JPH06118623A - Reticle and semiconductor aligner using the same - Google Patents

Reticle and semiconductor aligner using the same

Info

Publication number
JPH06118623A
JPH06118623A JP26896892A JP26896892A JPH06118623A JP H06118623 A JPH06118623 A JP H06118623A JP 26896892 A JP26896892 A JP 26896892A JP 26896892 A JP26896892 A JP 26896892A JP H06118623 A JPH06118623 A JP H06118623A
Authority
JP
Japan
Prior art keywords
reticle
polarized light
polarizing plate
linear pattern
pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP26896892A
Other languages
Japanese (ja)
Inventor
Hironobu Kitajima
弘伸 北島
Masaki Yamabe
正樹 山部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP26896892A priority Critical patent/JPH06118623A/en
Publication of JPH06118623A publication Critical patent/JPH06118623A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

PURPOSE:To improve not only resolution but the depth of focus for various kinds of patterns. CONSTITUTION:A glass substrate is coated with a light shielding body 34 except a pattern part, and an X direction linear pattern 30x and a Y direction linear pattern 30y whose longitudinal directions mutually form a right angle are formed. As to the pattern 30x, a transmissive axis transmits X polarized light LX in a direction X and does not transmit Y polarized light LY in a direction Y. As to the pattern 30y, Y polarized light LY is transmitted and the X polarized light LX is not transmitted. The surface of a reticle 30 is irradiated with X polarized light LX from an oblique direction and a direction at a right angle to the direction X, and the surface of the reticle 30 is irradiated with the Y polarized light LY from the oblique direction and a direction at a right angle to the direction Y.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、レチクル及びこれを用
いた半導体露光装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reticle and a semiconductor exposure apparatus using the reticle.

【0002】[0002]

【従来の技術】半導体集積回路のパターン微細化の進展
に伴い、より高解像度のレチクル及び半導体露光装置が
要求されている。半導体露光装置の投影光学系の解像度
は、光の波長に比例し、投影レンズの開口数に反比例す
る。
2. Description of the Related Art Along with the progress of pattern miniaturization of semiconductor integrated circuits, higher resolution reticles and semiconductor exposure apparatuses are required. The resolution of the projection optical system of the semiconductor exposure apparatus is proportional to the wavelength of light and inversely proportional to the numerical aperture of the projection lens.

【0003】例えば、幅0.5μm程度のパターン形成
には水銀ランプのi線(波長0.365μm)が主に用
いられている。より短波長のエキシマレーザを光源に用
いて解像度を向上させる開発が現在進められているが、
材料や装置の大幅な変更が必要となり、多方面に及ぶ開
発が必要となる。また、投影レンズの開口数を増大させ
て解像度を向上させると、焦点深度が低下するという問
題が生ずる。
For example, i-line of a mercury lamp (wavelength 0.365 μm) is mainly used for forming a pattern having a width of about 0.5 μm. Development is currently underway to improve resolution by using a shorter wavelength excimer laser as the light source.
Major changes in materials and equipment will be required, and multi-faceted development will be required. Further, when the numerical aperture of the projection lens is increased to improve the resolution, there is a problem that the depth of focus is reduced.

【0004】そこで、水銀ランプのi線を用いたままで
解像度と焦点深度を共に向上させる方法の開発が行われ
ている。このような方法の1つとして、レチクルに対す
る斜入射照明方法が提案されている。
Therefore, a method of improving both the resolution and the depth of focus while using the i-line of a mercury lamp is being developed. As one of such methods, an oblique incidence illumination method for a reticle has been proposed.

【0005】図12(A)に示すように、レチクル11
に対し光を垂直入射させて照明し、その透過光を投影レ
ンズ12で半導体基板上のレジストに投影露光させる
と、0次及び±1次の回折光が結像される。これに対
し、図12(B)に示すように、レチクル11に対し光
を斜入射させて照明すると、0次、及び、1次若しくは
−1次の回折光のみが投影レンズ12で結像されるた
め、焦点深度及び解像度が共に向上する。
As shown in FIG. 12A, the reticle 11
On the other hand, when light is vertically incident to illuminate and the transmitted light is projected and exposed on the resist on the semiconductor substrate by the projection lens 12, 0th-order and ± 1st-order diffracted lights are imaged. On the other hand, as shown in FIG. 12B, when light is obliquely incident on the reticle 11 to illuminate it, only the 0th-order, 1st-order, or −1st-order diffracted light is imaged by the projection lens 12. Therefore, both the depth of focus and the resolution are improved.

【0006】[0006]

【発明が解決しようとする課題】しかし、図13に示す
ように、レチクル11上に図示X方向の線形パターン1
1x及び図示Y方向の線形パターン11yが形成され、
レチクル11の面に対し斜め方向かつX方向線形パター
ン11xに直角な方向から光を照射すると、X方向線形
パターン11xのパターン像は解像度及び焦点深度が向
上するが、Y方向線形パターン11yについてはこのよ
うな向上の効果が得られない。
However, as shown in FIG. 13, a linear pattern 1 in the X direction shown on the reticle 11 is formed.
1x and a linear pattern 11y in the Y direction shown are formed,
When light is irradiated from a direction oblique to the surface of the reticle 11 and at a right angle to the X-direction linear pattern 11x, the resolution and depth of focus of the pattern image of the X-direction linear pattern 11x are improved. The effect of such improvement cannot be obtained.

【0007】本発明の目的は、このような問題点に鑑
み、各種パターンに対し解像度と焦点深度を共に向上さ
せることが可能なレチクル及びこれを用いた半導体露光
装置を提供することにある。
In view of such problems, an object of the present invention is to provide a reticle capable of improving both resolution and depth of focus for various patterns and a semiconductor exposure apparatus using the reticle.

【0008】[0008]

【課題を解決するための手段及びその作用】本発明に係
るレチクル及びこれを用いた半導体露光装置を、実施例
図中の対応する構成要素の符号を引用して説明する。
A reticle and a semiconductor exposure apparatus using the reticle according to the present invention will be described with reference to corresponding components in the drawings.

【0009】第1発明では、例えば図1及び図4に示す
如く、透明基板30上にパターン部を除き遮光体34が
被着されて、長手方向が互いに直角なX方向線形パター
ン30xとY方向線形パターン30yとが形成されたレ
チクルにおいて、X方向線形パターン30xの透明基板
30上近傍に透明基板30に平行に形成され、第1偏光
LXを透過させ第2偏光LYを透過させない第1偏光選
択手段と、Y方向線形パターン30yの透明基板30上
近傍に透明基板30に平行に形成され、第2偏光LYを
透過させ第1偏光LXを透過させない第2偏光選択手段
と、を備えている。
In the first invention, as shown in FIG. 1 and FIG. 4, for example, a light shield 34 is applied on the transparent substrate 30 except for the pattern portion, and the longitudinal direction is perpendicular to the X direction linear pattern 30x and the Y direction. In the reticle on which the linear pattern 30y is formed, the first polarization selection is formed in the vicinity of the transparent substrate 30 of the X-direction linear pattern 30x in parallel with the transparent substrate 30 and transmits the first polarized light LX and does not transmit the second polarized light LY. And a second polarized light selecting unit that is formed in the vicinity of the transparent substrate 30 of the Y-direction linear pattern 30y in parallel with the transparent substrate 30 and that transmits the second polarized light LY and does not transmit the first polarized light LX.

【0010】第2発明に係る半導体露光装置では、例え
ば図1〜図3に示す如く、上記構成のレチクル30と、
レチクル30の面に対し斜め方向かつX方向に直角な方
向から第1偏光LXをレチクル30に照射させる第1偏
光照射手段13〜18、19A、19B、20、21
と、レチクル30の面に対し斜め方向かつ上記Y方向に
直角な方向から第2偏光LYをレチクル30に照射させ
る第2偏光照射手段13〜18、19C、19D、2
0、21と、レチクル30上のパターンを、ホトレジス
トが被着された半導体基板上に投影させる投影レンズ1
2と、を備えている。
In the semiconductor exposure apparatus according to the second aspect of the invention, for example, as shown in FIGS.
First polarized light irradiation means 13-18, 19A, 19B, 20, 21 for irradiating the reticle 30 with the first polarized light LX from a direction oblique to the surface of the reticle 30 and perpendicular to the X direction.
And the second polarized light irradiation means 13 to 18, 19C, 19D, 2 for irradiating the reticle 30 with the second polarized light LY obliquely to the surface of the reticle 30 and perpendicular to the Y direction.
Projection lens 1 for projecting 0, 21 and the pattern on the reticle 30 onto a semiconductor substrate on which a photoresist is applied.
2 is provided.

【0011】本第1発明及び第2発明によれば、X方向
線形パターン30xには、レチクル30の面に対し斜め
方向かつX方向に直角な方向から第1偏光LXのみが透
過し、Y方向線形パターン30yには、レチクル30の
面に対し斜め方向かつY方向に直角な方向から第2偏光
LYのみが透過する。このため、半導体基板10上のホ
トレジストには、解像度と焦点深度が共に向上したパタ
ーン像が得られる。
According to the first and second aspects of the present invention, the X-direction linear pattern 30x transmits only the first polarized light LX from the direction oblique to the surface of the reticle 30 and perpendicular to the X-direction, and in the Y-direction. Only the second polarized light LY is transmitted through the linear pattern 30y from a direction oblique to the surface of the reticle 30 and perpendicular to the Y direction. Therefore, a pattern image with improved resolution and depth of focus can be obtained on the photoresist on the semiconductor substrate 10.

【0012】第3発明では、例えば図11及び図4に示
す如く、透明基板上にパターン部を除き遮光体34が被
着されて、直角に折れ曲がった第1折線形パターン40
aと第2折線形パターン40bとが形成され、第1折線
形パターン40aの一辺が第2折線形パターン40bの
一辺と45゜をなすレチクルにおいて、第1折線形パタ
ーン40aの透明基板上近傍に透明基板に平行に形成さ
れ、第1偏光LXを透過させ第2偏光LYを透過させな
い第1偏光選択手段と、第2折線形パターン40bの透
明基板上近傍に透明基板に平行に形成され、第2偏光L
Yを透過させ第1偏光LXを透過させない第2偏光選択
手段と、を備えている。
In the third invention, as shown in FIGS. 11 and 4, for example, a first light-blocking linear pattern 40 is formed by applying a light-shielding member 34 on a transparent substrate except a pattern portion and bending at a right angle.
a and the second folding linear pattern 40b are formed, and one side of the first folding linear pattern 40a forms an angle of 45 ° with one side of the second folding linear pattern 40b, in the vicinity of the transparent substrate of the first folding linear pattern 40a. First polarization selecting means formed parallel to the transparent substrate and transmitting the first polarized light LX and not transmitting the second polarized light LY, and parallel to the transparent substrate near the transparent substrate of the second folding linear pattern 40b. 2 polarization L
And a second polarized light selecting unit that transmits Y but does not transmit the first polarized light LX.

【0013】第4発明に係るレチクル及びこれを用いた
半導体露光装置では、例えば図11に示す如く、上記構
成のレチクル40と、レチクル40の面に対し斜め方向
かつ第1折線形パターン40aの2辺の各々とのなす角
が互いに同一になる方向から第1偏光LXをレチクル4
0に照射させる第1偏光照射手段と、レチクル40の面
に対し斜め方向かつ第2折線形パターン40bの2辺の
各々とのなす角が互いに同一になる方向から第2偏光L
Yをレチクル40に照射させる第2偏光照射手段と、レ
チクル40上のパターンを、ホトレジストが被着された
半導体基板上に投影させる投影レンズと、を備えてい
る。
In the reticle and the semiconductor exposure apparatus using the reticle according to the fourth aspect of the present invention, for example, as shown in FIG. 11, the reticle 40 having the above-described structure and the first fold linear pattern 40a oblique to the surface of the reticle 40 are provided. The first polarized light LX is read from the reticle 4 in the direction in which the angles formed by the respective sides are the same.
The second polarized light L from the first polarized light irradiating means for irradiating 0 to the surface of the reticle 40 and the two angles of the two sides of the second folded linear pattern 40b are the same.
The reticle 40 is provided with a second polarized light irradiating means for irradiating the reticle 40 with Y, and a projection lens for projecting the pattern on the reticle 40 onto the semiconductor substrate on which the photoresist is adhered.

【0014】本第3発明及び第4発明によれば、第1折
線形パターン40aには、レチクル40の面に対し斜め
方向かつ第1折線形パターン40aの2辺の各々とのな
す角が互いに同一になる方向から第1偏光LXのみが透
過し、第2折線形パターン40bには、レチクル40の
面に対し斜め方向かつ第2折線形パターン40bの2辺
の各々とのなす角が互いに同一になる方向から第2偏光
LYのみが透過する。このため、半導体基板上のホトレ
ジストには、解像度と焦点深度が共に向上したパターン
像が得られる。
According to the third and fourth aspects of the present invention, the first folding linear pattern 40a is oblique to the surface of the reticle 40 and the two sides of the first folding linear pattern 40a form an angle with each other. Only the first polarized light LX is transmitted from the same direction, and the second folding linear pattern 40b is oblique to the surface of the reticle 40 and has the same angle with each of the two sides of the second folding linear pattern 40b. Only the second polarized light LY is transmitted from the direction. Therefore, a pattern image with improved resolution and depth of focus can be obtained on the photoresist on the semiconductor substrate.

【0015】第1発明又は第3発明の第1態様では、例
えば図4に示す如く、上記第1偏光選択手段は、透過軸
が互いに平行な第1偏光板32X及び第2偏光板32Y
と、第1偏光板32Xと第2偏光板32Yとの間にこれ
らに平行に配置された1/2波長板33からなり、上記
第2偏光選択手段は、第1偏光板32Xからなる。
In the first aspect of the first invention or the third invention, for example, as shown in FIG. 4, the first polarization selecting means has a first polarizing plate 32X and a second polarizing plate 32Y whose transmission axes are parallel to each other.
And a half-wave plate 33 arranged between the first polarizing plate 32X and the second polarizing plate 32Y in parallel therewith, and the second polarization selecting means comprises the first polarizing plate 32X.

【0016】第1発明又は第3発明の第2態様では、例
えば図5に示す如く、上記第1偏光選択手段は、1/2
波長板33と、1/2波長板33と平行に配置された偏
光板32Yとからなり、上記第2偏光選択手段は、偏光
板32Yからなる。
In the second aspect of the first invention or the third invention, for example, as shown in FIG.
It comprises a wave plate 33 and a polarizing plate 32Y arranged in parallel with the ½ wavelength plate 33, and the second polarization selecting means comprises a polarizing plate 32Y.

【0017】第1発明又は第3発明の第3態様では、例
えば図6に示す如く、上記第1偏光選択手段は、第1偏
光板32Xからなり、上記第2偏光選択手段は、透過軸
が第1偏光板32Xの透過軸と直角な第2偏光板32Y
からなり、遮光体34は、第1偏光板32Xと第2偏光
板32Yが重なった部分からなる。
In the third aspect of the first invention or the third invention, for example, as shown in FIG. 6, the first polarization selecting means comprises a first polarizing plate 32X, and the second polarization selecting means has a transmission axis. A second polarizing plate 32Y perpendicular to the transmission axis of the first polarizing plate 32X
The light shield 34 is composed of a portion where the first polarizing plate 32X and the second polarizing plate 32Y overlap each other.

【0018】第1発明又は第3発明の第4態様では、例
えば図8に示す如く、上記第1偏光選択手段は、1/2
波長板33と、1/2波長板33と平行に配置された偏
光板32Yとからなり、上記第2偏光選択手段は、偏光
板32Yと、偏光板32Yと平行に配置された1/4波
長板35とからなる。
In the fourth aspect of the first invention or the third invention, for example, as shown in FIG.
It comprises a wave plate 33 and a polarizing plate 32Y arranged in parallel with the ½ wavelength plate 33, and the second polarization selecting means comprises a polarizing plate 32Y and a ¼ wavelength arranged in parallel with the polarizing plate 32Y. And a plate 35.

【0019】[0019]

【実施例】以下、図面に基づいて本発明の実施例を説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0020】[第1実施例]図2は、半導体露光装置の
光学系を示す。
[First Embodiment] FIG. 2 shows an optical system of a semiconductor exposure apparatus.

【0021】光源13から放射された光は放物面鏡14
で平行化され、その1つの輝線スペクトル光がフィルタ
15を透過して単色化される。例えば、光源13は水銀
ランプであり、この単色光はi線である。単色光はミラ
ー16で反射され、フライアイレンズ17を通って光強
度分布が均一化される。フライアイレンズ17の前方に
はアパーチャ18が配置されている。
The light emitted from the light source 13 is parabolic mirror 14.
Are collimated, and one of the bright line spectrum light is transmitted through the filter 15 to be monochromatic. For example, the light source 13 is a mercury lamp, and this monochromatic light is i-line. The monochromatic light is reflected by the mirror 16, passes through the fly-eye lens 17, and the light intensity distribution is made uniform. An aperture 18 is arranged in front of the fly-eye lens 17.

【0022】このアパーチャ18は、図3に示す如く、
レチクルに対し4方から光を斜入射させて照明するため
に、上下に一対の開口18a及び18bが形成され、左
右に一対の開口18c及び18dが形成されている。開
口18a及び18bは、透過軸が互いに平行な偏光板1
9A及び19Bで覆われ、開口18c及び18dは、透
過軸が互いに平行かつ偏光板19A及び19Bの透過軸
と直角な偏光板19C及び19Dで覆われている。これ
ら偏光板19A〜19Cを通った光は、図2に示す如
く、ミラー20で反射され、コンデンサーレンズ21で
屈折されてレチクル30上に4方から斜入射照明する。
This aperture 18 is, as shown in FIG.
A pair of openings 18a and 18b are formed on the upper and lower sides and a pair of openings 18c and 18d are formed on the left and right sides in order to obliquely illuminate the reticle from four directions. The openings 18a and 18b are polarizing plates 1 whose transmission axes are parallel to each other.
9A and 19B, and the openings 18c and 18d are covered with polarizing plates 19C and 19D whose transmission axes are parallel to each other and perpendicular to the transmission axes of the polarizing plates 19A and 19B. Light passing through these polarizing plates 19A to 19C is reflected by a mirror 20, refracted by a condenser lens 21, and obliquely illuminated onto a reticle 30 from four directions, as shown in FIG.

【0023】図1に示す22A、22B、22C及び2
2Dはそれぞれ、アパーチャ18の偏光板19A、19
B、19C及び19Dを通ってレチクル30に4方から
入射する光束断面を表す。半導体ウエーハ10の中央部
に形成されたX方向線形パターン30xに対する各光束
の入射角は、共に等しい角度θとなっている。線形パタ
ーン30xは図示X方向であり、レチクル30上にはこ
れに直角な図示Y方向の線形パターン30yも形成され
ている。レチクル30の構成例を、図4にレチクル30
Aとして示す。
22A, 22B, 22C and 2 shown in FIG.
2D are the polarizing plates 19A and 19A of the aperture 18, respectively.
A cross section of a light beam incident on the reticle 30 from four directions through B, 19C, and 19D is shown. The incident angles of the respective light beams with respect to the X-direction linear pattern 30x formed in the central portion of the semiconductor wafer 10 are both the same angle θ. The linear pattern 30x is in the X direction in the drawing, and a linear pattern 30y in the Y direction, which is perpendicular to the linear pattern 30x, is also formed on the reticle 30. An example of the structure of the reticle 30 is shown in FIG.
Shown as A.

【0024】このレチクル30Aは、ガラス基板31の
上面全体に、透過軸がY方向の偏光板(薄膜)32Yが
被着されている。偏光板32Y上には、Y方向線形パタ
ーン30y及びその付近を除き、1/2波長板33を介
し、透過軸がX方向の偏光板32Xが被着されている。
遮光体(薄膜)34は、偏光板32X上にX方向線形パ
ターン30xの部分を除いて被着され、偏光板32Y上
にY方向線形パターン30yの部分を除いて被着されて
いる。
In this reticle 30A, a polarizing plate (thin film) 32Y having a transmission axis in the Y direction is attached to the entire upper surface of a glass substrate 31. On the polarizing plate 32Y, a polarizing plate 32X having a transmission axis in the X direction is attached via a half-wave plate 33 except for the Y-direction linear pattern 30y and the vicinity thereof.
The light shield (thin film) 34 is deposited on the polarizing plate 32X except for the X-direction linear pattern 30x, and is deposited on the polarizing plate 32Y except for the Y-direction linear pattern 30y.

【0025】この場合、X方向線形パターン30xの透
過部は、ガラス基板31と偏光板32Yと1/2波長板
33と偏光板32Xとからなり、Y方向線形パターン3
0yの透過部は、ガラス基板31と偏光板32Yとから
なる。
In this case, the transmission part of the X-direction linear pattern 30x is composed of the glass substrate 31, the polarizing plate 32Y, the half-wave plate 33 and the polarizing plate 32X, and the Y-direction linear pattern 3 is formed.
The transmission part of 0y is composed of the glass substrate 31 and the polarizing plate 32Y.

【0026】電気ベクトル振動方向がX方向及びY方向
の偏光をそれぞれX偏光LX及びY偏光LYとすると、
X方向線形パターン30xの部分では、X偏光LXは、
偏光板32Xを透過し、1/2波長板33を透過してY
偏光LYとなり、偏光板32Y及びガラス基板31を透
過するが、Y偏光LYは、偏光板32Xを透過できな
い。一方、Y方向線形パターン30yの部分では、X偏
光LXは偏光板32Yを透過できないが、Y偏光LYは
偏光板32Y及びガラス基板31を透過する。
When the polarized light whose electric vector vibration directions are the X-direction and the Y-direction are X-polarized light LX and Y-polarized light LY, respectively,
In the portion of the X-direction linear pattern 30x, the X-polarized light LX is
After passing through the polarizing plate 32X and the half-wave plate 33, Y
The polarized light LY is transmitted through the polarizing plate 32Y and the glass substrate 31, but the Y polarized light LY cannot be transmitted through the polarizing plate 32X. On the other hand, in the Y direction linear pattern 30y, the X polarized light LX cannot pass through the polarizing plate 32Y, but the Y polarized light LY passes through the polarizing plate 32Y and the glass substrate 31.

【0027】したがって、図1に示す如く、X方向線形
パターン30xには、レチクル30の面に斜め方向かつ
X方向線形パターン30xと直角な方向のX偏光LXの
みが透過し、Y方向線形パターン30yには、レチクル
30の面に斜め方向かつY方向線形パターン30yと直
角な方向のY偏光LYのみが透過する。このため、半導
体ウエーハ10上のホトレジストには、解像度と焦点深
度が共に向上したパターン像が得られる。
Therefore, as shown in FIG. 1, in the X-direction linear pattern 30x, only the X-polarized light LX in the direction oblique to the surface of the reticle 30 and in the direction perpendicular to the X-direction linear pattern 30x is transmitted, and the Y-direction linear pattern 30y. Only the Y-polarized light LY in the direction oblique to the surface of the reticle 30 and perpendicular to the Y-direction linear pattern 30y is transmitted. Therefore, a pattern image with improved resolution and depth of focus can be obtained on the photoresist on the semiconductor wafer 10.

【0028】[第2実施例]図5は、図2のレチクル3
0の構成例を、第2実施例のレチクル30Bとして示
す。
[Second Embodiment] FIG. 5 shows the reticle 3 of FIG.
A configuration example of 0 is shown as the reticle 30B of the second embodiment.

【0029】このレチクル30Bは、ガラス基板31の
下面のX方向線形パターン30xの付近に1/2波長板
33が被着され、1/2波長板33上にX方向線形パタ
ーン30xの部分を除き遮光体34が被着され、ガラス
基板31の下面の1/2波長板33以外かつY方向線形
パターン30y以外の部分に遮光体34が被着されてい
る。そして、ガラス基板31に平行かつガラス基板31
の近傍に偏光板32Yが配置されている。
In this reticle 30B, a half-wave plate 33 is attached to the lower surface of the glass substrate 31 in the vicinity of the X-direction linear pattern 30x, and the X-direction linear pattern 30x is removed from the half-wave plate 33. The light shield 34 is attached, and the light shield 34 is attached to a portion other than the half-wave plate 33 on the lower surface of the glass substrate 31 and other than the Y-direction linear pattern 30y. The glass substrate 31 is parallel to the glass substrate 31 and
A polarizing plate 32Y is arranged in the vicinity of.

【0030】この場合、X方向線形パターン30xの透
過部は、ガラス基板31と1/2波長板33と偏光板3
2Yとからなり、Y方向線形パターン30yの透過部
は、ガラス基板31と偏光板32Yとからなる。
In this case, the transparent portion of the X-direction linear pattern 30x includes the glass substrate 31, the half-wave plate 33, and the polarizing plate 3.
2Y, and the transmissive portion of the Y-direction linear pattern 30y includes the glass substrate 31 and the polarizing plate 32Y.

【0031】X方向線形パターン30xの部分では、X
偏光LXは、ガラス基板31を透過し、1/2波長板3
3を透過してY偏光LYとなり、偏光板32Yを透過す
る。Y偏光LYは、ガラス基板31及び1/2波長板3
3を透過するが、偏光板32Yを透過できない。一方、
Y方向線形パターン30yの部分では、X偏光LXは偏
光板32Yを透過できないが、Y偏光LYは偏光板32
Yを透過する。
In the portion of the X-direction linear pattern 30x, X
The polarized light LX is transmitted through the glass substrate 31, and the half-wave plate 3
3 and becomes Y polarized light LY, which then passes through the polarizing plate 32Y. The Y-polarized light LY includes the glass substrate 31 and the half-wave plate 3
3, but cannot pass through the polarizing plate 32Y. on the other hand,
In the Y-direction linear pattern 30y, the X-polarized light LX cannot pass through the polarizing plate 32Y, but the Y-polarized light LY does not pass through the polarizing plate 32Y.
Transmit Y.

【0032】したがって、上記第1実施例と同様の効果
が得られる。
Therefore, the same effect as that of the first embodiment can be obtained.

【0033】なお、偏光板32Yはガラス基板31の上
面全体に被着してもよい。また、遮光体34をガラス基
板31の下面に被着した後に、遮光体34上に1/2波
長板33を被着してもよい。
The polarizing plate 32Y may be attached to the entire upper surface of the glass substrate 31. Further, the half-wave plate 33 may be attached on the light shield 34 after the light shield 34 is attached to the lower surface of the glass substrate 31.

【0034】[第3実施例]図6は、図2のレチクル3
0の構成例を、第3実施例のレチクル30Cとして示
す。
[Third Embodiment] FIG. 6 shows the reticle 3 of FIG.
A configuration example of 0 is shown as a reticle 30C of the third embodiment.

【0035】このレチクル30Cは、ガラス基板31の
上面のY方向線形パターン30y以外の部分に偏光板3
2Xが被着され、ガラス基板31上及び偏光板32X上
のX方向線形パターン30x以外の部分に偏光板32Y
が被着されている。
In this reticle 30C, the polarizing plate 3 is provided on the upper surface of the glass substrate 31 except the Y-direction linear pattern 30y.
2X is applied, and the polarizing plate 32Y is formed on the glass substrate 31 and the polarizing plate 32X except the X-direction linear pattern 30x.
Is being worn.

【0036】この場合、偏光板32Xと偏光板32Yと
が重なった部分は、X偏光LX及びY偏光LYを共に透
過させないので、遮光体34Aを形成する。X方向線形
パターン30xの透過部はガラス基板31と偏光板32
Xとからなり、Y方向線形パターン30yの透過部はガ
ラス基板31と偏光板32Yとからなる。
In this case, since the X-polarized light LX and the Y-polarized light LY do not pass through the portion where the polarizing plate 32X and the polarizing plate 32Y overlap each other, the light shield 34A is formed. The transparent portion of the X-direction linear pattern 30x includes a glass substrate 31 and a polarizing plate 32.
The X-direction linear pattern 30y includes a glass substrate 31 and a polarizing plate 32Y.

【0037】明らかなように、X方向線形パターン30
xの部分では、X偏光LXは透過するがY偏光LYは透
過できず、Y方向線形パターン30yの部分では、X偏
光LXは透過できないがY偏光LYは透過する。
As can be seen, the X-direction linear pattern 30
In the x portion, the X polarized light LX is transmitted but the Y polarized light LY cannot be transmitted, and in the Y direction linear pattern 30y portion, the X polarized light LX cannot be transmitted but the Y polarized light LY is transmitted.

【0038】この第3実施例では、レチクルの構成が特
に簡単となっている。
In the third embodiment, the structure of the reticle is particularly simple.

【0039】[第4実施例]図7は、第4実施例の半導
体露光装置の光学系を示す。図2と同一構成要素には、
同一符号を付してその説明を省略する。
[Fourth Embodiment] FIG. 7 shows an optical system of a semiconductor exposure apparatus according to the fourth embodiment. The same components as in FIG.
The same reference numerals are given and the description thereof is omitted.

【0040】この半導体露光装置には、図3の偏光板1
9A及び19Bの代わりにNDフィルタ29A及び29
Bが配置され、図3の偏光板19C及び19Dの代わり
に不図示の1/4波長板が配置されている。また、図3
の開口18a〜18dの全てを覆う偏光板23が、ND
フィルタ29A及び29Bと反対側のアパーチャ18の
面に配置されている。これにより、図1において、Y偏
光LYはそのままとなるが、X偏光LXは円偏光LCで
置き換えられる。NDフィルタ29A及び29Bの透過
率は、これらY偏光と円偏光LCが30を通った後の強
度が互いに等しくなるように選定されている。
This semiconductor exposure apparatus includes a polarizing plate 1 shown in FIG.
ND filters 29A and 29 instead of 9A and 19B
B is arranged, and a quarter wave plate (not shown) is arranged in place of the polarizing plates 19C and 19D of FIG. Also, FIG.
The polarizing plate 23 that covers all of the openings 18a to 18d of
It is arranged on the surface of the aperture 18 opposite to the filters 29A and 29B. As a result, in FIG. 1, the Y-polarized light LY remains unchanged, but the X-polarized light LX is replaced by the circularly polarized light LC. The transmittances of the ND filters 29A and 29B are selected so that the intensities of the Y polarized light and the circularly polarized light LC after passing through 30 become equal to each other.

【0041】図8は、図2のレチクル30の構成例をレ
チクル30Dとして示す。
FIG. 8 shows a configuration example of the reticle 30 of FIG. 2 as a reticle 30D.

【0042】このレチクル30Dは、ガラス基板31の
上面全体に、透過軸がY方向の偏光板32Yが被着され
ている。偏光板32Y上には、Y方向線形パターン30
y及びその付近を除き、1/4波長板35が被着されて
いる。遮光体34は、1/2波長板33上にX方向線形
パターン30xの部分を除いて被着され、偏光板32Y
上にY方向線形パターン30yの部分を除いて被着され
ている。
In this reticle 30D, a polarizing plate 32Y having a transmission axis in the Y direction is attached to the entire upper surface of a glass substrate 31. A linear pattern 30 in the Y direction is formed on the polarizing plate 32Y.
A quarter-wave plate 35 is attached except y and its vicinity. The light shield 34 is attached on the half-wave plate 33 except for the X-direction linear pattern 30x, and the polarizer 32Y
The Y-direction linear pattern 30y is deposited on the upper part except the part.

【0043】この場合、X方向線形パターン30xの透
過部は、ガラス基板31と偏光板32Yと1/2波長板
33とからなり、Y方向線形パターン30yの透過部
は、ガラス基板31と偏光板32Yと1/4波長板35
とからなる。
In this case, the transmission part of the X-direction linear pattern 30x is composed of the glass substrate 31, the polarizing plate 32Y and the half-wave plate 33, and the transmission part of the Y-direction linear pattern 30y is the glass substrate 31 and the polarizing plate. 32Y and quarter wave plate 35
Consists of.

【0044】X方向線形パターン30xの部分では、円
偏光LCは、1/2波長板33を透過し、偏光板32Y
を透過してY偏光LYとなり、ガラス基板31を透過す
るが、Y偏光LYは、1/2波長板33を透過してX偏
光LXとなり、偏光板32Yを透過できない。一方、Y
方向線形パターン30yの部分では、円偏光LCは、1
/4波長板35を透過してX偏光LXとなり、偏光板3
2Yを透過できないが、Y偏光LYは、1/4波長板3
5を透過して円偏光LCとなり、偏光板32Yを透過し
てY偏光LYとなり、ガラス基板31を透過する。
In the portion of the X-direction linear pattern 30x, the circularly polarized light LC passes through the half-wave plate 33 and the polarizing plate 32Y.
Through the glass substrate 31, the Y-polarized light LY passes through the half-wave plate 33 and becomes the X-polarized light LX, which cannot pass through the polarizing plate 32Y. On the other hand, Y
In the portion of the directional linear pattern 30y, the circular polarization LC is 1
X-polarized light LX is transmitted through the quarter wave plate 35, and the polarizing plate 3
2Y cannot be transmitted, but Y-polarized light LY is a quarter-wave plate 3
5, the circularly polarized light LC is transmitted, the polarizing plate 32Y is transmitted and the Y polarized light LY is transmitted, and the glass substrate 31 is transmitted.

【0045】したがって、上記第1実施例と同様の効果
が得られる。
Therefore, the same effect as that of the first embodiment can be obtained.

【0046】[第5実施例]図9は、図2のレチクル3
0の構成例を、第5実施例のレチクル30Eとして示
す。
[Fifth Embodiment] FIG. 9 shows the reticle 3 of FIG.
A configuration example of 0 is shown as a reticle 30E of the fifth embodiment.

【0047】このレチクル30Eは、図8の偏光板32
Yの代わりに、偏光板32Xがガラス基板31の下面に
被着されている他は、図8と同一構成になっている。
This reticle 30E is a polarizing plate 32 of FIG.
The configuration is the same as that of FIG. 8 except that a polarizing plate 32X is attached to the lower surface of the glass substrate 31 instead of Y.

【0048】この場合、X方向線形パターン30xの透
過部は、ガラス基板31と1/2波長板33と偏光板3
2Xとからなり、Y方向線形パターン30yの透過部
は、ガラス基板31と1/4波長板35と偏光板32X
とからなる。
In this case, the transparent portion of the X-direction linear pattern 30x includes the glass substrate 31, the half-wave plate 33, and the polarizing plate 3.
2X, and the transmissive part of the Y-direction linear pattern 30y includes a glass substrate 31, a quarter wave plate 35, and a polarizing plate 32X.
Consists of.

【0049】X方向線形パターン30xの部分では、円
偏光LCは、1/2波長板33及びガラス基板31を透
過し、偏光板32Xを透過してX偏光LXとなるが、X
偏光LXは、1/2波長板33を透過してY偏光LYと
なり、偏光板32Xを透過できない。一方、Y方向線形
パターン30yの部分では、円偏光LCは、1/4波長
板35を透過してY偏光LYとなり、偏光板32Xを透
過できないが、X偏光LXは、1/4波長板35を透過
して円偏光LCとなり、ガラス基板31及び偏光板32
Xを透過する。
In the portion of the X-direction linear pattern 30x, the circularly polarized light LC passes through the half-wave plate 33 and the glass substrate 31 and the polarizing plate 32X to become X-polarized light LX.
The polarized light LX passes through the half-wave plate 33 to become Y polarized light LY, and cannot pass through the polarizing plate 32X. On the other hand, in the portion of the Y-direction linear pattern 30y, the circularly polarized light LC passes through the quarter-wave plate 35 to become the Y-polarized light LY and cannot pass through the polarizing plate 32X, but the X-polarized light LX does not pass through the quarter-wave plate 35. To become circularly polarized light LC, and the glass substrate 31 and the polarizing plate 32
X is transmitted.

【0050】したがって、上記第1実施例と同様の効果
が得られる。
Therefore, the same effect as that of the first embodiment can be obtained.

【0051】[第6実施例]図10は、図2のレチクル
30の構成例を、第6実施例のレチクル30Fとして示
す。
[Sixth Embodiment] FIG. 10 shows a configuration example of the reticle 30 of FIG. 2 as a reticle 30F of the sixth embodiment.

【0052】このレチクル30Fは、図9のレチクル3
0Eを上下逆にし、図9の偏光板32Xを、ガラス基板
31に被着せずに遮光体34の下方近傍に、ガラス基板
31と平行に配置した構成になっている。
This reticle 30F is the reticle 3 shown in FIG.
0E is turned upside down, and the polarizing plate 32X of FIG. 9 is arranged in parallel with the glass substrate 31 near the lower portion of the light shield 34 without being attached to the glass substrate 31.

【0053】したがって、上記第5実施例と同様の効果
が得られる。
Therefore, the same effect as that of the fifth embodiment can be obtained.

【0054】[第7実施例]図11は、8方向からレチ
クル40への斜め入射照明を平面的に示す。
[Seventh Embodiment] FIG. 11 is a plan view showing an oblique incident illumination on the reticle 40 from eight directions.

【0055】レチクル40には、パターン部を除いて遮
光体34が被着され、図示X方向の線形パターン30x
及び図示Y方向の線形パターン30yのみならず、直角
に折れ曲がった折線形パターン40a及び40bが形成
されている。折線形パターン40aの2辺はX方向及び
Y方向となっており、折線形パターン40bの2辺は共
にX方向及びY方向と45°を成している。X方向線形
パターン30x、Y方向線形パターン30y及び折線形
パターン40aは、X偏光LXを通すがY偏光LYを通
さず、折線形パターン40bは、Y偏光LYを通すがX
偏光LXを通さないように、上記実施例と同様に構成さ
れている。
The reticle 40 is covered with a light shield 34 except for the pattern portion, and the linear pattern 30x in the X direction shown in the drawing.
Also, not only the linear pattern 30y in the Y direction in the drawing, but also the linear pattern 40a and 40b bent at a right angle are formed. Two sides of the polygonal pattern 40a are in the X direction and the Y direction, and two sides of the polygonal pattern 40b are both 45 ° in the X direction and the Y direction. The X-direction linear pattern 30x, the Y-direction linear pattern 30y, and the folded linear pattern 40a pass the X-polarized light LX but not the Y-polarized light LY, and the folded linear pattern 40b passes the Y-polarized light LY but the X-polarized light LY.
It is configured in the same manner as in the above embodiment so as not to pass the polarized light LX.

【0056】Y偏光LYは、図11の上下左右の4方向
からレチクル40に対し斜入射し、X偏光LXは、図1
1の斜め4方向からレチクル40に対し斜入射する。8
方向からレチクル40の中央への入射角は、互いに等し
くなっている。
The Y-polarized light LY is obliquely incident on the reticle 40 from four directions of up, down, left and right in FIG. 11, and the X-polarized light LX is shown in FIG.
The light obliquely enters the reticle 40 from four oblique directions of 1. 8
The incident angles from the direction to the center of the reticle 40 are equal to each other.

【0057】この実施例の場合、ホトレジスト上に形成
されるパターン像は上記第1実施例よりも解像度が低く
焦点深度が浅いが、X方向線形パターン30x、Y方向
線形パターン30yのみならず折線形パターン40a及
び40bのパターン像についても、従来よりも解像度及
び焦点深度が向上する。
In the case of this embodiment, the pattern image formed on the photoresist has a lower resolution and a shallower depth of focus than the first embodiment, but not only the X-direction linear pattern 30x and the Y-direction linear pattern 30y but also the linear pattern. The resolution and depth of focus of the pattern images of the patterns 40a and 40b are also improved as compared with the related art.

【0058】[0058]

【発明の効果】以上説明した如く、本第1発明及び第2
発明によれば、X方向線形パターンには、レチクルの面
に対し斜め方向かつX方向に直角な方向から第1偏光の
みが透過し、Y方向線形パターンには、レチクルの面に
対し斜め方向かつY方向に直角な方向から第2偏光のみ
が透過するので、半導体基板上のホトレジストには解像
度と焦点深度が共に向上したパターン像が得られるとい
う優れた効果を奏し、半導体装置の高集積化に寄与する
ところが大きい。
As described above, the first and second inventions of the present invention are as follows.
According to the invention, in the X-direction linear pattern, only the first polarized light is transmitted from the direction oblique to the plane of the reticle and at right angles to the X-direction, and the Y-direction linear pattern is oblique to the plane of the reticle. Since only the second polarized light is transmitted from the direction perpendicular to the Y direction, the photoresist on the semiconductor substrate has an excellent effect that a pattern image with both improved resolution and depth of focus can be obtained, and the semiconductor device can be highly integrated. There is a big contribution.

【0059】本第3発明及び第4発明によれば、第1折
線形パターンには、レチクルの面に対し斜め方向かつ第
1折線形パターンの2辺の各々とのなす角が互いに同一
になる方向から第1偏光のみが透過し、第2折線形パタ
ーンには、レチクルの面に対し斜め方向かつ第2折線形
パターンの2辺の各々とのなす角が互いに同一になる方
向から第2偏光のみが透過するので、半導体基板上のホ
トレジストには解像度と焦点深度が共に向上したパター
ン像が得られるという優れた効果を奏し、半導体装置の
高集積化に寄与するところが大きい。
According to the third and fourth aspects of the present invention, in the first folding linear pattern, the angle formed between the two sides of the first folding linear pattern in the oblique direction with respect to the surface of the reticle is the same. From the direction, only the first polarized light is transmitted, and in the second polygonal linear pattern, the second polarized light is obliquely formed with respect to the surface of the reticle and has the same angle with each of the two sides of the second linear polygonal pattern. Since only the light is transmitted, the photoresist on the semiconductor substrate has an excellent effect that a pattern image with both improved resolution and depth of focus can be obtained, which largely contributes to high integration of the semiconductor device.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例に係り、4方向からレチク
ルへの斜入射照明を示す斜視図である。
FIG. 1 is a perspective view showing oblique illumination on a reticle from four directions according to a first embodiment of the present invention.

【図2】本発明の第1実施例の半導体露光装置の光学系
図である。
FIG. 2 is an optical system diagram of the semiconductor exposure apparatus according to the first embodiment of the present invention.

【図3】アパーチャの平面図である。FIG. 3 is a plan view of an aperture.

【図4】本発明の第1実施例のレチクル要部断面図であ
る。
FIG. 4 is a cross-sectional view of essential parts of the reticle of the first embodiment of the present invention.

【図5】本発明の第2実施例のレチクル要部断面図であ
る。
FIG. 5 is a cross-sectional view of essential parts of the reticle of the second embodiment of the present invention.

【図6】本発明の第3実施例のレチクル要部断面図であ
る。
FIG. 6 is a cross-sectional view of essential parts of a reticle according to a third embodiment of the present invention.

【図7】本発明の第4実施例の半導体露光装置の光学系
図である。
FIG. 7 is an optical system diagram of a semiconductor exposure apparatus according to a fourth embodiment of the present invention.

【図8】本発明の第4実施例のレチクル要部断面図であ
る。
FIG. 8 is a cross-sectional view of essential parts of a reticle according to a fourth embodiment of the present invention.

【図9】本発明の第5実施例のレチクル要部断面図であ
る。
FIG. 9 is a cross-sectional view of essential parts of the reticle of the fifth embodiment of the present invention.

【図10】本発明の第6実施例のレチクル要部断面図で
ある。
FIG. 10 is a cross-sectional view of essential parts of the reticle of the sixth embodiment of the present invention.

【図11】本発明の第7実施例の、8方向からレチクル
への斜入射照明を示す平面図である。
FIG. 11 is a plan view showing oblique incidence illumination on the reticle from eight directions according to the seventh embodiment of the present invention.

【図12】従来の垂直入射照明及び斜入射照明を示す光
路図である。
FIG. 12 is an optical path diagram showing conventional vertical incidence illumination and oblique incidence illumination.

【図13】従来の、レチクルへの斜入射照明の問題点説
明図である。
FIG. 13 is a diagram illustrating a problem of conventional oblique incidence illumination on a reticle.

【符号の説明】[Explanation of symbols]

10 半導体ウエーハ 11、30、30A〜30F、40 レチクル 12 投影レンズ 11x、30x X方向線形パターン 11y、30y Y方向線形パターン 13 光源 14 放物面鏡 15 フィルタ 16、20 ミラー 17 フライアイレンズ 18 アパーチャ 18a〜18d 開口 19A〜19D、23 偏光板 21 コンデンサーレンズ 31 ガラス基板 32X、32Y 偏光板 33 1/2波長板 34、34A 遮光体 35 1/4波長板 29A、29B NDフィルタ LX X偏光 LY Y偏光 LC 円偏光 40a、40b 折線形パターン 10 semiconductor wafer 11, 30, 30A to 30F, 40 reticle 12 projection lens 11x, 30x X-direction linear pattern 11y, 30y Y-direction linear pattern 13 light source 14 parabolic mirror 15 filter 16, 20 mirror 17 fly-eye lens 18 aperture 18a -18d Opening 19A-19D, 23 Polarizing plate 21 Condenser lens 31 Glass substrate 32X, 32Y Polarizing plate 33 1/2 wavelength plate 34, 34A Light shield 35 1/4 wavelength plate 29A, 29B ND filter LX X polarization LY Y polarization LC Circularly polarized light 40a, 40b Folded linear pattern

フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 // G02B 27/28 Z 9120−2K 7352−4M H01L 21/30 311 L Continuation of the front page (51) Int.Cl. 5 Identification number Office reference number FI technical display location // G02B 27/28 Z 9120-2K 7352-4M H01L 21/30 311 L

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 透明基板(30)上にパターン部を除き
遮光体(34)が被着されて、長手方向が互いに直角な
X方向線形パターン(30x)とY方向線形パターン
(30y)とが形成されたレチクルにおいて、 該X方向線形パターンの該透明基板上近傍に該透明基板
に平行に形成され、第1偏光(LX)を透過させ第2偏
光(LY)を透過させない第1偏光選択手段と、 該Y方向線形パターンの該透明基板上近傍に該透明基板
に平行に形成され、該第2偏光を透過させ該第1偏光を
透過させない第2偏光選択手段と、 を有することを特徴とするレチクル
1. An X-direction linear pattern (30x) and a Y-direction linear pattern (30y) whose longitudinal directions are at right angles to each other are formed by coating a light-shielding body (34) on a transparent substrate (30) except for a pattern portion. In the formed reticle, a first polarization selecting unit which is formed in the vicinity of the transparent substrate in the X-direction linear pattern and in parallel with the transparent substrate, and which transmits the first polarized light (LX) and does not transmit the second polarized light (LY). And a second polarized light selecting unit that is formed in the vicinity of the transparent substrate in the Y-direction linear pattern and in parallel with the transparent substrate, and that transmits the second polarized light and does not transmit the first polarized light. Reticle
【請求項2】 透明基板(30)上にパターン部を除き
遮光体(34)が被着されて、直角に折れ曲がった第1
折線形パターン(40a)と第2折線形パターン(40
b)とが形成され、該第1折線形パターンの一辺が該第
2折線形パターンの一辺と45゜をなすレチクルにおい
て、 該第1折線形パターンの該透明基板上近傍に該透明基板
に平行に形成され、第1偏光(LX)を透過させ第2偏
光(LY)を透過させない第1偏光選択手段と、 該第2折線形パターンの該透明基板上近傍に該透明基板
に平行に形成され、該第2偏光を透過させ該第1偏光を
透過させない第2偏光選択手段と、 を有することを特徴とするレチクル。
2. A light-shielding body (34), excluding a pattern portion, which is bent on the transparent substrate (30) and bent at a right angle.
The folded linear pattern (40a) and the second folded linear pattern (40
b) is formed, and one side of the first folding linear pattern is 45 ° with one side of the second folding linear pattern, a reticle parallel to the transparent substrate near the transparent substrate of the first folding linear pattern. And a first polarization selecting unit that transmits the first polarized light (LX) and does not transmit the second polarized light (LY), and is formed parallel to the transparent substrate in the vicinity of the transparent substrate of the second folded linear pattern. A second polarized light selecting unit that transmits the second polarized light and does not transmit the first polarized light, and a reticle.
【請求項3】 前記第1偏光選択手段は、透過軸が互い
に平行な第1偏光板(32X)及び第2偏光板(32
Y)と、第1偏光板と該第2偏光板との間にこれらに平
行に配置された1/2波長板(33)からなり、 前記第2偏光選択手段は、該第1偏光板からなることを
特徴とする請求項1又は2記載のレチクル。
3. The first polarization selecting means includes a first polarizing plate (32X) and a second polarizing plate (32) whose transmission axes are parallel to each other.
Y) and a half-wave plate (33) arranged in parallel with the first polarizing plate and the second polarizing plate, wherein the second polarization selecting means is the first polarizing plate. The reticle according to claim 1 or 2, wherein
【請求項4】 前記第1偏光選択手段は、1/2波長板
(33)と、該1/2波長板と平行に配置された偏光板
(32Y)とからなり、 前記第2偏光選択手段は、該偏光板からなることを特徴
とする請求項1又は2記載のレチクル。
4. The first polarization selecting means comprises a half-wave plate (33) and a polarizing plate (32Y) arranged in parallel with the half-wave plate, and the second polarization selecting means. The reticle according to claim 1, wherein the reticle comprises the polarizing plate.
【請求項5】 前記第1偏光選択手段は、第1偏光板
(32X)からなり、 前記第2偏光選択手段は、透過軸が該第1偏光板の透過
軸と直角な第2偏光板(32Y)からなり、 前記遮光体(34)は、該第1偏光板と該第2偏光板が
重なった部分からなることを特徴とする請求項1又は2
記載のレチクル。
5. The first polarized light selecting means comprises a first polarizing plate (32X), and the second polarized light selecting means comprises a second polarizing plate having a transmission axis perpendicular to the transmission axis of the first polarizing plate (32X). 32Y), and the light shield (34) is formed of a portion where the first polarizing plate and the second polarizing plate overlap each other.
The reticle shown.
【請求項6】 前記第1偏光選択手段は、1/2波長板
(33)と、該1/2波長板と平行に配置された偏光板
(32Y)とからなり、 前記第2偏光選択手段は、該偏光板と、該偏光板と平行
に配置された1/4波長板(35)とからなることを特
徴とする請求項1又は2記載のレチクル。
6. The second polarization selecting means comprises a half-wave plate (33) and a polarizing plate (32Y) arranged in parallel with the half-wave plate. The reticle according to claim 1 or 2, wherein the reticle comprises the polarizing plate and a quarter-wave plate (35) arranged in parallel with the polarizing plate.
【請求項7】 請求項1記載のレチクル(30)と、 該レチクルの面に対し斜め方向かつ前記X方向に直角な
方向から前記第1偏光(LX)を該レチクルに照射させ
る第1偏光照射手段(13〜18、19A、19B、2
0、21)と、 該レチクルの面に対し斜め方向かつ前記Y方向に直角な
方向から前記第2偏光(LY)を該レチクルに照射させ
る第2偏光照射手段(13〜18、19C、19D、2
0、21)と、 該レチクル上のパターンを、ホトレジストが被着された
半導体基板(10)上に投影させる投影レンズ(12)
と、 を有することを特徴とする半導体露光装置。
7. The reticle (30) according to claim 1, and a first polarized light irradiation for irradiating the reticle with the first polarized light (LX) from a direction oblique to a surface of the reticle and perpendicular to the X direction. Means (13-18, 19A, 19B, 2
0, 21) and second polarized light irradiation means (13-18, 19C, 19D,) for irradiating the reticle with the second polarized light (LY) from a direction oblique to the surface of the reticle and perpendicular to the Y direction. Two
0, 21) and a projection lens (12) for projecting the pattern on the reticle onto a semiconductor substrate (10) on which a photoresist is applied.
A semiconductor exposure apparatus comprising:
【請求項8】 請求項2記載のレチクル(40)と、 該レチクルの面に対し斜め方向かつ前記第1折線形パタ
ーン(40a)の2辺の各々とのなす角が互いに同一に
なる方向から前記第1偏光(LX)を該レチクルに照射
させる第1偏光照射手段(13〜18、20、21、2
3、29A、29B)と、 該レチクルの面に対し斜め方向かつ前記第2折線形パタ
ーン(40b)の2辺の各々とのなす角が互いに同一に
なる方向から前記第2偏光(LY)を該レチクルに照射
させる第2偏光照射手段(13〜18、20、21、2
3)と、 該レチクル上のパターンを、ホトレジストが被着された
半導体基板(10)上に投影させる投影レンズ(12)
と、 を有することを特徴とする半導体露光装置。
8. The reticle (40) according to claim 2 and a direction oblique to the surface of the reticle and having a same angle with each of the two sides of the first folded linear pattern (40a). First polarized light irradiation means (13 to 18, 20, 21, 2) for irradiating the reticle with the first polarized light (LX).
3, 29A, 29B) and the second polarized light (LY) from a direction oblique to the surface of the reticle and at the same angle with each of the two sides of the second folded linear pattern (40b). Second polarized light irradiation means (13 to 18, 20, 21, 2) for irradiating the reticle.
3) and a projection lens (12) for projecting the pattern on the reticle onto a semiconductor substrate (10) coated with a photoresist.
A semiconductor exposure apparatus comprising:
JP26896892A 1992-10-07 1992-10-07 Reticle and semiconductor aligner using the same Withdrawn JPH06118623A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26896892A JPH06118623A (en) 1992-10-07 1992-10-07 Reticle and semiconductor aligner using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26896892A JPH06118623A (en) 1992-10-07 1992-10-07 Reticle and semiconductor aligner using the same

Publications (1)

Publication Number Publication Date
JPH06118623A true JPH06118623A (en) 1994-04-28

Family

ID=17465812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26896892A Withdrawn JPH06118623A (en) 1992-10-07 1992-10-07 Reticle and semiconductor aligner using the same

Country Status (1)

Country Link
JP (1) JPH06118623A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07183201A (en) * 1993-12-21 1995-07-21 Nec Corp Exposure device and method therefor
JP2009033191A (en) * 2004-05-25 2009-02-12 Asml Holding Nv Method for providing pattern of polarization
JP2010093291A (en) * 2010-01-12 2010-04-22 Nikon Corp Illuminating optical device, exposure system and exposure method
JP2010123983A (en) * 2010-01-12 2010-06-03 Nikon Corp Illumination optical device, exposure device, and exposure method
US7929116B2 (en) 2004-12-28 2011-04-19 Asml Netherlands B.V. Polarized radiation in lithographic apparatus and device manufacturing method
JP2011254086A (en) * 2011-07-04 2011-12-15 Nikon Corp Illumination optical apparatus, exposure device, and exposure method
JP2012156537A (en) * 2012-03-28 2012-08-16 Nikon Corp Illumination optical device, exposure device and exposure method
JP2012156536A (en) * 2012-03-28 2012-08-16 Nikon Corp Illumination optical device, exposure device and exposure method
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
JP2014039044A (en) * 2013-09-09 2014-02-27 Nikon Corp Illumination optical device
JP2014116612A (en) * 2013-12-27 2014-06-26 Nikon Corp Illumination optical device, exposure device and exposure method
US8861084B2 (en) 2004-01-16 2014-10-14 Carl Zeiss Smt Ag Polarization-modulating optical element
JP2015172749A (en) * 2015-04-03 2015-10-01 株式会社ニコン Illumination optical apparatus, exposure device and exposure method
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07183201A (en) * 1993-12-21 1995-07-21 Nec Corp Exposure device and method therefor
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9885959B2 (en) 2003-04-09 2018-02-06 Nikon Corporation Illumination optical apparatus having deflecting member, lens, polarization member to set polarization in circumference direction, and optical integrator
US9760014B2 (en) 2003-10-28 2017-09-12 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US10281632B2 (en) 2003-11-20 2019-05-07 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power to rotate linear polarization direction
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US8861084B2 (en) 2004-01-16 2014-10-14 Carl Zeiss Smt Ag Polarization-modulating optical element
US9316772B2 (en) 2004-01-16 2016-04-19 Carl Zeiss Smt Gmbh Producing polarization-modulating optical element for microlithography system
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10007194B2 (en) 2004-02-06 2018-06-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10234770B2 (en) 2004-02-06 2019-03-19 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10241417B2 (en) 2004-02-06 2019-03-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
JP2009033191A (en) * 2004-05-25 2009-02-12 Asml Holding Nv Method for providing pattern of polarization
US7929116B2 (en) 2004-12-28 2011-04-19 Asml Netherlands B.V. Polarized radiation in lithographic apparatus and device manufacturing method
JP2010123983A (en) * 2010-01-12 2010-06-03 Nikon Corp Illumination optical device, exposure device, and exposure method
JP2010093291A (en) * 2010-01-12 2010-04-22 Nikon Corp Illuminating optical device, exposure system and exposure method
JP2011254086A (en) * 2011-07-04 2011-12-15 Nikon Corp Illumination optical apparatus, exposure device, and exposure method
JP2012156536A (en) * 2012-03-28 2012-08-16 Nikon Corp Illumination optical device, exposure device and exposure method
JP2012156537A (en) * 2012-03-28 2012-08-16 Nikon Corp Illumination optical device, exposure device and exposure method
JP2014039044A (en) * 2013-09-09 2014-02-27 Nikon Corp Illumination optical device
JP2014116612A (en) * 2013-12-27 2014-06-26 Nikon Corp Illumination optical device, exposure device and exposure method
JP2015172749A (en) * 2015-04-03 2015-10-01 株式会社ニコン Illumination optical apparatus, exposure device and exposure method

Similar Documents

Publication Publication Date Title
JP2995820B2 (en) Exposure method and method, and device manufacturing method
CN100487520C (en) Apparatus for providing a pattern of polarization
JP3246615B2 (en) Illumination optical device, exposure apparatus, and exposure method
JP2884947B2 (en) Projection exposure apparatus, exposure method, and method of manufacturing semiconductor integrated circuit
US5184196A (en) Projection exposure apparatus
JPH06118623A (en) Reticle and semiconductor aligner using the same
JP3099933B2 (en) Exposure method and exposure apparatus
KR970060356A (en) Pattern Forming Method, Projection Exposure Device, and Manufacturing Method of Semiconductor Device
JPH0567558A (en) Exposure method
JPH0429212B2 (en)
JPH07183201A (en) Exposure device and method therefor
JPH04273427A (en) Mask, exposure method and aligner
JPH06140306A (en) Method and apparatus for projection exposure
JPH07307268A (en) Optical device for illumination
JP3647272B2 (en) Exposure method and exposure apparatus
JP3148818B2 (en) Projection type exposure equipment
JPS6139021A (en) Optical system using variable filter
JPH05234850A (en) Projecton aligner and manufacture of semiconductor device by using the same
JPH06151269A (en) Manufacture of semiconductor device
JP2936190B2 (en) Projection exposure apparatus, exposure method, and method of manufacturing semiconductor integrated circuit
JP3128396B2 (en) Exposure method and exposure apparatus
JP3189009B2 (en) Exposure apparatus and method, and method of manufacturing semiconductor element
JP3647271B2 (en) Exposure method and exposure apparatus
JP3244076B2 (en) Exposure apparatus and method, and method of manufacturing semiconductor element
TW201913235A (en) Reflective exposure equipment

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000104