JPH07183201A - Exposure device and method therefor - Google Patents

Exposure device and method therefor

Info

Publication number
JPH07183201A
JPH07183201A JP34516293A JP34516293A JPH07183201A JP H07183201 A JPH07183201 A JP H07183201A JP 34516293 A JP34516293 A JP 34516293A JP 34516293 A JP34516293 A JP 34516293A JP H07183201 A JPH07183201 A JP H07183201A
Authority
JP
Japan
Prior art keywords
light
reticle
light source
aperture
polarized light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34516293A
Other languages
Japanese (ja)
Inventor
Kunihiko Kasama
邦彦 笠間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP34516293A priority Critical patent/JPH07183201A/en
Publication of JPH07183201A publication Critical patent/JPH07183201A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/7055Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption
    • G03F7/70566Polarisation control
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70091Illumination settings, i.e. intensity distribution in the pupil plane or angular distribution in the field plane; On-axis or off-axis settings, e.g. annular, dipole or quadrupole settings; Partial coherence control, i.e. sigma or numerical aperture [NA]

Abstract

PURPOSE:To increase the resolving power and the focal depth near the marginal resolution by a method wherein the illumination component by TE polarization waves in the parallel direction with a pattern surface is increased by obliquely illuminating with linearly polarized light. CONSTITUTION:The beam emitted from a light source 1, after passing through an optical system 2, e.g. a beam expander, etc., to be reflected by a mirror 2, are made an even parallel beam by passing through a flyeye lens 4. At this time, an aperture 5 is arranged beneath the flyeye lens 4. The parallel beam passing through the aperture part of the aperture 5 and a condenser lens 1 obliquely illuminates a reticle 7, and a wafer 9 after passing through a projection lens 8. At this time, polarizers arranged on respective aperture parts of the applicable aperture 5 opposite to one another and apart by 180 deg. are set up to make the polarizing direction parallel with each other. Through these procedures, the resolving power and the focal depth near the marginal resolution can be increased.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体装置、電子回路
等のフォトリソグラフ工程等に用いられる露光装置およ
び露光方法に関し、特に斜め入射露光技術の改良に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exposure apparatus and an exposure method used in a photolithographic process for a semiconductor device, an electronic circuit, etc.

【0002】[0002]

【従来の技術】近年、LSIの高集積化に伴い、微細パ
ターンの実現に対する要求が高まっている。従来、この
微細パターン形成技術(リソグラフ技術)の主力は、水
銀ランプのg線(436nm)またはi線(365n
m)を用いる露光装置であり、また、ステッパとノボラ
ック系レジストとを組み合わせた紫外線露光技術であ
る。そして、ステッパの性能向上(レンズの高NA化、
重ね合わせ精度の改善など)と合わせ、ノボラック系レ
ジストの高解像度化が図られてきた。その結果、0.3
5〜0.40μm程度の幅のパターンの微細加工が可能
となりつつある。
2. Description of the Related Art In recent years, the demand for realization of fine patterns has increased with the high integration of LSIs. Conventionally, the main force of this fine pattern forming technique (lithographic technique) has been the g-line (436 nm) or i-line (365n) of a mercury lamp.
m) is an exposure apparatus and is an ultraviolet exposure technique in which a stepper and a novolac-based resist are combined. And the performance improvement of the stepper (higher NA of the lens,
In addition to improving the overlay accuracy), the resolution of novolac-based resist has been improved. As a result, 0.3
Fine processing of patterns having a width of about 5 to 0.40 μm is becoming possible.

【0003】しかしながら、さらに高解像性を目指した
場合、従来手法の延長では対処できないことが次第に明
らかとなってきている。そのため、さらなる短波長化
(例えば、KrFエキシマレーザ光(249nm)また
は250nm付近の水銀アークランプ光など)、各種超
解像手法(位相シフトマスク、斜入射照明および瞳フィ
ルタ)が提案され、検討がなされている。この中でも短
波長化は最も普遍的な手法である。また、斜入射照明に
ついては、図5に示す投影露光装置を用いて以下説明す
る。
However, it has become gradually clear that extension of the conventional method cannot cope with the aim of higher resolution. Therefore, further shortening of the wavelength (for example, KrF excimer laser light (249 nm) or mercury arc lamp light around 250 nm) and various super-resolution methods (phase shift mask, oblique incidence illumination and pupil filter) have been proposed and studied. Has been done. Of these, shortening the wavelength is the most universal method. The oblique incidence illumination will be described below using the projection exposure apparatus shown in FIG.

【0004】図5に示すように、この投影露光装置で
は、光源1から射出された光線は、ビームエクスパンダ
等の光学系2を透過し、鏡3で反射され、フライアイレ
ンズ4で均一な平行光線となる。この平行光線は、アパ
ーチャー5の円形の開口部を通過する。この通過した光
は、コンデンサレンズ6を経てレチクル7に照射され、
さらに、投影レンズ8を透過してウェーハ9に照射され
る。
As shown in FIG. 5, in this projection exposure apparatus, a light beam emitted from a light source 1 passes through an optical system 2 such as a beam expander, is reflected by a mirror 3, and is uniformly reflected by a fly-eye lens 4. It becomes parallel rays. The parallel rays pass through the circular opening of the aperture 5. The light that has passed through the condenser lens 6 is applied to the reticle 7,
Further, the light passes through the projection lens 8 and is irradiated onto the wafer 9.

【0005】この投影露光装置を用いてレチクル7に対
して斜めに照明する輪帯照明を用いた斜入射露光方法
は、D.L.Fehrs他2名による、「Procee
ding of KTI Microelectoro
nics seminor(1989年)」の第217
頁に述べられている。また、この方法は、K.Toun
ai他3名によって、「SPIE Vol.1674
Optical/Laser Microlithog
raphy V(1992年)」の第753頁に、M.
Noguchi他数名により同文献の第92頁に、また
は、N.Shiraishi他数名により同文献の第7
41頁に開示されている。
An oblique incidence exposure method using annular illumination for obliquely illuminating the reticle 7 using this projection exposure apparatus is described in D. L. Fehrs and 2 others, "Procee
ding of KTI Microelectroro
217 of "nics seminar (1989)"
Page. This method is also described in K.K. Toun
ai and 3 other people said, “SPIE Vol. 1674
Optical / Laser Microlithhog
Raphy V (1992), pp. 753, M.
Noguchi et al., On page 92 of the same document, or N. Shirashi, et al.
It is disclosed on page 41.

【0006】この斜入射露光方法は、円形の開口部を有
する上記アパーチャー5(図5)の代わりに、図6
(a)〜(e)に示したアパーチャーを用いるものであ
る。すなわち、2点照明のアパーチャー10、4点照明
のアパーチャー11、輪帯照明のアパーチャー12、8
点照明のアパーチャー13、または、4点(矩形)照明
のアパーチャー14を、フライアイレンズ4の直下に配
置したものである。この方法は、これらの開口部を通過
した輪帯状光線によって、レチクル7に対して垂直に入
射する0次光成分を消去して、斜め0次光成分の光線だ
けで、レチクル7を照明する手法である。この輪帯状光
線によると、0次光成分と、+1次光成分、または、−
1次光成分との間の回折角度を大きくとれる。このた
め、結像面角度が従来に比較して大きくなり、解像力が
向上する。また、結像面でのコントラストが増大し、焦
点深度が向上する。
In this grazing incidence exposure method, instead of the aperture 5 (FIG. 5) having a circular opening portion, as shown in FIG.
The apertures shown in (a) to (e) are used. That is, the two-point illumination aperture 10, the four-point illumination aperture 11, the annular illumination apertures 12, 8
The point-illuminated aperture 13 or the 4-point (rectangular) -illuminated aperture 14 is arranged directly below the fly-eye lens 4. This method is a method of erasing the 0th-order light component that is perpendicularly incident on the reticle 7 by the ring-shaped light beam that has passed through these openings, and illuminating the reticle 7 only with the rays of the oblique 0th-order light component. Is. According to this annular light beam, the 0th-order light component, the + 1st-order light component, or −
A large diffraction angle with the primary light component can be obtained. Therefore, the angle of the image plane becomes larger than that in the conventional case, and the resolution is improved. Further, the contrast on the image plane is increased and the depth of focus is improved.

【0007】さらに、露光時の偏光光を利用する技術
が、特開昭61−218132号公報に開示されてい
る。この技術は、被転写体(レチクル)と転写体(ウェ
ーハ)との間に位置する結像光学系内の多重反射効果を
防止している。これは、直線偏光板と位相偏光板(1/
4波長板)とからなる円偏光発生部を結像光学系内に設
置するものである。
Further, a technique utilizing polarized light at the time of exposure is disclosed in Japanese Patent Laid-Open No. 61-218132. This technique prevents the multiple reflection effect in the imaging optical system located between the transferred body (reticle) and the transfer body (wafer). This is a linear polarizer and a phase polarizer (1 /
A circularly polarized light generating section including a four-wavelength plate) is installed in the imaging optical system.

【0008】また、特開平1−260452号公報に開
示された技術は、レチクルパターン面の反対側に偏光膜
を設置し、さらに、金属レチクルパターン面を上にして
露光することにより、ウェーハ面上またはレチクル内部
の散乱光および回折光を抑制している。
Further, in the technique disclosed in Japanese Patent Laid-Open No. 1-260452, a polarizing film is provided on the opposite side of the reticle pattern surface, and the metal reticle pattern surface is exposed to expose the wafer surface. Alternatively, it suppresses scattered light and diffracted light inside the reticle.

【0009】さらに、偏光光を用いて露光を行う場合、
TE偏光波(ウェーハ面に平行な波)がパターン面に平
行に入射すると解像度が増大する一方、TM偏光波(入
射方向とTE偏光波に対して垂直方向の偏光波)が入射
すると、非偏光の場合よりも解像度が低下することが、
シュミレーションにより予想されている。例えば、Y.
Unno他数名によって、「Proceeding o
f SPIE,1927(1993年)」の第879頁
に開示されている。これは、図7に示すように、TE偏
光波の場合、0次回折光の電場と±1次回折光の電場と
が、紙面に垂直方向において一致している。このため、
コントラストが向上する。これに対し、TM偏光波は0
次回折光と±1次回折光との各電場が互いに傾いている
ため、逆にコントラストが劣化するからである。
Furthermore, when exposure is performed using polarized light,
When TE polarized waves (waves parallel to the wafer surface) are incident parallel to the pattern surface, the resolution is increased, while when TM polarized waves (polarized waves perpendicular to the incident direction and TE polarized waves) are incident, they are unpolarized. Resolution may be lower than
Expected by simulation. For example, Y.
By Unno and several others, "Proceeding o
f SPIE, 1927 (1993) ”, page 879. This is because, as shown in FIG. 7, in the case of TE polarized waves, the electric field of 0th-order diffracted light and the electric field of ± 1st-order diffracted light coincide with each other in the direction perpendicular to the paper surface. For this reason,
The contrast is improved. On the other hand, TM polarized wave is 0
This is because the electric fields of the second-order diffracted light and the ± 1st-order diffracted lights are tilted with respect to each other, and thus the contrast is deteriorated.

【0010】[0010]

【発明が解決しようとする課題】上述した斜入射露光
は、解像力、焦点深度の向上に確かに有効であり、その
露光装置への適用も、アパーチャーを変更するのみであ
り、容易である。しかしながら、その向上量は比較的小
さく、デバイス設計ルールの縮小よりも、プロセスマー
ジンの拡大を念頭に検討されるのが実態である。
The above-mentioned oblique incidence exposure is certainly effective in improving the resolving power and the depth of focus, and its application to the exposure apparatus is simple, only by changing the aperture. However, the amount of improvement is relatively small, and the fact is that consideration is given to expanding the process margin rather than reducing the device design rule.

【0011】また、偏光光を利用した上記技術は、本
来、高解像性を追求するものではなく、露光光学系の多
重干渉、散乱、回折による光学像の劣化を防止するもの
であり、大幅な高解像性は望めない。
Further, the above-mentioned technique utilizing polarized light does not originally pursue high resolution, but prevents deterioration of an optical image due to multiple interference, scattering and diffraction of the exposure optical system. High resolution cannot be expected.

【0012】さらに、上記偏光光露光のシミュレーショ
ンは、TE偏光波の有効性を示しているものの、実際に
は、どのように実デバイス製造に適用するのかを明確に
示しているものではない。
Further, although the above simulation of polarized light exposure shows the effectiveness of TE polarized waves, it does not clearly show how it is applied to actual device manufacturing in practice.

【0013】そこで、本発明の目的は、解像力および焦
点深度が向上する露光装置および露光方法を提供するこ
とにある。
Therefore, an object of the present invention is to provide an exposure apparatus and an exposure method in which the resolving power and the depth of focus are improved.

【0014】[0014]

【課題を解決するための手段】請求項1に記載した発明
は、光源からの光線がレチクルに対して斜めに入射され
る斜め入射手段を有する露光装置にあって、上記光線を
直線偏光光とする偏光子を備えた露光装置である。
According to a first aspect of the present invention, there is provided an exposure apparatus having an oblique incidence means for allowing a light beam from a light source to be obliquely incident on a reticle, wherein the light beam is linearly polarized light. The exposure apparatus is provided with a polarizer for

【0015】請求項2に記載した発明は、基板を搭載す
るステージと、この基板に対して入射する光線を照射す
る光源と、光源とステージとの間に配設されたレチクル
と、レチクルと光源との間に配設されたフライアイレン
ズと、フライアイレンズとレチクルとの間に配設され、
光源からの光線をレチクルに対して斜めに入射する斜め
入射部材とを備えた露光装置にあって、上記斜め入射部
材からのレチクルに斜め入射する光線を直線偏光光とす
る偏光子を有する露光装置である。
According to a second aspect of the present invention, a stage on which a substrate is mounted, a light source for irradiating a light beam incident on the substrate, a reticle arranged between the light source and the stage, a reticle and a light source are provided. And a fly-eye lens arranged between the fly-eye lens and the reticle,
An exposure apparatus comprising an oblique incidence member for obliquely incident a light beam from a light source on a reticle, the exposure apparatus having a polarizer for linearly polarizing the light beam obliquely incident on the reticle from the oblique incidence member. Is.

【0016】請求項3に記載の発明は、上記偏光子は、
その直線偏光光の偏光面を基板面に対して平行とする請
求項2に記載の露光装置である。
According to a third aspect of the present invention, the above-mentioned polarizer is
The exposure apparatus according to claim 2, wherein the plane of polarization of the linearly polarized light is parallel to the surface of the substrate.

【0017】請求項4に記載した発明は、上記斜め入射
部材は、上記フライアイレンズとレチクルとの間に設け
られたアパーチャーを有し、このアパーチャーは光軸に
対して垂直な面で環状に配設された開口を備え、この開
口には上記偏光子が配された請求項1,2または3のい
ずれか1項に記載の露光装置である。
According to a fourth aspect of the present invention, the oblique incidence member has an aperture provided between the fly-eye lens and the reticle, and the aperture has an annular shape in a plane perpendicular to the optical axis. The exposure apparatus according to any one of claims 1, 2, and 3, further comprising an opening provided, and the polarizer is arranged in the opening.

【0018】請求項5に記載の発明は、上記アパーチャ
ーは輪帯状に配された開口を有する請求項4に記載の露
光装置である。
The invention according to claim 5 is the exposure apparatus according to claim 4, wherein the aperture has openings arranged in a ring shape.

【0019】請求項6に記載した発明は、上記レチクル
とステージとの間にはレチクルを透過した光線を基板表
面に投影する投影レンズを設けた請求項1,2,3,4
または5のいずれか1項に記載の露光装置である。
In a sixth aspect of the present invention, a projection lens is provided between the reticle and the stage for projecting a light beam transmitted through the reticle onto the surface of the substrate.
Or the exposure apparatus according to any one of 5 above.

【0020】請求項7に記載した発明は、上記光源は偏
光光を照射するレーザを含む請求項1,2,3,4,5
または6のいずれか1項に記載の露光装置である。
In a seventh aspect of the present invention, the light source includes a laser that emits polarized light.
Or the exposure apparatus according to any one of 6 above.

【0021】請求項8に記載したは発明は、光線を被転
写体に照射して被転写体のパターンを転写体に転写する
露光方法において、直線偏光光を被転写体に対して斜め
入射する露光方法である。
According to an eighth aspect of the present invention, in an exposure method of irradiating a light beam onto a transfer medium to transfer the pattern of the transfer medium to the transfer medium, linearly polarized light is obliquely incident on the transfer medium. It is an exposure method.

【0022】請求項9に記載の発明は、上記直線偏光光
は、その偏光面を、転写体のパターンが転写される面に
対して平行にした請求項8に記載の露光方法である。
The invention according to claim 9 is the exposure method according to claim 8, wherein the polarization plane of the linearly polarized light is parallel to the surface on which the pattern of the transfer body is transferred.

【0023】請求項10に記載した発明は、上記直線偏
光光は、複数の光源領域方向から被転写体に入射される
請求項9に記載の露光方法である。
The invention described in claim 10 is the exposure method according to claim 9, wherein the linearly polarized light is incident on the transfer target from a plurality of light source region directions.

【0024】請求項11に記載した発明は、上記複数の
光源領域方向からの直線偏光光は、対向する光源領域方
向からの直線偏光光の偏光方向が平行である請求項10
に記載の露光方法である。
According to an eleventh aspect of the present invention, the linearly polarized light from the plurality of light source area directions has parallel polarization directions of the linearly polarized light from opposite light source area directions.
The exposure method described in 1.

【0025】[0025]

【作用】本発明に係る直線偏光光の斜め入射露光の原理
を、輪帯照明を例にとって説明する。図1に示すよう
に、リング状開口Oを有するアパーチャー部Aに、複数
の開口部のうち対向する開口部の偏光方向が一致するよ
うに偏光子Pを配置する。偏光子Pとしては、紫外光を
透過することができるポリビニルアルコール(PVA)
を引き伸ばしたタイプ、いわゆるポラロイド系HN膜、
KN膜を適用することができる。また、方解石、水晶、
石英、または、蛍石からなる複屈折型偏光子を用いるこ
とも可能である。さらには、偏光プリズム等も適用する
ことができる。
The principle of obliquely incident exposure of linearly polarized light according to the present invention will be described by taking annular illumination as an example. As shown in FIG. 1, the polarizer P is arranged in the aperture portion A having the ring-shaped opening O so that the polarization directions of the opposing openings of the plurality of openings match. As the polarizer P, polyvinyl alcohol (PVA) capable of transmitting ultraviolet light
A so-called polaroid HN film,
A KN film can be applied. Also, calcite, crystal,
It is also possible to use a birefringent polarizer made of quartz or fluorite. Furthermore, a polarizing prism or the like can be applied.

【0026】一般に、光強度コントラストは、有効光源
と瞳関数の重なりで表す透過クロス係数:TCCの0次
光成分と±1次光成分の比で決定される。また、パター
ンが密になるほど回折角は大きくなる。この回折角θ
は、θ=sin-1(λ/p)で求められる。但し、λは
露光波長、pはパターンピッチを示す。回折角が大きく
なると、有効光源と瞳関数との重なりが減少するため、
TCCの±1次光成分は次第に減衰する。この結果、非
偏光露光の場合は、パターンが密になるほど光強度コン
トラストが減少し、最後に、解像不能となる。
In general, the light intensity contrast is determined by the ratio between the 0th order light component and the ± 1st order light component of the transmission cross coefficient: TCC expressed by the overlap between the effective light source and the pupil function. In addition, the denser the pattern, the larger the diffraction angle. This diffraction angle θ
Is determined by θ = sin −1 (λ / p). Here, λ is the exposure wavelength and p is the pattern pitch. As the diffraction angle increases, the overlap between the effective light source and the pupil function decreases,
The ± first-order light components of TCC are gradually attenuated. As a result, in the case of non-polarized light exposure, the light intensity contrast decreases as the pattern becomes denser, and finally it becomes impossible to resolve.

【0027】一方、偏光子Pを配置した輪帯照明では、
パターンが密となり、回折角度が増大するにつれて、パ
ターン方向に平行なTE偏光波の成分が増大する。この
ため、光強度コントラストは、非偏光露光に比べて、減
衰が小さく、高解像性を達成することができる。さら
に、TE偏光波成分により、デフォーカス時の光コント
ラストの減衰も小さく、焦点深度の低下も少ない。した
がって、解像力、解像限界付近での焦点深度も、レジス
トに依存するが、非偏光露光の場合に比べて10〜20
%向上させることができる。
On the other hand, in the annular illumination in which the polarizer P is arranged,
As the pattern becomes denser and the diffraction angle increases, the TE polarized wave component parallel to the pattern direction increases. Therefore, the light intensity contrast is less attenuated as compared with the non-polarized light exposure, and high resolution can be achieved. Furthermore, due to the TE polarized wave component, the attenuation of the optical contrast at the time of defocusing is small, and the decrease in the depth of focus is small. Therefore, although the resolution and the depth of focus near the resolution limit depend on the resist, they are 10 to 20 as compared with the case of non-polarized light exposure.
% Can be improved.

【0028】[0028]

【実施例】以下、本発明の実施例を図面を用いて詳細に
説明する。図2〜図5は本発明の一実施例を説明するた
めの図である。本発明に係る露光装置は図5に示す構成
のものを使用することができる。
Embodiments of the present invention will now be described in detail with reference to the drawings. 2 to 5 are views for explaining one embodiment of the present invention. The exposure apparatus according to the present invention may have the structure shown in FIG.

【0029】図5を参照してこの投影露光装置を説明す
ると、この装置は、水銀ランプまたはレーザ等の光源1
を有している。光源1から射出された光線は、ビームエ
クスパンダ等の光学系2を透過し、鏡3で反射される。
さらに、この反射光は、フライアイレンズ4を通過する
ことにより、均一な平行光線となる。フライアイレンズ
4の直下にはアパーチャー5が配設されている。平行光
線は、アパーチャー5の開口部を通過し、コンデンサレ
ンズ6を経て、所定のパターンが形成されたレチクル7
に対して斜め方向に照射される。さらに、光線は、投影
レンズ8を透過してウェーハ9に照射される構成であ
る。以上のアパーチャー5およびコンデンサレンズ6は
斜め入射部材を、レチクル7は被転写体を、ウェーハ9
は転写体である基板をそれぞれ示している。
This projection exposure apparatus will be described with reference to FIG. 5. This apparatus comprises a light source 1 such as a mercury lamp or a laser.
have. The light beam emitted from the light source 1 passes through the optical system 2 such as a beam expander and is reflected by the mirror 3.
Further, the reflected light passes through the fly-eye lens 4 and becomes a uniform parallel light beam. An aperture 5 is arranged immediately below the fly-eye lens 4. The parallel rays pass through the opening of the aperture 5, pass through the condenser lens 6, and the reticle 7 having a predetermined pattern.
It is irradiated in an oblique direction. Further, the light rays are configured to pass through the projection lens 8 and irradiate the wafer 9. The aperture 5 and the condenser lens 6 described above are oblique incidence members, the reticle 7 is a transfer target, and the wafer 9
Indicates a substrate which is a transfer body.

【0030】ここで、使用するアパーチャー5は、図4
に(a)〜(f)で示すように、種々の形状の開口部を
形成したものがある。いずれも円形のアパーチャー5の
面にあって、その面中心を中心として環状に配設して形
成してある。そして、これらの開口部のそれぞれに上述
した偏光子を配設している。180度離間して対向する
開口部同士に配設された偏光子は、その偏光方向が平行
となるように設定されている。例えば4点照明の開口部
(図4(b)参照)を有するアパーチャーにあっては、
対向する開口部にてその偏光方向が平行になるように偏
光子を配置している。
Here, the aperture 5 used is as shown in FIG.
As shown in (a) to (f), there are those in which openings of various shapes are formed. All of them are on the surface of the circular aperture 5, and are formed by arranging in an annular shape around the center of the surface. The above-mentioned polarizer is arranged in each of these openings. The polarizers arranged 180 degrees apart and facing each other are set so that their polarization directions are parallel to each other. For example, in an aperture having a four-point illumination opening (see FIG. 4B),
Polarizers are arranged so that the polarization directions thereof are parallel to each other at the facing openings.

【0031】以下に、偏光子を含まないアパーチャーと
の比較を行う。通常のアパーチャーの場合、特定寸法の
X,Y方向パターンに対して(図2にa,bで示した回
折角に相当するピッチ)1次回折光強度が大きく、光強
度コントラストも高い。しかしながら、45゜方向パタ
ーンに対しては、0次回折光に比べ、1次回折光の光強
度が減少するため、光強度コントラストは劣化し、その
結果、解像不能となる。一方、本発明の偏光子を配置し
たアパーチャーの場合には、X,Y方向に対しては、偏
光子無しの場合とほぼ等しい特性が得られる。一方、4
5゜方向パターンに対しては、1次回折光強度は、非偏
光アパーチャー同様減衰するもののTE偏光光が45゜
方向パターンと平行に入射するため、光強度コントラス
トの減衰は軽微になる。その様子を図3(a),(b)
に示す。一般に、半導体デバイスのパターン方向は、
X,Y方向のみであることはまれであり、45゜方向の
パターンが通常存在する。偏光子を付加したこの4点照
明アパーチャーは、X,Y方向パターンのみでなく、4
5゜方向パターンにも有効である。
A comparison with an aperture that does not include a polarizer will be made below. In the case of an ordinary aperture, the first-order diffracted light intensity is high and the light intensity contrast is also high with respect to the X- and Y-direction patterns of specific dimensions (the pitch corresponding to the diffraction angles shown by a and b in FIG. 2). However, with respect to the 45 ° pattern, the light intensity of the 1st-order diffracted light is reduced as compared with the 0th-order diffracted light, so that the light intensity contrast is deteriorated, and as a result, it becomes impossible to resolve. On the other hand, in the case of the aperture in which the polarizer of the present invention is arranged, almost the same characteristics can be obtained in the X and Y directions as in the case without the polarizer. On the other hand, 4
For the 5 ° -direction pattern, the intensity of the first-order diffracted light is attenuated similarly to the unpolarized aperture, but the TE-polarized light is incident in parallel with the 45 ° -direction pattern, so that the attenuation of the light intensity contrast is slight. This is shown in FIGS. 3 (a) and 3 (b).
Shown in. Generally, the pattern direction of a semiconductor device is
It is rare that it is only in the X and Y directions, and there is usually a 45 ° pattern. This four-point illumination aperture with the addition of a polarizer can be
It is also effective for 5 ° pattern.

【0032】次に、KrF,ArF等のレーザ光を光源
とする場合について本発明の説明を行う。一般に、レー
ザ光は直線偏光した光を発振する。したがって、このレ
ーザ光をビームスプリッタ等で分割して斜入射照明を行
う際、光源形状を整形すると同時に、偏光方向を揃える
ことが可能である。したがって、同図の(f)に示すよ
うに、上記実施例で述べた形状(図4の(e))の場合
とその偏光方向とを一致させることにより、同様の効果
を得ることができる。
Next, the present invention will be described for the case where a laser beam such as KrF or ArF is used as the light source. Generally, laser light oscillates linearly polarized light. Therefore, when the laser light is split by a beam splitter or the like to perform oblique incidence illumination, the light source shape can be shaped and the polarization directions can be aligned at the same time. Therefore, as shown in (f) of the figure, the same effect can be obtained by matching the polarization direction with that of the shape described in the above embodiment ((e) of FIG. 4).

【0033】以上、4点照明を適用した場合に関しての
み説明したが、本発明にあっては、他の斜入射露光、す
なわち、図4に示すような2点照明、8点照明、また
は、輪帯照明においても、同様の効果を得ることができ
る。
Although only the case where the four-point illumination is applied has been described above, in the present invention, another oblique incidence exposure, that is, the two-point illumination, the eight-point illumination as shown in FIG. The same effect can be obtained in band illumination.

【0034】[0034]

【発明の効果】本発明によれば、斜入射照明を直線偏光
光で行い、パターン面に平行な方向のTE偏光波で照明
する成分を増大させているため、解像性および解像限界
付近の焦点深度が拡大するという効果を有する。また、
4点照明においては45゜方向パターンの解像性の劣化
を抑制する効果を有する。
According to the present invention, since the oblique incident illumination is performed by linearly polarized light and the component illuminated by the TE polarized wave in the direction parallel to the pattern surface is increased, the resolution and near the resolution limit are reached. This has the effect of increasing the depth of focus of the. Also,
In the case of four-point illumination, it has an effect of suppressing deterioration of the resolution of the pattern in the 45 ° direction.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の偏光光露光の原理を輪帯照明を例にと
って説明する図である。透過クロス係数の重なりによっ
て0次回折光成分および1次回折光成分を表している。
FIG. 1 is a diagram for explaining the principle of polarized light exposure of the present invention by taking annular illumination as an example. The 0th-order diffracted light component and the 1st-order diffracted light component are represented by the overlap of the transmission cross coefficients.

【図2】本発明の一実施例に係る4点照明のアパーチャ
ーを示す図である。
FIG. 2 is a diagram showing an aperture of four-point illumination according to an embodiment of the present invention.

【図3】図2に示す4点照明において非偏光露光と偏光
露光の光強度コントラストを比較した図である。(a)
はX,Y方向、(b)は45゜方向を示す。
3 is a diagram comparing the light intensity contrasts of non-polarized light exposure and polarized light exposure in the four-point illumination shown in FIG. (A)
Indicates the X and Y directions, and (b) indicates the 45 ° direction.

【図4】本発明の実施例に係る偏光子を設置したアパー
チャーの例、および、偏光光を発振するレーザ光源の場
合の光源の配置を示す図である。
FIG. 4 is a diagram showing an example of an aperture provided with a polarizer according to an embodiment of the present invention and an arrangement of light sources in the case of a laser light source that oscillates polarized light.

【図5】本発明の実施例および従来のステッパの光学系
を示す図である。
FIG. 5 is a diagram showing an optical system of an example of the present invention and a conventional stepper.

【図6】非偏光露光におけるアパーチャー形状を示す図
である。
FIG. 6 is a diagram showing an aperture shape in non-polarized light exposure.

【図7】TE偏光とTM偏光の結像の相違を説明する図
である。
FIG. 7 is a diagram illustrating a difference in image formation between TE polarized light and TM polarized light.

【符号の説明】[Explanation of symbols]

1:光源 4:フライアイレンズ 5:アパーチャー 6:斜め入射用のコンデンサレンズ 7:レチクル 8:投影レンズ 9:基板(ウェーハ) 10:ステージ P:偏光子 1: Light source 4: Fly-eye lens 5: Aperture 6: Oblique incidence condenser lens 7: Reticle 8: Projection lens 9: Substrate (wafer) 10: Stage P: Polarizer

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 光源からの光線がレチクルに対して斜め
に入射される斜め入射手段を有する露光装置にあって、 上記光線を直線偏光光とする偏光子を備えたことを特徴
とする露光装置。
1. An exposure apparatus having an oblique incidence means for allowing a light beam from a light source to obliquely enter a reticle, the exposure apparatus comprising a polarizer for converting the light beam into linearly polarized light. .
【請求項2】 基板を搭載するステージと、この基板に
対して入射する光線を照射する光源と、光源とステージ
との間に配設されたレチクルと、レチクルと光源との間
に配設されたフライアイレンズと、フライアイレンズと
レチクルとの間に配設され、光源からの光線をレチクル
に対して斜めに入射する斜め入射部材とを備えた露光装
置にあって、 上記斜め入射部材からのレチクルに斜め入射する光線を
直線偏光光とする偏光子を有することを特徴とする露光
装置。
2. A stage on which a substrate is mounted, a light source for irradiating a light beam incident on the substrate, a reticle arranged between the light source and the stage, and a reticle arranged between the reticle and the light source. And a fly-eye lens, and an oblique incidence member that is disposed between the fly-eye lens and the reticle and that obliquely makes a light beam from a light source incident on the reticle. An exposure apparatus having a polarizer for converting light rays obliquely incident on the reticle into linearly polarized light.
【請求項3】 上記偏光子は、その直線偏光光の偏光面
を基板面に対して平行とする請求項2に記載の露光装
置。
3. The exposure apparatus according to claim 2, wherein the polarizer has a plane of polarization of linearly polarized light parallel to the surface of the substrate.
【請求項4】 上記斜め入射部材は、上記フライアイレ
ンズとレチクルとの間に設けられたアパーチャーを有
し、このアパーチャーは光軸に対して垂直な面で環状に
配設された開口を備え、この開口には上記偏光子が配さ
れた請求項1,2または3のいずれか1項に記載の露光
装置。
4. The oblique incidence member has an aperture provided between the fly-eye lens and the reticle, and the aperture has an opening arranged in an annular shape on a plane perpendicular to the optical axis. The exposure apparatus according to claim 1, wherein the polarizer is arranged in the opening.
【請求項5】 上記アパーチャーは輪帯状に配された開
口を有する請求項4に記載の露光装置。
5. The exposure apparatus according to claim 4, wherein the aperture has openings arranged in a ring shape.
【請求項6】 上記レチクルとステージとの間にはレチ
クルを透過した光線を基板表面に投影する投影レンズを
設けた請求項1,2,3,4または5のいずれか1項に
記載の露光装置。
6. The exposure according to claim 1, further comprising a projection lens provided between the reticle and the stage for projecting a light beam transmitted through the reticle onto a substrate surface. apparatus.
【請求項7】 上記光源は偏光光を照射するレーザを含
む請求項1,2,3,4,5または6のいずれか1項に
記載の露光装置。
7. The exposure apparatus according to claim 1, wherein the light source includes a laser that emits polarized light.
【請求項8】 光線を被転写体に照射して被転写体のパ
ターンを転写体に転写する露光方法において、 直線偏光光を被転写体に対して斜め入射することを特徴
とする露光方法。
8. An exposure method for irradiating a transfer medium with a light beam to transfer the pattern of the transfer medium to the transfer medium, wherein linearly polarized light is obliquely incident on the transfer medium.
【請求項9】 上記直線偏光光は、その偏光面を、転写
体のパターンが転写される面に対して平行にした請求項
8に記載の露光方法。
9. The exposure method according to claim 8, wherein the polarization plane of the linearly polarized light is parallel to the surface onto which the pattern of the transfer body is transferred.
【請求項10】 上記直線偏光光は、複数の光源領域方
向から被転写体に入射される請求項9に記載の露光方
法。
10. The exposure method according to claim 9, wherein the linearly polarized light is incident on the transfer target from a plurality of light source region directions.
【請求項11】 上記複数の光源領域方向からの直線偏
光光は、対向する光源領域方向からの直線偏光光の偏光
方向が平行である請求項10に記載の露光方法。
11. The exposure method according to claim 10, wherein the linearly polarized light from the plurality of light source area directions has parallel polarization directions of the linearly polarized light from opposite light source area directions.
JP34516293A 1993-12-21 1993-12-21 Exposure device and method therefor Pending JPH07183201A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34516293A JPH07183201A (en) 1993-12-21 1993-12-21 Exposure device and method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34516293A JPH07183201A (en) 1993-12-21 1993-12-21 Exposure device and method therefor

Publications (1)

Publication Number Publication Date
JPH07183201A true JPH07183201A (en) 1995-07-21

Family

ID=18374707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34516293A Pending JPH07183201A (en) 1993-12-21 1993-12-21 Exposure device and method therefor

Country Status (1)

Country Link
JP (1) JPH07183201A (en)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100448856B1 (en) * 1996-12-23 2005-01-15 주식회사 하이닉스반도체 Lithography exposure method using four-pole aperture whose opening is adjacent to extended lien of x and y axes of aperture
WO2005041277A1 (en) * 2003-10-28 2005-05-06 Nikon Corporation Lighting optical device and projection aligner
JP2005136244A (en) * 2003-10-31 2005-05-26 Semiconductor Leading Edge Technologies Inc Exposure method
WO2005071718A1 (en) * 2004-01-27 2005-08-04 Nikon Corporation Optical system, exposure system, and exposure method
JP2005268489A (en) * 2004-03-18 2005-09-29 Canon Inc Lighting device, aligner, and device manufacturing method
JP2006049902A (en) * 2004-08-03 2006-02-16 Samsung Electronics Co Ltd Optical system for spatially controlling polarization of light, and method for manufacturing the same
JP2006100429A (en) * 2004-09-28 2006-04-13 Nikon Corp Projection optical system, exposure device, and exposure method
JP2006332355A (en) * 2005-05-26 2006-12-07 Nec Electronics Corp Method and device for exposure
JP2006345006A (en) * 2003-11-20 2006-12-21 Nikon Corp Lighting optical device, exposure device, exposure method, and manufacturing method for micro device
US7265816B2 (en) 2004-06-21 2007-09-04 Canon Kabushiki Kaisha Illumination optical system, exposure apparatus, and device manufacturing method with modified illumination generator
JP2009033191A (en) * 2004-05-25 2009-02-12 Asml Holding Nv Method for providing pattern of polarization
JP2010093291A (en) * 2010-01-12 2010-04-22 Nikon Corp Illuminating optical device, exposure system and exposure method
JP2010123983A (en) * 2010-01-12 2010-06-03 Nikon Corp Illumination optical device, exposure device, and exposure method
JP2010226117A (en) * 2003-11-20 2010-10-07 Nikon Corp Light flux conversion element, lighting optical device, exposure system, and exposure method
US7955761B2 (en) 2007-09-25 2011-06-07 Elpida Memory, Inc Exposure mask, pattern formation method, and exposure mask fabrication method
JP2011254086A (en) * 2011-07-04 2011-12-15 Nikon Corp Illumination optical apparatus, exposure device, and exposure method
JP2012156537A (en) * 2012-03-28 2012-08-16 Nikon Corp Illumination optical device, exposure device and exposure method
JP2012156536A (en) * 2012-03-28 2012-08-16 Nikon Corp Illumination optical device, exposure device and exposure method
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
JP2014039044A (en) * 2013-09-09 2014-02-27 Nikon Corp Illumination optical device
JP2014116612A (en) * 2013-12-27 2014-06-26 Nikon Corp Illumination optical device, exposure device and exposure method
US8861084B2 (en) 2004-01-16 2014-10-14 Carl Zeiss Smt Ag Polarization-modulating optical element
JP2015172749A (en) * 2015-04-03 2015-10-01 株式会社ニコン Illumination optical apparatus, exposure device and exposure method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9581911B2 (en) 2004-01-16 2017-02-28 Carl Zeiss Smt Gmbh Polarization-modulating optical element
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
JP2017173839A (en) * 2017-05-11 2017-09-28 株式会社ニコン Illumination optical device, light exposure device and light exposure method
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0590128A (en) * 1991-06-13 1993-04-09 Nikon Corp Aligner
JPH05226225A (en) * 1992-02-10 1993-09-03 Mitsubishi Electric Corp Projection aligner and polarizer
JPH0653120A (en) * 1992-07-27 1994-02-25 Nikon Corp Illuminating optic device
JPH06118623A (en) * 1992-10-07 1994-04-28 Fujitsu Ltd Reticle and semiconductor aligner using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0590128A (en) * 1991-06-13 1993-04-09 Nikon Corp Aligner
JPH05226225A (en) * 1992-02-10 1993-09-03 Mitsubishi Electric Corp Projection aligner and polarizer
JPH0653120A (en) * 1992-07-27 1994-02-25 Nikon Corp Illuminating optic device
JPH06118623A (en) * 1992-10-07 1994-04-28 Fujitsu Ltd Reticle and semiconductor aligner using the same

Cited By (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100448856B1 (en) * 1996-12-23 2005-01-15 주식회사 하이닉스반도체 Lithography exposure method using four-pole aperture whose opening is adjacent to extended lien of x and y axes of aperture
US9885959B2 (en) 2003-04-09 2018-02-06 Nikon Corporation Illumination optical apparatus having deflecting member, lens, polarization member to set polarization in circumference direction, and optical integrator
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
JP2016053718A (en) * 2003-10-28 2016-04-14 株式会社ニコン Illumination optical device and projection exposure device
JP2015046619A (en) * 2003-10-28 2015-03-12 株式会社ニコン Illumination optical device and projection exposure device
JP4543331B2 (en) * 2003-10-28 2010-09-15 株式会社ニコン Illumination optical apparatus and projection exposure apparatus
WO2005041277A1 (en) * 2003-10-28 2005-05-06 Nikon Corporation Lighting optical device and projection aligner
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
JP2010192914A (en) * 2003-10-28 2010-09-02 Nikon Corp Illumination optical apparatus, and projection exposure apparatus
JP2015065441A (en) * 2003-10-28 2015-04-09 株式会社ニコン Illumination optical device and projection exposure device
US9760014B2 (en) 2003-10-28 2017-09-12 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
JPWO2005041277A1 (en) * 2003-10-28 2007-08-23 株式会社ニコン Illumination optical device and projection exposure apparatus
JP2015046604A (en) * 2003-10-28 2015-03-12 株式会社ニコン Illumination optical device and projection exposure device
JP2014179631A (en) * 2003-10-28 2014-09-25 Nikon Corp Illumination optical device and projection exposure device
JP2013211558A (en) * 2003-10-28 2013-10-10 Nikon Corp Illumination optical device and projection exposure device
JP2008182266A (en) * 2003-10-28 2008-08-07 Nikon Corp Illumination optical device, projection exposure apparatus, exposure method, and element producing method
JP2013191858A (en) * 2003-10-28 2013-09-26 Nikon Corp Illumination optical device and projection aligner
JP4543341B2 (en) * 2003-10-28 2010-09-15 株式会社ニコン Illumination optical apparatus, projection exposure apparatus, exposure method, and electronic device manufacturing method
JP2005136244A (en) * 2003-10-31 2005-05-26 Semiconductor Leading Edge Technologies Inc Exposure method
JP2016212434A (en) * 2003-11-20 2016-12-15 株式会社ニコン Light flux conversion element, illumination optical device, exposure apparatus, and exposure method
JP2015008304A (en) * 2003-11-20 2015-01-15 株式会社ニコン Light flux conversion element, illumination optical device, exposure device, and exposure method
JP2016026306A (en) * 2003-11-20 2016-02-12 株式会社ニコン Light flux conversion device, illumination optical device, exposure device and exposure method
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
JP2010226117A (en) * 2003-11-20 2010-10-07 Nikon Corp Light flux conversion element, lighting optical device, exposure system, and exposure method
US10281632B2 (en) 2003-11-20 2019-05-07 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power to rotate linear polarization direction
JP2017227906A (en) * 2003-11-20 2017-12-28 株式会社ニコン Flux conversion element, illumination optical device, exposure device, and exposure method
JP2011233911A (en) * 2003-11-20 2011-11-17 Nikon Corp Light flux conversion element, illumination optical device, exposure device, and exposure method
JP2006345006A (en) * 2003-11-20 2006-12-21 Nikon Corp Lighting optical device, exposure device, exposure method, and manufacturing method for micro device
JP2014003305A (en) * 2003-11-20 2014-01-09 Nikon Corp Illumination optical device, exposure device, exposure method, and device manufacturing method
US9316772B2 (en) 2004-01-16 2016-04-19 Carl Zeiss Smt Gmbh Producing polarization-modulating optical element for microlithography system
US9581911B2 (en) 2004-01-16 2017-02-28 Carl Zeiss Smt Gmbh Polarization-modulating optical element
US8861084B2 (en) 2004-01-16 2014-10-14 Carl Zeiss Smt Ag Polarization-modulating optical element
WO2005071718A1 (en) * 2004-01-27 2005-08-04 Nikon Corporation Optical system, exposure system, and exposure method
JPWO2005071718A1 (en) * 2004-01-27 2007-12-27 株式会社ニコン Optical system, exposure apparatus, and exposure method
US10007194B2 (en) 2004-02-06 2018-06-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10241417B2 (en) 2004-02-06 2019-03-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10234770B2 (en) 2004-02-06 2019-03-19 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
JP2005268489A (en) * 2004-03-18 2005-09-29 Canon Inc Lighting device, aligner, and device manufacturing method
US7130025B2 (en) 2004-03-18 2006-10-31 Canon Kabushiki Kaisha Illumination apparatus, exposure apparatus and device manufacturing method
US7239375B2 (en) 2004-03-18 2007-07-03 Canon Kabushiki Kaisha Illumination apparatus, exposure apparatus and device manufacturing method
JP4497968B2 (en) * 2004-03-18 2010-07-07 キヤノン株式会社 Illumination apparatus, exposure apparatus, and device manufacturing method
JP2009033191A (en) * 2004-05-25 2009-02-12 Asml Holding Nv Method for providing pattern of polarization
US7265816B2 (en) 2004-06-21 2007-09-04 Canon Kabushiki Kaisha Illumination optical system, exposure apparatus, and device manufacturing method with modified illumination generator
JP2006049902A (en) * 2004-08-03 2006-02-16 Samsung Electronics Co Ltd Optical system for spatially controlling polarization of light, and method for manufacturing the same
JP2006100429A (en) * 2004-09-28 2006-04-13 Nikon Corp Projection optical system, exposure device, and exposure method
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US7295286B2 (en) 2005-05-26 2007-11-13 Nec Electronics Corporation Exposure device and method of exposure
JP2006332355A (en) * 2005-05-26 2006-12-07 Nec Electronics Corp Method and device for exposure
JP4676815B2 (en) * 2005-05-26 2011-04-27 ルネサスエレクトロニクス株式会社 Exposure apparatus and exposure method
US7955761B2 (en) 2007-09-25 2011-06-07 Elpida Memory, Inc Exposure mask, pattern formation method, and exposure mask fabrication method
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9857599B2 (en) 2007-10-24 2018-01-02 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
JP2010093291A (en) * 2010-01-12 2010-04-22 Nikon Corp Illuminating optical device, exposure system and exposure method
JP2010123983A (en) * 2010-01-12 2010-06-03 Nikon Corp Illumination optical device, exposure device, and exposure method
JP2011254086A (en) * 2011-07-04 2011-12-15 Nikon Corp Illumination optical apparatus, exposure device, and exposure method
JP2012156536A (en) * 2012-03-28 2012-08-16 Nikon Corp Illumination optical device, exposure device and exposure method
JP2012156537A (en) * 2012-03-28 2012-08-16 Nikon Corp Illumination optical device, exposure device and exposure method
JP2014039044A (en) * 2013-09-09 2014-02-27 Nikon Corp Illumination optical device
JP2014116612A (en) * 2013-12-27 2014-06-26 Nikon Corp Illumination optical device, exposure device and exposure method
JP2015172749A (en) * 2015-04-03 2015-10-01 株式会社ニコン Illumination optical apparatus, exposure device and exposure method
JP2017173839A (en) * 2017-05-11 2017-09-28 株式会社ニコン Illumination optical device, light exposure device and light exposure method

Similar Documents

Publication Publication Date Title
JPH07183201A (en) Exposure device and method therefor
EP0602923B1 (en) Exposure apparatus using a catadioptric projection system
KR100588182B1 (en) Exposure apparatus and method
US7009686B2 (en) Exposure method
KR0171947B1 (en) Exposure apparatus and for forming a fine pattern and method thereof
JP4832477B2 (en) Lithographic projection apparatus and polarizer device
US5673103A (en) Exposure apparatus and method
US7130025B2 (en) Illumination apparatus, exposure apparatus and device manufacturing method
JP3099933B2 (en) Exposure method and exposure apparatus
US6965484B2 (en) Optical imaging systems and methods using polarized illumination and coordinated pupil filter
US7629087B2 (en) Photomask, method of making a photomask and photolithography method and system using the same
JP2001358070A (en) Optical proximity correction
JPH06140306A (en) Method and apparatus for projection exposure
US5663785A (en) Diffraction pupil filler modified illuminator for annular pupil fills
JPH07122469A (en) Projection aligner
JP3997199B2 (en) Exposure method and apparatus
JPH05234850A (en) Projecton aligner and manufacture of semiconductor device by using the same
US7692769B2 (en) Exposure apparatus, exposure method, and semiconductor device manufacturing method
JP3128396B2 (en) Exposure method and exposure apparatus
JP3189009B2 (en) Exposure apparatus and method, and method of manufacturing semiconductor element
JP3049776B2 (en) Projection exposure apparatus and method, and element manufacturing method
JP3244076B2 (en) Exposure apparatus and method, and method of manufacturing semiconductor element
JPH0757992A (en) Projection aligner
JPH08203806A (en) Exposure illuminating device
JPH06275493A (en) Projection exposure