑な波長切換えの操作を行う必要がなく、正確な蛍光診断を行うことが可能となる。
【0084】
(7) 前記波長選択手段は、前記内視鏡の種類を判別する内視鏡種類判別手段である付記6に記載の蛍光観察装置。
【0085】
(8) 前記波長選択手段は、前記内視鏡により観察している臓器を判別する観察部位判別手段である付記6に記載の蛍光観察装置。
【0086】
(9) 前記観察部位判別手段は、前記内視鏡により得られる観察画像を基に画像認識を行い、前記観察画像中の臓器を判別する画像認識手段である付記8に記載の蛍光観察装置。
【0087】
(10) 前記観察部位判別手段は、
前記内視鏡の種類を判別する内視鏡種類判別手段と、
前記内視鏡の挿入部の生体内挿入長を検出する挿入長検出手段と、
を有して構成される付記8に記載の蛍光観察装置。
【0088】
【発明の効果】
以上説明したように本発明によれば、観察対象に合わせて、自動的に励起波長又は検出波長、或いは両方を、各観察対象の蛍光観察に適した波長に切り換えることができ、煩雑な波長切り換え操作を行う必要がなく、正確な蛍光診断を行うことができる効果がある。
【図面の簡単な説明】
【図1】本発明の参考例に係る蛍光観察装置の概略構成を示す構成説明図
【図2】参考例の構成における観察部位へ照射する各照明光及び生体組織から検出される蛍光の波長帯域と各フィルタの透過波長特性との関係を示す特性図
【図3】本発明の第1実施例に係る蛍光観察装置の概略構成を示す構成説明図
【図4】第1実施例において設けられる検出波長切換え用フィルタを示す構成説明図
【図5】第1実施例において設けられる励起波長切換え用フィルタを示す構成説明図
【図6】本発明の第2実施例に係る蛍光観察装置の概略構成を示す構成説明図
【図7】本発明の第3実施例に係る蛍光観察装置の概略構成を示す構成説明図
【図8】本発明の第4実施例に係る蛍光観察装置の概略構成を示す構成説明図
【符号の説明】
1…光源装置
2…内視鏡
3…カメラ
4…画像処理部
5…表示部
6…励起用レーザ
7…RGBレーザ
13,14…バンドパスフィルタ
15…レーザカットフィルタ
16,17…イメージインテンシファイア
18,19,20…CCD
[0001]
[Industrial applications]
The present invention relates to a fluorescence observation device that irradiates an observation target site of a living tissue with excitation light to obtain a fluorescence image by the excitation light.
[0002]
[Prior art]
In recent years, excitation light is applied to the observation target site of the living tissue, and the auto-fluorescence generated directly from the living tissue and the fluorescence of the drug injected into the living body are detected as a two-dimensional image by the excitation light, and the two-dimensional image is used as the image. Techniques for diagnosing disease states (for example, disease types and invasion ranges) such as degeneration of living tissues and cancer have been used, and fluorescent observation apparatuses for performing this fluorescence observation have been developed.
[0003]
In autofluorescence, when a living tissue is irradiated with excitation light, fluorescence having a longer wavelength than the excitation light is generated. Examples of the fluorescent substance in a living body include NADH (nicotinamide adenine nucleotide), FMN (flavin mononucleotide), and pyridine nucleotide. Recently, the correlation between the endogenous substance that generates such fluorescence and the disease and the disease has been clarified, and it is possible to diagnose cancer or the like by using such fluorescence.
[0004]
In the fluorescence of a drug, HpD (hematoporphyrin), Photofrin, ALA (δ-amino levulinic acid), or the like is used as a fluorescent substance to be injected into a living body. These drugs accumulate in cancer and the like, and a disease site can be diagnosed by injecting them into a living body and observing fluorescence. There is also a method in which a fluorescent substance is added to a monoclonal antibody, and the fluorescent substance is accumulated in a lesion by an antigen-antibody reaction.
[0005]
For example, a laser beam is used as the excitation light, and a fluorescent image of the observation target site is obtained by irradiating the living tissue with the excitation light. The weak fluorescence in the living tissue due to the excitation light is detected to generate a two-dimensional fluorescence image for observation and diagnosis.
[0006]
In such a fluorescence observation apparatus, diagnosis is generally performed by comparing a normal image with a fluorescence image. For this purpose, the light source device and imaging means for normal observation and the light source device and imaging means for fluorescence observation are used interchangeably. In a conventional apparatus, for example, as disclosed in Japanese Patent Application Laid-Open No. 63-122421, normal illumination light and excitation light are alternately irradiated using irradiation light switching means to obtain a normal image and a fluorescent image. Are alternately taken in synchronization with the irradiation light switching means and stored in the memory, so that the normal image and the fluorescent image are displayed simultaneously.
[0007]
[Problems to be solved by the invention]
In a fluorescence observation device, when diagnosing a disease state such as cancer of an organ in a living body by fluorescence observation, the wavelength of the excitation light suitable for diagnosis and the wavelength of the fluorescence to be detected are specific to the organ. The configuration was such that the excitation wavelength and the detection wavelength were changed every time the organ to be observed was different. However, in such a configuration, since the excitation wavelength and the detection wavelength are exchanged in advance in accordance with the organ to be observed and the fluorescence observation is performed, the operation at the time of diagnosis is complicated.
[0008]
The present invention has been made in view of these circumstances, according to the observation target, the excitation wavelength or the detection wavelength, or both, can be switched to a wavelength suitable for fluorescence observation of each observation target, It is an object of the present invention to provide a fluorescence observation apparatus which can perform accurate fluorescence diagnosis without performing a complicated wavelength switching operation.
[0009]
[Means for Solving the Problems]
The fluorescence observation apparatus according to the present invention is a light source that generates excitation light for exciting tissue in a body cavity to generate fluorescence, and an excitation wavelength switching unit that selectively switches a wavelength band of excitation light emitted from the light source. An endoscope for detecting a fluorescent image from a tissue generated by the excitation light in the wavelength band switched by the excitation wavelength switching unit, a determination unit for determining the type of the endoscope, and information from the determination unit. Receiving means for controlling the switching of the wavelength band by the excitation wavelength switching means, and further comprising a detection wavelength switching means for switching and selecting a detection wavelength band of the detected fluorescence image. Receiving the information from the determination unit, switching the wavelength band of the excitation light by the excitation wavelength switching unit, and controlling the fluorescence image by the detection wavelength switching unit. And controlling the switching of the wavelength band out.
[0010]
In addition, the fluorescence observation apparatus according to the present invention includes a light source that generates excitation light for exciting tissue in a body cavity to generate fluorescence, and a fluorescence image from the tissue generated by the excitation light generated by the light source. An endoscope, detection wavelength switching means for switching and selecting the detection wavelength band of the detected fluorescent image, discrimination means for discriminating the type of the endoscope, and receiving the information from the discrimination means, and switching the detection wavelength. Wavelength switching control means for controlling switching of the detection wavelength band of the fluorescent image by the means.
[0011]
【Example】
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0012]
First, a reference example of the present invention will be described prior to the description of the embodiment of the present invention. 1 and 2 relate to a reference example of the present invention. FIG. 1 is a configuration explanatory view showing a schematic configuration of a fluorescence observation apparatus. FIG. 2 is a diagram showing each illumination light applied to an observation site and a wavelength of fluorescence detected from a biological tissue. FIG. 4 is a characteristic diagram illustrating a relationship between a band and a transmission wavelength characteristic of each filter.
[0013]
As shown in FIG. 1, the fluorescence observation device of the present reference example includes a light source device 1 that generates excitation light and illumination light of three primary colors of RGB (hereinafter, referred to as RGB light), and an excitation light from the light source device 1. An endoscope 2 which irradiates an observation site in a living body with RGB light to detect a fluorescent image by excitation light and a normal image by RGB light and transmits the image outside the living body, and a fluorescent image obtained by the endoscope 2 And an image processing unit that processes an image signal from the camera 3 to generate a fluorescent image and a normal image, and a fluorescent light generated by the image processing unit 4. A main part is configured by including a display unit 5 such as a CRT monitor for displaying an image and a normal image simultaneously or separately.
[0014]
The light source device 1 includes an excitation laser 6 for generating excitation light for exciting fluorescence, an RGB laser 7 for generating RGB light for obtaining a normal image, and an optical axis of the excitation laser 6 and the RGB laser 7. It comprises a mirror 8 and a dichroic mirror 9 to be combined into one.
[0015]
The endoscope 2 has an elongated insertion portion to be inserted into a living body, an illumination optical system including a light guide 21 for transmitting excitation light and RGB light from the light source device 1 to the distal end of the insertion portion, and fluorescence of an observation site. An observation optical system including an image guide 22 for transmitting an image and a normal image to the eyepiece on the hand side is configured.
[0016]
The camera 3 is connected to the eyepiece of the endoscope 2 and detects fluorescence from a dichroic mirror 10, a dichroic mirror 11, and a mirror 12, which divide a fluorescent image and a normal image incident from the endoscope 2 into three optical paths. A band-pass filter 13 that transmits a wavelength band λ1 that transmits light, a band-pass filter 14 that transmits a wavelength band λ2 that detects fluorescence, a laser cut filter 15 that blocks only the wavelength band of the excitation light from the excitation laser 6. An image intensifier (abbreviated as II in the figure) 16 for amplifying the fluorescent image transmitted through the bandpass filter 13, an image intensifier 17 for amplifying the fluorescent image transmitted through the bandpass filter 14, and an image intensifier CCD 18 for capturing the output image of fire 16 and CCD for capturing the output image of image intensifier 17 19 and a CCD 20 for capturing a normal image including a fluorescent image transmitted through the laser cut filter 15.
[0017]
In the light source device 1, an excitation laser λ0 is generated by an excitation laser 6. Further, white light generated by simultaneously oscillating three colors of red light λR, green light λG, and blue light λB by the RGB laser 7 is generated. Then, these lights are reflected and transmitted by the mirror 8 and the dichroic mirror 9, combined and arranged on one optical axis, and guided to the light guide 21 of the endoscope 2. The four colors of laser light guided to the light guide 21 are transmitted through the inside of the endoscope 2 to the distal end of the insertion portion, and are applied to an observation site in a living body.
[0018]
Then, the fluorescence image formed by the excitation light from the observation site and the normal image formed by the RGB light are transmitted to the eyepiece on the hand side through the image guide 22 of the endoscope 2 and are incident on the camera 3. The fluorescent image and the normal image incident on the camera 3 are transmitted and reflected by the dichroic mirror 10, the dichroic mirror 11, and the mirror 12, and are divided into three optical paths. The three divided lights pass through the band-pass filter 13, the band-pass filter 14, and the laser cut filter 15, respectively.
[0019]
FIG. 2 shows a relationship between the wavelength band of each illumination light generated by the excitation laser and the RGB laser and the fluorescence detected from the living tissue, and the transmission wavelength characteristic of each filter.
[0020]
As shown in FIG. 2A, the wavelength bands of the excitation light .lambda.0, red light .lambda.R, green light .lambda.G, and blue light .lambda.B overlap with the wavelength bands .lambda.1 and .lambda.2 for detecting the fluorescence, respectively. Each band is set so that there is no. As shown in FIGS. 2B and 2C, the transmission wavelength band of the bandpass filter 13 is λ1, and the transmission wavelength band of the bandpass filter 14 is λ2. That is, the light transmitted through the band-pass filter 13 is light having only a component in the wavelength band of λ1 and is a fluorescence image of the wavelength band of λ1 to be detected among the fluorescence emitted from the observation site. The light transmitted through the band-pass filter 14 is light having only a component in the wavelength band of λ2, and is a fluorescent image of the wavelength band of λ2 to be detected among the fluorescent light emitted from the observation site. The laser cut filter 15 is a filter that cuts the wavelength band of the excitation light λ0, and the light transmitted through the laser cut filter 15 is light that does not have the wavelength band of the excitation light λ0. This is a normal image composed of light.
[0021]
The fluorescent image transmitted through the bandpass filter 13 is amplified by an image intensifier 16 and then captured by a CCD 18 to be converted into a video signal. Similarly, the fluorescent image transmitted through the band-pass filter 14 is amplified by the image intensifier 17 and then captured by the CCD 19 and converted into a video signal. The normal image transmitted through the laser cut filter 15 is captured as it is by the CCD 20 and converted into a video signal.
[0022]
Video signals of the fluorescent images obtained by the CCD 18 and the CCD 19 are input to the image processing unit 4. The image processing unit 4 performs arithmetic processing on video signals of fluorescent images in two wavelength bands to generate a fluorescent observation image.
[0023]
The fluorescence in the visible region at the observation site due to the excitation light has an intensity distribution in a band longer in wavelength than the excitation light λ0, and is strong especially in the vicinity of λ1 in a normal site and weak in a lesion. Therefore, it is possible to distinguish between a normal site and a lesion, particularly from the fluorescence intensity in the vicinity of λ1, and a diagnosis of a lesion such as cancer can be made from such a fluorescence image. Therefore, the image processing unit 4 performs an operation to obtain a ratio or a difference between the fluorescence intensities at λ1 and λ2 from the image signals of the fluorescent images at λ1 and λ2, for example, and generates a fluorescence observation image capable of determining the properties of the living tissue. .
[0024]
A video signal of a normal image obtained by the CCD 20 is input to the image processing unit 4 as a normal observation image. The image processing unit 4 combines the fluorescence observation image signal and the normal observation image signal and outputs them at the same time, or outputs the fluorescence observation image signal and the normal observation image signal separately, and displays these image signals. Send to Then, the fluorescence observation image and the normal observation image are displayed simultaneously or separately on the display unit 5.
[0025]
As described above, in the fluorescence observation apparatus of this reference example, the RGB laser is used as the light source for normal observation, and the wavelength band of each color light of the RGB laser, the wavelength band of the excitation light of the excitation laser, and the fluorescence image for diagnosis are used. Are arranged so that each of the plurality of wavelength bands of the fluorescence to be detected does not overlap. Therefore, according to the present reference example, it is not necessary to switch the light source and the imaging means between the normal observation and the fluorescence observation, and the normal image and the fluorescence image are simultaneously irradiated by irradiating the illumination light for the normal observation and the fluorescence observation simultaneously. Imaging can be performed, and both a fluorescence observation image and a normal observation image can be simultaneously displayed and observed in real time.
[0026]
For this reason, the same observation site can always be seen without a temporal shift between the fluorescence observation image and the normal observation image. Further, when displaying both images, the number of screens of the images can be increased, so that a bright image can be obtained. Therefore, the diagnostic ability by fluorescence observation can be improved.
[0027]
Further, since there is no need for a means for switching between excitation light and RGB light and a means for switching between a fluorescent image and a normal image, the apparatus can be downsized.
[0028]
Note that as a modification of the reference example, the wavelength band of the pumping laser 6 can be changed. In the case where the wavelength of the light emitted from the excitation laser 6 has the same wavelength as one of the wavelengths of the three colors of light emitted by the RGB laser 7, the excitation laser 6 can also serve as the RGB laser 7, The laser 6 for excitation, the mirror 8, the dichroic mirror 9, and the laser cut filter 15 become unnecessary. Therefore, the size of the device can be reduced.
[0029]
Further, when the wavelength of the excitation laser 6 is outside the visible light region, the laser cut filter 15 becomes unnecessary.
[0030]
Next, another configuration example of the fluorescence observation device will be described. In a fluorescence observation device, when diagnosing a disease state such as cancer of an organ in a living body by fluorescence observation, the wavelength of the excitation light suitable for diagnosis and the wavelength of the fluorescence to be detected are specific to the organ. The configuration was such that the excitation wavelength and the detection wavelength were changed every time the organ to be observed was different. However, in such a configuration, since the excitation wavelength and the detection wavelength are exchanged in advance in accordance with the organ to be observed and the fluorescence observation is performed, the operation at the time of diagnosis is complicated. Further, if the diagnosis is performed without noticing that the excitation wavelength and the detection wavelength do not match the observation site, accurate diagnosis may not be performed.
[0031]
Therefore, it is possible to determine the observation site and automatically select an excitation wavelength and a detection wavelength suitable for the organ, thereby improving the operability at the time of diagnosis and realizing accurate diagnosis of the observation site. An example of the configuration of the observation device will be described below as an embodiment of the present invention.
[0032]
3 to 5 relate to the first embodiment of the present invention. FIG. 3 is a diagram illustrating a schematic configuration of a fluorescence observation device, FIG. 4 is a diagram illustrating a configuration of a filter for switching a detection wavelength, and FIG. 5 is an excitation wavelength. FIG. 3 is a configuration explanatory view showing a switching filter.
[0033]
As shown in FIG. 3, the fluorescence observation apparatus according to the present embodiment irradiates a light source device 31 for generating excitation light and an excitation light from the light source device 31 to an observation site in a living body to generate a fluorescence image by the excitation light. An endoscope 32 for detecting and transmitting it to the outside of the living body; an endoscope type detecting means 33 for detecting the type of the connected endoscope (for example, for the upper digestive tract, for the lower digestive tract, for bronchi, etc.); A signal from the mirror type detecting means 33 is input, an endoscope discriminating circuit 34 for discriminating the type of the connected endoscope, and an excitation wavelength and a detection wavelength are determined by a signal from the endoscope discriminating circuit 34, Wavelength switching control means 35 for controlling the switching of each wavelength, detection wavelength switching means 36 for receiving a signal from the wavelength switching control means 35 and switching the fluorescence detection wavelength, and photographing a fluorescent image obtained by the endoscope 32 And a camera 37 for converting the electric signal into an electric signal. Processing the image signals and fluorescence image processing unit 38 for generating a fluorescent image from 7, and a display unit 39 for displaying the fluorescence image generated by the fluorescent image processing unit 38.
[0034]
The endoscope type detecting means 33 includes a barcode label 40 provided on the eyepiece of the endoscope 32, and a barcode scanner 41 attached to the eyepiece for reading the barcode label 40. Is done.
[0035]
The detection wavelength switching means 36 includes a dichroic mirror 42 and a mirror 43 that divide the fluorescence image incident from the endoscope 32 into two optical paths, a detection wavelength switching filter 44 that selectively transmits a wavelength band of the fluorescence to be detected, A filter driving unit 45 that rotationally drives the detection wavelength switching filter 44.
[0036]
The camera 37 includes image intensifiers 16 and 17 for amplifying two fluorescent images incident from the detection wavelength switching unit 36, a CCD 18 for capturing an output image of the image intensifier 16, and an output of the image intensifier 17, respectively. And a CCD 19 for picking up an image.
[0037]
The light source device 31 includes a multi-wavelength light source (for example, a mercury lamp) 46 that generates light including several types of wavelengths, an excitation wavelength switching filter 47 that selectively transmits a wavelength band of the emitted excitation light, and an excitation wavelength switching filter. And a filter drive unit 48 for driving the rotation of the filter 47.
[0038]
In this embodiment, when the endoscope 32 is connected to the endoscope type detecting means 33, a barcode label 40 indicating the type of the endoscope attached to the endoscope eyepiece is read by the barcode scanner 41. , The barcode information is sent to the endoscope discriminating circuit 34. The endoscope discrimination circuit 34 discriminates the type of the connected endoscope from the information of the bar code, and transmits the information of the endoscope type to the wavelength switching control unit 35. The wavelength switching control means 35 selects a detection wavelength suitable for the organ to be observed from the discriminated type of endoscope, and sends a control signal to a filter driving unit 45 in the detection wavelength switching means 36 to send a detection wavelength switching filter. Rotate 44.
[0039]
As shown in FIG. 4, the detection wavelength switching filter 44 is configured by arranging six band-pass filters 44a to 44f having different transmission wavelength bands in a disc-shaped filter frame. According to the above, by selectively disposing any of the regions 44a and 44b, the regions 44c and 44d, and the regions 44e and 44f in front of the image intensifiers 16 and 17, the detection wavelength band of the fluorescent image can be increased. Can be changed.
[0040]
In addition to the switching of the detection wavelength band, the wavelength switching control unit 35 selects an excitation wavelength suitable for the organ to be observed from the determined endoscope type, and sends a control signal to the filter driving unit 48 in the light source device 31. To rotate the excitation wavelength switching filter 47.
[0041]
As shown in FIG. 5, the excitation wavelength switching filter 47 is configured by arranging three band-pass filters 47a, 47b, and 47c having different transmission wavelength bands on a disc-shaped filter frame. By arranging any one of the regions 47a, 47b, and 47c in front of the multi-wavelength light source 46 according to the type, the excitation wavelength band for irradiating the observation site can be changed.
[0042]
After the excitation wavelength and the detection wavelength suitable for the observation region are selected as described above, the excitation light is guided from the light source device 31 to the light guide 21 of the endoscope 32, and is irradiated to the observation region through the light guide 21. The fluorescence emitted from the observation site is transmitted to the eyepiece through the image guide 22 of the endoscope 32, and is incident on the detection wavelength switching means 36. The fluorescence image incident on the detection wavelength switching means 36 is transmitted and reflected by the dichroic mirror 42 and the mirror 43 and divided into two optical paths. To Penetrate. These two fluorescent images are amplified by image intensifiers 16 and 17, respectively, captured by CCDs 18 and 19, and converted into video signals.
[0043]
The video signals of the fluorescent images of the two wavelength bands obtained by the CCD 18 and the CCD 19 are input to the fluorescent image processing unit 38, and the fluorescent image processing unit 38 performs the same arithmetic processing as the image processing unit 4 of the reference example. A fluorescence observation image is generated. Then, the output of the fluorescence image processing unit 38 is sent to the display unit 39, and the fluorescence observation image is displayed on the display unit 39.
[0044]
As described above, in the fluorescence observation apparatus of the present embodiment, the observation site is determined by determining the type of the connected endoscope for each application, and the excitation wavelength and the detection wavelength suitable for the organ to be observed are automatically selected. It is possible to perform accurate fluorescence diagnosis for a plurality of types of organs according to each organ without complicated operations.
[0045]
Note that the endoscope type detecting means 33 may be provided at a connection portion between the light guide unit of the endoscope and the light source device. Further, the type of the endoscope may be determined not only by using a barcode but also by using another optical sensor, using a magnetic sensor, or using mechanical contact.
[0046]
Also, by changing the number of bandpass filters of the detection wavelength switching filter 44 and the excitation wavelength switching filter 47, the number of selections of the detection wavelength and the excitation wavelength can be changed.
[0047]
Further, the detection wavelength switching means and the excitation wavelength switching means may include only one of them.
[0048]
FIG. 6 is a configuration explanatory view showing a schematic configuration of the fluorescence observation apparatus according to the second embodiment of the present invention. The second embodiment is a configuration example in which it is possible to determine the organs (the esophagus and stomach, the rectum and the colon, etc.) at different sites from the type of the connected endoscope and the insertion length of the endoscope insertion section.
[0049]
As shown in FIG. 6, the fluorescence observation apparatus according to the present embodiment includes a light source device 51 that generates excitation light, a sensor group 52 that measures an insertion length of an insertion portion attached to the insertion portion of the endoscope 32, An insertion length detection circuit 53 for receiving an output signal of the sensor group 52 to detect an insertion length, and based on information from the endoscope type detection means 33 and the insertion length detection circuit 53, the type of the endoscope and the organ to be observed are determined. And an observation part discriminating circuit 54 for discriminating. The configuration of other parts is the same as that of the first embodiment, and the same components are denoted by the same reference numerals and description thereof will be omitted.
[0050]
The light source device 51 is used to guide the three lasers A55, B56, and C57 that generate light of different wavelengths and any one of the three lights from the laser to the light guide 21 of the endoscope 32. , A movable mirror 58, a movable mirror 59, and a mirror 60, and a movable mirror driving unit 61 that drives the movable mirrors 58 and 59.
[0051]
When the endoscope 32 is connected to the endoscope type detecting means 33, the barcode information is read by the barcode scanner 41 and sent to the observation region discriminating circuit 54 as in the first embodiment. The type of the endoscope is determined. Then, based on the endoscope type determination result, the detection wavelength switching filter 44 is drive-controlled by the wavelength switching control unit 35 via the filter driving unit 45 in the detection wavelength switching unit 36, and the detection wavelength is switched.
[0052]
In addition, the control signal is sent to the movable mirror driving unit 61 in the light source device 51 by the wavelength switching control unit 35 to control the driving of the movable mirrors 58 and 59, and the laser A55, the laser B56, and the laser C57 are suitable for the observed organ. The laser having the selected wavelength is selected and applied to the light guide 21 of the endoscope 32.
[0053]
Next, when the insertion section of the endoscope 32 is inserted into the patient's body cavity, the brightness around the insertion section is sensed by each optical sensor of the sensor group 52 provided in the insertion section, and the output of each optical sensor is detected as the insertion length. The signal is sent to the circuit 53. The insertion length detection circuit 53 detects the insertion length of the insertion portion by detecting the number of optical sensors that do not sense brightness from the distal end side of the insertion portion. The observation part discrimination circuit 54 predicts the part observed by the endoscope 32 based on the insertion length detection result, and transmits information on the observation part to the wavelength switching control unit 35. For example, when the type of the endoscope is for the upper digestive tract, it is determined whether the observation site is the esophagus or the stomach based on the insertion length. Then, the detection wavelength and the excitation wavelength are switched again by the wavelength switching control unit 35 based on the observation site detection result.
[0054]
The subsequent operations relating to the photographing of the fluorescent image and the generation of the fluorescent observation image are performed in the same manner as in the first embodiment, and the fluorescent observation image is displayed on the display unit 39.
[0055]
As described above, according to the present embodiment, since the observation organ can be predicted by detecting the insertion length of the endoscope insertion portion, the excitation wavelength and the detection wavelength suitable for fluorescence observation can be observed with the same endoscope. Automatically select the excitation wavelength and detection wavelength suitable for each organ site, even if it is different for each possible organ (stomach and esophagus, colon and rectum, etc.), workability at diagnosis is good, and according to the observation site Accurate fluorescence diagnosis can be performed.
[0056]
Note that the light source device 51 used in this embodiment can be replaced with the light source device 31 of the first embodiment shown in FIG.
[0057]
Also in this embodiment, the endoscope type detecting means 33 may be provided at a connection portion between the light guide section of the endoscope and the light source device.
[0058]
Further, the sensor group may have a configuration in which a pressure sensor is provided instead of the optical sensor, and the insertion length is determined based on whether or not pressure is applied by the pressure sensor. FIG. 6 shows six sensors, but the number of sensors may be more or less.
[0059]
FIG. 7 is a configuration explanatory view showing a schematic configuration of the fluorescence observation device according to the third embodiment of the present invention. The third embodiment is a configuration example in which an observation organ is determined from a fluorescence observation image, and an excitation wavelength and a detection wavelength suitable for the organ are selected.
[0060]
As shown in FIG. 7, the fluorescence observation apparatus according to the present embodiment includes a light source device 51 that generates excitation light, and an endoscope 2 that irradiates the observation site in the living body with the excitation light to obtain a fluorescence image using the excitation light. A detection wavelength switching means 36 attached to the eyepiece of the endoscope 2 for switching a fluorescence detection wavelength, a camera 37 for photographing a fluorescence image obtained by the endoscope 2, and processing an image signal from the camera 37. A fluorescence image processing unit 38 for generating a fluorescence image; a display unit 39 for displaying a fluorescence observation image; and an image recognition unit 65 for recognizing image characteristics based on the fluorescence observation image from the fluorescence image processing unit 38. An observation part discriminating circuit 66 for discriminating an observation part from the recognized image; a wavelength switching control means 35 for determining an excitation wavelength and a detection wavelength based on a signal from the observation part discrimination circuit 66 and controlling switching of each wavelength. Configuration with It has been.
[0061]
In the present embodiment, first, irradiation of excitation light and photographing of a fluorescence image are performed at arbitrary excitation wavelengths and detection wavelengths, and the fluorescence image processing unit 38 generates a fluorescence observation image of the body cavity observation site. The generated fluorescence observation image is transmitted to the image recognition unit 65.
[0062]
The image recognition unit 65 recognizes an organ such as an esophagus, a stomach, a large intestine, and a bronchus from a fluorescence observation image by an image pattern recognition method such as a perceptron using a neural network or a Back Propagation method (hereinafter abbreviated as a BP method). In order to be able to do so, learning is performed using observation images of each organ in advance, and features of the image of each organ are stored. Then, the image recognizing unit 65 recognizes the image pattern by weighting the signal for each pixel of the fluorescence observation image transmitted from the fluorescence image processing unit 38 and taking the sum thereof.
[0063]
For example, in the esophagus, the observation image becomes darker near the center because of the lumen. On the other hand, the image pattern of the stomach is clearly different from that of the esophagus, for example, the observed image is bright overall or one side is dark. Therefore, in the present embodiment, such a difference between images is determined by performing image pattern recognition using a perceptron, a BP method, or the like, and the organ being observed is determined.
[0064]
The image pattern signal recognized by the image recognizing unit 65 is sent to the observation part determination circuit 66, and the observation part determination circuit 66 determines the organ to be observed from the image pattern. The information on the organ to be observed is transmitted to the wavelength switching control unit 35, and is switched to the excitation wavelength and the detection wavelength suitable for the organ to be observed, as in the above-described embodiment.
[0065]
The subsequent operations relating to the photographing of the fluorescent image and the generation of the fluorescent observation image are performed in the same manner as in the first embodiment, and the fluorescent observation image is displayed on the display unit 39.
[0066]
As described above, according to the present embodiment, the observed organ can be automatically determined by recognizing the image pattern of the fluorescence observation image, so that the excitation wavelength and the detection wavelength suitable for each organ site can be determined without complicated work. Can be selected, and accurate fluorescence diagnosis according to the observation site can be performed.
[0067]
Note that the image pattern recognition performed by the image recognition unit 65 may be performed during normal observation using a white light source.
[0068]
Next, as a fourth embodiment, a configuration example of a fluorescence observation device capable of measuring and recording the laser output of the light source will be described. FIG. 8 is a configuration explanatory view showing a schematic configuration of the fluorescence observation device according to the fourth embodiment of the present invention.
[0069]
The fluorescence observation apparatus according to the present embodiment includes a light source device 71 that generates excitation light, an endoscope 2 that irradiates excitation light to an observation site in a living body to obtain a fluorescence image by the excitation light, and an endoscope 2 that obtains the fluorescence image. A camera 72 that captures the obtained fluorescence image, a fluorescence image processing unit 73 that processes an image signal from the camera 72 to generate a fluorescence observation image, and a display unit 39 that displays the fluorescence observation image. , And a data recorder 75 for recording patient information.
[0070]
The light source device 71 includes an excitation laser 76 that generates laser light as excitation light, a half mirror 77 that divides the laser light from the excitation laser 76 in two directions, and an optical sensor that detects one of the divided laser lights. 78, and an output measuring device 79 for measuring the laser output from the amount of light detected by the optical sensor 78.
[0071]
The fluorescence image processing unit 73 includes an image processor 80 that generates a fluorescence observation image, a superimposition unit 81 that superimposes output data of a laser beam on the generated fluorescence observation image, and a laser beam transmitted from the light source device 71. And a computer 82 for sending the output data to the data recorder 75 and the superimposing unit 81.
[0072]
In the light source device 71, the laser light emitted from the excitation laser 76 passes through the half mirror 77, is guided to the light guide 21 of the endoscope, is reflected by the half mirror 77, and enters the optical sensor 78. . The optical sensor 78 detects the amount of incident laser light, and the output measuring device 79 measures the laser output of the excitation laser 76 based on the detected amount of laser light.
[0073]
The measured laser output data is sent to the fluorescence image processing unit 73, input to the superimposition unit 81 via the computer 82, superimposed on the fluorescence observation image generated by the image processor 80, and recorded on the VTR 74. . The laser output data is also sent from the computer 82 to the data recorder 75 and recorded together with the patient information. Note that the fluorescence observation image on which the laser output data is superimposed by the superimposing unit 81 can be output to the display unit 39 and displayed.
[0074]
As described above, according to the present embodiment, since the laser output data is automatically recorded through the computer, the data can be recorded easily without complicated operations and without input errors.
[0075]
[Appendix]
As described in detail above, according to the embodiment of the present invention, the following configuration can be obtained. That is,
(1) a light source that generates illumination light for illuminating tissue in a body cavity;
In a fluorescence observation apparatus, comprising: a normal image obtained by reflection of the illumination light from the tissue, and an imaging unit that captures a fluorescence image obtained by exciting the tissue with the illumination light,
The fluorescence observation apparatus, wherein the light source generates illumination light having a wavelength such that a wavelength band to which the fluorescent image belongs and a wavelength band constituting the normal image are separated from each other.
[0076]
(2) The fluorescence observation apparatus according to supplementary note 1, wherein the light source is an RGB light source that generates illumination light that is laser light of three primary colors.
[0077]
As in the configuration of Supplementary Note 2, any one of wavelength bands of illumination light of three primary colors for obtaining a normal image by the RGB light source and illumination light of the three primary colors for exciting tissue in a body cavity to generate fluorescence. Excitation light belonging to the fluorescent image, and capturing both images so that the wavelength band to which the fluorescent image belongs and the wavelength band constituting the normal image are separated from each other, so that the fluorescent light can be switched without switching the light source or the imaging unit. An image and a normal image can be obtained at the same time, and the configuration of the light source can be simplified without providing a light source for generating excitation light.
[0078]
(3) The light source is
A laser light source that generates illumination light that is excitation light for exciting the tissue in the body cavity and generating fluorescence,
An RGB light source for generating illumination light that is laser light of three primary colors for obtaining the normal image;
2. The fluorescence observation device according to claim 1, further comprising:
[0079]
As in the configuration of Appendix 3, the wavelength band of the excitation light generated from the laser light source, the wavelength band of the illumination light of the three primary colors generated from the RGB light source, and the fluorescence image composed of a plurality of specific wavelength bands detected by the imaging unit. By preventing the wavelength bands from overlapping each other, the wavelength band to which the fluorescent image belongs and the wavelength band forming the normal image are separated from each other, and the fluorescent image and the normal image can be simultaneously displayed without switching the light source or the imaging unit. Obtainable.
[0080]
(4) The fluorescent image described above, wherein the fluorescent image includes a plurality of specific wavelength fluorescent images belonging to a specific wavelength band, and the imaging unit separates and captures the plurality of specific wavelength fluorescent images. Fluorescence observation device.
[0081]
(5) The fluorescence observation apparatus according to attachment 4, wherein the specific wavelength band of the fluorescence image captured by the imaging unit has a distribution in a red region and a green region.
[0082]
(6) A light source for generating excitation light for exciting tissue in the body cavity to generate fluorescence, and guiding the excitation light to the tissue in the body cavity to transmit a fluorescence image from the tissue generated by the excitation light. Endoscope and
Excitation wavelength switching means for selectively switching the wavelength band of the excitation light emitted from the light source,
Detection wavelength switching means for selectively switching and detecting a specific wavelength band from the fluorescent image transmitted by the endoscope,
Wavelength selection means for selecting the specific wavelength band of the fluorescence image and the wavelength band of the excitation light,
A wavelength switching control unit that receives information from the wavelength selection unit and switches at least one wavelength of the specific wavelength band of the fluorescence image and the wavelength band of the excitation light according to an observation site;
A fluorescence observation device comprising:
[0083]
According to the configuration of Supplementary Note 6, the excitation wavelength and the detection wavelength can be automatically switched to wavelengths suitable for fluorescence observation of each organ in accordance with the organ to be observed, and there is no need to perform a complicated wavelength switching operation. It is possible to perform accurate fluorescence diagnosis.
[0084]
(7) The fluorescence observation apparatus according to supplementary note 6, wherein the wavelength selection unit is an endoscope type determination unit that determines a type of the endoscope.
[0085]
(8) The fluorescence observation device according to attachment 6, wherein the wavelength selection unit is an observation site determination unit that determines an organ observed by the endoscope.
[0086]
(9) The fluorescence observation device according to supplementary note 8, wherein the observation site determination unit performs image recognition based on an observation image obtained by the endoscope and determines an organ in the observation image.
[0087]
(10) The observation site determination means includes:
Endoscope type determining means for determining the type of the endoscope,
Insertion length detection means for detecting the insertion length in the living body of the insertion portion of the endoscope,
9. The fluorescence observation device according to attachment 8, comprising:
[0088]
【The invention's effect】
As described above, according to the present invention, the excitation wavelength or the detection wavelength, or both, can be automatically switched to a wavelength suitable for fluorescence observation of each observation target according to the observation target, and complicated wavelength switching is performed. There is an effect that it is not necessary to perform an operation and an accurate fluorescence diagnosis can be performed.
[Brief description of the drawings]
FIG. 1 is a configuration explanatory view showing a schematic configuration of a fluorescence observation device according to a reference example of the present invention.
FIG. 2 is a characteristic diagram showing a relationship between a wavelength band of each illumination light irradiated to an observation site and a fluorescence wavelength detected from a biological tissue and a transmission wavelength characteristic of each filter in the configuration of the reference example.
FIG. 3 is a configuration explanatory view showing a schematic configuration of the fluorescence observation apparatus according to the first embodiment of the present invention.
FIG. 4 is a configuration explanatory view showing a detection wavelength switching filter provided in the first embodiment.
FIG. 5 is a structural explanatory view showing an excitation wavelength switching filter provided in the first embodiment.
FIG. 6 is a configuration explanatory view showing a schematic configuration of a fluorescence observation device according to a second embodiment of the present invention.
FIG. 7 is a configuration explanatory view showing a schematic configuration of a fluorescence observation apparatus according to a third embodiment of the present invention.
FIG. 8 is a configuration explanatory view showing a schematic configuration of a fluorescence observation apparatus according to a fourth embodiment of the present invention.
[Explanation of symbols]
1. Light source device
2. Endoscope
3. Camera
4: Image processing unit
5 Display unit
6 ... Laser for excitation
7 ... RGB laser
13, 14 ... Band pass filter
15 ... Laser cut filter
16, 17… Image intensifier
18, 19, 20 ... CCD

Claims (3)

体腔内組織を励起して蛍光を発生させるための励起光を発生する光源と、
前記光源より出射する励起光の波長帯域を選択的に切り換える励起波長切換手段と、
前記励起波長切換手段により切り換えられた波長帯域の励起光により発生した組織からの蛍光像を検出する内視鏡と、
前記内視鏡の種類を判別する判別手段と、
前記判別手段からの情報を受け、前記励起波長切換手段による前記波長帯域の切換を制御する波長切換制御手段と、
を有することを特徴とする蛍光観察装置。
A light source that generates excitation light for exciting tissue in the body cavity to generate fluorescence,
Excitation wavelength switching means for selectively switching the wavelength band of the excitation light emitted from the light source,
An endoscope that detects a fluorescent image from tissue generated by the excitation light in the wavelength band switched by the excitation wavelength switching means,
Determining means for determining the type of the endoscope,
Wavelength switching control means for receiving information from the determination means and controlling switching of the wavelength band by the excitation wavelength switching means,
A fluorescence observation device comprising:
更に、前記検出される蛍光像の検出波長帯域を切り換え選択する検出波長切換手段を備え、前記波長切換制御手段は、前記判別手段からの情報を受け、前記励起波長切換手段による励起光の波長帯域の切換と、前記検出波長切換手段による前記蛍光像の検出波長帯域の切換とを制御することを特徴とする請求項1に記載の蛍光観察装置。Further, a detection wavelength switching means for switching and selecting a detection wavelength band of the detected fluorescence image is provided, wherein the wavelength switching control means receives information from the discriminating means and receives the information from the discriminating means. 2. The fluorescence observation apparatus according to claim 1, wherein the switching of the detection wavelength and the switching of the detection wavelength band of the fluorescence image by the detection wavelength switching unit are controlled. 体腔内組織を励起して蛍光を発生させるための励起光を発生する光源と、
前記光源が発生する励起光によって発生した組織からの蛍光像を検出する内視鏡と、
前記検出される蛍光像の検出波長帯域を切り換え選択する検出波長切換手段と、
前記内視鏡の種類を判別する判別手段と、
前記判別手段からの情報を受け、前記検出波長切換手段による前記蛍光像の検出波長帯域の切換を制御する波長切換制御手段と、
を有することを特徴とする蛍光観察装置。
A light source that generates excitation light for exciting tissue in the body cavity to generate fluorescence,
An endoscope that detects a fluorescent image from a tissue generated by the excitation light generated by the light source,
Detection wavelength switching means for switching and selecting the detection wavelength band of the detected fluorescent image,
Determining means for determining the type of the endoscope,
Wavelength switching control means for receiving information from the determination means and controlling switching of the detection wavelength band of the fluorescence image by the detection wavelength switching means,
A fluorescence observation device comprising:
JP03544495A 1995-02-23 1995-02-23 Fluorescence observation device Expired - Fee Related JP3560671B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03544495A JP3560671B2 (en) 1995-02-23 1995-02-23 Fluorescence observation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03544495A JP3560671B2 (en) 1995-02-23 1995-02-23 Fluorescence observation device

Publications (2)

Publication Number Publication Date
JPH08224209A JPH08224209A (en) 1996-09-03
JP3560671B2 true JP3560671B2 (en) 2004-09-02

Family

ID=12442007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03544495A Expired - Fee Related JP3560671B2 (en) 1995-02-23 1995-02-23 Fluorescence observation device

Country Status (1)

Country Link
JP (1) JP3560671B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008043383A (en) * 2006-08-11 2008-02-28 Pentax Corp Fluorescence observation endoscope instrument
US20120327205A1 (en) * 2009-12-28 2012-12-27 Olympus Corporation Image processing device, electronic apparatus, information storage device, and image processing method
CN106461462A (en) * 2014-03-21 2017-02-22 海佩尔梅德影像有限公司 Compact light sensor

Families Citing this family (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3718024B2 (en) * 1996-03-19 2005-11-16 松下電器産業株式会社 Fluorescence diagnostic equipment
JP3552844B2 (en) * 1996-04-30 2004-08-11 富士写真フイルム株式会社 Endoscope
EP0973438B1 (en) * 1997-03-25 2003-11-26 Radi Medical Systems Ab Device for pressure measurements
JP3417795B2 (en) * 1997-04-30 2003-06-16 ペンタックス株式会社 Fluorescence diagnostic equipment
US6185443B1 (en) * 1997-09-29 2001-02-06 Boston Scientific Corporation Visible display for an interventional device
US6179777B1 (en) 1997-11-27 2001-01-30 Asahi Kogaku Kogyo Kabushiki Kaisha Fluorescent diagnosing apparatus including optical path switching member
JP2001017379A (en) * 1999-07-09 2001-01-23 Fuji Photo Film Co Ltd Fluorescent diagnostic device
US6603552B1 (en) 1999-12-22 2003-08-05 Xillix Technologies Corp. Portable system for detecting skin abnormalities based on characteristic autofluorescence
WO2002007587A2 (en) 2000-07-14 2002-01-31 Xillix Technologies Corporation Compact fluorescent endoscopy video system
US6826424B1 (en) 2000-12-19 2004-11-30 Haishan Zeng Methods and apparatus for fluorescence and reflectance imaging and spectroscopy and for contemporaneous measurements of electromagnetic radiation with multiple measuring devices
JP4624575B2 (en) * 2001-02-16 2011-02-02 オリンパス株式会社 Endoscope system
DE60236722D1 (en) * 2001-03-16 2010-07-29 Univ Utah Res Found DEVICE AND METHOD FOR THE PHOTODYNAMIC DIAGNOSIS OF TUMOR TISSUE
JP4855586B2 (en) * 2001-05-16 2012-01-18 オリンパス株式会社 Endoscope device
KR100443812B1 (en) * 2001-12-12 2004-08-09 박경순 Apparatus of fluorescence endoscope and spectrum analysis
US6899675B2 (en) 2002-01-15 2005-05-31 Xillix Technologies Corp. Fluorescence endoscopy video systems with no moving parts in the camera
US20060241496A1 (en) 2002-01-15 2006-10-26 Xillix Technologies Corp. Filter for use with imaging endoscopes
EP1466163A2 (en) 2002-01-18 2004-10-13 Newton Laboratories, Inc. Spectroscopic diagnostic methods and system
JP2005515472A (en) 2002-01-18 2005-05-26 ニユートン・ラボラトリーズ・インコーポレーテツド Spectroscopic diagnosis method and system
JP4390419B2 (en) * 2002-03-04 2009-12-24 Hoya株式会社 Fluorescence diagnostic system
JP4412896B2 (en) * 2002-12-06 2010-02-10 Hoya株式会社 Diagnostic aid device
JP4576377B2 (en) * 2004-04-30 2010-11-04 株式会社モリタ製作所 Biological observation equipment, intraoral imaging device, and medical instrument
JP2005348902A (en) * 2004-06-09 2005-12-22 Olympus Corp Endoscope apparatus
US20070122344A1 (en) 2005-09-02 2007-05-31 University Of Rochester Medical Center Office Of Technology Transfer Intraoperative determination of nerve location
US20090303317A1 (en) 2006-02-07 2009-12-10 Novadaq Technologies Inc. Near infrared imaging
JP2007319442A (en) * 2006-06-01 2007-12-13 Fujifilm Corp Capsule endoscope system and image processing unit
EP2051603B1 (en) 2006-07-28 2019-09-11 Novadaq Technologies ULC System and method for deposition and removal of an optical element on an endoscope objective
US20080161744A1 (en) 2006-09-07 2008-07-03 University Of Rochester Medical Center Pre-And Intra-Operative Localization of Penile Sentinel Nodes
US8498695B2 (en) 2006-12-22 2013-07-30 Novadaq Technologies Inc. Imaging system with a single color image sensor for simultaneous fluorescence and color video endoscopy
JP2008259591A (en) * 2007-04-10 2008-10-30 Hamamatsu Photonics Kk Light source device for fluorescence observation and fluorescence observation instrument using the same
JP2008259595A (en) * 2007-04-10 2008-10-30 Hamamatsu Photonics Kk Fluorescence observation apparatus
JP5174370B2 (en) * 2007-04-13 2013-04-03 Hoya株式会社 Fluorescence endoscope system and light source unit
WO2009028136A1 (en) * 2007-08-29 2009-03-05 Panasonic Corporation Fluorescence observation device
US8406860B2 (en) 2008-01-25 2013-03-26 Novadaq Technologies Inc. Method for evaluating blush in myocardial tissue
MX2010010292A (en) 2008-03-18 2011-01-25 Novadaq Technologies Inc Imaging system for combined full-color reflectance and near-infrared imaging.
US10219742B2 (en) 2008-04-14 2019-03-05 Novadaq Technologies ULC Locating and analyzing perforator flaps for plastic and reconstructive surgery
EP2687235A3 (en) 2008-05-02 2014-11-05 Novadaq Technologies Inc. Methods for production and use of substance-loaded erythrocytes (S-LES) for observation and treatment of microvascular hemodynamics
JP5110702B2 (en) * 2008-05-22 2012-12-26 富士フイルム株式会社 Fluorescence image acquisition device
JP5152795B2 (en) * 2008-05-22 2013-02-27 富士フイルム株式会社 Fluorescence image acquisition device and method of operating fluorescence image acquisition device
JP5264382B2 (en) * 2008-09-17 2013-08-14 富士フイルム株式会社 Image acquisition device
JP2010125271A (en) * 2008-12-01 2010-06-10 Fujifilm Corp Photo tomographical image providing apparatus
US10492671B2 (en) 2009-05-08 2019-12-03 Novadaq Technologies ULC Near infra red fluorescence imaging for visualization of blood vessels during endoscopic harvest
JP5570798B2 (en) * 2009-12-15 2014-08-13 オリンパス株式会社 Optical scanning endoscope device
JP5385188B2 (en) * 2010-03-26 2014-01-08 富士フイルム株式会社 Electronic endoscope system
JP5558178B2 (en) * 2010-04-07 2014-07-23 オリンパス株式会社 Fluorescence observation equipment
JP5484997B2 (en) * 2010-04-12 2014-05-07 オリンパス株式会社 Fluorescence observation apparatus and method of operating fluorescence observation apparatus
JP5568489B2 (en) * 2011-01-25 2014-08-06 富士フイルム株式会社 Endoscope system and light source control method thereof
BR112013022997A2 (en) 2011-03-08 2018-07-03 Novadaq Technologies Inc. full spectrum led illuminator.
JP2012217673A (en) * 2011-04-11 2012-11-12 Fujifilm Corp Endoscopic diagnosis system
JP6044012B2 (en) * 2012-02-13 2016-12-14 愛知県 Detection system for detection target part
US10278585B2 (en) 2012-06-21 2019-05-07 Novadaq Technologies ULC Quantification and analysis of angiography and perfusion
CN103431833A (en) * 2013-05-24 2013-12-11 中国科学院苏州生物医学工程技术研究所 Medical multiband narrow band imaging system
JP2014014716A (en) * 2013-10-17 2014-01-30 Fujifilm Corp Endoscopic apparatus
JP6268638B2 (en) * 2014-02-17 2018-01-31 長田電機工業株式会社 Periodontal pocket depth measuring device and periodontal pocket depth measuring method
WO2016049756A1 (en) 2014-09-29 2016-04-07 Novadaq Technologies Inc. Imaging a target fluorophore in a biological material in the presence of autofluorescence
CA2963450A1 (en) 2014-10-09 2016-04-14 Novadaq Technologies Inc. Quantification of absolute blood flow in tissue using fluorescence-mediated photoplethysmography
JP6561288B2 (en) * 2015-03-26 2019-08-21 パナソニックIpマネジメント株式会社 Skin diagnostic device
JPWO2017047141A1 (en) * 2015-09-14 2017-09-14 オリンパス株式会社 Endoscope apparatus and endoscope system
WO2017079844A1 (en) 2015-11-13 2017-05-18 Novadaq Technologies Inc. Systems and methods for illumination and imaging of a target
KR102372602B1 (en) 2015-11-30 2022-03-08 한국전기연구원 Endoscope system using multi wavelength light source
EP4155716A1 (en) 2016-01-26 2023-03-29 Stryker European Operations Limited Image sensor assembly
US10293122B2 (en) 2016-03-17 2019-05-21 Novadaq Technologies ULC Endoluminal introducer with contamination avoidance
USD916294S1 (en) 2016-04-28 2021-04-13 Stryker European Operations Limited Illumination and imaging device
CA3027592A1 (en) 2016-06-14 2017-12-21 John Josef Paul FENGLER Methods and systems for adaptive imaging for low light signal enhancement in medical visualization
JP6660824B2 (en) * 2016-06-24 2020-03-11 富士フイルム株式会社 Endoscope device
JP2018027272A (en) * 2016-08-19 2018-02-22 ソニー株式会社 Imaging System
EP4242743A3 (en) 2017-02-10 2023-10-18 Stryker European Operations Limited Open-field handheld fluorescence imaging systems and methods
JP7116580B2 (en) * 2017-04-14 2022-08-10 キヤノン株式会社 IMAGING DEVICE, METHOD AND PROGRAM FOR CONTROLLING IMAGING DEVICE
JP6941233B2 (en) * 2018-06-04 2021-09-29 富士フイルム株式会社 Image processing equipment, endoscopic system, and image processing method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008043383A (en) * 2006-08-11 2008-02-28 Pentax Corp Fluorescence observation endoscope instrument
US20120327205A1 (en) * 2009-12-28 2012-12-27 Olympus Corporation Image processing device, electronic apparatus, information storage device, and image processing method
US8913111B2 (en) * 2009-12-28 2014-12-16 Olympus Corporation Image processing device, electronic apparatus, information storage device, and image processing method
CN106461462A (en) * 2014-03-21 2017-02-22 海佩尔梅德影像有限公司 Compact light sensor
CN106461462B (en) * 2014-03-21 2019-03-26 海佩尔梅德影像有限公司 Compact optical sensor

Also Published As

Publication number Publication date
JPH08224209A (en) 1996-09-03

Similar Documents

Publication Publication Date Title
JP3560671B2 (en) Fluorescence observation device
JP5197916B2 (en) Endoscope device
JP3923595B2 (en) Fluorescence observation equipment
JP4689767B2 (en) Fluorescence imaging apparatus and method of operating fluorescence imaging apparatus
KR100927286B1 (en) Endoscopy device and image processing device
JP3283128B2 (en) Fluorescence observation endoscope device
JP3869324B2 (en) Image processing device for fluorescence observation
US20060173358A1 (en) Fluorescence observation endoscope apparatus and fluorescence observation method
JPH07250812A (en) Fluorescence diagnosing apparatus
US20120241620A1 (en) Optical control device, control device, and optical scope
JPH10328129A (en) Fluorescent observing device
JPH1189789A (en) Fluorescent image device
JP4394356B2 (en) Electronic endoscope device
JPH07250804A (en) Fluorescence observer
JP2006296635A (en) Endoscope apparatus
JPH08224240A (en) Fluorescent diagnosing device
JP3467130B2 (en) Electronic endoscope device for fluorescence diagnosis
JPH07155290A (en) Endoscope apparatus
JP3490807B2 (en) Electronic endoscope device for fluorescence diagnosis
JP2655571B2 (en) Imaging device
JP4744279B2 (en) Electronic endoscope device
JP2011005002A (en) Endoscope apparatus
JP3654324B2 (en) Fluorescence detection device
JP2641654B2 (en) Endoscope device
JP5331394B2 (en) Endoscope device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031204

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040308

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040525

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040526

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080604

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090604

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090604

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100604

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110604

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120604

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120604

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees