JPH07307268A - Optical device for illumination - Google Patents

Optical device for illumination

Info

Publication number
JPH07307268A
JPH07307268A JP6099816A JP9981694A JPH07307268A JP H07307268 A JPH07307268 A JP H07307268A JP 6099816 A JP6099816 A JP 6099816A JP 9981694 A JP9981694 A JP 9981694A JP H07307268 A JPH07307268 A JP H07307268A
Authority
JP
Japan
Prior art keywords
light
illumination
polarized
substrate
plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6099816A
Other languages
Japanese (ja)
Other versions
JP2836483B2 (en
Inventor
Yasuyoshi Tanabe
容由 田邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP6099816A priority Critical patent/JP2836483B2/en
Priority to US08/394,942 priority patent/US5559583A/en
Priority to KR1019950003742A priority patent/KR0173168B1/en
Publication of JPH07307268A publication Critical patent/JPH07307268A/en
Application granted granted Critical
Publication of JP2836483B2 publication Critical patent/JP2836483B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/7055Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption
    • G03F7/70566Polarisation control
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70191Optical correction elements, filters or phase plates for controlling intensity, wavelength, polarisation, phase or the like

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To reduce reflected light from a substrate through a simple method by forming a part or the whole illumination light in inclined light to a specified region and forming the polarized light of inclined light in linearly polarized light contained in the plane of incidence of inclined light. CONSTITUTION:Beams emitted from a KrF excimer laser beam source 81 changed into a narrow zone are linearly polarized. The beams are projected to a fly's eye lens 83 through a collimator lens 82. A mask 85 is irradiated with polarized and rotated beams in the plane of incidence by a spatial filter 11 placed at the rear of the fly's eye lens 83 through a condenser lens 84. The colarized light of illumination light is formed in p-polarized light to the plane of incidence. Accordingly, reflected light from a substrate can be reduced remarkably and simply without using an antireflection film and a die-containing resist.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体集積回路あるい
は液晶表示素子等の製造工程で、回路パターンの転写に
利用される露光装置の一部である照明光学装置に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an illumination optical device which is a part of an exposure device used for transferring a circuit pattern in a manufacturing process of a semiconductor integrated circuit or a liquid crystal display device.

【0002】[0002]

【従来の技術】半導体集積回路または液晶表示素子の露
光工程では、露光装置を用いてマスク上の回路パターン
を基板上に塗布したレジストに転写する。半導体素子等
は立体的構造を持つため、基板には段差が存在すること
が多い。基板段差部分に入射した光は斜め方向に反射す
るため、マスクで遮光した部分まで露光されてしまうと
いう問題が生じる。また、基板が平面的な場合でも基板
の反射率が大きいと定在波の影響によりレジスト形状が
劣化する。従来、これらの問題を解決するため、基板上
に反射防止膜を張る方法が知られている。また、ダイ入
りレジストを用ることにより、基板に到達する光を低下
させる方法も知られている。
2. Description of the Related Art In a step of exposing a semiconductor integrated circuit or a liquid crystal display device, a circuit pattern on a mask is transferred to a resist coated on a substrate by using an exposure device. Since semiconductor elements and the like have a three-dimensional structure, there are often steps on the substrate. Since the light incident on the stepped portion of the substrate is reflected in an oblique direction, there arises a problem that even the portion shielded by the mask is exposed. Further, even when the substrate is flat, if the reflectance of the substrate is large, the resist shape is deteriorated due to the influence of standing waves. Conventionally, in order to solve these problems, a method of forming an antireflection film on a substrate is known. Also known is a method of reducing the light reaching the substrate by using a resist with a die.

【0003】[0003]

【発明が解決しようとする課題】反射防止膜を用いる方
法は、工程によっては基板の汚染を生じるため使用でき
ない場合がある。また、反射防止膜を張るための工数が
増えてしまうという問題もある。ダイ入りレジストを用
いて基板に到達する光を大きく低下させるためには、レ
ジストの吸収率を大きくする必要がある。この結果、レ
ジストプロファイルが垂直で無くなってしまう問題が発
生する。
The method using the antireflection film cannot be used in some cases because the substrate is contaminated depending on the process. There is also a problem that the number of steps for forming the antireflection film increases. In order to greatly reduce the light reaching the substrate by using the die-containing resist, it is necessary to increase the absorptance of the resist. As a result, there arises a problem that the resist profile disappears vertically.

【0004】本発明の目的は、上記の問題を解決し、基
板からの反射光を簡便な方法で低減する露光装置に使用
される照明光学装置を提供することにある。
An object of the present invention is to solve the above problems and to provide an illumination optical apparatus used in an exposure apparatus that reduces the reflected light from a substrate by a simple method.

【0005】[0005]

【課題を解決するための手段】本発明は、照明光学系か
らの照明光により物体上の所定領域を均一に照明する照
明光学装置において、前記照明光の一部あるいは全体を
前記所定領域に対し傾斜光とする手段と、前記傾斜光の
偏光を前記傾斜光の入射面内に含まれる直線偏光とする
手段とを有することを特徴とする照明光学装置である。
The present invention provides an illumination optical device for uniformly illuminating a predetermined area on an object with illumination light from an illumination optical system, wherein a part or the whole of the illumination light is applied to the predetermined area. It is an illumination optical device comprising: a means for making the inclined light and a means for making the polarized light of the inclined light a linearly polarized light included in the incident surface of the inclined light.

【0006】[0006]

【作用】照明光はマスク上のパターンにより回折され
る。マスクパターンが微細になると回折角が大きくな
る。このため、図2(a)に示すように直入射照明光2
1では0次光25しか投影光学系27を通過しないため
ウエファ28上に像が形成されない。これに対し、図2
(b)のような斜入射照明光29の場合には0次光25
以外に+1次光26または−1次光24が投影光学系を
通過するためウエファ28上に像が形成される。
The illumination light is diffracted by the pattern on the mask. The finer the mask pattern, the larger the diffraction angle. Therefore, as shown in FIG.
In the case of 1, only the 0th order light 25 passes through the projection optical system 27, so that an image is not formed on the wafer 28. In contrast, Figure 2
In the case of the obliquely incident illumination light 29 as shown in FIG.
In addition, the + 1st order light 26 or the −1st order light 24 passes through the projection optical system, so that an image is formed on the wafer 28.

【0007】そこで、照明光学系の2次光源として図3
(a)、(b)に示される2種類のものを考える。
Therefore, the secondary light source of the illumination optical system is shown in FIG.
Consider the two types shown in (a) and (b).

【0008】開口部31および32は2次光源30の中
心から離れているため、照明光はマスクに対し斜め方向
から入射する。開口部の位置は、通常用いられるコヒー
レント因子σで表した場合、σ=0.5〜0.6の部分
に相当する。図3(a)と図3(b)の違いは照明光の
偏光方向にある。図3(a)では開口部31を通過する
光は入射平面に対しP偏光となっているが、図3(b)
では開口部32を通過する光は入射平面に対しS偏光と
なっている。
Since the openings 31 and 32 are separated from the center of the secondary light source 30, the illumination light enters the mask in an oblique direction. The position of the opening corresponds to a portion of σ = 0.5 to 0.6 when expressed by a coherent factor σ that is normally used. The difference between FIG. 3A and FIG. 3B lies in the polarization direction of the illumination light. In FIG. 3A, the light passing through the opening 31 is P-polarized with respect to the incident plane, but FIG.
Then, the light passing through the opening 32 is S-polarized with respect to the incident plane.

【0009】このような照明光を図4のマスクに照射
し、投影光学系により段差を持ったSi基板53上のレ
ジスト膜52に結像したときの電場強度分布51を図5
および図6に示す。段差方向は反射の影響が最も大きく
なる様に、照明光の入射平面と直交する方向に配置して
いる。図5はP偏光、図6はS偏光に対応している。図
4のマスク上の遮光部23および透明部41の幅は、ウ
エファ上に投影した場合に0.2μm となっている。ま
た、照明光はKrFエキシマレーザ光(波長248n
m)、投影光学系の開口数は0.6である。レジストは
電場に対し反応し、磁場はレジストの感光に寄与しない
ことが知られている。レジスト内の電場強度分布を見る
と、S偏光では反射光が遮光部分まで侵入してしまうの
に対し、P偏光では侵入していない。このため、図3
(a)の照明光学系を用いれば、基板反射の影響を低減
することができる。
FIG. 5 shows the electric field intensity distribution 51 when the mask of FIG. 4 is irradiated with such illumination light and an image is formed on the resist film 52 on the Si substrate 53 having a step by the projection optical system.
And shown in FIG. The step direction is arranged in a direction orthogonal to the plane of incidence of the illumination light so that the influence of reflection is greatest. FIG. 5 corresponds to P-polarized light, and FIG. 6 corresponds to S-polarized light. The width of the light shielding portion 23 and the transparent portion 41 on the mask in FIG. 4 is 0.2 μm when projected on the wafer. Also, the illumination light is a KrF excimer laser light (wavelength 248n
m), the numerical aperture of the projection optical system is 0.6. It is known that the resist reacts to an electric field and the magnetic field does not contribute to the exposure of the resist. Looking at the electric field intensity distribution in the resist, the reflected light penetrates to the light-shielded portion in the S-polarized light, but does not penetrate in the P-polarized light. Therefore, in FIG.
If the illumination optical system of (a) is used, the influence of substrate reflection can be reduced.

【0010】このような現象の生じる理由を以下に説明
する。光の反射率は偏光状態により大きく異なることが
知られている。例えば、吸収を持たない媒質にブリュー
スター角で光を入射すると、P偏光の反射率は0とな
る。半導体基板は一般的に光を吸収するのでブリュース
ター角は存在しないが、光が斜めに入射した場合、P偏
光の反射率はS偏光に比べずっと小さくなる。具体的に
レジスト(屈折率n=1.76、吸収係数k=0.01
2)とSi(n=1.41、k=3.35)との境界面
での反射率を計算した結果を図7に示す。計算に用いた
屈折率はKrFエキシマレーザの波長λ=248nmにお
ける値である。入射角が60度付近ではP偏光の反射率
はS偏光の半分程度に下がっている。物理的説明として
は、S偏光の場合には境界面で生じる誘導電流の向きと
電場の向きが一致するため大きな誘導電流が生じ反射率
が大きくなるが、P偏光の場合には一致しないため誘導
電流が生じ難くなり反射率が落ちる。図7の反射率の計
算は平面的な基板に斜め方向から光が入射した場合に相
当するが、段差を持った基板の場合にも誘導電流の向き
を考慮すると同様な現象が生じる。
The reason why such a phenomenon occurs will be described below. It is known that the reflectance of light varies greatly depending on the polarization state. For example, when light is incident on a medium that does not have absorption at the Brewster angle, the reflectance of P-polarized light becomes zero. Since the semiconductor substrate generally absorbs light, there is no Brewster angle, but when light is incident obliquely, the reflectance of P-polarized light is much smaller than that of S-polarized light. Specifically, resist (refractive index n = 1.76, absorption coefficient k = 0.01
FIG. 7 shows the result of calculating the reflectance at the interface between 2) and Si (n = 1.41, k = 3.35). The refractive index used for the calculation is a value at the wavelength λ = 248 nm of the KrF excimer laser. When the incident angle is around 60 degrees, the reflectance of P-polarized light is about half that of S-polarized light. As a physical explanation, in the case of S-polarized light, the direction of the induced current generated at the boundary surface and the direction of the electric field are the same, so that a large induced current is generated and the reflectance is large. It becomes difficult to generate an electric current and the reflectance decreases. The calculation of the reflectance in FIG. 7 corresponds to the case where light is incident on the planar substrate from an oblique direction, but the same phenomenon occurs also in the case of a substrate having a step in consideration of the direction of the induced current.

【0011】[0011]

【実施例】本発明の照明光学装置の第1の実施例を図8
に示す。狭帯域化したKrFエキシマレーザ光源81を
出た光は直線偏光している。この光はコリメータレンズ
82を通りフライアイレンズ83に入射する。フライア
イレンズ83の後ろに置かれた空間フィルタ11により
入射平面内に偏光回転された光はコンデンサレンズ84
を通りマスク85を照明する。空間フィルタ11の上面
図を図1に示す。フライアイレンズ83に対応する小開
口部には偏光方向がそれぞれの入射平面内で直線偏光と
なるように1/2λ板12、13、14がはめられてい
る。空間フィルタ11の代わりに図9に示す空間フィル
タ91を用いると輪帯照明の効果により解像力が向上す
る。図中の92〜95は1/2λ板である。
EXAMPLE FIG. 8 shows a first example of the illumination optical apparatus of the present invention.
Shown in. The light emitted from the narrow band KrF excimer laser light source 81 is linearly polarized. This light passes through the collimator lens 82 and enters the fly-eye lens 83. The light polarized and rotated in the incident plane by the spatial filter 11 placed behind the fly-eye lens 83 is condensed by the condenser lens 84.
And illuminates the mask 85. A top view of the spatial filter 11 is shown in FIG. 1 / 2.lamda. Plates 12, 13, and 14 are fitted in the small openings corresponding to the fly-eye lens 83 so that the polarization direction becomes linearly polarized in each incident plane. When the spatial filter 91 shown in FIG. 9 is used instead of the spatial filter 11, the resolution is improved due to the effect of annular illumination. 92 to 95 in the figure are 1/2 λ plates.

【0012】図10は本発明の照明光学装置の第2の実
施例である。狭帯域化したKrFエキシマレーザ光源8
1を出た光は直線偏光している。この光は偏光回転素子
101を通ることにより偏光面が回転する。偏光回転量
は偏光回転制御部102により制御される。また、同時
に反射鏡103と105を回転機構104および106
によりそれぞれ直交方向に回転することにより、レーザ
光がフライアイレンズ83の全面あるいはその一部を走
査している。偏光回転制御部102と回転機構104お
よび106のタイミングを合わせることにより、フライ
アイレンズ83からの照明光が常に入射平面内で直線偏
光となるように制御されている。偏光回転素子101と
制御部102の組み合わせとしては、例えば1/2λ板
と回転機構などを用いることができる。
FIG. 10 shows a second embodiment of the illumination optical apparatus of the present invention. A narrow band KrF excimer laser light source 8
The light emitted from 1 is linearly polarized. This light passes through the polarization rotator 101, so that the plane of polarization is rotated. The polarization rotation amount is controlled by the polarization rotation control unit 102. At the same time, the reflecting mirrors 103 and 105 are rotated by rotating mechanisms 104 and 106.
The laser light scans the entire surface of the fly-eye lens 83 or a part thereof by rotating in the orthogonal directions. By adjusting the timings of the polarization rotation control unit 102 and the rotation mechanisms 104 and 106, the illumination light from the fly-eye lens 83 is controlled so as to be always linearly polarized in the incident plane. As a combination of the polarization rotation element 101 and the control unit 102, for example, a 1 / 2λ plate and a rotation mechanism can be used.

【0013】なお、以上の実施例では光源としてKrF
エキシマレーザを用いたが、ArFエキシマレーザ、高
圧水銀ランプのi線、g線、あるいはX線などを代わり
に用いることもできる。光源が偏光していない場合に
は、偏光板などの偏光素子を光源と偏光回転素子の間に
挿入すれば良い。基板もSiに限らず、Al、SiO2
などあらゆるものに適用できる。
In the above embodiment, KrF is used as the light source.
Although an excimer laser was used, an ArF excimer laser, i-line, g-line, or X-ray of a high-pressure mercury lamp can be used instead. When the light source is not polarized, a polarizing element such as a polarizing plate may be inserted between the light source and the polarization rotating element. The substrate is not limited to Si, but Al, SiO 2
It can be applied to everything.

【0014】[0014]

【発明の効果】以上詳述したように本発明の照明光学装
置によれば、反射防止膜やダイ入りレジストを用いずと
も、基板からの反射光を著しくかつ簡便に低減できる。
As described in detail above, according to the illumination optical device of the present invention, the reflected light from the substrate can be significantly and easily reduced without using an antireflection film or a die-containing resist.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例である照明光学装置に用
いられる空間フィルタの第1の例を示す図。
FIG. 1 is a diagram showing a first example of a spatial filter used in an illumination optical device according to a first embodiment of the present invention.

【図2】直入射照明と斜入射照明による回折光の進行方
向を示す図。
FIG. 2 is a diagram showing traveling directions of diffracted light by direct incidence illumination and oblique incidence illumination.

【図3】斜入射照明における2次光源の形状と偏光方向
を示す図。
FIG. 3 is a diagram showing the shape and polarization direction of a secondary light source in oblique incidence illumination.

【図4】遮光部および透明部よりなるマスク。FIG. 4 is a mask including a light shielding portion and a transparent portion.

【図5】P偏光による斜入射照明をした場合のレジスト
内電場強度分布図。
FIG. 5 is an electric field intensity distribution diagram in a resist when oblique incidence illumination is performed by P-polarized light.

【図6】S偏光による斜入射照明をした場合のレジスト
内電場強度分布図。
FIG. 6 is an electric field intensity distribution diagram in a resist when oblique incidence illumination by S-polarized light is performed.

【図7】反射光の偏光依存性を示す図。FIG. 7 is a diagram showing polarization dependence of reflected light.

【図8】本発明の第1の実施例である照明光学装置を説
明するための図。
FIG. 8 is a diagram for explaining an illumination optical device that is a first embodiment of the present invention.

【図9】本発明の第1の実施例である照明光学装置に用
いられる空間フィルタの第2の例を示す図。
FIG. 9 is a diagram showing a second example of the spatial filter used in the illumination optical device according to the first embodiment of the present invention.

【図10】本発明の第2の実施例である照明光学装置を
説明するための図。
FIG. 10 is a diagram for explaining an illumination optical device that is a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

11 空間フィルタ 12、13、14 1/2λ板 21 直入射照明光 22 ガラス基板 23 遮光部 24 −1次光 25 0次光 26 +1次光 27 投影光学系 28 ウェファ 29 斜入射照明光 30 2次光源 31、32 開口部 41 透明部 51 電場強度分布 52 レジスト膜 53 Si基板 81 レーザ光源 82 コリメータレンズ 83 フライアイレンズ 84 コンデンサレンズ 85 マスク 91 空間フィルタ 92、93、94、95 1/2λ板 101 偏光回転素子 102 偏光回転制御部 103、105 反射鏡 104、106 回転機構 11 Spatial Filters 12, 13, 14 1/2 λ Plate 21 Direct Incident Illumination Light 22 Glass Substrate 23 Light-shielding Part 24 -1st Order Light 25 0th Order Light 26 + 1st Order Light 27 Projection Optical System 28 Wafer 29 Oblique Incident Illumination Light 30 2nd Order Light source 31, 32 Opening portion 41 Transparent portion 51 Electric field intensity distribution 52 Resist film 53 Si substrate 81 Laser light source 82 Collimator lens 83 Fly eye lens 84 Condenser lens 85 Mask 91 Spatial filter 92, 93, 94, 95 1 / 2λ plate 101 Polarized light Rotation element 102 Polarization rotation control section 103, 105 Reflecting mirror 104, 106 Rotation mechanism

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】照明光学系からの照明光により物体上の所
定領域を均一に照明する照明光学装置において、前記照
明光の一部あるいは全体を前記所定領域に対し傾斜光と
する手段と、前記傾斜光の偏光を前記傾斜光の入射面内
に含まれる直線偏光とする手段とを有することを特徴と
する照明光学装置。
1. An illumination optical device for uniformly illuminating a predetermined area on an object with illumination light from an illumination optical system, and means for making a part or the whole of the illumination light oblique to the predetermined area. An illumination optical device comprising: a means for converting the polarized light of the inclined light into a linearly polarized light included in the incident surface of the inclined light.
【請求項2】照明光の偏光が入射平面に対しP偏光であ
ることを特徴とする請求項1記載の照明光学装置。
2. The illumination optical device according to claim 1, wherein the polarization of the illumination light is P-polarized with respect to the plane of incidence.
JP6099816A 1994-02-24 1994-05-13 Illumination optics Expired - Lifetime JP2836483B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP6099816A JP2836483B2 (en) 1994-05-13 1994-05-13 Illumination optics
US08/394,942 US5559583A (en) 1994-02-24 1995-02-24 Exposure system and illuminating apparatus used therein and method for exposing a resist film on a wafer
KR1019950003742A KR0173168B1 (en) 1994-02-24 1995-02-24 Exposure system and illuminating apparatus used therein and method for exposing a resist film on a wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6099816A JP2836483B2 (en) 1994-05-13 1994-05-13 Illumination optics

Publications (2)

Publication Number Publication Date
JPH07307268A true JPH07307268A (en) 1995-11-21
JP2836483B2 JP2836483B2 (en) 1998-12-14

Family

ID=14257375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6099816A Expired - Lifetime JP2836483B2 (en) 1994-02-24 1994-05-13 Illumination optics

Country Status (1)

Country Link
JP (1) JP2836483B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0764858A2 (en) * 1995-09-23 1997-03-26 Carl Zeiss Device for producing radial polarisation and microlithographic projection illumination arrangement using the same
WO2005027207A1 (en) * 2003-09-12 2005-03-24 Canon Kabushiki Kaisha Illumination optical system and exposure apparatus using the same
JP2006269853A (en) * 2005-03-25 2006-10-05 Sony Corp Exposure apparatus and method of exposure
EP1857880A1 (en) * 2003-04-09 2007-11-21 Nikon Corporation Exposure method and apparatus and device manufacturing method
JP2007311794A (en) * 2006-05-15 2007-11-29 Advanced Mask Technology Center Gmbh & Co Kg Illuminating system and photolithography equipment
US7697117B2 (en) 2004-05-25 2010-04-13 Asml Holding N.V. Providing a pattern of polarization
JP2011175213A (en) * 2010-02-25 2011-09-08 V Technology Co Ltd Laser emitting device
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US8861084B2 (en) 2004-01-16 2014-10-14 Carl Zeiss Smt Ag Polarization-modulating optical element
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9581911B2 (en) 2004-01-16 2017-02-28 Carl Zeiss Smt Gmbh Polarization-modulating optical element
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
CN113272735A (en) * 2018-11-07 2021-08-17 伟摩有限责任公司 System and method for manufacturing light guide elements using angled lithography
US11994802B2 (en) 2021-09-01 2024-05-28 Waymo Llc Systems and methods that utilize angled photolithography for manufacturing light guide elements

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3718511B2 (en) 2003-10-07 2005-11-24 株式会社東芝 Exposure apparatus inspection mask, exposure apparatus inspection method, and exposure apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05226225A (en) * 1992-02-10 1993-09-03 Mitsubishi Electric Corp Projection aligner and polarizer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05226225A (en) * 1992-02-10 1993-09-03 Mitsubishi Electric Corp Projection aligner and polarizer

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0764858A2 (en) * 1995-09-23 1997-03-26 Carl Zeiss Device for producing radial polarisation and microlithographic projection illumination arrangement using the same
EP0764858A3 (en) * 1995-09-23 1998-07-15 Carl Zeiss Device for producing radial polarisation and microlithographic projection illumination arrangement using the same
US6191880B1 (en) 1995-09-23 2001-02-20 Carl-Zeiss-Stiftung Radial polarization-rotating optical arrangement and microlithographic projection exposure system incorporating said arrangement
US6392800B2 (en) 1995-09-23 2002-05-21 Carl-Zeiss-Stiftung Radial polarization-rotating optical arrangement and microlithographic projection exposure system incorporating said arrangement
US6885502B2 (en) 1995-09-23 2005-04-26 Carl-Zeiss-Stiftung Radial polarization-rotating optical arrangement and microlithographic projection exposure system incorporating said arrangement
EP1857880A1 (en) * 2003-04-09 2007-11-21 Nikon Corporation Exposure method and apparatus and device manufacturing method
US9885959B2 (en) 2003-04-09 2018-02-06 Nikon Corporation Illumination optical apparatus having deflecting member, lens, polarization member to set polarization in circumference direction, and optical integrator
US7446858B2 (en) 2003-04-09 2008-11-04 Nikon Corporation Exposure method and apparatus, and method for fabricating device
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
WO2005027207A1 (en) * 2003-09-12 2005-03-24 Canon Kabushiki Kaisha Illumination optical system and exposure apparatus using the same
US7196773B2 (en) 2003-09-12 2007-03-27 Canon Kabushiki Kaisha Illumination optical system and exposure apparatus using the same
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9760014B2 (en) 2003-10-28 2017-09-12 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US10281632B2 (en) 2003-11-20 2019-05-07 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power to rotate linear polarization direction
US9581911B2 (en) 2004-01-16 2017-02-28 Carl Zeiss Smt Gmbh Polarization-modulating optical element
US9316772B2 (en) 2004-01-16 2016-04-19 Carl Zeiss Smt Gmbh Producing polarization-modulating optical element for microlithography system
US8861084B2 (en) 2004-01-16 2014-10-14 Carl Zeiss Smt Ag Polarization-modulating optical element
US10007194B2 (en) 2004-02-06 2018-06-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10241417B2 (en) 2004-02-06 2019-03-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10234770B2 (en) 2004-02-06 2019-03-19 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US7697117B2 (en) 2004-05-25 2010-04-13 Asml Holding N.V. Providing a pattern of polarization
JP2006269853A (en) * 2005-03-25 2006-10-05 Sony Corp Exposure apparatus and method of exposure
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
JP2007311794A (en) * 2006-05-15 2007-11-29 Advanced Mask Technology Center Gmbh & Co Kg Illuminating system and photolithography equipment
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US9857599B2 (en) 2007-10-24 2018-01-02 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
JP2011175213A (en) * 2010-02-25 2011-09-08 V Technology Co Ltd Laser emitting device
CN113272735A (en) * 2018-11-07 2021-08-17 伟摩有限责任公司 System and method for manufacturing light guide elements using angled lithography
US11994802B2 (en) 2021-09-01 2024-05-28 Waymo Llc Systems and methods that utilize angled photolithography for manufacturing light guide elements

Also Published As

Publication number Publication date
JP2836483B2 (en) 1998-12-14

Similar Documents

Publication Publication Date Title
US5559583A (en) Exposure system and illuminating apparatus used therein and method for exposing a resist film on a wafer
JP2836483B2 (en) Illumination optics
US7697117B2 (en) Providing a pattern of polarization
US6965484B2 (en) Optical imaging systems and methods using polarized illumination and coordinated pupil filter
US7199862B2 (en) Beam-splitter optics design that maintains an unflipped (unmirrored) image for a catadioptric lithographic system
JP2866243B2 (en) Projection exposure apparatus and method of manufacturing semiconductor device
US7548370B2 (en) Layered structure for a tile wave plate assembly
EP0447132B1 (en) Reflection-type photomask and reflection-type photolithography method
US7014963B2 (en) Non absorbing reticle and method of making same
JPH04348020A (en) Reflection-type x-ray exposure mask
JP5359128B2 (en) Polarizing element and manufacturing method thereof
JPH0722308A (en) Exposure of semiconductor element and dummy mask
TW200817843A (en) Exposure apparatus and device manufacturing method
JP2694707B2 (en) Projection exposure method and projection exposure apparatus
JP3110245B2 (en) Reflective exposure mask and pattern forming method
JP3178516B2 (en) Phase shift mask
JPH0815848A (en) Photoreticle
JPH06325994A (en) Pattern forming method, pattern forming device and mask
JPH07235474A (en) Aligner and aligning method
JP3173100B2 (en) Projection exposure equipment
KR970004421B1 (en) Photolithography apparatus in semiconductor
JPH0792656A (en) Reticle for exposing, exposing device and exposing method for production of semiconductor device
JPH07254542A (en) Projection aligner
JP3582028B2 (en) Method for forming halftone phase shift mask
JPH1165083A (en) Manufacture of semiconductor device, and photomask and its manufacture

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980908