JPH0653120A - Illuminating optic device - Google Patents

Illuminating optic device

Info

Publication number
JPH0653120A
JPH0653120A JP4219782A JP21978292A JPH0653120A JP H0653120 A JPH0653120 A JP H0653120A JP 4219782 A JP4219782 A JP 4219782A JP 21978292 A JP21978292 A JP 21978292A JP H0653120 A JPH0653120 A JP H0653120A
Authority
JP
Japan
Prior art keywords
light
illumination
light source
optical system
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4219782A
Other languages
Japanese (ja)
Other versions
JP3246615B2 (en
Inventor
Masato Shibuya
眞人 渋谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP21978292A priority Critical patent/JP3246615B2/en
Publication of JPH0653120A publication Critical patent/JPH0653120A/en
Application granted granted Critical
Publication of JP3246615B2 publication Critical patent/JP3246615B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/7055Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption
    • G03F7/70566Polarisation control

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To improve image contrast for oblique illumination performed by a plurality of illuminating devices when a reticle pattern is a line-and-space pattern whose lengthwise direction is vertical to the incident plane of the illuminating light. CONSTITUTION:Four apertures 24a-24d of a space filter as a secondary light source forming part are covered with a polarizing plates 24A-25D and the polarizing direction of the polarizing plates 25A-25D is set in the direction of the tangential line of a circumference whose axis is an optical axis AX.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば半導体素子又は
液晶表示素子等を製造する際に使用される投影露光装置
の照明系に適用して好適な照明光学装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an illumination optical apparatus suitable for application to an illumination system of a projection exposure apparatus used for manufacturing a semiconductor element, a liquid crystal display element or the like.

【0002】[0002]

【従来の技術】半導体素子又は液晶表示素子等をフォト
リソグラフィー技術を用いて製造する際に、フォトマス
ク又はレチクル(以下、「レチクル」と総称する)のパ
ターンを感光基板上に転写する投影露光装置が使用され
ている。斯かる投影露光装置においては、半導体素子等
の高集積化に伴い、より微細なパターンを高解像度で焼
き付けることが要求されている。これを実現する方法と
して、レチクルのパターン領域の異なる透明部からの光
の干渉効果を利用する位相シフトレチクル法が特公昭6
2−50811号公報に開示されている。この方法をラ
イン・アンド・スペース像に応用すると基本的に0次回
折光がなくなり、±1次回折光のみによる結像となり、
同一の開口数の投影光学系でも従来のレチクルの場合よ
りも微細なライン・アンド・スペース像を高い解像度で
焼き付けることができる。
2. Description of the Related Art A projection exposure apparatus for transferring a pattern of a photomask or a reticle (hereinafter, referred to as a "reticle") onto a photosensitive substrate when a semiconductor element, a liquid crystal display element or the like is manufactured by using a photolithography technique. Is used. In such a projection exposure apparatus, it is required to print a finer pattern with high resolution as semiconductor elements and the like are highly integrated. As a method of achieving this, a phase shift reticle method utilizing the interference effect of light from transparent portions of different reticle pattern areas is disclosed in Japanese Patent Publication No.
It is disclosed in Japanese Patent Publication No. 250811. When this method is applied to line-and-space images, the 0th-order diffracted light basically disappears, and only ± 1st-order diffracted light forms an image,
Even with a projection optical system having the same numerical aperture, a finer line-and-space image can be printed with higher resolution than in the case of a conventional reticle.

【0003】また、より解像度を高めるための別のアプ
ローチとして、照明光学系を工夫して、微細なパターン
を高い解像度で且つ比較的深い焦点深度で焼き付ける方
法が本出願人により提案されている(例えば1992年
3月応用物理学関係連合講演会予稿集30−a−NA−
3,4参照)。以下ではその方法を「複数傾斜照明法」
と呼び、図8を参照してその方法につき説明する。先ず
図8(a)は複数傾斜照明法を適用した照明光学系にお
ける2次光源部等の等価光源部10を示し、この図8
(a)において、直交座標系を形成するx軸及びy軸に
対してそれぞれ45°で交差する軸x′及びこの軸x′
とy軸に関して対称な軸に沿って4個の小光源11A〜
11Dが配置されている。この小光源11A〜11Dの
配列は、転写対象とするレチクルのパターンが主にx軸
に平行な長いエッジ又はy軸に平行な長いエッジを有す
るライン・アンド・スペースパターンの場合に適してい
る。
As another approach to further increase the resolution, the present applicant has proposed a method in which an illumination optical system is devised to print a fine pattern with a high resolution and a relatively deep depth of focus ( For example, March 1992 Proceedings of the Joint Lecture on Applied Physics 30-a-NA-
3 and 4). In the following, we will refer to that method as the "multi-slope illumination method"
The method will be described with reference to FIG. First, FIG. 8A shows an equivalent light source unit 10 such as a secondary light source unit in an illumination optical system to which the multiple tilt illumination method is applied.
In (a), an axis x ′ and an axis x ′ intersecting the x-axis and the y-axis forming an orthogonal coordinate system at 45 °, respectively.
And four small light sources 11A along an axis symmetrical with respect to the y-axis.
11D is arranged. The arrangement of the small light sources 11A to 11D is suitable when the pattern of the reticle to be transferred is mainly a line-and-space pattern having a long edge parallel to the x-axis or a long edge parallel to the y-axis.

【0004】図8(b)はその図8(a)の等価光源部
10を光源とする投影露光装置の概略構成を示し、この
図8(b)において、等価光源部10の小光源11Aか
らの照明光の主光線15Aが図示省略したコンデンサー
レンズ系を介してレチクル12に光軸AXに対して斜め
に照射される。等価光源部10は投影光学系13の瞳面
(入射瞳面)10Aと共役であり、この瞳面には開口絞
り13aが設けられている。そのレチクル12からは0
次回折光(これも符号15Aで表す)及び1次回折光1
6Aが光軸AXに対してほぼ対称に射出され、これら0
次回折光15A及び1次回折光16Aは投影光学系13
を経てをほぼ同一の入射角θで感光基板としてのウエハ
14に入射する。この場合、0次回折光15Aと1次回
折光とが光軸AX対して対称に瞳の周縁近くを通過する
ため、投影光学系13の性能限界までの解像度が得られ
る。
FIG. 8B shows a schematic structure of a projection exposure apparatus using the equivalent light source unit 10 of FIG. 8A as a light source. In FIG. 8B, the small light source 11A of the equivalent light source unit 10 is used. The principal ray 15A of the illumination light is applied to the reticle 12 obliquely with respect to the optical axis AX via a condenser lens system (not shown). The equivalent light source unit 10 is conjugate with the pupil plane (incident pupil plane) 10A of the projection optical system 13, and an aperture stop 13a is provided on this pupil plane. 0 from the reticle 12
First-order diffracted light (also indicated by reference numeral 15A) and first-order diffracted light 1
6A is emitted almost symmetrically with respect to the optical axis AX, and these 0
The first-order diffracted light 15A and the first-order diffracted light 16A are projected by the projection optical system 13.
Then, the light enters the wafer 14 as a photosensitive substrate at substantially the same incident angle θ. In this case, the 0th-order diffracted light 15A and the 1st-order diffracted light pass symmetrically with respect to the optical axis AX near the periphery of the pupil, so that the resolution up to the performance limit of the projection optical system 13 can be obtained.

【0005】また、従来のように0次回折光がウエハ1
4に垂直に入射する方式では、ウエハ14のデフォーカ
ス量に対する0次回折光の波面収差と他の回折光の波面
収差とが大きく異なることから、焦点深度が浅くなって
いる。これに対して、図8(b)の構成では、0次回折
光と1次回折光とが等しい入射角でウエハ14に入射す
るため、ウエハ14が投影光学系13の焦点位置の前後
にあるときの0次回折光と1次回折光との波面収差は相
等しく、焦点深度が深くなっている。
Further, as in the conventional case, the 0th-order diffracted light is emitted from the wafer 1.
In the method in which the light is incident perpendicularly to No. 4, the depth of focus is shallow because the wavefront aberration of the 0th-order diffracted light and the wavefront aberration of other diffracted light with respect to the defocus amount of the wafer 14 are significantly different. On the other hand, in the configuration of FIG. 8B, since the 0th-order diffracted light and the 1st-order diffracted light are incident on the wafer 14 at the same incident angle, when the wafer 14 is located before and after the focus position of the projection optical system 13. The wavefront aberrations of the 0th-order diffracted light and the 1st-order diffracted light are equal, and the depth of focus is deep.

【0006】[0006]

【発明が解決しようとする課題】その複数傾斜照明法で
は、x軸方向又はy軸方向のライン・アンド・スペース
パターン8であれば有効である。これに対して、図9に
示すように、長いエッジがx軸又はy軸に対して45゜
の方向のライン・アンド・スペースパターン9の場合
は、10Aが投影光学系の瞳であるとすると、図8
(a)の4つの小光源11A〜11Dのうちの2つの小
光源11B及び11Dからの回折光は、0次回折光15
B及び15Dのみが投影レンズの瞳10Aを通過し、±
1次回折光16B及び16Dは瞳10Aを通過しないた
め、ウエハ14上でパターンを形成することはなく、単
にウエハ14を一様に照明することになる。その結果、
ウエハ14上でのパターンのコントラストが低下するこ
ととなる。
In the multiple tilt illumination method, the line and space pattern 8 in the x-axis direction or the y-axis direction is effective. On the other hand, as shown in FIG. 9, when the long edge is the line-and-space pattern 9 in the direction of 45 ° with respect to the x-axis or the y-axis, 10A is the pupil of the projection optical system. , Fig. 8
The diffracted light from the two small light sources 11B and 11D of the four small light sources 11A to 11D in (a) is the 0th-order diffracted light 15
Only B and 15D pass through the pupil 10A of the projection lens,
Since the first-order diffracted lights 16B and 16D do not pass through the pupil 10A, no pattern is formed on the wafer 14 and the wafer 14 is simply illuminated. as a result,
The contrast of the pattern on the wafer 14 is lowered.

【0007】このことを簡単な数値計算で示す。0次回
折光の強さに対する±1次回折光の強さをaとし、各小
光源11A〜11Dは点光源とみなす。このとき、y軸
方向に長いライン・アンド・スペースパターンの場合の
x軸上の像強度分布I(x)は各小光源による像強度分
布の和として次のようになる。
This will be shown by a simple numerical calculation. The intensity of the ± 1st-order diffracted light with respect to the intensity of the 0th-order diffracted light is defined as a, and the small light sources 11A to 11D are regarded as point light sources. At this time, the image intensity distribution I (x) on the x-axis in the case of a line-and-space pattern long in the y-axis direction is as follows as the sum of the image intensity distributions by the small light sources.

【数1】 I(x)=4{1+a2 +2a・cos[(4π/λ)(sinθ)x]}## EQU1 ## I (x) = 4 {1 + a 2 + 2a · cos [(4π / λ) (sin θ) x]}

【0008】ここで、入射角θは、図8(b)に示すよ
うに、0次回折光又は±1次回折光が光軸AXとなす角
である。これに対して、x軸又はy軸に45゜で交差す
る方向に長いライン・アンド・スペースパターンの場合
に、45゜方向の座標軸をx′軸とすると、強度分布I
(x′)は次のようになる。
Here, the incident angle θ is an angle formed by the 0th-order diffracted light or ± 1st-order diffracted light with the optical axis AX, as shown in FIG. 8B. On the other hand, in the case of a line-and-space pattern long in the direction intersecting the x-axis or the y-axis at 45 °, if the coordinate axis in the 45 ° direction is the x ′ axis, the intensity distribution I
(X ') is as follows.

【数2】 I(x′)=2{1+a2 +2a・cos[(4π/λ)(sinθ)x]} +2{1} =4{1+(a2 /2)+a・cos[(4π/λ)(sinθ)x]}[Number 2] I (x ') = 2 { 1 + a 2 + 2a · cos [(4π / λ) (sinθ) x]} +2 {1} = 4 {1+ (a 2/2) + a · cos [(4π / λ) (sin θ) x]}

【0009】(数1)及び(数2)から各々の強度分布
のコントラストCx及びCx′を求めると、次のように
なる。
When the contrasts Cx and Cx 'of the respective intensity distributions are obtained from (Equation 1) and (Equation 2), they are as follows.

【数3】 Cx=2a/(1+a2 ),Cx′=a/(1+a2/2 )[Number 3] Cx = 2a / (1 + a 2), Cx '= a / (1 + a 2/2)

【0010】この場合、次式が成立する。 Cx−Cx′=a/{(1+a2 )(1+a2 /2)}>0 従って、次式が成立する。In this case, the following equation holds. Cx-Cx '= a / { (1 + a 2) (1 + a 2/2)}> 0 Therefore, the following equation is established.

【数4】Cx>Cx′[Equation 4] Cx> Cx ′

【0011】従って、x軸に45゜で交差する方向に長
いパターンのコントラストの低下が示される。例えばラ
インとスペースとの幅が等しい場合には、±1次回折光
の強さaは2/πとなるので、次式のようになる。 Cx=0.906,Cx′=0.529
Thus, a reduction in the contrast of patterns that are long in the direction intersecting the x-axis at 45 ° is shown. For example, when the line and the space have the same width, the intensity a of the ± 1st-order diffracted light is 2 / π, and therefore, the following equation is obtained. Cx = 0.906, Cx '= 0.529

【0012】なお、上述の説明では複数傾斜照明法の場
合を例として説明したが、例えば輪帯照明法等を使用し
た場合でも、像のコントラストをより改善することが望
まれている。本発明は斯かる点に鑑み、光軸に対して傾
斜した照明光を積極的に利用してレチクル等を照明する
照明光学装置において、そのレチクル等のパターンがそ
の照明光の入射面に垂直な方向を長手方向とするライン
・アンド・スペースパターンであるような場合に、投影
光学系でそのレチクル等のパターンを投影したときに照
明光学装置側の工夫でその像のコントラストを改善でき
るようにすることを目的とする。
In the above description, the case of the multi-tilt illumination method has been described as an example, but it is desired to further improve the image contrast even when the annular illumination method or the like is used. In view of the above problems, the present invention provides an illumination optical device that positively utilizes illumination light inclined with respect to the optical axis to illuminate a reticle or the like, and the pattern of the reticle or the like is perpendicular to the incident surface of the illumination light. In the case of a line-and-space pattern whose longitudinal direction is the direction, when the pattern of the reticle or the like is projected by the projection optical system, it is possible to improve the contrast of the image by devising the illumination optical device side. The purpose is to

【0013】[0013]

【課題を解決するための手段】本発明による第1の照明
光学装置は、例えば図3に示すように、照明光学系から
の照明光によって物体(12)上の所定領域を均一に照
明する照明光学装置において、その照明光学系は、その
所定領域を斜め方向から照明する傾斜光(27B,27
C)を形成する傾斜光形成手段(24)と、この傾斜光
を変換して、その所定領域を傾斜照明するその傾斜光の
入射面に対し直交した方向に直線偏光する照明光を形成
する偏光手段(25B,25C)とを有するものであ
る。
A first illumination optical device according to the present invention is, for example, as shown in FIG. 3, an illumination which uniformly illuminates a predetermined area on an object (12) by illumination light from an illumination optical system. In the optical device, the illumination optical system includes an inclined light (27B, 27B) that illuminates a predetermined area from an oblique direction.
C) forming a tilted light and a polarized light for converting the tilted light to form an illumination light that is linearly polarized in a direction orthogonal to the incident surface of the tilted light that obliquely illuminates a predetermined area. And means (25B, 25C).

【0014】また、第2の照明光学装置は、例えば図3
に示すように、照明光を供給する光源(20)とこの照
明光で物体(12)上の所定領域を均一に照明する集光
光学系(26)とを有する照明光学装置において、その
照明光によってその集光光学系の光軸に対し偏心した2
次光源を形成してその所定領域を斜め方向から照明する
傾斜光形成手段(24)をその光源(20)とその集光
光学系(26)との間に配置し、この傾斜光を変換し
て、その所定領域を傾斜照明する傾斜光の入射面に対し
直交した方向に直線偏光する照明光を形成する偏光手段
(25B,25C)をその傾斜光形成手段(24)とそ
の集光光学系(26)との間に配置したものである。
Further, the second illumination optical device is, for example, as shown in FIG.
As shown in FIG. 3, in an illumination optical device having a light source (20) for supplying illumination light and a condensing optical system (26) for uniformly illuminating a predetermined area on an object (12) with this illumination light, Decentered with respect to the optical axis of the condensing optical system by 2
An inclined light forming means (24) for forming a next light source and illuminating a predetermined area thereof in an oblique direction is arranged between the light source (20) and the condensing optical system (26) to convert this inclined light. Then, the polarizing means (25B, 25C) for forming the illumination light linearly polarized in the direction orthogonal to the incident surface of the inclined light for obliquely illuminating the predetermined area is provided with the inclined light forming means (24) and its condensing optical system. It is arranged between (26).

【0015】[0015]

【作用】以下、本発明の原理につき偏心した4個の小光
源からの照明光で物体を照明する複数傾斜照明法を例に
とって説明する。先ず、本発明の第1の照明光学装置に
よれば、例えば図3に示すように、物体(12)の所定
領域を斜め方向から照明する傾斜光(27B,27C)
が形成され、これら傾斜光(27B,27C)はそれぞ
れ物体(12)に対する入射面(紙面)に垂直な方向に
直線偏光(入射面に垂直な方向に電気ベクトルが振動)
している。なお、直線偏光とは、光波の電気ベクトルの
振動方向が一平面内にある状態を意味し、電気ベクトル
の振動方向を直線偏光の方向と定義する。また、入射面
とは、光が媒質の境界面に達した時に、その点での面の
法線と光の入射方向とを含む面の事と定義する。その図
3の照明光学装置を簡略化すると図1のようになる。
The principle of the present invention will be described below by taking a multi-inclined illumination method for illuminating an object with illumination light from four eccentric small light sources. First, according to the first illumination optical device of the present invention, for example, as shown in FIG. 3, tilted light (27B, 27C) that illuminates a predetermined region of the object (12) from an oblique direction.
Are formed, and these inclined lights (27B, 27C) are linearly polarized in the direction perpendicular to the incident surface (paper surface) with respect to the object (12) (the electric vector vibrates in the direction perpendicular to the incident surface).
is doing. The linearly polarized light means a state in which the vibration direction of the electric vector of the light wave is in one plane, and the vibration direction of the electric vector is defined as the direction of the linearly polarized light. Further, the incident surface is defined as a surface including the normal line of the surface at that point and the incident direction of the light when the light reaches the boundary surface of the medium. The illumination optical device shown in FIG. 3 is simplified as shown in FIG.

【0016】図1(a)は図3の照明光学装置の2次光
源部等の等価光源部10を示し、この図1(a)におい
て、直交座標系を形成するx軸及びy軸に対してそれぞ
れ45°で交差する軸x′及びこの軸x′とy軸に関し
て対称な軸に沿って4個の小光源11A〜11Dが配置
されている。
FIG. 1A shows an equivalent light source unit 10 such as a secondary light source unit of the illumination optical device shown in FIG. 3, and in FIG. 1A, the x-axis and the y-axis which form the orthogonal coordinate system. Four small light sources 11A to 11D are arranged along an axis x'intersecting at 45 ° and an axis symmetrical to the axis x'and the y-axis.

【0017】図1(b)はその図3の照明光学装置を用
いた投影露光装置の概略構成を示し、この図1(b)に
おいて、等価光源部10は図1(a)の等価光源部と等
しい。その等価光源部10の小光源11Aからの露光光
の主光線15Aが図示省略したコンデンサーレンズ系を
介してレチクル12に光軸AXに対して斜めに照射され
る。その主光線15Aが図3の傾斜光(27B,27
C)に対応する。その主光線15Aの入射面は図1
(b)の紙面に平行であるため、本発明によれば、その
主光線15Aは図1(b)の紙面に垂直な方向に直線偏
光(紙面に垂直な方向に電気ベクトルが振動)してレチ
クル12に入射する。同様に、図1(a)において、各
小光源11B〜11Dからの光は、図1(a)の矢印の
方向即ち、レチクル12に対する入射面に垂直な方向に
直線偏光して図1(b)のレチクル12に入射する。
FIG. 1 (b) shows a schematic structure of a projection exposure apparatus using the illumination optical apparatus of FIG. 3, and in FIG. 1 (b), the equivalent light source section 10 is the equivalent light source section of FIG. 1 (a). Is equal to The chief ray 15A of the exposure light from the small light source 11A of the equivalent light source unit 10 is irradiated onto the reticle 12 obliquely with respect to the optical axis AX via a condenser lens system (not shown). The chief ray 15A is the inclined light (27B, 27
Corresponds to C). The incident surface of the chief ray 15A is shown in FIG.
Since it is parallel to the paper surface of (b), according to the present invention, the chief ray 15A is linearly polarized in the direction perpendicular to the paper surface of FIG. 1 (b) (the electric vector vibrates in the direction perpendicular to the paper surface). It is incident on the reticle 12. Similarly, in FIG. 1A, the light from each of the small light sources 11B to 11D is linearly polarized in the direction of the arrow in FIG. 1A, that is, in the direction perpendicular to the incident surface with respect to the reticle 12, and then in FIG. ) Is incident on the reticle 12.

【0018】また、レチクル12からの0次回折光(こ
れをも符号15Aで表す)及び1次回折光16Aは投影
光学系13を経てウエハ14上に入射する。先ず、その
レチクル12に形成されたパターンが、従来例に好適な
パターンである図1(a)のx軸又はy軸に平行な方向
に長いライン・アンド・スペースパターンであるとする
と、そのパターンによりx方向又はy方向に回折された
照明光は、偏光方向がそのパターンに対して45゜方向
であるので、ランダム偏光と同じ結像状況である。従っ
て、コントラストは従来例と同様である。
The 0th-order diffracted light (also indicated by reference numeral 15A) and the 1st-order diffracted light 16A from the reticle 12 are incident on the wafer 14 via the projection optical system 13. First, assuming that the pattern formed on the reticle 12 is a line-and-space pattern long in the direction parallel to the x-axis or the y-axis in FIG. The illumination light diffracted in the x-direction or the y-direction is in the same image formation state as the randomly polarized light because the polarization direction is 45 ° with respect to the pattern. Therefore, the contrast is similar to that of the conventional example.

【0019】これに対して、そのレチクル12に形成さ
れたパターンが、図1(a)のx′軸に垂直な方向に長
いライン・アンド・スペースパターン9であるとする
と、小光源11Aからの照明光15Aの1次回折光が投
影光学系13の瞳内に入ることになる。尚、図1(b)
ではx′軸は紙面と平行になっている。ここで、図1
(b)に示すように、その照明光15Aの0次回折光1
5A及び1次回折光15Bは共に偏光方向(電気ベクト
ルの振動する方向)がウエハ14の表面で平行なS偏光
(図1(b)の紙面に垂直な方向に電気ベクトルが振動
する光)である。従って、ウエハ14上における干渉効
果がランダム偏光のときよりも大きくなり、高コントラ
ストの像が作られる。このため、図9を用いて説明した
ようにx′方向に回折された場合に、回折光の一部が瞳
外に出てしまうことによりコントラストが低下するとい
う従来の不都合が補われることになる。
On the other hand, if the pattern formed on the reticle 12 is the line-and-space pattern 9 which is long in the direction perpendicular to the x'axis of FIG. 1A, the light source 11A emits light. The first-order diffracted light of the illumination light 15A enters the pupil of the projection optical system 13. Incidentally, FIG. 1 (b)
In, the x'axis is parallel to the paper surface. Here, FIG.
As shown in (b), the 0th-order diffracted light 1 of the illumination light 15A
5A and the first-order diffracted light 15B are both S-polarized light whose polarization direction (direction in which the electric vector vibrates) is parallel to the surface of the wafer 14 (light whose electric vector vibrates in a direction perpendicular to the paper surface of FIG. 1B). . Therefore, the interference effect on the wafer 14 becomes larger than that in the case of randomly polarized light, and a high-contrast image is formed. Therefore, as described with reference to FIG. 9, when the light is diffracted in the x ′ direction, a part of the diffracted light goes out of the pupil to reduce the contrast, which is a conventional disadvantage. .

【0020】ここで、偏光方向による強度分布の差を簡
単に以下に述べる。図2では、像面、即ちウエハ14の
表面付近の様子をP偏光(電気ベクトルの振動方向が入
射面内にある光)とS偏光(電気ベクトルの振動方向が
入射面と垂直な光)を用いて示してある。0次回折光1
5A及び1次回折光16Aの入射角をそれぞれθ0 及び
θ1 とすると、S偏光の場合の像面上の強度分布Is
(x)は振幅分布Us(x)を用いて次のように簡単に
示される。
The difference in intensity distribution depending on the polarization direction will be briefly described below. In FIG. 2, the image plane, that is, the state near the surface of the wafer 14 is shown as P-polarized light (light whose electric vector vibration direction is within the incident surface) and S-polarized light (light whose electric vector vibration direction is perpendicular to the incident surface). It is shown using. 0th order diffracted light 1
If the incident angles of the 5A and first-order diffracted light 16A are θ 0 and θ 1 , respectively, the intensity distribution Is on the image plane in the case of S-polarized light is
(X) is simply shown as follows using the amplitude distribution Us (x).

【数5】 Is(x)=|Us(x)|2 , Vs(x)=a0 ・exp〔−i(2π/λ)(sinθ0 )x〕 +a1 ・exp〔−i(2π/λ)(sinθ 1)x〕[Equation 5] Is (x) = | Us (x) | 2 , Vs (x) = a 0 · exp [−i (2π / λ) (sin θ 0 ) x] + a 1 · exp [−i (2π / λ) (sin θ 1 ) x]

【0021】従って、強度分布Is(x)は次のように
なる。
Therefore, the intensity distribution Is (x) is as follows.

【数6】 Is(x)=a0 2+a1 2 +2a01 ・cos〔(2π/λ)(sinθ0 −sinθ1 )x〕 ここで、係数a0 及びa1 はそれぞれ0次回折光及び1
次回折光の強さ(振幅)である。x′方向にピッチを持
つライン・アンド・スペースパターンの場合、4つの小
光源の内、2つは0次回折光しか投影光学系13を通過
しないのでS偏光のコントラストCsは次のようにな
る。
Is (x) = a 0 2 + a 1 2 + 2a 0 a 1 · cos [(2π / λ) (sin θ 0 −sin θ 1 ) x] where the coefficients a 0 and a 1 are the 0th-order diffracted light, respectively. And 1
It is the intensity (amplitude) of the next-order diffracted light. In the case of a line-and-space pattern having a pitch in the x ′ direction, two of the four small light sources pass only the 0th-order diffracted light through the projection optical system 13, so the contrast Cs of S-polarized light is as follows.

【数7】Cs=2a01/(2a0 2+a1 2## EQU7 ## Cs = 2a 0 a 1 / (2a 0 2 + a 1 2 )

【0022】一方、P偏光の場合は、偏光のx成分と、
z成分とを考えなくてはいけない。P偏光の場合の像面
上の振幅分布Up(x)をベクトルで表して、x成分と
z成分とを示すと次式が得られる。
On the other hand, in the case of P-polarized light, the x component of polarized light and
We have to consider the z component. When the amplitude distribution Up (x) on the image plane in the case of P-polarized light is represented by a vector and the x component and the z component are shown, the following equation is obtained.

【数8】 Up(x)=(a0 ・exp 〔−i(2π/λ)(sin θ0 )x〕・cos θ0 +a1 ・exp 〔−i(2π/λ)(sin θ1 )x〕・cos θ1 , a0 ・exp 〔−i(2π/λ)(sin θ0 )x〕・sin θ0 +a1 ・exp 〔−i(2π/λ)(sin θ1 )x〕・sin θ1Up (x) = (a 0 · exp [−i (2π / λ) (sin θ 0 ) x] · cos θ 0 + a 1 · exp [−i (2π / λ) (sin θ 1 ) x] · cos θ 1 , a 0 · exp [−i (2π / λ) (sin θ 0 ) x] · sin θ 0 + a 1 · exp [−i (2π / λ) (sin θ 1 ) x] ・sin θ 1 )

【0023】従って、P偏光の場合の像面上の強度分布
Ip(x)は次のようになる。
Therefore, the intensity distribution Ip (x) on the image plane for P-polarized light is as follows.

【数9】 Ip(x)=|Up(x)|2 =a0 2+a1 2+2a01 ×(cosθ0 cosθ1 +sinθ0 sinθ1 ) ×cos〔(2π/λ)(sinθ0 −sinθ1 )x〕Ip (x) = | Up (x) | 2 = a 0 2 + a 1 2 + 2a 0 a 1 × (cos θ 0 cos θ 1 + sin θ 0 sin θ 1 ) × cos [(2π / λ) (sin θ 0 − sin θ 1 ) x]

【0024】従って、P偏光の場合のコントラストCp
は次のようになる。
Therefore, the contrast Cp for P-polarized light is
Is as follows.

【数10】 Cp=2a01 cos(θ0 −θ1 )/(2a0 2+a1 2) (数7)と(数10)とを比較して、P偏光の場合は、
コントラストがcos(θ0 −θ1 )倍となることが分
かる。例えば、sinθ0 =0.4、sinθ1 =−
0.4の場合を考えると、cos(θ0 −θ1 )=0.
68となり、P偏光の場合とS偏光の場合とでは大きな
差がつく。ランダム偏光は、P偏光とS偏光との平均と
考えられるので、コントラストは(1/2)(1+0.
68)=0.84である。
[Equation 10] Cp = 2a 0 a 1 cos (θ 0 −θ 1 ) / (2a 0 2 + a 1 2 ) Comparing (Equation 7) and (Equation 10), in the case of P-polarized light,
It can be seen that the contrast becomes cos (θ 0 −θ 1 ) times. For example, sin θ 0 = 0.4, sin θ 1 = −
Considering the case of 0.4, cos (θ 0 −θ 1 ) = 0.
68, which is a large difference between the P-polarized light and the S-polarized light. Since the random polarization is considered to be the average of P polarization and S polarization, the contrast is (1/2) (1 + 0.
68) = 0.84.

【0025】このように、S偏光とすることにより、コ
ントラストに大きな差が生じる。即ち、図1(a)のよ
うな偏光状態の照明光を使用すると、x軸及びy軸に対
して45゜で交差する方向にエッジが平行なライン・ア
ンド・スペースパターンに対して、従来よりも2割程度
のコントラストの増加が見込まれ、微細パターンに有効
であることが分かる。
As described above, the S-polarized light causes a large difference in contrast. That is, when illumination light having a polarization state as shown in FIG. Also, it is expected that the contrast will increase by about 20%, which is effective for fine patterns.

【0026】なお、これまでは複数傾斜照明法を例にと
って説明したが、本発明を例えば輪帯照明法に適用する
と、例えば図7(a)に示すように、等価光源部10の
輪帯状の光源からの光をそれぞれ入射面に垂直な方向、
即ち光軸を中心とした円の接線方向に直線偏光する光に
変換すればよい。
Although the multi-tilt illumination method has been described above as an example, when the present invention is applied to the annular illumination method, for example, as shown in FIG. The direction from which the light from the light source is perpendicular to the incident surface,
That is, it may be converted into light that is linearly polarized in the tangential direction of a circle centered on the optical axis.

【0027】次に、本発明の第2の照明光学装置によれ
ば、例えば図3に示すように、傾斜光を形成するのに、
光源からの照明光により偏心した2次光源が形成されて
いる。その2次光源を例えば図1(a)の等価光源10
とみなせば、上述の説明はそのまま本発明にも適用され
る。
Next, according to the second illumination optical device of the present invention, for example, as shown in FIG.
A secondary light source that is decentered by the illumination light from the light source is formed. The secondary light source is, for example, the equivalent light source 10 of FIG.
If so, the above description is directly applied to the present invention.

【0028】[0028]

【実施例】以下、本発明による照明光学装置を備えた投
影露光装置の第1実施例につき図3及び図4を参照して
説明する。本例は投影露光装置の照明光学系に本発明を
適用したものである。図3は本実施例の投影露光装置の
照明光学系を示し、この図3において、水銀ランプより
なる光源20からの照明光が楕円鏡21で集光され、こ
の集光された照明光がコリメータレンズ22を介してフ
ライアイレンズ23(オプティカルインテグレータ)に
入射する。フライアイレンズ23の射出側(レチクル
側)の焦点面には面状の2次光源が形成される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of a projection exposure apparatus having an illumination optical device according to the present invention will be described below with reference to FIGS. In this example, the present invention is applied to an illumination optical system of a projection exposure apparatus. FIG. 3 shows an illumination optical system of the projection exposure apparatus of the present embodiment. In FIG. 3, illumination light from a light source 20 composed of a mercury lamp is condensed by an elliptical mirror 21, and this condensed illumination light is collimated. The light enters the fly-eye lens 23 (optical integrator) via the lens 22. A planar secondary light source is formed on the focal plane on the exit side (reticle side) of the fly-eye lens 23.

【0029】フライアイレンズ23の射出端付近に光軸
AXに対して偏心した4個の開口が形成された空間フィ
ルター24を設ける。また、この空間フィルター24の
4個の開口のレチクル側(又は光源20側でもよい)に
それぞれ偏光板25A〜25Dを被着する。但し、図3
では偏光板25B及び25Cのみが現れている。図4
(a)は図3の空間フィルター24をレチクル側から見
た正面図、図4(b)は図4(a)のAA線に沿う断面
図であり、これら図4(a)及び(b)に示すように、
空間フィルター24には光軸AXを中心として、90°
間隔で4個の開口24a〜24dが形成され、これら開
口がそれぞれ偏光板25A〜25Dで覆われている。ま
た、それら偏光板25A〜25Dの偏光方向はそれぞれ
矢印で示すように、光軸AXを中心とした円周の接線方
向に設定されている。従って、その空間フィルター24
の開口24a〜24dから射出される照明光は、それぞ
れ光軸AXを中心とした円周の接線方向にほぼ平行な方
向に直線偏光している。
A spatial filter 24 having four openings eccentric to the optical axis AX is provided near the exit end of the fly-eye lens 23. Polarizing plates 25A to 25D are attached to the reticle side (or the light source 20 side) of the four openings of the spatial filter 24. However, FIG.
In, only the polarizing plates 25B and 25C are shown. Figure 4
4A is a front view of the spatial filter 24 of FIG. 3 viewed from the reticle side, and FIG. 4B is a cross-sectional view taken along the line AA of FIG. 4A. As shown in
The spatial filter 24 has a 90 ° angle about the optical axis AX.
Four openings 24a to 24d are formed at intervals, and these openings are covered with polarizing plates 25A to 25D, respectively. The polarization directions of the polarizing plates 25A to 25D are set in the tangential direction of the circumference around the optical axis AX, as indicated by the arrows. Therefore, the spatial filter 24
The illumination lights emitted from the openings 24a to 24d are linearly polarized in a direction substantially parallel to the tangential direction of the circumference centered on the optical axis AX.

【0030】図3に戻り、空間フィルター24により光
軸AXに対して偏心した4個の2次光源が形成される。
それら4個の2次光源から射出された照明光はそれぞれ
偏光板25A〜25Dを通過した後に、コンデンサーレ
ンズ系26を経てレチクル12に入射する。尚、コンデ
ンサーレンズ系26の前側焦点(光源側焦点)位置に
は、空間フィルター24(偏光板25A〜25D)が設
けられており、レチクル12のパターン形成面はコンデ
ンサーレンズ系26に関して空間フィルター24の配置
面とフーリエ変換の関係にある。この場合、例えば空間
フィルター24の開口24b及び24cから射出された
主光線27B及び27Cはコンデンサーレンズ系26を
経てそれぞれレチクル12上に光軸AXに対して斜めに
入射する。また、これら主光線27B及び27Cはそれ
ぞれレチクル12に対する入射面(紙面方向)に対して
垂直な方向に直線偏光している。
Returning to FIG. 3, the spatial filter 24 forms four secondary light sources eccentric with respect to the optical axis AX.
The illumination light emitted from these four secondary light sources passes through the polarizing plates 25A to 25D, respectively, and then enters the reticle 12 via the condenser lens system 26. A spatial filter 24 (polarizing plates 25A to 25D) is provided at the front side focal point (focal point on the light source side) of the condenser lens system 26, and the pattern forming surface of the reticle 12 is related to the condenser lens system 26. There is a relationship between the arrangement plane and the Fourier transform. In this case, for example, the principal rays 27B and 27C emitted from the openings 24b and 24c of the spatial filter 24 respectively enter the reticle 12 obliquely with respect to the optical axis AX via the condenser lens system 26. Further, each of these chief rays 27B and 27C is linearly polarized in a direction perpendicular to the incident surface (paper surface direction) with respect to the reticle 12.

【0031】このような照明光学系を使用すると、本発
明の原理説明で説明したように、例えばレチクル12上
に図4(a)の開口24aと24cとを結ぶ直線に対し
て平行又は垂直な方向に長いエッジを有するライン・ア
ンド・スペースパターンが形成されている場合に、従来
よりも良好なコントラストのもとでそのパターンを投影
光学系13を通してウエハ14上に投影することができ
る。ここで、図3の装置では、フライアイレンズ23の
入射側面と物体面(レチクル12又はウエハ14)とが
共役に構成されており、フライアイレンズ23の射出側
面(2次光源10)と投影光学系13の瞳面10Aとが
共役に構成されている。なお、図3の構成の他に、フラ
イアイレンズ23と空間フィルター24との間に別の大
きな偏光板を配置し、空間フィルター24の4個の開口
24a〜24dの一部又は全部に1/2波長板を配置し
て、各1/2波長板の回転角を調整するようにしてもよ
い。これによっても、図4(a)に示すような、光軸A
Xを中心とする円周の接線方向に偏光した照明光が得ら
れる。この場合、別の大きな偏光板の偏光方向によつて
は、1/2波長板は空間フィルター24のすべての開口
に設ける必要はない。
When such an illumination optical system is used, as described in the explanation of the principle of the present invention, for example, it is parallel or perpendicular to the straight line connecting the openings 24a and 24c of FIG. When a line-and-space pattern having a long edge in the direction is formed, the pattern can be projected on the wafer 14 through the projection optical system 13 with a better contrast than before. Here, in the apparatus of FIG. 3, the incident side surface of the fly-eye lens 23 and the object surface (reticle 12 or wafer 14) are configured to be conjugate, and the exit side surface of the fly-eye lens 23 (secondary light source 10) and the projection surface are projected. The pupil plane 10A of the optical system 13 is configured to be conjugate. In addition to the configuration shown in FIG. 3, another large polarizing plate is disposed between the fly-eye lens 23 and the spatial filter 24, and 1 or 4 is provided in some or all of the four openings 24a to 24d of the spatial filter 24. You may arrange | position a 2 wavelength plate and you may make it adjust the rotation angle of each 1/2 wavelength plate. Also by this, the optical axis A as shown in FIG.
Illumination light polarized in the tangential direction of the circumference centered on X is obtained. In this case, depending on the polarization direction of another large polarizing plate, it is not necessary to provide the half-wave plate in all the openings of the spatial filter 24.

【0032】更に、例えば光源として直線偏光のレーザ
ービームが射出されるようなレーザー光源を使用するこ
とにより、等価光源となる図3の空間フィルター24の
全体を直線偏光の照明光で照明する場合には、空間フィ
ルター24の4個の開口24a〜24dの一部または全
部に適当な回転方向の1/2波長板を設けるだけでよ
い。この場合、一部の開口に1/2波長板を設けるだけ
でもよいが、全部の開口に1/2波長板を設けるほうが
照明のバラツキを低減する上で効果がある。このように
1/2波長板を使用して偏光方向を調整した場合には、
照明光の損失がないので照明効率が良い。
Further, for example, when a laser light source that emits a linearly polarized laser beam is used as a light source, the entire spatial filter 24 of FIG. 3 serving as an equivalent light source is illuminated with linearly polarized illumination light. Need only provide a half-wave plate in the appropriate rotation direction on some or all of the four openings 24a to 24d of the spatial filter 24. In this case, the half-wave plate may be provided only in a part of the openings, but it is more effective to provide the half-wave plate in all the openings in order to reduce the variation in illumination. In this way, when the polarization direction is adjusted using the 1/2 wavelength plate,
The illumination efficiency is good because there is no loss of illumination light.

【0033】また、全体として円偏光の照明光を発生す
る装置を用いて、等価光源となる図3の空間フィルター
24を照明する場合には、空間フィルター24の各開口
に適当な回転方向の1/4波長板を設けることがよい。
Further, in the case of illuminating the spatial filter 24 of FIG. 3 which is an equivalent light source by using a device which generates circularly polarized illumination light as a whole, each aperture of the spatial filter 24 is rotated in an appropriate rotation direction. A quarter wave plate is preferably provided.

【0034】次に、本発明の第2実施例につき図5を参
照して説明する。図5は本例の投影露光装置を示し、こ
の図5において、光源20からの照明光は楕円鏡21、
折り曲げミラー28及びインプットレンズ29を経てほ
ぼ平行光束になる。その楕円鏡21と折り曲げミラー2
8との間にシャッター30を配置し、このシャッター3
0を駆動モーター31で閉じることにより、インプット
レンズ29に対する照明光の供給を随時停止する。光源
1としては、水銀ランプの外に、例えばKrFレーザー
光等を発生するエキシマレーザー光源等を使用すること
ができる。エキシマレーザー光源を使用する場合には、
楕円鏡21〜インプットレンズ29までの光学系の代わ
りにビームエクスパンダ等が使用される。
Next, a second embodiment of the present invention will be described with reference to FIG. FIG. 5 shows a projection exposure apparatus of this example. In FIG. 5, the illumination light from the light source 20 is an elliptical mirror 21,
After passing through the bending mirror 28 and the input lens 29, it becomes a substantially parallel light beam. The elliptical mirror 21 and the folding mirror 2
A shutter 30 is arranged between the shutter 8 and the shutter 3.
By closing 0 with the drive motor 31, the supply of illumination light to the input lens 29 is stopped at any time. As the light source 1, for example, an excimer laser light source that generates KrF laser light or the like can be used in addition to the mercury lamp. When using an excimer laser light source,
A beam expander or the like is used instead of the optical system from the elliptic mirror 21 to the input lens 29.

【0035】そして、インプットレンズ29から順に、
4角錐型(ピラミッド型)の凹部を有する第1の多面体
プリズム32及び4角錐型(ピラミッド型)の凸部を有
する第2の多面体プリズム33を配置する。この第2の
多面体プリズム33から射出される照明光は、光軸を中
心として光軸の周囲に等角度で4個の光束に分割されて
いる。
Then, in order from the input lens 29,
A first polyhedral prism 32 having a quadrangular pyramid (pyramid) concave portion and a second polyhedral prism 33 having a quadrangular pyramid (pyramid) convex portion are arranged. The illumination light emitted from the second polyhedron prism 33 is divided into four light beams at the same angle around the optical axis with the optical axis as the center.

【0036】これら4個に分割された光束をそれぞれ第
2群のフライアイレンズ34A,34B,34C及び3
4Dに入射させる。図5ではフライアイレンズ34A及
び34Bのみが示されているが、図5の紙面に垂直な方
向に光軸を挟んで2個のフライアイレンズ34C及び3
4Dが配置されている。そして、フライアイレンズ34
Aから射出された光束は、レンズ系35A及び36Aよ
りなるガイド光学系を介してほぼ平行光束に変換されて
第1群のフライアイレンズ37Aに入射する。同様に、
第2群のフライアイレンズ34Bを射出した光束は、レ
ンズ系35B及び36Bよりなるガイド光学系を介して
ほぼ平行光束に変換されて第1群のフライアイレンズ3
7Bに入射し、図示省略するも、第2群のフライアイレ
ンズ34C及び34Dを射出した光束は、それぞれガイ
ド光学系を介して第1群のフライアイレンズ37C及び
37Dに入射する。
The light fluxes divided into these four light fluxes are divided into the second group fly-eye lenses 34A, 34B, 34C and 3 respectively.
It is incident on 4D. Although only the fly-eye lenses 34A and 34B are shown in FIG. 5, two fly-eye lenses 34C and 3 are sandwiched with the optical axis in the direction perpendicular to the paper surface of FIG.
4D is arranged. And the fly-eye lens 34
The light flux emitted from A is converted into a substantially parallel light flux via the guide optical system including the lens systems 35A and 36A and is incident on the fly-eye lens 37A of the first group. Similarly,
The light flux emitted from the fly-eye lens 34B of the second group is converted into a substantially parallel light flux via the guide optical system including the lens systems 35B and 36B, and the fly-eye lens 3 of the first group 3
Although not shown, the light fluxes that have entered the first group of fly-eye lenses 37C and 37D enter the first group of fly-eye lenses 37C and 37D through the guide optical system, respectively.

【0037】第1群のフライアイレンズ37A〜37D
は光軸の回りに90°間隔で配置されている。第1群の
フライアイレンズ37A〜37Dのレチクル側焦点面に
はそれぞれ面状の2次光源が形成されるが、それら2次
光源の形成面にそれぞれ可変開口絞り38A〜38Dを
配置する。更に、これら可変開口絞り38A〜38Dの
レチクル側にそれぞれ偏光板39A〜39Dを配置す
る。なお、図5では可変開口絞り13A,13B及び偏
光板39A,39Bのみが現れている。
The first group of fly-eye lenses 37A to 37D
Are arranged at 90 ° intervals around the optical axis. Surface-shaped secondary light sources are formed on the reticle side focal planes of the first group of fly-eye lenses 37A to 37D, and variable aperture stops 38A to 38D are arranged on the surfaces on which the secondary light sources are formed. Further, polarizing plates 39A to 39D are arranged on the reticle side of these variable aperture stops 38A to 38D, respectively. In FIG. 5, only the variable aperture diaphragms 13A and 13B and the polarizing plates 39A and 39B are shown.

【0038】それら可変開口絞り38A〜38Dから偏
光板39A〜39Dを透過して射出した照明光は、それ
ぞれ補助コンデンサーレンズ40、ミラー41及び主コ
ンデンサーレンズ42を経て適度に集光されてレチクル
12をほぼ均一な照度で照明する。そのレチクル12の
パターンが投影光学系13によりウエハステージWS上
のウエハ14に所定の縮小倍率βで転写される。それら
偏光板39A〜39Dの偏光方向は、光軸AXを中心と
する円周の接線方向に平行である。例えば可変開口絞り
38Aから偏光板39Aを透過して射出される光束の主
光線43Aは、紙面に垂直な方向に直線偏光した状態で
レチクル12上に光軸AXに対して斜めに入射する。な
お、図5に示した偏光板39A〜39Dは、実質的に、
補助コンデンサーレンズ40と主コンデンサーレンズと
の合成系のコンデンサーレンズ系の前側焦点(光源側焦
点)位置に設けられており、この位置は実質的に投影光
学系13の瞳面10Aと共役である。
The illumination light emitted from the variable aperture diaphragms 38A to 38D after passing through the polarizing plates 39A to 39D is appropriately condensed through the auxiliary condenser lens 40, the mirror 41, and the main condenser lens 42, and then is incident on the reticle 12. Illuminate with almost uniform illuminance. The pattern of the reticle 12 is transferred onto the wafer 14 on the wafer stage WS by the projection optical system 13 at a predetermined reduction ratio β. The polarization directions of the polarizing plates 39A to 39D are parallel to the tangential direction of the circumference centered on the optical axis AX. For example, a chief ray 43A of a light flux emitted from the variable aperture stop 38A after passing through the polarizing plate 39A is obliquely incident on the reticle 12 with respect to the optical axis AX while being linearly polarized in a direction perpendicular to the paper surface. The polarizing plates 39A to 39D shown in FIG.
The auxiliary condenser lens 40 and the main condenser lens are provided at a front focal point (focal point on the light source side) of a condenser lens system that is a composite system, and this position is substantially conjugate with the pupil plane 10A of the projection optical system 13.

【0039】本例によっても、レチクル12上の所定の
方向のライン・アンド・スペースパターンのウエハ14
上の投影像のコントラストを改善することができる。更
に、第1群のフライアイレンズ37A〜37Dの他に第
2群のフライアイレンズ34A〜34Dが設けられてい
るので、レチクル12上の照度の均一性が更に改善され
ている。なお、図5において、偏光板39A及び39B
はそれぞれ例えばリレー光学系の間の位置44A及び4
4Bに配置してもよく、更に他の位置に配置してもよ
い。また、光源20からの照明光が既に直線偏光である
ような場合には、偏光板39A及び39Bの代わりに1
/2波長板を使用してもよい。
Also in this example, the wafer 14 having a line-and-space pattern in a predetermined direction on the reticle 12.
The contrast of the above projected image can be improved. Further, since the second group fly-eye lenses 34A to 34D are provided in addition to the first group fly-eye lenses 37A to 37D, the uniformity of the illuminance on the reticle 12 is further improved. In FIG. 5, the polarizing plates 39A and 39B
Are positions 44A and 4 respectively between the relay optics, for example.
It may be arranged at 4B or at another position. Further, when the illumination light from the light source 20 is already linearly polarized light, instead of the polarizing plates 39A and 39B, 1
A half wave plate may be used.

【0040】次に、本発明の第3実施例につき図6及び
図7を参照して説明する。本実施例は、先に説明した図
3に示す第1実施例の空間フィルター24を変えて、図
6(a)に示す如き輪帯状の開口240aを有する空間
フィルター240をフライアイレンズ23の射出側に設
けた例を示すものである。この空間フィルター240の
配置により、フライアイレンズ23の射出側には、図6
(a)に示す如く、光軸AXから偏心した輪帯状の2次
光源45が形成され、この輪帯状の2次光源45からの
光が、図3に示す如く、コンデンサーレンズ26、レチ
クル12を介して投影光学系13の瞳面10A(入射瞳
面)に達する。ここで、説明を簡単にするために、レチ
クル12のライン・アンド・スペースパターンの回折作
用による0次回折光と1次回折光との様子について考え
ると、この投影光学系13の瞳面10Aには、図6
(b)に示す如く、輪帯光源45と相似な輪帯状の0次
回折光45Aと輪帯状の0次回折光45Aを横ずれさせ
た輪帯状の1次回折光45Bが形成される。
Next, a third embodiment of the present invention will be described with reference to FIGS. In this embodiment, the spatial filter 24 of the first embodiment shown in FIG. 3 described above is changed, and the spatial filter 240 having a ring-shaped opening 240a as shown in FIG. 6A is emitted from the fly-eye lens 23. An example provided on the side is shown. Due to the arrangement of the spatial filter 240, the fly-eye lens 23 has an exit side as shown in FIG.
As shown in (a), a ring-shaped secondary light source 45 decentered from the optical axis AX is formed, and the light from this ring-shaped secondary light source 45 passes through the condenser lens 26 and the reticle 12 as shown in FIG. It reaches the pupil plane 10A (incident pupil plane) of the projection optical system 13 through. Here, in order to simplify the explanation, considering the states of the 0th-order diffracted light and the 1st-order diffracted light due to the diffraction action of the line-and-space pattern of the reticle 12, the pupil plane 10A of the projection optical system 13 has Figure 6
As shown in (b), a ring-shaped 0th-order diffracted light 45A similar to the ring-shaped light source 45 and a ring-shaped 1st-order diffracted light 45B obtained by laterally shifting the ring-shaped 0th-order diffracted light 45A are formed.

【0041】この場合、本例では図7(a)に示すよう
に、等価光源部10の輪帯状の2次光源45から射出さ
れる照明光をそれぞれ光軸AXを中心とする円周の接線
方向に偏光させる輪帯状の偏光板250が空間フィルタ
ー240上に設けられている。これにより、微細パター
ンに対して高コントラストの像を得ることができる。な
お、図7(b)に示すように輪帯状光源を円弧状の各ゾ
ーンに分ける開口を持つ空間フィルター240を用い
て、各ゾーン上に偏光板250A〜250Hを設けて、
各ゾーンごとに光軸AXを軸とする円周の接線方向の直
線偏光の照明光となるようにしてもよい。
In this case, in this example, as shown in FIG. 7A, the illuminating light emitted from the annular light source 45 of the equivalent light source unit 10 is tangential to the circumference around the optical axis AX. A ring-shaped polarizing plate 250 that polarizes the light in the direction is provided on the spatial filter 240. As a result, a high-contrast image can be obtained for a fine pattern. As shown in FIG. 7B, a spatial filter 240 having an opening that divides the annular light source into arc-shaped zones is used, and polarizing plates 250A to 250H are provided on each zone.
The illumination light may be linearly polarized light in the tangential direction of the circumference about the optical axis AX for each zone.

【0042】なお、本発明は上述実施例に限定されず本
発明の要旨を逸脱しない範囲で種々の構成を取り得るこ
とは勿論である。
The present invention is not limited to the above-described embodiments, and it goes without saying that various configurations can be adopted without departing from the gist of the present invention.

【0043】[0043]

【発明の効果】本発明の第1及び第2の照明光学装置に
よれば、物体に対して傾斜して入射する照明光が入射面
に垂直な方向に偏光しているので、その物体上のパター
ンがその照明光の入射面に垂直な方向を長手方向とする
ライン・アンド・スペースパターンであるような場合
に、投影光学系でその物体のパターンを投影したときに
その像のコントラストを大幅に改善できる利点がある。
According to the first and second illumination optical devices of the present invention, since the illumination light that is obliquely incident on the object is polarized in the direction perpendicular to the incident surface, the illumination light on the object is reduced. When the pattern is a line-and-space pattern whose longitudinal direction is the direction perpendicular to the plane of incidence of the illumination light, the contrast of the image is significantly increased when the pattern of the object is projected by the projection optical system. There is an advantage that can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)は本発明による照明光学装置の原理の説
明に供する等価光源を示す図、(b)は図1(a)の等
価光源を使用した投影露光装置を示す概略構成図であ
る。
1A is a diagram showing an equivalent light source for explaining the principle of an illumination optical device according to the present invention, and FIG. 1B is a schematic configuration diagram showing a projection exposure apparatus using the equivalent light source of FIG. 1A. is there.

【図2】本発明の原理の説明に供する図である。FIG. 2 is a diagram for explaining the principle of the present invention.

【図3】本発明の第1実施例の投影露光装置の照明光学
系を示す構成図である。
FIG. 3 is a configuration diagram showing an illumination optical system of the projection exposure apparatus of the first embodiment of the present invention.

【図4】(a)は図3の空間フィルター24及び偏光板
25A〜25Dを示す正面図、(b)は図4(a)のA
A線に沿う断面図である。
4A is a front view showing the spatial filter 24 and polarizing plates 25A to 25D of FIG. 3, and FIG. 4B is a view of FIG.
It is sectional drawing which follows the A line.

【図5】本発明の第2実施例の投影露光装置を示す構成
図である。
FIG. 5 is a configuration diagram showing a projection exposure apparatus according to a second embodiment of the present invention.

【図6】(a)は本発明の第3実施例の等価光源及び空
間フィルター240を示す図、(b)は空間フィルター
240を用いた事による投影光学系13の瞳での回折光
の様子を示す図である。
FIG. 6A is a diagram showing an equivalent light source and a spatial filter 240 according to a third embodiment of the present invention, and FIG. 6B is a diagram showing a state of diffracted light at the pupil of the projection optical system 13 by using the spatial filter 240. FIG.

【図7】(a)は第3実施例の等価光源からの照明光の
偏光状態を示す図、(b)は第3実施例の変形例の等価
光源を示す図である。
7A is a diagram showing a polarization state of illumination light from an equivalent light source of a third embodiment, and FIG. 7B is a diagram showing an equivalent light source of a modified example of the third embodiment.

【図8】(a)は複数傾斜照明の等価光源を示す図、
(b)は図8(a)の等価光源を用いた場合の投影光学
系13の瞳での回折光の様子を示す図である。
FIG. 8A is a diagram showing an equivalent light source for multi-tilt illumination;
8B is a diagram showing a state of diffracted light at the pupil of the projection optical system 13 when the equivalent light source of FIG. 8A is used.

【図9】複数傾斜照明で特定のパターンを照明した場合
を示す図である。
FIG. 9 is a diagram showing a case where a specific pattern is illuminated by a plurality of inclined illuminations.

【符号の説明】[Explanation of symbols]

10 等価光源 11A〜11D 小光源 12 レチクル 13 投影光学系 14 ウエハ 20 光源 22 コリメータレンズ 23 フライアイレンズ 24 空間フィルター 24a〜24d 開口 25A〜25D 偏光板 26 コンデンサーレンズ系 10 Equivalent Light Source 11A-11D Small Light Source 12 Reticle 13 Projection Optical System 14 Wafer 20 Light Source 22 Collimator Lens 23 Fly Eye Lens 24 Spatial Filter 24a-24d Opening 25A-25D Polarizing Plate 26 Condenser Lens System

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 照明光学系からの照明光によって物体上
の所定領域を均一に照明する照明光学装置において、 前記照明光学系は、前記所定領域を斜め方向から照明す
る傾斜光を形成する傾斜光形成手段と、該傾斜光を変換
して、前記所定領域を傾斜照明する前記傾斜光の入射面
に対し直交した方向に直線偏光する照明光を形成する偏
光手段とを有することを特徴とする照明光学装置。
1. An illumination optical device for uniformly illuminating a predetermined area on an object with illumination light from the illumination optical system, wherein the illumination optical system forms inclined light for illuminating the predetermined area in an oblique direction. Illumination comprising: forming means; and polarizing means for converting the inclined light and forming illumination light linearly polarized in a direction orthogonal to an incident surface of the inclined light for obliquely illuminating the predetermined region. Optical device.
【請求項2】 照明光を供給する光源と該照明光で物体
上の所定領域を均一に照明する集光光学系とを有する照
明光学装置において、 前記照明光によって前記集光光学系の光軸に対し偏心し
た2次光源を形成して前記所定領域を斜め方向から照明
する傾斜光形成手段を前記光源と前記集光光学系との間
に配置し、 該傾斜光を変換して、前記所定領域を傾斜照明する傾斜
光の入射面に対し直交した方向に直線偏光する照明光を
形成する偏光手段を前記傾斜光形成手段と前記集光光学
系との間に配置したことを特徴とする照明光学装置。
2. An illumination optical device having a light source for supplying illumination light and a condensing optical system for uniformly illuminating a predetermined region on an object with the illumination light, wherein the illumination light causes an optical axis of the condensing optical system. Inclined light forming means for forming an eccentric secondary light source to illuminate the predetermined region from an oblique direction is arranged between the light source and the condensing optical system, and the inclined light is converted to the predetermined light. Illumination characterized in that a polarizing means for forming illumination light linearly polarized in a direction orthogonal to an incident surface of inclined light for obliquely illuminating an area is arranged between the inclined light forming means and the condensing optical system. Optical device.
JP21978292A 1992-07-27 1992-07-27 Illumination optical device, exposure apparatus, and exposure method Expired - Lifetime JP3246615B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21978292A JP3246615B2 (en) 1992-07-27 1992-07-27 Illumination optical device, exposure apparatus, and exposure method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21978292A JP3246615B2 (en) 1992-07-27 1992-07-27 Illumination optical device, exposure apparatus, and exposure method

Publications (2)

Publication Number Publication Date
JPH0653120A true JPH0653120A (en) 1994-02-25
JP3246615B2 JP3246615B2 (en) 2002-01-15

Family

ID=16740926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21978292A Expired - Lifetime JP3246615B2 (en) 1992-07-27 1992-07-27 Illumination optical device, exposure apparatus, and exposure method

Country Status (1)

Country Link
JP (1) JP3246615B2 (en)

Cited By (104)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07183201A (en) * 1993-12-21 1995-07-21 Nec Corp Exposure device and method therefor
WO2004090952A1 (en) * 2003-04-09 2004-10-21 Nikon Corporation Exposure method and apparatus, and device manufacturing method
WO2005036619A1 (en) * 2003-10-09 2005-04-21 Nikon Corporation Illumination optical device, and exposure device and method
JP2005136244A (en) * 2003-10-31 2005-05-26 Semiconductor Leading Edge Technologies Inc Exposure method
WO2005050718A1 (en) * 2003-11-20 2005-06-02 Nikon Corporation Light flux conversion element, lighting optical device, exposure system, and exposure method
JP2005166871A (en) * 2003-12-02 2005-06-23 Nikon Corp Illumination optical device, projection aligner, exposure method and device manufacturing method
WO2005076323A1 (en) 2004-02-10 2005-08-18 Nikon Corporation Aligner, device manufacturing method, maintenance method and aligning method
WO2005076045A1 (en) * 2004-02-06 2005-08-18 Nikon Corporation Polarization conversion element, lighting optical device, exposure system, and exposure method
JP2005268489A (en) * 2004-03-18 2005-09-29 Canon Inc Lighting device, aligner, and device manufacturing method
WO2005122218A1 (en) 2004-06-09 2005-12-22 Nikon Corporation Exposure system and device production method
JP2006106392A (en) * 2004-10-06 2006-04-20 Toppan Printing Co Ltd Symmetrically rotating polarizer and manufacturing method thereof
US7046337B2 (en) 2002-12-10 2006-05-16 Canon Kabushiki Kaisha Exposure apparatus and method
JP2006191064A (en) * 2004-12-28 2006-07-20 Asml Netherlands Bv Polarized radiation for lithographic device and method of manufacturing device
JP2006345006A (en) * 2003-11-20 2006-12-21 Nikon Corp Lighting optical device, exposure device, exposure method, and manufacturing method for micro device
JP2006345005A (en) * 2004-02-06 2006-12-21 Nikon Corp Lighting optical device, exposure device, and device manufacturing method
KR100676576B1 (en) * 2003-10-28 2007-01-30 주식회사 하이닉스반도체 Polarized manual blade and method of manufacturing the same
JP2007053390A (en) * 2004-02-06 2007-03-01 Nikon Corp Illumination optical device, exposure system, exposure method, and method of manufacturing micro device
JP2007524247A (en) * 2004-02-26 2007-08-23 カール・ツァイス・エスエムティー・アーゲー Illumination system for microlithographic projection exposure equipment
US7265816B2 (en) 2004-06-21 2007-09-04 Canon Kabushiki Kaisha Illumination optical system, exposure apparatus, and device manufacturing method with modified illumination generator
WO2008004654A1 (en) * 2006-07-07 2008-01-10 Nikon Corporation Illuminating optical apparatus, exposure apparatus and device manufacturing method
US7375796B2 (en) 2004-04-01 2008-05-20 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
CN100409045C (en) * 2004-02-06 2008-08-06 株式会社尼康 Polarization conversion element, lighting optical device, exposure system, and exposure method
US7433019B2 (en) 2003-07-09 2008-10-07 Nikon Corporation Exposure apparatus and device manufacturing method
US7436491B2 (en) 2004-12-20 2008-10-14 Kabushiki Kaisha Toshiba Exposure system, exposure method and method for manufacturing a semiconductor device
US7450217B2 (en) 2005-01-12 2008-11-11 Asml Netherlands B.V. Exposure apparatus, coatings for exposure apparatus, lithographic apparatus, device manufacturing method, and device manufactured thereby
JP2009009143A (en) * 2003-02-27 2009-01-15 Asml Netherlands Bv Stationary and dynamic radial transverse electric polarizer for high numerical aperture system
US7486381B2 (en) 2004-05-21 2009-02-03 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP2009033191A (en) * 2004-05-25 2009-02-12 Asml Holding Nv Method for providing pattern of polarization
EP2037489A2 (en) 2004-01-15 2009-03-18 Nikon Corporation Exposure apparatus and device producing method
WO2009084409A1 (en) * 2007-12-28 2009-07-09 Canon Kabushiki Kaisha Computer generated hologram, generation method, and exposure apparatus
EP2079100A1 (en) 2003-10-22 2009-07-15 Nikon Corporation Exposure apparatus, exposure method, method for manufacturing decive
US20090233456A1 (en) * 2008-03-17 2009-09-17 Sony Corporation Irradiation optical system, irradiation apparatus and fabrication method for semiconductor device
JP2010501113A (en) * 2006-08-17 2010-01-14 カール・ツァイス・エスエムティー・アーゲー Microlithography projection exposure apparatus and microlithography exposure method
US7667829B2 (en) 2004-08-09 2010-02-23 Nikon Corporation Optical property measurement apparatus and optical property measurement method, exposure apparatus and exposure method, and device manufacturing method
US7692769B2 (en) 2005-10-07 2010-04-06 Kabushiki Kaisha Toshiba Exposure apparatus, exposure method, and semiconductor device manufacturing method
US7697110B2 (en) 2004-01-26 2010-04-13 Nikon Corporation Exposure apparatus and device manufacturing method
JP2010093291A (en) * 2010-01-12 2010-04-22 Nikon Corp Illuminating optical device, exposure system and exposure method
JP2010123983A (en) * 2010-01-12 2010-06-03 Nikon Corp Illumination optical device, exposure device, and exposure method
EP2199859A2 (en) 2004-01-05 2010-06-23 Nikon Corporation Exposure apparatus, exposure method, and device producing method
JP2010153878A (en) * 2010-01-14 2010-07-08 Nikon Corp Polarization conversion member, lighting optical device, projection exposure device, exposing method, and method of manufacturing device
JP2010157743A (en) * 2010-01-14 2010-07-15 Nikon Corp Illumination optical apparatus, projection aligner, exposure method, and device manufacturing method
EP2226682A2 (en) 2004-08-03 2010-09-08 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
EP2284614A2 (en) 2003-10-09 2011-02-16 Nikon Corporation Exposure apparatus, exposure method and device producing method
US7914972B2 (en) 2004-07-21 2011-03-29 Nikon Corporation Exposure method and device manufacturing method
EP2312395A1 (en) 2003-09-29 2011-04-20 Nikon Corporation Exposure apparatus, exposure method, and method for producing a device
EP2325866A1 (en) 2004-09-17 2011-05-25 Nikon Corporation Substrate holding device, exposure apparatus and device manufacturing method
US7973910B2 (en) 2006-11-17 2011-07-05 Nikon Corporation Stage apparatus and exposure apparatus
US8023100B2 (en) 2004-02-20 2011-09-20 Nikon Corporation Exposure apparatus, supply method and recovery method, exposure method, and device producing method
US8040489B2 (en) 2004-10-26 2011-10-18 Nikon Corporation Substrate processing method, exposure apparatus, and method for producing device by immersing substrate in second liquid before immersion exposure through first liquid
JP2011254086A (en) * 2011-07-04 2011-12-15 Nikon Corp Illumination optical apparatus, exposure device, and exposure method
US8089608B2 (en) 2005-04-18 2012-01-03 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
US8102508B2 (en) 2004-08-03 2012-01-24 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
EP2466618A2 (en) 2003-05-23 2012-06-20 Nikon Corporation Exposure apparatus and method for producing device
US8208119B2 (en) 2004-02-04 2012-06-26 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
JP2012156536A (en) * 2012-03-28 2012-08-16 Nikon Corp Illumination optical device, exposure device and exposure method
JP2012156537A (en) * 2012-03-28 2012-08-16 Nikon Corp Illumination optical device, exposure device and exposure method
EP2490248A2 (en) 2004-04-19 2012-08-22 Nikon Corporation Exposure apparatus and device manufacturing method
US8253924B2 (en) 2005-05-24 2012-08-28 Nikon Corporation Exposure method, exposure apparatus and device manufacturing method
JP5021645B2 (en) * 2006-07-17 2012-09-12 株式会社フォトニックラティス Polarizer and microscope using the polarizer
US8294873B2 (en) 2004-11-11 2012-10-23 Nikon Corporation Exposure method, device manufacturing method, and substrate
US8368870B2 (en) 2004-06-21 2013-02-05 Nikon Corporation Exposure apparatus and device manufacturing method
US8373843B2 (en) 2004-06-10 2013-02-12 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
EP2605068A2 (en) 2004-06-10 2013-06-19 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US8508713B2 (en) 2004-06-10 2013-08-13 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
EP2637061A1 (en) 2004-06-09 2013-09-11 Nikon Corporation Exposure apparatus, exposure method and method for producing a device
US20130242280A1 (en) * 2003-10-28 2013-09-19 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
JP2014039044A (en) * 2013-09-09 2014-02-27 Nikon Corp Illumination optical device
US8675174B2 (en) 2004-09-17 2014-03-18 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
JP2014056255A (en) * 2013-10-28 2014-03-27 Nikon Corp Projection optical system, exposure device and exposure method
EP2717295A1 (en) 2003-12-03 2014-04-09 Nikon Corporation Exposure apparatus, exposure method, and method for producing a device
US8698998B2 (en) 2004-06-21 2014-04-15 Nikon Corporation Exposure apparatus, method for cleaning member thereof, maintenance method for exposure apparatus, maintenance device, and method for producing device
US8717533B2 (en) 2004-06-10 2014-05-06 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
EP2738792A2 (en) 2003-06-13 2014-06-04 Nikon Corporation Exposure method, substrate stage, exposure apparatus, and device manufacturing method
JP2014116612A (en) * 2013-12-27 2014-06-26 Nikon Corp Illumination optical device, exposure device and exposure method
US8797502B2 (en) 2003-09-29 2014-08-05 Nikon Corporation Exposure apparatus, exposure method, and method for producing device with electricity removal device by adding additive to liquid
US8891053B2 (en) 2008-09-10 2014-11-18 Asml Netherlands B.V. Lithographic apparatus, method of manufacturing an article for a lithographic apparatus and device manufacturing method
US9081295B2 (en) 2003-05-06 2015-07-14 Nikon Corporation Catadioptric projection optical system, exposure apparatus, and exposure method
JP2015132843A (en) * 2015-03-02 2015-07-23 株式会社ニコン Projection optical system, exposure device, exposure method, and device manufacturing method
US9116303B2 (en) 2010-03-05 2015-08-25 Canon Kabushiki Kaisha Hologram with cells to control phase in two polarization directions and exposure apparatus
JP2015172749A (en) * 2015-04-03 2015-10-01 株式会社ニコン Illumination optical apparatus, exposure device and exposure method
JP2015180936A (en) * 2004-01-16 2015-10-15 カール・ツァイス・エスエムティー・ゲーエムベーハー Polarization modulating optical element
US9195069B2 (en) 2006-04-17 2015-11-24 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US9250537B2 (en) 2004-07-12 2016-02-02 Nikon Corporation Immersion exposure apparatus and method with detection of liquid on members of the apparatus
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
JP2016136273A (en) * 2016-03-07 2016-07-28 株式会社ニコン Projection optical system, exposure device, exposure method and device fabrication method
US9411247B2 (en) 2004-06-10 2016-08-09 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US9500943B2 (en) 2003-05-06 2016-11-22 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
EP3098835A1 (en) 2004-06-21 2016-11-30 Nikon Corporation Exposure apparatus, exposure method and device manufacturing method
US9632427B2 (en) 2003-04-10 2017-04-25 Nikon Corporation Environmental system including a transport region for an immersion lithography apparatus
US9658537B2 (en) 2003-04-10 2017-05-23 Nikon Corporation Environmental system including vacuum scavenge for an immersion lithography apparatus
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US9760026B2 (en) 2003-07-28 2017-09-12 Nikon Corporation Exposure apparatus, method for producing device, and method for controlling exposure apparatus
JP2017173839A (en) * 2017-05-11 2017-09-28 株式会社ニコン Illumination optical device, light exposure device and light exposure method
JP2018010303A (en) * 2017-08-03 2018-01-18 株式会社ニコン Light exposure device and device manufacturing method
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
TWI617841B (en) * 2014-10-22 2018-03-11 英特爾股份有限公司 Anti-moire pattern diffuser for optical systems
US9958786B2 (en) 2003-04-11 2018-05-01 Nikon Corporation Cleanup method for optics in immersion lithography using object on wafer holder in place of wafer
US10061207B2 (en) 2005-12-02 2018-08-28 Asml Netherlands B.V. Method for preventing or reducing contamination of an immersion type projection apparatus and an immersion type lithographic apparatus
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US10126661B2 (en) 2004-03-25 2018-11-13 Nikon Corporation Exposure apparatus and device fabrication method
US10151983B2 (en) 2004-02-03 2018-12-11 Nikon Corporation Exposure apparatus and device manufacturing method
JP2019082711A (en) * 2019-01-15 2019-05-30 株式会社ニコン Projection optical system, exposure device, exposure method, and device manufacturing method
JP2019091057A (en) * 2019-01-15 2019-06-13 株式会社ニコン Exposure apparatus and device manufacturing method
US10338478B2 (en) 2004-07-07 2019-07-02 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW538256B (en) 2000-01-14 2003-06-21 Zeiss Stiftung Microlithographic reduction projection catadioptric objective
US8208198B2 (en) 2004-01-14 2012-06-26 Carl Zeiss Smt Gmbh Catadioptric projection objective
JP3718511B2 (en) 2003-10-07 2005-11-24 株式会社東芝 Exposure apparatus inspection mask, exposure apparatus inspection method, and exposure apparatus
US20080151365A1 (en) 2004-01-14 2008-06-26 Carl Zeiss Smt Ag Catadioptric projection objective
US8270077B2 (en) 2004-01-16 2012-09-18 Carl Zeiss Smt Gmbh Polarization-modulating optical element
US20070019179A1 (en) 2004-01-16 2007-01-25 Damian Fiolka Polarization-modulating optical element
US7712905B2 (en) 2004-04-08 2010-05-11 Carl Zeiss Smt Ag Imaging system with mirror group
DE602005003665T2 (en) 2004-05-17 2008-11-20 Carl Zeiss Smt Ag CATADIOPRIC PROJECTION LENS WITH INTERMEDIATES
EP1796139A4 (en) 2004-08-10 2009-08-26 Nikon Corp Illumination optical equipment, exposure system and method
JP4675745B2 (en) 2005-10-25 2011-04-27 株式会社東芝 Photomask substrate sorting method, photomask manufacturing method, and semiconductor device manufacturing method
US20110037962A1 (en) 2009-08-17 2011-02-17 Nikon Corporation Polarization converting unit, illumination optical system, exposure apparatus, and device manufacturing method
JP6020834B2 (en) 2011-06-07 2016-11-02 株式会社ニコン Illumination optical system, exposure apparatus, and device manufacturing method
TWI557432B (en) 2011-06-13 2016-11-11 尼康股份有限公司 Illumination method, exposure method, device manufacturing method, illumination optical system, and exposure apparatus

Cited By (283)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07183201A (en) * 1993-12-21 1995-07-21 Nec Corp Exposure device and method therefor
US7046337B2 (en) 2002-12-10 2006-05-16 Canon Kabushiki Kaisha Exposure apparatus and method
US7126667B2 (en) 2002-12-10 2006-10-24 Canon Kk Exposure apparatus and method
JP2009009143A (en) * 2003-02-27 2009-01-15 Asml Netherlands Bv Stationary and dynamic radial transverse electric polarizer for high numerical aperture system
JP2016103025A (en) * 2003-04-09 2016-06-02 株式会社ニコン Exposure method and apparatus, illumination optical apparatus, and device manufacturing method
JP2008072129A (en) * 2003-04-09 2008-03-27 Nikon Corp Exposure method and apparatus, and device manufacturing method
JP2014116611A (en) * 2003-04-09 2014-06-26 Nikon Corp Exposure method, device, illumination optical device, and device manufacturing method
JP4735258B2 (en) * 2003-04-09 2011-07-27 株式会社ニコン Exposure method and apparatus, and device manufacturing method
JP2009212540A (en) * 2003-04-09 2009-09-17 Nikon Corp Exposure method and apparatus, illuminating optical apparatus, and device manufacturing method
JP2012164993A (en) * 2003-04-09 2012-08-30 Nikon Corp Exposure method and device, illumination optical device, and device manufacturing method
US9885959B2 (en) 2003-04-09 2018-02-06 Nikon Corporation Illumination optical apparatus having deflecting member, lens, polarization member to set polarization in circumference direction, and optical integrator
US8675177B2 (en) * 2003-04-09 2014-03-18 Nikon Corporation Exposure method and apparatus, and method for fabricating device with light amount distribution having light larger in first and second pairs of areas
EP2270597B1 (en) * 2003-04-09 2017-11-01 Nikon Corporation Exposure method and apparatus and device manufacturing method
JP2011097076A (en) * 2003-04-09 2011-05-12 Nikon Corp Exposure method and apparatus, illuminating optical apparatus, and device manufacturing method
US7446858B2 (en) 2003-04-09 2008-11-04 Nikon Corporation Exposure method and apparatus, and method for fabricating device
JP2017097372A (en) * 2003-04-09 2017-06-01 株式会社ニコン Exposure method and apparatus, illumination optical apparatus, and device manufacturing method
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
KR101124179B1 (en) * 2003-04-09 2012-03-27 가부시키가이샤 니콘 Exposure method and apparatus, and device manufacturing method
JP2015092604A (en) * 2003-04-09 2015-05-14 株式会社ニコン Exposure method and device, illumination optical device, and device manufacturing method
EP3229077A1 (en) * 2003-04-09 2017-10-11 Nikon Corporation Exposure method and apparatus, and method for fabricating device
WO2004090952A1 (en) * 2003-04-09 2004-10-21 Nikon Corporation Exposure method and apparatus, and device manufacturing method
US9164393B2 (en) * 2003-04-09 2015-10-20 Nikon Corporation Exposure method and apparatus, and method for fabricating device with light amount distribution having light larger in four areas
EP3226073A3 (en) * 2003-04-09 2017-10-11 Nikon Corporation Exposure method and apparatus, and method for fabricating device
EP2157480A1 (en) * 2003-04-09 2010-02-24 Nikon Corporation Exposure method and apparatus, and device manufacturing method
JP2018106179A (en) * 2003-04-09 2018-07-05 株式会社ニコン Exposure method and device, illumination optical device, and device production method
US9658537B2 (en) 2003-04-10 2017-05-23 Nikon Corporation Environmental system including vacuum scavenge for an immersion lithography apparatus
US9977350B2 (en) 2003-04-10 2018-05-22 Nikon Corporation Environmental system including vacuum scavenge for an immersion lithography apparatus
US9632427B2 (en) 2003-04-10 2017-04-25 Nikon Corporation Environmental system including a transport region for an immersion lithography apparatus
US9910370B2 (en) 2003-04-10 2018-03-06 Nikon Corporation Environmental system including a transport region for an immersion lithography apparatus
US9958786B2 (en) 2003-04-11 2018-05-01 Nikon Corporation Cleanup method for optics in immersion lithography using object on wafer holder in place of wafer
US9081295B2 (en) 2003-05-06 2015-07-14 Nikon Corporation Catadioptric projection optical system, exposure apparatus, and exposure method
US9933705B2 (en) 2003-05-06 2018-04-03 Nikon Corporation Reduction projection optical system, exposure apparatus, and exposure method
US9500943B2 (en) 2003-05-06 2016-11-22 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9846366B2 (en) 2003-05-06 2017-12-19 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9606443B2 (en) 2003-05-06 2017-03-28 Nikon Corporation Reducing immersion projection optical system
US9086635B2 (en) 2003-05-06 2015-07-21 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US10156792B2 (en) 2003-05-06 2018-12-18 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
EP2466620A2 (en) 2003-05-23 2012-06-20 Nikon Corporation Exposure apparatus and method for producing device
EP2498131A2 (en) 2003-05-23 2012-09-12 Nikon Corporation Exposure apparatus and method for producing device
EP2535769A2 (en) 2003-05-23 2012-12-19 Nikon Corporation Exposure apparatus and method for producing device
EP2466617A2 (en) 2003-05-23 2012-06-20 Nikon Corporation Exposure apparatus and method for producing device
EP2466618A2 (en) 2003-05-23 2012-06-20 Nikon Corporation Exposure apparatus and method for producing device
EP2466615A2 (en) 2003-05-23 2012-06-20 Nikon Corporation Exposure apparatus and method for producing device
EP3032572A1 (en) 2003-05-23 2016-06-15 Nikon Corporation Exposure apparatus and method for producing a device
EP2466619A2 (en) 2003-05-23 2012-06-20 Nikon Corporation Exposure apparatus and method for producing device
EP2466616A2 (en) 2003-05-23 2012-06-20 Nikon Corporation Exposure apparatus and method for producing device
US9939739B2 (en) 2003-05-23 2018-04-10 Nikon Corporation Exposure apparatus and method for producing device
EP2738792A2 (en) 2003-06-13 2014-06-04 Nikon Corporation Exposure method, substrate stage, exposure apparatus, and device manufacturing method
US9846371B2 (en) 2003-06-13 2017-12-19 Nikon Corporation Exposure method, substrate stage, exposure apparatus, and device manufacturing method
EP2937893A1 (en) 2003-06-13 2015-10-28 Nikon Corporation Exposure method, substrate stage, exposure apparatus, and device manufacturing method
EP3401946A1 (en) 2003-06-13 2018-11-14 Nikon Corporation Exposure apparatus and device manufacturing method
EP3104396A1 (en) 2003-06-13 2016-12-14 Nikon Corporation Exposure method, substrate stage, exposure apparatus, and device manufacturing method
US7433019B2 (en) 2003-07-09 2008-10-07 Nikon Corporation Exposure apparatus and device manufacturing method
US10185232B2 (en) 2003-07-28 2019-01-22 Nikon Corporation Exposure apparatus, method for producing device, and method for controlling exposure apparatus
US9760026B2 (en) 2003-07-28 2017-09-12 Nikon Corporation Exposure apparatus, method for producing device, and method for controlling exposure apparatus
EP2320273A1 (en) 2003-09-29 2011-05-11 Nikon Corporation Exposure apparatus, exposure method, and method for producing a device
US8797502B2 (en) 2003-09-29 2014-08-05 Nikon Corporation Exposure apparatus, exposure method, and method for producing device with electricity removal device by adding additive to liquid
EP3093710A2 (en) 2003-09-29 2016-11-16 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
EP3093711A2 (en) 2003-09-29 2016-11-16 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
EP2312395A1 (en) 2003-09-29 2011-04-20 Nikon Corporation Exposure apparatus, exposure method, and method for producing a device
US10025194B2 (en) 2003-09-29 2018-07-17 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
EP2837969A1 (en) 2003-09-29 2015-02-18 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
WO2005036619A1 (en) * 2003-10-09 2005-04-21 Nikon Corporation Illumination optical device, and exposure device and method
EP2284614A2 (en) 2003-10-09 2011-02-16 Nikon Corporation Exposure apparatus, exposure method and device producing method
EP3206083A1 (en) 2003-10-09 2017-08-16 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US10209623B2 (en) 2003-10-09 2019-02-19 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
EP2937734A1 (en) 2003-10-09 2015-10-28 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
EP3432073A1 (en) 2003-10-09 2019-01-23 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
EP3410216A1 (en) 2003-10-09 2018-12-05 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US9829807B2 (en) 2003-10-22 2017-11-28 Nikon Corporation Exposure apparatus, exposure method, method for manufacturing device
US9581913B2 (en) 2003-10-22 2017-02-28 Nikon Corporation Exposure apparatus, exposure method, method for manufacturing device
US7948608B2 (en) 2003-10-22 2011-05-24 Nikon Corporation Exposure apparatus, exposure method, method for manufacturing device
US7643129B2 (en) 2003-10-22 2010-01-05 Nikon Corporation Exposure apparatus, exposure method, method for manufacturing device
US7973906B2 (en) 2003-10-22 2011-07-05 Nikon Corporation Exposure apparatus, exposure method, method for manufacturing device
EP2079100A1 (en) 2003-10-22 2009-07-15 Nikon Corporation Exposure apparatus, exposure method, method for manufacturing decive
US8896813B2 (en) 2003-10-22 2014-11-25 Nikon Corporation Exposure apparatus, exposure method, method for manufacturing device
TWI511179B (en) * 2003-10-28 2015-12-01 尼康股份有限公司 Optical illumination device, exposure device, exposure method and device manufacturing method
US20130250268A1 (en) * 2003-10-28 2013-09-26 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
TWI573175B (en) * 2003-10-28 2017-03-01 尼康股份有限公司 Optical illumination device, exposure device, exposure method and device manufacturing method
EP2654073A3 (en) * 2003-10-28 2014-07-30 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
EP2645406A3 (en) * 2003-10-28 2014-07-30 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
EP2645405A3 (en) * 2003-10-28 2014-07-30 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
TWI569308B (en) * 2003-10-28 2017-02-01 尼康股份有限公司 Optical illumination device, exposure device, exposure method and device manufacturing method
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
EP2645407A3 (en) * 2003-10-28 2014-07-30 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9423697B2 (en) * 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US20130242280A1 (en) * 2003-10-28 2013-09-19 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
TWI474132B (en) * 2003-10-28 2015-02-21 尼康股份有限公司 Optical illumination device, projection exposure device, exposure method and device manufacturing method
KR100676576B1 (en) * 2003-10-28 2007-01-30 주식회사 하이닉스반도체 Polarized manual blade and method of manufacturing the same
US9760014B2 (en) 2003-10-28 2017-09-12 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
EP1681710B1 (en) * 2003-10-28 2015-09-16 Nikon Corporation Lighting optical device and projection aligner
US9146476B2 (en) * 2003-10-28 2015-09-29 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
EP2927935A3 (en) * 2003-10-28 2016-01-27 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
EP3229076A3 (en) * 2003-10-28 2017-12-13 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
JP2005136244A (en) * 2003-10-31 2005-05-26 Semiconductor Leading Edge Technologies Inc Exposure method
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
JP2016212434A (en) * 2003-11-20 2016-12-15 株式会社ニコン Light flux conversion element, illumination optical device, exposure apparatus, and exposure method
KR20100005131A (en) * 2003-11-20 2010-01-13 가부시키가이샤 니콘 Illuminating optical apparatus, exposure apparatus, exposure method, and device manufacturing method
JP2017227906A (en) * 2003-11-20 2017-12-28 株式会社ニコン Flux conversion element, illumination optical device, exposure device, and exposure method
US10281632B2 (en) 2003-11-20 2019-05-07 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power to rotate linear polarization direction
EP2117034A1 (en) * 2003-11-20 2009-11-11 Nikon Corporation Beam transforming element, illumination optical apparatus, exposure apparatus, and exposure method
JP2006345006A (en) * 2003-11-20 2006-12-21 Nikon Corp Lighting optical device, exposure device, exposure method, and manufacturing method for micro device
TWI612338B (en) * 2003-11-20 2018-01-21 尼康股份有限公司 Optical illuminating apparatus, exposure device, exposure method, and device manufacturing method
JPWO2005050718A1 (en) * 2003-11-20 2007-12-06 株式会社ニコン Light flux conversion element, illumination optical device, exposure device, and exposure method
EP3118890A3 (en) * 2003-11-20 2017-02-15 Nikon Corporation Beam transforming element, illumination optical apparatus, exposure apparatus, and exposure method
KR20140029543A (en) * 2003-11-20 2014-03-10 가부시키가이샤 니콘 Illuminating optical apparatus
JP4976015B2 (en) * 2003-11-20 2012-07-18 株式会社ニコン Flux conversion element, illumination optical device, exposure apparatus, and exposure method
EP2251896A1 (en) * 2003-11-20 2010-11-17 Nikon Corporation Beam transforming element, illumination optical apparatus, exposure apparatus, and exposure method
TWI512335B (en) * 2003-11-20 2015-12-11 尼康股份有限公司 Light beam converter, optical illuminating apparatus, exposure device, and exposure method
WO2005050718A1 (en) * 2003-11-20 2005-06-02 Nikon Corporation Light flux conversion element, lighting optical device, exposure system, and exposure method
TWI385414B (en) * 2003-11-20 2013-02-11 尼康股份有限公司 Optical illuminating apparatus, illuminating method, exposure apparatus, exposure method and device fabricating method
EP1926129A1 (en) * 2003-11-20 2008-05-28 Nikon Corporation Beam transforming element, illumination optical apparatus, exposure apparatus, and exposure method
JP2005166871A (en) * 2003-12-02 2005-06-23 Nikon Corp Illumination optical device, projection aligner, exposure method and device manufacturing method
EP2717295A1 (en) 2003-12-03 2014-04-09 Nikon Corporation Exposure apparatus, exposure method, and method for producing a device
EP3370115A1 (en) 2003-12-03 2018-09-05 Nikon Corporation Exposure apparatus, exposure method and method for producing a device
EP3139214A2 (en) 2003-12-03 2017-03-08 Nikon Corporation Exposure apparatus, exposure method, device producing method, and optical component
US10088760B2 (en) 2003-12-03 2018-10-02 Nikon Corporation Exposure apparatus, exposure method, method for producing device, and optical part
US9910369B2 (en) 2004-01-05 2018-03-06 Nikon Corporation Exposure apparatus, exposure method, and device producing method
EP2199859A2 (en) 2004-01-05 2010-06-23 Nikon Corporation Exposure apparatus, exposure method, and device producing method
EP3376523A1 (en) 2004-01-05 2018-09-19 Nikon Corporation Exposure apparatus, exposure method, and device producing method
US9588436B2 (en) 2004-01-05 2017-03-07 Nikon Corporation Exposure apparatus, exposure method, and device producing method
US8064044B2 (en) 2004-01-05 2011-11-22 Nikon Corporation Exposure apparatus, exposure method, and device producing method
EP2037489A2 (en) 2004-01-15 2009-03-18 Nikon Corporation Exposure apparatus and device producing method
JP2015180936A (en) * 2004-01-16 2015-10-15 カール・ツァイス・エスエムティー・ゲーエムベーハー Polarization modulating optical element
US8330934B2 (en) 2004-01-26 2012-12-11 Nikon Corporation Exposure apparatus and device manufacturing method
US7697110B2 (en) 2004-01-26 2010-04-13 Nikon Corporation Exposure apparatus and device manufacturing method
US10151983B2 (en) 2004-02-03 2018-12-11 Nikon Corporation Exposure apparatus and device manufacturing method
EP2765595A1 (en) 2004-02-04 2014-08-13 Nikon Corporation Exposure apparatus, exposure method, and method for producing a device
US8605252B2 (en) 2004-02-04 2013-12-10 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
EP3208658A1 (en) 2004-02-04 2017-08-23 Nikon Corporation Exposure apparatus, exposure method, and method for producing a device
EP3093873A2 (en) 2004-02-04 2016-11-16 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
EP3252533A1 (en) 2004-02-04 2017-12-06 Nikon Corporation Exposure apparatus, exposure method, and method for producing a device
US10048602B2 (en) 2004-02-04 2018-08-14 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US9316921B2 (en) 2004-02-04 2016-04-19 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
EP3267469A1 (en) 2004-02-04 2018-01-10 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US8208119B2 (en) 2004-02-04 2012-06-26 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
JP2011100150A (en) * 2004-02-06 2011-05-19 Nikon Corp Polarization conversion element, lighting optical device, exposure device, and exposure method
US10234770B2 (en) 2004-02-06 2019-03-19 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
KR20140056387A (en) * 2004-02-06 2014-05-09 가부시키가이샤 니콘 Lighting optical device
KR101244282B1 (en) * 2004-02-06 2013-03-18 가부시키가이샤 니콘 Lighting optical device, exposure system, exposure method and manufacturing method of device
JP2014098917A (en) * 2004-02-06 2014-05-29 Nikon Corp Polarization conversion element, illumination optical device, exposure device and exposure method
CN100409045C (en) * 2004-02-06 2008-08-06 株式会社尼康 Polarization conversion element, lighting optical device, exposure system, and exposure method
TWI511182B (en) * 2004-02-06 2015-12-01 尼康股份有限公司 Optical illumination apparatus, light-exposure apparatus, light-exposure method and device manufacturing method
JP2006345005A (en) * 2004-02-06 2006-12-21 Nikon Corp Lighting optical device, exposure device, and device manufacturing method
JP2017142517A (en) * 2004-02-06 2017-08-17 株式会社ニコン Polarization conversion element, illumination optical device, exposure apparatus, and exposure method
JPWO2005076045A1 (en) * 2004-02-06 2008-04-24 株式会社ニコン Polarization conversion element, illumination optical device, exposure device, and exposure method
TWI494972B (en) * 2004-02-06 2015-08-01 尼康股份有限公司 Polarization changing device, optical illumination apparatus, light-exposure apparatus and light-exposure method
EP2615480B1 (en) * 2004-02-06 2017-05-03 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method
US10007194B2 (en) 2004-02-06 2018-06-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10241417B2 (en) 2004-02-06 2019-03-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
JP4747844B2 (en) * 2004-02-06 2011-08-17 株式会社ニコン Polarization conversion element, illumination optical apparatus, exposure apparatus, and exposure method
WO2005076045A1 (en) * 2004-02-06 2005-08-18 Nikon Corporation Polarization conversion element, lighting optical device, exposure system, and exposure method
EP2618188B1 (en) * 2004-02-06 2015-10-07 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method
JP2012168546A (en) * 2004-02-06 2012-09-06 Nikon Corp Polarization conversion element, illumination optical system, exposure apparatus and exposure method
EP2615479A1 (en) * 2004-02-06 2013-07-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
JP2007053390A (en) * 2004-02-06 2007-03-01 Nikon Corp Illumination optical device, exposure system, exposure method, and method of manufacturing micro device
US8115902B2 (en) 2004-02-10 2012-02-14 Nikon Corporation Exposure apparatus, device manufacturing method, maintenance method, and exposure method
WO2005076323A1 (en) 2004-02-10 2005-08-18 Nikon Corporation Aligner, device manufacturing method, maintenance method and aligning method
EP2256790A2 (en) 2004-02-10 2010-12-01 Nikon Corporation exposure apparatus, device manufacturing method and maintenance method
US8023100B2 (en) 2004-02-20 2011-09-20 Nikon Corporation Exposure apparatus, supply method and recovery method, exposure method, and device producing method
JP2007524247A (en) * 2004-02-26 2007-08-23 カール・ツァイス・エスエムティー・アーゲー Illumination system for microlithographic projection exposure equipment
US7239375B2 (en) 2004-03-18 2007-07-03 Canon Kabushiki Kaisha Illumination apparatus, exposure apparatus and device manufacturing method
EP1577709A3 (en) * 2004-03-18 2007-01-17 Canon Kabushiki Kaisha Illumination apparatus exposure apparatus and device manufacturing method
US7130025B2 (en) 2004-03-18 2006-10-31 Canon Kabushiki Kaisha Illumination apparatus, exposure apparatus and device manufacturing method
JP4497968B2 (en) * 2004-03-18 2010-07-07 キヤノン株式会社 Illumination apparatus, exposure apparatus, and device manufacturing method
JP2005268489A (en) * 2004-03-18 2005-09-29 Canon Inc Lighting device, aligner, and device manufacturing method
US10126661B2 (en) 2004-03-25 2018-11-13 Nikon Corporation Exposure apparatus and device fabrication method
US7375796B2 (en) 2004-04-01 2008-05-20 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
EP2490248A2 (en) 2004-04-19 2012-08-22 Nikon Corporation Exposure apparatus and device manufacturing method
US8488099B2 (en) 2004-04-19 2013-07-16 Nikon Corporation Exposure apparatus and device manufacturing method
US9599907B2 (en) 2004-04-19 2017-03-21 Nikon Corporation Exposure apparatus and device manufacturing method
US7671963B2 (en) 2004-05-21 2010-03-02 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7486381B2 (en) 2004-05-21 2009-02-03 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP2009033191A (en) * 2004-05-25 2009-02-12 Asml Holding Nv Method for providing pattern of polarization
US8705008B2 (en) 2004-06-09 2014-04-22 Nikon Corporation Substrate holding unit, exposure apparatus having same, exposure method, method for producing device, and liquid repellant plate
EP3203498A1 (en) 2004-06-09 2017-08-09 Nikon Corporation Exposure apparatus and device manufacturing method
EP3318928A1 (en) 2004-06-09 2018-05-09 Nikon Corporation Exposure apparatus and method for producing a device
EP2637061A1 (en) 2004-06-09 2013-09-11 Nikon Corporation Exposure apparatus, exposure method and method for producing a device
EP2966670A1 (en) 2004-06-09 2016-01-13 Nikon Corporation Exposure apparatus and device manufacturing method
US9645505B2 (en) 2004-06-09 2017-05-09 Nikon Corporation Immersion exposure apparatus and device manufacturing method with measuring device to measure specific resistance of liquid
WO2005122218A1 (en) 2004-06-09 2005-12-22 Nikon Corporation Exposure system and device production method
US9134621B2 (en) 2004-06-10 2015-09-15 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US9529273B2 (en) 2004-06-10 2016-12-27 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
EP2605068A2 (en) 2004-06-10 2013-06-19 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US8717533B2 (en) 2004-06-10 2014-05-06 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US8373843B2 (en) 2004-06-10 2013-02-12 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
EP3203321A1 (en) 2004-06-10 2017-08-09 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US9411247B2 (en) 2004-06-10 2016-08-09 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US10203614B2 (en) 2004-06-10 2019-02-12 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US9778580B2 (en) 2004-06-10 2017-10-03 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
EP3067749A2 (en) 2004-06-10 2016-09-14 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
EP3067750A2 (en) 2004-06-10 2016-09-14 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US8704999B2 (en) 2004-06-10 2014-04-22 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
EP2624282A2 (en) 2004-06-10 2013-08-07 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US8482716B2 (en) 2004-06-10 2013-07-09 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US8508713B2 (en) 2004-06-10 2013-08-13 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US7265816B2 (en) 2004-06-21 2007-09-04 Canon Kabushiki Kaisha Illumination optical system, exposure apparatus, and device manufacturing method with modified illumination generator
EP3098835A1 (en) 2004-06-21 2016-11-30 Nikon Corporation Exposure apparatus, exposure method and device manufacturing method
US9470984B2 (en) 2004-06-21 2016-10-18 Nikon Corporation Exposure apparatus
EP3462241A1 (en) 2004-06-21 2019-04-03 Nikon Corporation Exposure apparatus, exposure method and method for producing a device
US8368870B2 (en) 2004-06-21 2013-02-05 Nikon Corporation Exposure apparatus and device manufacturing method
US8810767B2 (en) 2004-06-21 2014-08-19 Nikon Corporation Exposure apparatus, method for cleaning member thereof, maintenance method for exposure apparatus, maintenance device, and method for producing device
EP3255652A1 (en) 2004-06-21 2017-12-13 Nikon Corporation Exposure apparatus, exposure method and device manufacturing method
EP3190605A1 (en) 2004-06-21 2017-07-12 Nikon Corporation Exposure apparatus, exposure method and device manufacturing method
US9904182B2 (en) 2004-06-21 2018-02-27 Nikon Corporation Exposure apparatus
US8698998B2 (en) 2004-06-21 2014-04-15 Nikon Corporation Exposure apparatus, method for cleaning member thereof, maintenance method for exposure apparatus, maintenance device, and method for producing device
US10338478B2 (en) 2004-07-07 2019-07-02 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10739684B2 (en) 2004-07-07 2020-08-11 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9250537B2 (en) 2004-07-12 2016-02-02 Nikon Corporation Immersion exposure apparatus and method with detection of liquid on members of the apparatus
US7914972B2 (en) 2004-07-21 2011-03-29 Nikon Corporation Exposure method and device manufacturing method
EP3048485A1 (en) 2004-08-03 2016-07-27 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US9063436B2 (en) 2004-08-03 2015-06-23 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
EP3267257A1 (en) 2004-08-03 2018-01-10 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
EP3258318A1 (en) 2004-08-03 2017-12-20 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US8169591B2 (en) 2004-08-03 2012-05-01 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
EP2226682A2 (en) 2004-08-03 2010-09-08 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US8102508B2 (en) 2004-08-03 2012-01-24 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US7667829B2 (en) 2004-08-09 2010-02-23 Nikon Corporation Optical property measurement apparatus and optical property measurement method, exposure apparatus and exposure method, and device manufacturing method
US8675174B2 (en) 2004-09-17 2014-03-18 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US8102512B2 (en) 2004-09-17 2012-01-24 Nikon Corporation Substrate holding device, exposure apparatus, and device manufacturing method
US9341959B2 (en) 2004-09-17 2016-05-17 Nikon Corporation Substrate holding device, exposure apparatus, and device manufacturing method
EP2325866A1 (en) 2004-09-17 2011-05-25 Nikon Corporation Substrate holding device, exposure apparatus and device manufacturing method
US9958785B2 (en) 2004-09-17 2018-05-01 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
JP4595481B2 (en) * 2004-10-06 2010-12-08 凸版印刷株式会社 Rotationally symmetric polarizing plate and method for producing the same
JP2006106392A (en) * 2004-10-06 2006-04-20 Toppan Printing Co Ltd Symmetrically rotating polarizer and manufacturing method thereof
US8941808B2 (en) 2004-10-26 2015-01-27 Nikon Corporation Immersion lithographic apparatus rinsing outer contour of substrate with immersion space
US8040489B2 (en) 2004-10-26 2011-10-18 Nikon Corporation Substrate processing method, exposure apparatus, and method for producing device by immersing substrate in second liquid before immersion exposure through first liquid
US8294873B2 (en) 2004-11-11 2012-10-23 Nikon Corporation Exposure method, device manufacturing method, and substrate
US7436491B2 (en) 2004-12-20 2008-10-14 Kabushiki Kaisha Toshiba Exposure system, exposure method and method for manufacturing a semiconductor device
JP2006191064A (en) * 2004-12-28 2006-07-20 Asml Netherlands Bv Polarized radiation for lithographic device and method of manufacturing device
US7929116B2 (en) 2004-12-28 2011-04-19 Asml Netherlands B.V. Polarized radiation in lithographic apparatus and device manufacturing method
US8830446B2 (en) 2005-01-12 2014-09-09 Asml Netherlands B.V. Exposure apparatus
US7450217B2 (en) 2005-01-12 2008-11-11 Asml Netherlands B.V. Exposure apparatus, coatings for exposure apparatus, lithographic apparatus, device manufacturing method, and device manufactured thereby
US8542341B2 (en) 2005-01-12 2013-09-24 Asml Netherlands B.V. Exposure apparatus
US8724077B2 (en) 2005-04-18 2014-05-13 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
US8089608B2 (en) 2005-04-18 2012-01-03 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US8253924B2 (en) 2005-05-24 2012-08-28 Nikon Corporation Exposure method, exposure apparatus and device manufacturing method
US7692769B2 (en) 2005-10-07 2010-04-06 Kabushiki Kaisha Toshiba Exposure apparatus, exposure method, and semiconductor device manufacturing method
US10061207B2 (en) 2005-12-02 2018-08-28 Asml Netherlands B.V. Method for preventing or reducing contamination of an immersion type projection apparatus and an immersion type lithographic apparatus
US9195069B2 (en) 2006-04-17 2015-11-24 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US8223318B2 (en) 2006-07-07 2012-07-17 Nikon Corporation Illuminating optical apparatus, exposure apparatus and device manufacturing method
WO2008004654A1 (en) * 2006-07-07 2008-01-10 Nikon Corporation Illuminating optical apparatus, exposure apparatus and device manufacturing method
JP5105316B2 (en) * 2006-07-07 2012-12-26 株式会社ニコン Illumination optical apparatus, exposure apparatus, and device manufacturing method
JP5021645B2 (en) * 2006-07-17 2012-09-12 株式会社フォトニックラティス Polarizer and microscope using the polarizer
US8675178B2 (en) 2006-08-17 2014-03-18 Carl Zeiss Smt Gmbh Microlithographic projection exposure apparatus
JP4730675B2 (en) * 2006-08-17 2011-07-20 カール・ツァイス・エスエムティー・ゲーエムベーハー Microlithography projection exposure apparatus and microlithography exposure method
JP2010501113A (en) * 2006-08-17 2010-01-14 カール・ツァイス・エスエムティー・アーゲー Microlithography projection exposure apparatus and microlithography exposure method
US7973910B2 (en) 2006-11-17 2011-07-05 Nikon Corporation Stage apparatus and exposure apparatus
US8749755B2 (en) 2006-11-17 2014-06-10 Nikon Corporation Stage apparatus and exposure apparatus
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9857599B2 (en) 2007-10-24 2018-01-02 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
TWI391989B (en) * 2007-12-28 2013-04-01 Canon Kk Hologram, generation method, and exposure apparatus
US8373914B2 (en) 2007-12-28 2013-02-12 Canon Kabushiki Kaisha Computer generated hologram including plural isotropic and anisotropic cells for forming combined intensity distribution, generation method, and exposure apparatus
JP2009164297A (en) * 2007-12-28 2009-07-23 Canon Inc Computer hologram, generating method, and exposure device
WO2009084409A1 (en) * 2007-12-28 2009-07-09 Canon Kabushiki Kaisha Computer generated hologram, generation method, and exposure apparatus
US20090233456A1 (en) * 2008-03-17 2009-09-17 Sony Corporation Irradiation optical system, irradiation apparatus and fabrication method for semiconductor device
US20120038983A1 (en) * 2008-03-17 2012-02-16 Sony Corporation Irradiation optical system, irradiation apparatus and fabrication method for semiconductor device
US8891053B2 (en) 2008-09-10 2014-11-18 Asml Netherlands B.V. Lithographic apparatus, method of manufacturing an article for a lithographic apparatus and device manufacturing method
JP2010093291A (en) * 2010-01-12 2010-04-22 Nikon Corp Illuminating optical device, exposure system and exposure method
JP2010123983A (en) * 2010-01-12 2010-06-03 Nikon Corp Illumination optical device, exposure device, and exposure method
JP2010153878A (en) * 2010-01-14 2010-07-08 Nikon Corp Polarization conversion member, lighting optical device, projection exposure device, exposing method, and method of manufacturing device
JP4553066B2 (en) * 2010-01-14 2010-09-29 株式会社ニコン Polarization conversion member, illumination optical apparatus, projection exposure apparatus, exposure method, and device manufacturing method
JP2010157743A (en) * 2010-01-14 2010-07-15 Nikon Corp Illumination optical apparatus, projection aligner, exposure method, and device manufacturing method
US9116303B2 (en) 2010-03-05 2015-08-25 Canon Kabushiki Kaisha Hologram with cells to control phase in two polarization directions and exposure apparatus
JP2011254086A (en) * 2011-07-04 2011-12-15 Nikon Corp Illumination optical apparatus, exposure device, and exposure method
JP2012156536A (en) * 2012-03-28 2012-08-16 Nikon Corp Illumination optical device, exposure device and exposure method
JP2012156537A (en) * 2012-03-28 2012-08-16 Nikon Corp Illumination optical device, exposure device and exposure method
JP2014039044A (en) * 2013-09-09 2014-02-27 Nikon Corp Illumination optical device
JP2014056255A (en) * 2013-10-28 2014-03-27 Nikon Corp Projection optical system, exposure device and exposure method
JP2014116612A (en) * 2013-12-27 2014-06-26 Nikon Corp Illumination optical device, exposure device and exposure method
TWI617841B (en) * 2014-10-22 2018-03-11 英特爾股份有限公司 Anti-moire pattern diffuser for optical systems
US9927560B2 (en) 2014-10-22 2018-03-27 Intel Corporation Anti-moiré pattern diffuser for optical systems
JP2015132843A (en) * 2015-03-02 2015-07-23 株式会社ニコン Projection optical system, exposure device, exposure method, and device manufacturing method
JP2015172749A (en) * 2015-04-03 2015-10-01 株式会社ニコン Illumination optical apparatus, exposure device and exposure method
JP2016136273A (en) * 2016-03-07 2016-07-28 株式会社ニコン Projection optical system, exposure device, exposure method and device fabrication method
JP2017173839A (en) * 2017-05-11 2017-09-28 株式会社ニコン Illumination optical device, light exposure device and light exposure method
JP2018010303A (en) * 2017-08-03 2018-01-18 株式会社ニコン Light exposure device and device manufacturing method
JP2019082711A (en) * 2019-01-15 2019-05-30 株式会社ニコン Projection optical system, exposure device, exposure method, and device manufacturing method
JP2019091057A (en) * 2019-01-15 2019-06-13 株式会社ニコン Exposure apparatus and device manufacturing method

Also Published As

Publication number Publication date
JP3246615B2 (en) 2002-01-15

Similar Documents

Publication Publication Date Title
JP3246615B2 (en) Illumination optical device, exposure apparatus, and exposure method
TWI307453B (en) Illumination apparatus, exposure apparatus and device manufacturing method
KR101737682B1 (en) Illuminating optical apparatus, exposure apparatus, and device manufacturing method
US6965484B2 (en) Optical imaging systems and methods using polarized illumination and coordinated pupil filter
US5357311A (en) Projection type light exposure apparatus and light exposure method
JP2884947B2 (en) Projection exposure apparatus, exposure method, and method of manufacturing semiconductor integrated circuit
US5467166A (en) Projection exposure method and apparatus
JPH0567558A (en) Exposure method
JP3099933B2 (en) Exposure method and exposure apparatus
JPH07183201A (en) Exposure device and method therefor
JPH05109601A (en) Aligner and exposure method
JPH07122469A (en) Projection aligner
JPH06118623A (en) Reticle and semiconductor aligner using the same
JPH06244082A (en) Projection exposure device
JP3049775B2 (en) Projection exposure apparatus and method, and element manufacturing method
JP2936190B2 (en) Projection exposure apparatus, exposure method, and method of manufacturing semiconductor integrated circuit
JPH05234850A (en) Projecton aligner and manufacture of semiconductor device by using the same
JP3303322B2 (en) Projection exposure apparatus and method, and element manufacturing method
JP3339593B2 (en) Projection exposure apparatus and element manufacturing method using the apparatus
JP3189009B2 (en) Exposure apparatus and method, and method of manufacturing semiconductor element
JP2884950B2 (en) Projection exposure apparatus, exposure method, and method of manufacturing semiconductor integrated circuit
JP3316695B2 (en) Scanning exposure method and device manufacturing method using the same, and scanning exposure apparatus and device manufacturing method using the same
JP3438730B2 (en) Scanning exposure apparatus and device manufacturing method using the scanning exposure apparatus
JP3244076B2 (en) Exposure apparatus and method, and method of manufacturing semiconductor element
JPH0757992A (en) Projection aligner

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20011005

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071102

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 11