WO2005036619A1 - Illumination optical device, and exposure device and method - Google Patents

Illumination optical device, and exposure device and method Download PDF

Info

Publication number
WO2005036619A1
WO2005036619A1 PCT/JP2004/014323 JP2004014323W WO2005036619A1 WO 2005036619 A1 WO2005036619 A1 WO 2005036619A1 JP 2004014323 W JP2004014323 W JP 2004014323W WO 2005036619 A1 WO2005036619 A1 WO 2005036619A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light beam
illumination
conversion element
polarization
Prior art date
Application number
PCT/JP2004/014323
Other languages
French (fr)
Japanese (ja)
Inventor
Mitsunori Toyoda
Original Assignee
Nikon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corporation filed Critical Nikon Corporation
Priority to JP2005514555A priority Critical patent/JPWO2005036619A1/en
Publication of WO2005036619A1 publication Critical patent/WO2005036619A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70091Illumination settings, i.e. intensity distribution in the pupil plane or angular distribution in the field plane; On-axis or off-axis settings, e.g. annular, dipole or quadrupole settings; Partial coherence control, i.e. sigma or numerical aperture [NA]
    • G03F7/70108Off-axis setting using a light-guiding element, e.g. diffractive optical elements [DOEs] or light guides

Definitions

  • Illumination optical device Illumination optical device, exposure apparatus, and exposure method
  • the present invention relates to an illumination optical device, an exposure device, and an exposure method, and more particularly, to an exposure device for manufacturing a micro device such as a semiconductor device, an imaging device, a liquid crystal display device, and a thin-film magnetic head by a lithography process.
  • a micro device such as a semiconductor device, an imaging device, a liquid crystal display device, and a thin-film magnetic head by a lithography process.
  • a secondary light source (generally, a predetermined light intensity distribution on an illumination pupil plane) is used as a substantial surface light source that also has a light source power, an emitted light flux power, and an optical light source power.
  • the luminous flux of the secondary light source enters the condenser lens after being restricted via the aperture stop located near the rear focal plane of the fly-eye lens.
  • the light beam condensed by the condenser lens illuminates the mask on which a predetermined pattern is formed in a superimposed manner.
  • the light transmitted through the mask pattern forms an image on the wafer via the projection optical system.
  • the mask pattern is projected and exposed (transferred) on the wafer.
  • the pattern formed on the mask is highly integrated, and it is essential to obtain a uniform illuminance distribution on the wafer in order to accurately transfer this fine pattern onto the wafer.
  • ⁇ value aperture stop diameter ⁇ pupil diameter of the projection optical system.
  • ⁇ value numerical aperture on the exit side of the illumination optical system ⁇ numerical aperture on the incident side of the projection optical system. Attention has also been focused on a technology that forms an annular or quadrupolar secondary light source on the rear focal plane of the fly-eye lens to improve the depth of focus and resolution of the projection optical system.
  • the present invention has been made in view of the above-described problems. For example, when mounted on an exposure apparatus, an illumination condition suitable for a mask pattern in which two types of patterns having different characteristics coexist is set to a light amount.
  • An object is to provide an illumination optical device that can be realized while suppressing loss. Further, the present invention uses an illumination optical device capable of realizing illumination conditions suitable for a mask pattern in which, for example, two types of patterns having different characteristics are mixed, by using an appropriate optical mask realized in accordance with the pattern characteristics of the mask.
  • An object of the present invention is to provide an exposure apparatus and an exposure method capable of performing good exposure under a variety of illumination conditions.
  • an illumination optical device that illuminates a surface to be irradiated based on a light beam from a light source unit.
  • a first light beam conversion element that is arranged in the light path of the light beam from the light source unit and converts the light beam into a light beam having a first cross-sectional shape
  • a second luminous flux conversion element disposed in the optical path of the luminous flux from the light source unit, for converting the luminous flux into a luminous flux having a second cross-sectional shape
  • the luminous flux having the first cross-sectional shape is arranged in the optical path between the luminous flux having the first cross-sectional shape from the first luminous flux conversion element and the luminous flux having the second cross-sectional shape from the second luminous flux converting element.
  • a condensing optical system that guides a light beam having the second cross-sectional shape to a second area different from the first area on the illumination pupil plane, while guiding the light flux to the first area on the illumination pupil plane of the illumination optical device;
  • a polarization state changer arranged in an optical path between a light source unit and the illumination pupil plane to change the polarization state of the light flux reaching the first area and the polarization state of the light flux reaching the second area independently.
  • an illumination optical device for illuminating a surface to be illuminated
  • an illumination optical device including a polarization state control means for independently controlling.
  • an illumination optical device for illuminating an irradiated surface
  • a first light beam conversion element for converting a light beam from the light source unit into a light beam having a first cross-sectional shape corresponding to a first region on the illumination pupil plane;
  • a second light beam conversion element for converting a light beam from the light source unit into a light beam having a second cross-sectional shape corresponding to a second region on the illumination pupil plane;
  • a beam splitter for splitting a light beam from the light source unit and guiding the light beam to the first light beam conversion element and the second light beam conversion element, respectively;
  • Intensity changing means for changing the ratio of the intensity of light reaching the first region via the first light beam conversion device and the intensity of light reaching the second region via the second light beam conversion device.
  • an illumination optical device characterized by comprising:
  • an illumination optical device for illuminating a surface to be irradiated
  • a first light beam conversion element for converting a light beam from the light source unit into a light beam having a first cross-sectional shape corresponding to a first region on the illumination pupil plane;
  • a second light beam conversion element for converting a light beam from the light source unit into a light beam having a second cross-sectional shape corresponding to a second region on the illumination pupil plane;
  • An illumination optical device wherein the first light beam conversion element and the second light beam conversion element are configured to be exchangeable with respect to an illumination light path.
  • an illumination optical apparatus for illuminating a surface to be illuminated based on a light flux of a light source unit
  • a polarization fluctuation eliminating unit disposed between the light source unit and the irradiated surface to prevent a change in the polarization state of a light beam from the light source unit;
  • the polarization fluctuation eliminating means includes: a polarization beam splitter that divides a light beam from the light source unit according to a polarization state; a polarization adjustment member that aligns the polarization state of the light beam divided by the polarization beam splitter; And a light beam combining optical system for combining the light beams split by the beam splitter.
  • an illumination optical apparatus for illuminating a mask.
  • An exposure device comprising: exposing a pattern of the mask onto a photosensitive substrate.
  • the polarization state of the first region and the polarization state of the second region on the illumination pupil plane are obtained by the action of two or more light beam conversion elements, the condensing optical system, and the polarization state changing means. State can be controlled independently.
  • the light reaching the first area on the illumination pupil plane is formed by the action of the polarizing beam splitter, the two or more light beam converting elements, and the polarization state adjusting means for adjusting the polarization state of the light incident on the polarizing beam splitter. It is possible to change the ratio between the intensity of the light and the intensity of the light reaching the second region.
  • the illumination optical device of the present invention when the illumination optical device of the present invention is mounted on an exposure apparatus, it is possible to realize illumination conditions suitable for a mask pattern in which two types of patterns having different characteristics are mixed while suppressing loss of light amount. it can. Further, in the exposure apparatus and the exposure method using the illumination optical device of the present invention, it is possible to realize illumination conditions suitable for a mask pattern in which two types of patterns having different characteristics are mixed. Good exposure can be performed under appropriate lighting conditions realized by the above, and thus a good device can be manufactured with high throughput.
  • the polarization states of the vertically or horizontally polarized light and the 45 or 135 degree polarized light can be separately adjusted. Exposure can be performed while favorably correcting polarization state collapse caused by an optical path bending mirror disposed in an optical path or a projection optical path.
  • FIG. 1 is a diagram schematically showing a configuration of an exposure apparatus provided with an illumination optical device according to a first embodiment of the present invention.
  • FIG. 2 is a diagram showing an annular tripolar secondary light source formed on an illumination pupil plane in the first embodiment.
  • FIG. 3 is a diagram showing a pentapole secondary light source and a deformed annular shape formed on an illumination pupil plane in the first embodiment.
  • ⁇ 4 ⁇ is a view schematically showing a configuration of a main part of an exposure apparatus provided with an illumination optical device according to a second embodiment of the present invention.
  • FIG. 5 is a diagram schematically showing a main configuration of an exposure apparatus including an illumination optical device according to a modification of the first embodiment.
  • FIG. 6 is a diagram schematically showing a main configuration of an exposure apparatus including an illumination optical device according to a modification of the second embodiment.
  • FIG. 7 is a diagram schematically showing a main configuration of an exposure apparatus including an illumination optical device according to a modification of the first or second embodiment.
  • FIG. 8 is a diagram schematically showing a configuration of a main part of an exposure apparatus provided with an illumination optical device according to a modification shown in FIG. 7.
  • FIG. 9 is a view showing an octupole secondary light source formed on an illumination pupil plane in the modification shown in FIG. 7.
  • FIG. 10 is a flowchart of a method for obtaining a semiconductor device as a micro device.
  • FIG. 11 is a flowchart of a method for obtaining a liquid crystal display element as a micro device.
  • FIG. 1 is a view schematically showing a configuration of an exposure apparatus provided with an illumination optical device according to a first embodiment of the present invention.
  • the Z axis is along the normal direction of the wafer W as the photosensitive substrate
  • the Y axis is in the plane of the wafer W
  • the Y axis is in the direction parallel to the plane of FIG.
  • the exposure apparatus includes a light source 1 for supplying exposure light (illumination light).
  • a light source 1 for supplying exposure light (illumination light).
  • the light source 1 for example, a KrF excimer laser light source that supplies light having a wavelength of 248 nm or an ArF excimer laser light source that supplies light having a wavelength of 193 nm can be used.
  • the almost parallel light flux emitted from the light source 1 along the Z direction is reflected by the folding mirror in the Y direction. After being deflected to the first prism assembly 2 and the second prism assembly 3, the light enters the beam matching unit 4.
  • the first prism assembly 2 is integrally formed by a wedge-shaped first quartz prism 2a and a wedge-shaped first quartz prism 2b having a shape complementary to the first quartz prism 2a. Have been.
  • the second prism assembly 3 is integrally formed by a wedge-shaped second quartz prism 3a and a wedge-shaped second quartz prism 3b having a shape complementary to the second quartz prism 3a. I have.
  • the first prism assembly 2 and the second prism assembly 3 are each configured to be rotatable about an optical axis AX. The operation of the first prism assembly 2 and the second prism assembly 3 will be described later.
  • the beam matching unit 4 includes a beam shaping unit for shaping the parallel beam supplied from the light source 1 into a parallel beam having a predetermined sectional shape, and an optical axis AX of the parallel beam supplied from the light source 1 Beam angle adjusting means for adjusting the angle with respect to the laser beam, beam parallel moving means for parallel moving the parallel beam supplied from the light source 1 with respect to the optical axis AX, and the like. That is, the beam matching unit 4 converts the incident light beam into a light beam having a cross section of an appropriate size and shape, guides the light beam to the polarization beam splitter 5 at the subsequent stage, and changes the position and angle of the light beam incident on the polarization beam splitter 5. It has a function to actively correct the degree fluctuation.
  • the prism type polarizing beam splitter 5 subsequent to the beam matching unit 4 is provided with a right-angle prism 6 as reflecting means.
  • the right-angle prism 6 is positioned so as to reflect the reflected light from the polarizing beam splitter 5 and to guide the reflected light along the optical path parallel to the optical path of the transmitted light of the polarizing beam splitter 5. Therefore, of the light incident on the polarization beam splitter 15, the S-polarized light reflected on the polarization splitting surface is reflected on the reflection surface of the right-angle prism 6 and then incident on the first diffractive optical element 7. On the other hand, of the light incident on the polarization beam splitter 5, the P-polarized light transmitted through the polarization splitting surface is incident on the second diffractive optical element 8.
  • a diffractive optical element is formed by forming a step having a pitch of about the wavelength of exposure light (illumination light) on a substrate, and has an action of diffracting an incident beam to a desired angle.
  • the first diffractive optical element 7 receives a parallel light beam having a rectangular cross section. In this case, it has the function of forming a circular light intensity distribution in the far field (or Fraunhofer diffraction region).
  • the second diffractive optical element 8 has a function of forming a dipole-like light intensity distribution spaced along the X direction in the far field when a parallel light beam having a rectangular cross section is incident. .
  • the first diffractive optical element 7 and the second diffractive optical element 8 are configured to be detachable from the illumination optical path, and can be exchanged for other first and second diffractive optical elements having different characteristics. Is configured.
  • the light beam passing through the first diffractive optical element 7 and the second diffractive optical element 8 passes through a zoom lens 9 to a microlens array (or fly-eye lens) 10 having an incident surface located near the rear focal plane. Each is incident. That is, the zoom lens 9 arranges the first diffractive optical element 7 and the second diffractive optical element 8 and the entrance surface of the microlens array 10 substantially in a Fourier transform relationship.
  • the microlens array 10 is an optical element composed of a large number of microlenses having a positive refractive power arranged vertically and horizontally and densely.
  • a microlens array is formed by, for example, performing etching on a parallel flat plate to form a group of microlenses.
  • each micro lens constituting the micro lens array is smaller than each lens element constituting the fly-eye lens.
  • the microlens array has a large number of microlenses (microrefractive surfaces) formed integrally without being isolated from each other.
  • a microlens array is a wavefront splitting optical integrator similar to a fly-eye lens in that lens elements having positive refracting power are arranged vertically and horizontally.
  • the light beam passing through the first diffractive optical element 7 is transmitted to the rear focal plane of the zoom lens 9 (and thus to the incident surface of the microlens array 10), for example, in a circular shape centered on the optical axis AX.
  • the territory is formed.
  • the luminous flux passing through the second diffractive optical element 8 is spaced at the rear focal plane of the zoom lens 9 (and, consequently, at the entrance plane of the microlens array 10), for example, along the optical axis AX in the X direction. It forms a dipole illumination field in the X direction that also has two separate circular illumination field forces.
  • the light beam incident on the microlens array 10 is two-dimensionally split, and the rear focal plane of the microlens array 10 has an illumination formed by the incident light beam, as shown in FIG. Field and
  • a secondary light source having the same light intensity distribution that is, a circular surface light source 3 la centered on the optical axis AX, and two circular light sources spaced apart along the X direction around the optical axis AX
  • a three-pole secondary light source (31a, 31b) in the X direction consisting of a substantial surface light source of 3 lb is formed.
  • the luminous flux from the secondary light source in the X direction formed on the rear focal plane (illumination pupil plane) of the microlens array 10 is subjected to the condensing operation of the condenser optical system 11 and then is subjected to mask brightening.
  • the lamp 12 is illuminated in a superimposed manner.
  • a rectangular illumination field corresponding to the shape and the focal length of each microlens constituting the microlens array 10 is formed on the mask blind 12 as the illumination field stop.
  • the light flux passing through the rectangular opening (light transmitting portion) of the mask blind 12 irradiates the mask M on which a predetermined pattern is formed in a superimposed manner after receiving the light-condensing action of the imaging optical system 13.
  • the imaging optical system 13 forms an image of the rectangular opening of the mask blind 12 on the mask M.
  • the light flux transmitted through the pattern of the mask M forms an image of the mask pattern on the wafer W as a photosensitive substrate via the projection optical system PL.
  • each exposure area of the wafer W The pattern of the mask M is sequentially exposed.
  • the focal length of the zoom lens 9 changes, the entire secondary light source is similarly enlarged or reduced.
  • the second diffractive optical element 8 is a diffractive optical element for dipole illumination in the X direction that forms a dipole secondary light source spaced along the X direction about the optical axis AX.
  • the element is configured.
  • a second diffractive optical element 8a (not shown) for Z-direction dipole illumination is set in the illumination optical path, so that the Z-direction tripole illumination can be performed. It can be performed.
  • the second diffractive optical element 8a for dipole illumination in the Z direction has a function of forming a dipole-like light intensity distribution spaced along the Z direction in the far field when a parallel light beam enters. .
  • the light beam passing through the second diffractive optical element 8a forms a dipole-shaped illumination field on the incident surface of the microlens array 10, for example, spaced along the optical axis AX in the Z direction.
  • the rear focal plane of the microlens array 10 has a substantially circular light source 31a centered on the optical axis AX and a Z-axis centered on the optical axis AX. direction , And a secondary light source (31a, 31c) having three poles in the Z direction is formed, which is composed of two substantially circular surface light sources 31c spaced apart from each other.
  • the second diffractive optical element 8b for quadrupole illumination has a function of forming a quadrupolar light intensity distribution in the far field when a parallel light beam enters. Therefore, the light beam passing through the second diffractive optical element 8b forms, for example, a quadrupole illumination field centered on the optical axis AX on the incident surface of the microlens array 10. As a result, as shown in FIG.
  • the rear focal plane of the microphone-aperture lens array 10 has a substantially circular circular surface light source 31a centered on the optical axis AX, and a circular centered light source 31a
  • a five-pole secondary light source (31a, 31d) consisting of four circular substantially surface light sources 31d arranged at the vertices of a square or rectangle having one side along the X direction is formed. Is done.
  • modified annular illumination can be performed.
  • the second diffractive optical element 8c for annular illumination has a function of forming an annular (annular) light intensity distribution in the far field when a parallel light beam enters. Therefore, the light beam passing through the second diffractive optical element 8c forms, for example, an annular illumination field around the optical axis AX on the incident surface of the micro lens array 10.
  • the rear focal plane of the microlens array 10 has a substantially circular surface light source 31a centered on the optical axis AX and a circular surface light source 31a centered on the optical axis AX.
  • a deformed annular secondary light source (31a, 31e) including the annular annular surface light source 31e is formed.
  • a second diffractive optical element 8 for dipole illumination in the X direction a second diffractive optical element 8a for dipole illumination in the Z direction, a second diffractive optical element 8b for quadrupole illumination, and an annular illumination
  • the number and arrangement of the surface light sources formed apart from the optical axis AX a second diffractive optical element 8c, the number and arrangement of the surface light sources formed apart from the optical axis AX , And the shape and size of each surface light source can be changed.
  • the first diffractive optical element 7 forms a relatively small circular substantially surface light source around the optical axis AX to perform circular illumination with a relatively small ⁇ value.
  • a diffractive optical element for small ⁇ illumination instead of the first diffractive optical element 7 for small ⁇ illumination, a first diffractive optical element having other characteristics is used in the illumination optical path. By setting to the middle, the shape and size of the relatively small surface light source centered on the optical axis AX can be changed.
  • the light that reaches the surface light source (31a) formed around the optical axis AX is S-polarized light, and each of the surface light sources (31b-31e) formed away from the optical axis AX.
  • the light reaching) is P-polarized.
  • the first diffractive optical element 7 is arranged in the optical path between the polarizing beam splitter 5 and the zoom lens 9
  • the second diffractive optical element 8 is arranged in the optical path between the right-angle prism 6 and the zoom lens 9.
  • the light reaching the surface light source formed around the optical axis AX becomes P-polarized light
  • the light reaching each surface light source formed away from the optical axis AX becomes S-polarized light.
  • the first diffractive optical element 7 converts the light beam from the light source 1 into a light beam having the first cross-sectional shape corresponding to the first region on the illumination pupil plane, specifically, the region including the optical axis. It constitutes a first light beam conversion element for conversion.
  • the second diffractive optical element 8 converts the light beam from the light source 1 into a second area on the illumination pupil plane, more specifically, a second sectional shape corresponding to an annular or multiple pole area away from the optical axis. And a second light beam conversion element for converting the light beam into a second light beam.
  • the polarizing beam splitter 5 splits the light beam from the light source 1 to a first diffractive optical element 7 as a first light beam converting element and a second diffractive optical element 8 as a second light beam converting element, respectively. It constitutes a beam splitter for guiding.
  • the vertex direction of the first quartz prism 2a and the vertex direction of the first quartz prism 2b are set in opposite directions, and the deflective action of the first quartz prism 2a is reduced by the first quartz prism 2b. It is configured to compensate (correct).
  • the vertex direction of the second quartz prism 3a and the vertex direction of the second quartz prism 3b are set in opposite directions, and the eccentric effect of the second quartz prism 3a is reduced by the second quartz prism. 3b is configured to compensate (correct).
  • the light source 1 When a KrF excimer laser light source or an ArF excimer laser light source is used as the light source 1, substantially linearly polarized light supplied from the light source 1 is incident on the first prism assembly 2.
  • the first prism assembly 2 is rotated about the optical axis AX while the second prism assembly 3 is fixed. Accordingly, the intensity ratio between the P-polarized light component and the S-polarized light component included in the light emitted from the second prism assembly 3 can be continuously changed.
  • the crystal optical axis of the first crystal prism 2a and the crystal optical axis of the second crystal prism 3a form an angle of 45 degrees.
  • the light emitted from the second prism assembly 3 can be converted into substantially unpolarized light regardless of the polarization state of the light incident on the first prism assembly 2.
  • the first quartz prism 2a and the second prism assembly 3 constitute a polarization state adjusting means for adjusting the polarization state of the light incident on the polarization beam splitter 5.
  • the S-polarized light component reflected by the polarization beam splitter 5 and the polarization beam splitter 5 are separated.
  • the intensity ratio with the transmitted P-polarized component changes.
  • the intensity of light reaching the surface light source (31a) formed so as to include the optical axis AX on the illumination pupil plane via the first diffractive optical element 7 and the illumination via the second diffractive optical element 8 The ratio with the intensity of light reaching the surface light source (31b-31e) formed on the pupil plane away from the optical axis AX changes.
  • the polarization state adjusting means (2, 3) and the polarization beam splitter 5 are connected to the optical axis AX as the first region via the first diffractive optical element 7 as the first light beam conversion element. And reaches the surface light source (31b-31e) distant from the optical axis AX as the second area via the second diffractive optical element 8 as the second light flux conversion element. It constitutes intensity changing means for changing the ratio with the light intensity.
  • the surface light source (31a) including the optical axis AX is formed on the illumination pupil plane via the first diffractive optical element 7 as the first light beam conversion element.
  • a surface light source (31b-31e) distant from the optical axis AX is formed on the illumination pupil plane via the second diffractive optical element 8 as a two-beam conversion element. Therefore, for example, a pattern suitable for small ⁇ illumination using the first diffractive optical element 7 and a pattern suitable for dipole illumination, quadrupole illumination, or annular illumination using the second diffractive optical element 8 are mixed. Lighting conditions suitable for such mask patterns, that is, appropriate lighting conditions necessary to faithfully transfer a mask pattern in which two types of patterns with different characteristics are mixed, while suppressing loss of light. it can.
  • the first diffractive optical element is actuated by the action of the intensity changing means (2, 3, 5).
  • the intensity of light reaching the surface light source (31a) formed so as to include the optical axis AX on the illumination pupil plane via the element 7 and the optical axis AX on the illumination pupil plane via the second diffractive optical element 8 It is possible to change the ratio with the intensity of light reaching the surface light source (31b-31e) formed away from the light source. Therefore, the ratio of the light intensity in small ⁇ illumination using the first diffractive optical element 7 to the light intensity in dipole illumination, quadrupole illumination, or annular illumination using the second diffractive optical element 8 is appropriately changed. In this way, it is possible to realize various illumination conditions with respect to light intensity.
  • the first diffractive optical element 7 as the first light beam converting element and the second diffractive optical element 8 as the second light beam converting element are configured to be interchangeable with respect to the illumination light path. Have been. Therefore, it is possible to switch between X-direction tripole illumination, ⁇ -direction tripole illumination, pentapole illumination, and modified annular illumination, and to determine the number and arrangement of surface light sources formed away from the optical axis ⁇ ⁇ ⁇ , and By changing the shape and size of each surface light source, and by changing the shape and size of a relatively small surface light source centered on the optical axis ⁇ , there is a wide variety of secondary light source forms. Lighting conditions can be realized.
  • FIG. 4 is a diagram schematically showing a main configuration of an exposure apparatus provided with an illumination optical device according to a second embodiment of the present invention.
  • the second embodiment has a configuration similar to that of the first embodiment.
  • a 1Z2 wavelength plate 14 is provided in the optical path between the right-angle prism 6 and the first diffractive optical element 7, and the optical path between the polarization beam splitter 5 and the second diffractive optical element 8 is provided.
  • the difference from the first embodiment is that a 1Z2 wavelength plate 15 is provided therein, and a prism assembly 16 is provided in the optical path between the first diffractive optical element 7 and the zoom lens 9. Therefore, in FIG.
  • the 1Z2 wavelength plate 14 in which the crystal optical axis is rotatable around the optical axis AX is arranged.
  • a 1Z2 wavelength plate 15 having a crystal optical axis rotatable around an optical axis AX is arranged.
  • a wedge-shaped A prism assembly 16 integrally formed of a quartz prism 16a of this type and a wedge-shaped quartz prism 16b having a shape complementary to the quartz prism 16a is arranged.
  • the prism assembly 16 is configured to be rotatable about the optical axis AX.
  • the apex direction of the quartz prism 16a and the apex direction of the quartz prism 16b are set to be opposite, and the quartz prism 16b compensates (corrects) the deflection effect of the quartz prism 16a.
  • the quartz prism 16b compensates (corrects) the deflection effect of the quartz prism 16a.
  • the prism assembly 16 by setting the direction of the crystal optic axis of the quartz prism 16a at an angle of 45 degrees with respect to the plane of polarization of the incident linearly polarized light, the light emitted from the prism assembly 16 is substantially reduced. It is converted to light in a non-polarized state.
  • the direction of the crystal optic axis of the quartz prism 16a is set at an angle of 0 or 90 degrees with respect to the plane of polarization of the incident linearly polarized light, the plane of polarization of the incident linearly polarized light will remain unchanged. Passes through assembly 16.
  • the 1Z2 wavelength plate 14 is provided between the right-angle prism 6 and the first diffractive optical element 7 and thus between the polarizing beam splitter 5 and the first diffractive optical element 7 as the first light beam converting element.
  • the first phase plate is arranged in the optical path between the first and second polarizers to change the direction of the plane of polarization of the incident linearly polarized light (ie, S-polarized light).
  • the 1Z2 wavelength plate 15 is disposed in the optical path between the polarizing beam splitter 5 and the second diffractive optical element 8 as the second light beam converting element, and polarizes incident linearly polarized light (ie, P-polarized light). It constitutes a second phase plate for changing the direction of the plane.
  • the prism assembly 16 is disposed in the optical path between the first diffractive optical element 7 and the zoom lens 9 and, consequently, in the optical path between the 1Z2 wavelength plate 14 as the first phase plate and the zoom lens 9. And a depolarizing element for converting incident linearly polarized light into unpolarized light.
  • the 1Z2 wavelength plate 14 and the prism assembly 16 cooperate to form an optical axis AX on the illumination pupil plane via the first diffraction optical element 7.
  • the polarization state of light reaching the surface light source (31a) can be set to linearly polarized light or non-polarized light having a polarization plane in an arbitrary direction. Further, by the action of the 1Z2 wavelength plate 15, the polarization state of light reaching the surface light source (31b-31e) formed apart from the optical axis AX on the illumination pupil plane via the second diffractive optical element 8 can be changed arbitrarily. Can be set to linearly polarized light having a polarization plane in the direction of.
  • the polarizing beam splitter 5, the 1Z2 wavelength plate 14, the 1Z2 wavelength plate 15, and the prism assembly 16 form the first region via the first diffractive optical element 7 as the first light beam conversion element.
  • the light reaching the surface light source (31a) including all the optical axes AX and the surface light source (31b-31e) separated from the optical axis AX as the second region via the second diffractive optical element 8 as the second light beam conversion element ) Constitutes a polarization state changing means for changing the polarization state of at least one of the light beams reaching the first and second light beams.
  • the polarization state changing means (5, 14, 15, 16), the first diffractive optical element 7, and the second diffractive optical element 8 form an optical axis AX as a first area on the illumination pupil plane.
  • Polarization state control means for independently controlling the polarization state of the surface light source (31a) including the surface light source (31a) and the polarization state of the surface light source (31b-31e) remote from the optical axis AX as the second area on the illumination pupil plane. Is composed.
  • the polarization state of the surface light source formed apart from the optical axis AX and the polarization state of the surface light source including the optical axis AX are independent of each other. It is possible to realize a variety of illumination conditions with respect to the polarization state of the secondary light source by appropriately changing.
  • the 1Z2 wavelength plate 14 as the first phase plate is disposed in the optical path between the rectangular prism 6 and the first diffractive optical element 7.
  • the present invention is not limited to this.
  • the 1Z2 wave plate 14 can be arranged in the optical path between the first diffractive optical element 7 and the zoom lens 9.
  • the 1Z2 wavelength plate 15 as the second phase plate is disposed in the optical path between the polarization beam splitter 5 and the first diffractive optical element 8.
  • the present invention is not limited to this.
  • the 1Z2 wavelength plate 15 can be arranged in the optical path between the second diffractive optical element 8 and the zoom lens 9.
  • the prism assembly 16 as a depolarizing element is arranged in the optical path between the first diffractive optical element 7 and the zoom lens 9.
  • the prism assembly 16 can be arranged in the optical path between the 1Z2 wavelength plate 14 as the first phase plate and the first diffractive optical element 7 without being limited to this.
  • the prism assembly 16 is arranged in the optical path between the second diffractive optical element 8 and the zoom lens 9 or in the optical path between the 1Z2 wavelength plate 15 as the second phase plate and the second diffractive optical element 8. You can also.
  • a prism assembly as a depolarizing element can be arranged on both sides of the optical path between the lens 9 and the prism 9.
  • FIG. 5 is a diagram schematically showing a configuration of a main part of an exposure apparatus including an illumination optical device according to a modification of the first embodiment. 5 is different from the first embodiment in the optical path between the power polarizing beam splitter 5 and the first diffractive optical element 7 having a configuration similar to that of the first embodiment.
  • FIG. 6 a modification of FIG. 6 will be described, focusing on differences from the first embodiment.
  • the reflection surface of the right-angle prism 6 is an amplitude division surface (typically a half mirror), and a pair of mirrors 17a and 17b are provided to detour light transmitted through the amplitude division surface.
  • An optical path is formed, and light guided along the bypass optical path is re-entered on the amplitude division plane so as to substantially match light reflected on the amplitude division plane.
  • FIG. 6 is a diagram schematically showing a main configuration of an exposure apparatus including an illumination optical device according to a modification of the second embodiment.
  • the modification of FIG. 6 is similar to that of the second embodiment except that the 1Z2 wave plate 14 is provided in the optical path between the right-angle prism 6 and the first diffractive optical element 7, and the 1Z2
  • This embodiment is different from the second embodiment in that the arrangement of the wave plate 15 and the prism assembly 16 is omitted.
  • a modification of FIG. 6 will be described, focusing on differences from the second embodiment.
  • the S-polarized light reflected by the polarization beam splitter 5 is incident on the 1Z2 wavelength plate 14 via the right-angle prism 6.
  • the light converted to P-polarized light via the 1Z2 wavelength plate 14 reaches the incident surface of the microphone lens array 10 in the P-polarized state via the first diffractive optical element 7 and the zoom lens 9.
  • the P-polarized light transmitted through the polarizing beam splitter 5 reaches the incident surface of the microlens array 10 in the P-polarized state via the second diffractive optical element 8 and the zoom lens 9.
  • the incident light is divided by the polarization beam splitter 5 in the polarization direction, and the reflected light of the polarization beam splitter 5 is used by using the 1Z2 wavelength plate 14 as a phase member.
  • the polarization beam splitter 5 After matching the polarization state to the polarization state of the transmitted light of the polarization beam splitter 5, the polarization beam splitter 5 passes through a zoom lens 9 (or a condenser lens) as an optical path combining optical system. The reflected light and transmitted light of one splitter 5 are combined.
  • the polarization state of the light incident on the polarization beam splitter 5 is changed by the influence of the light transmitting member that is disposed in the optical path upstream of the polarization beam splitter 5 and is formed of birefringent fluorite. Even if it fluctuates over time, the polarization state of the light combined via the zoom lens 9 can always be kept constant.
  • a wave plate (phase member) is used as a member for changing the direction of the plane of polarization of the linearly polarized light that enters.
  • an optical rotator not limited to a wave plate may be used.
  • the optical rotator for example, an optical rotator formed of quartz can be used.
  • a polarizer disclosed in Japanese Patent Application Publication No. 2003-35822 and US Patent Publication No. 2002Z176166A corresponding thereto may be applied instead of the 1Z2 wavelength plate 15.
  • the polarization state of light reaching the surface light source (31b-31e) formed apart from the optical axis AX on the illumination pupil plane via the second diffractive optical element 8 is changed to a circumference around the optical axis AX. It can be set to polarized light with a plane of polarization in the direction (tangential polarized light). It is preferable that the tangential polarizer is provided so as to be able to remove the illumination optical path force.
  • U.S. Patent Publication No. 2002Z176166A is incorporated herein by reference.
  • the polarization state of the illumination light to the mask M changes with time in various aspects.
  • the optical member disposed closer to the mask M than the polarizing beam splitter 5 only the optical member without changing the polarization state of light is disposed, that is, for example, a light transmitting member formed of fluorite. Is not preferably arranged.
  • two light beam conversion elements are used, but the number of light beam conversion elements is not limited to two. When three or more light beam conversion elements are used, the light beam from the light source section may be split into three or more branches.
  • FIGS. 7 to 9 show modified examples in which an off-axis catadioptric optical system having an optical path bending mirror for deflecting an optical path is applied as a catadioptric projection optical system.
  • FIG. 7A shows a first intermediate image of an object as an off-axis catadioptric optical system having a field region or a projection region (image forming region) in a region off the optical axis.
  • FIG. 3 is a diagram schematically illustrating a part of an exposure apparatus including a projection optical system PL including a refraction-type third imaging optical system G3 that forms a third image on the image surface as a final image (a tertiary image). is there.
  • FIG. 7 (a) shows the illumination optical device from the microlens array 10 as an optical integrator to the imaging optical system 13 for imaging the image of the mask blind 12. The illumination optical device of the modification shown in FIG.
  • the optical axis of the illumination optical device and the optical axis of the projection optical system PL are coaxial. The point that the optical axis of the illumination optical device is located almost at the center of the field of view of the projection optical system PL.
  • FIG. 7B shows a catadioptric first imaging optical system (Gl, G2) that forms a first intermediate image of an object as an off-axis catadioptric optical system.
  • Gl catadioptric first imaging optical system
  • a part of an exposure apparatus including a projection optical system PL including a refraction type second imaging optical system G3 for forming a final image (secondary image) as an intermediate image on an image plane.
  • FIG. 7 (b) the configuration other than the projection optical system PL is the same as that in FIG. 7 (a), so that the description is omitted here.
  • the off-axis catadioptric projection optical system shown in FIG. 7A is disclosed, for example, in US Patent Publication No. 2003ZOO 11755 and International Publication WO2004Z019128, and FIG.
  • the off-axis catadioptric projection optical system shown in b) is disclosed in, for example, US Pat. No. 5,805,334 and US Pat. No. 2002Z0039175.
  • US Patent Publication No. 2003Z0011755, International Publication WO2004Z019128, US Patent No. 5805334, and US Patent Publication No. 2002Z0039175 are incorporated by reference.
  • a polarization image in particular, a linearly polarized light (a circle centered on the optical axis) which becomes S-polarized with respect to the image plane.
  • V-polarized light (vibrates in the image plane in the X direction in the figure) Linearly polarized light with a plane) or H-polarized light (a straight line with a vibration plane in the Y direction Polarization degree) and the degree of polarization of ⁇ 45 degree polarization ( ⁇ on the image plane, and linear polarization with a vibration plane in the ⁇ 45 degree direction to the X direction in the figure) or 135 degree polarization ( ⁇ on the image plane). Therefore, the degree of polarization degree of linearly polarized light having a vibration plane in ⁇ 135 degrees with respect to the X direction in the drawing may be different from each other.
  • the light beam from the light source unit is divided into four branches, and four light beam conversion elements are used.
  • Each light beam conversion element converts the light beam into V polarized light, H polarized light, ⁇ 45 degree polarized light, and ⁇ 135 degree polarized light.
  • a corresponding light beam is generated, and the degree of polarization of each light beam may be adjusted so as to be S-polarized with respect to the image plane even after passing through the optical path bending mirror.
  • FIG. 8 (a) is a perspective view of a four-part polarization state changing unit
  • FIG. 8 (b) is a first YZ sectional view
  • FIG. 8 (c) is an XY sectional view
  • FIG. d) is a second YZ sectional view.
  • the polarization state changing means shown in FIG. 8 is, for example, the polarization state changing means (5-6) of the embodiment shown in FIG. 1 or the polarization state changing means (5, 14-16) of the embodiment shown in FIG. ),
  • the description of the light path on the light source side of the polarization state changing means and the description of the light path on the light condensing optical system side of the light flux conversion element will be omitted.
  • the polarization state changing means includes a first polarization beam splitter 17, a second polarization beam splitter 19a, a third polarization beam splitter 19b, a first rectangular prism 20a, The second right-angle prism 20b, the third right-angle prism 23, the 1Z2 wavelength plate 18a as the first phase plate, the 1Z2 wavelength plate 18b as the second phase plate, the 1/2 wavelength plate 21a as the third phase plate, and the fourth A 1Z2 wavelength plate 22a as a phase plate, a 1/2 wavelength plate 21b as a fifth phase plate, and a 1Z2 wavelength plate 22b as a sixth phase plate are provided.
  • the 1Z2 wave plates 18a, 18b, 21a, 21b, 22a, 22b are each rotatable around the Y axis in the figure.
  • FIG. 8A the illustration of the first to fourth diffractive optical elements 24a to 25b as the first to fourth light beam conversion elements is omitted.
  • the light from the polarization state adjusting means (not shown) (the first and second prism assemblies 2 and 3 in FIG. 1) is polarized and separated by the first polarization beam splitter 17, and the first polarization beam is split.
  • P-polarized light transmitted through the beam splitter 17 (with respect to the polarization separation surface of the polarization beam splitter 17).
  • P-polarized light linearly polarized light having a vibration plane in the X direction
  • the light transmitted through the polarization splitting surface is emitted from the second polarization beam splitter 19a and travels to the 1Z2 wavelength plate 21a as the third phase plate.
  • the light reflected on the polarization splitting surface of the second polarization beam splitter 19a travels to the 1Z2 wavelength plate 22a as the fourth phase plate via the first right-angle prism 20a.
  • the light amount ratio of the light split into two at the polarization splitting surface of the second polarization beam splitter 19a is appropriately determined by the rotation angle of the 1Z2 wavelength plate 18a as the first phase plate around the optical axis (Y axis). Value is set to
  • the S-polarized light reflected by the first polarizing beam splitter 17 (S-polarized light with respect to the polarization splitting plane of the polarizing beam splitter 17: linearly polarized light having a vibration plane in the Z direction) is the third orthogonal light.
  • S-polarized light with respect to the polarization splitting plane of the polarizing beam splitter 17: linearly polarized light having a vibration plane in the Z direction) is the third orthogonal light.
  • the prism 23 After being reflected by the prism 23, it is incident on a third polarizing beam splitter 19b via a 1Z2 wavelength plate 18b as a second phase plate.
  • the light transmitted through the polarization splitting surface is emitted by the third polarization beam splitter 19b and travels to the 1Z2 wavelength plate 21b as the fifth phase plate. .
  • the light reflected on the polarization splitting surface of the third polarizing beam splitter 19b travels to the sixth phase plate 1Z2 wavelength plate 22b via the second right-angle prism 20b.
  • the light intensity ratio of the light split into two at the polarization splitting surface of the third polarization beam splitter 19b is determined by the rotation angle of the 1Z2 wavelength plate 18b as the second phase plate around the optical axis (Y axis). Value is set to
  • FIG. 9 is a diagram for explaining the light intensity distribution on the illumination pupil plane formed on the rear focal plane of the microlens array 10 as an optical integrator. As shown in FIG. 9, in this modification, octupole illumination is performed as multipole illumination.
  • the light beam from the second diffractive optical element 25a as the second light beam converting element is A light source 31g is formed, a light beam from a third diffractive optical element 24b as a third light beam conversion element forms a surface light source 31h, and a light beam from a fourth diffractive optical element 25b as a fourth light beam conversion element is used as a surface light source 31i. Is formed.
  • the polarization direction of light reaching each of the surface light sources 31f-31i is indicated by an arrow. V polarization is used for the surface light source 31f, H polarization is used for the surface light source 31g, and ⁇ 45 degrees for the surface light source 31h.
  • the directional polarization is ⁇ 135 degrees directional polarization in the surface light source 31i. Then, by appropriately setting the rotation angles of the 1Z2 wavelength plates 21a-22b as the third-sixth phase plates shown in FIG. 8 around the optical axis (Y-axis), the first-fourth light flux conversion is performed.
  • the polarization directions incident on the first to fourth diffractive optical elements 24a to 25b as elements can be set independently, and the polarization directions of the light beams from the respective surface light sources 31f-3 can be set independently. Can be.
  • each of the surface light sources 31f-3 It is also possible to independently adjust the degree of polarization of the luminous flux from the light, and thus the state of polarization.
  • the prism assembly 16 shown in FIG. 4 may be detachably provided in the optical path near the first to fourth diffractive optical elements 24a to 25b.
  • the mask (reticle) is illuminated by the illumination optical device (illumination step), and the transfer pattern formed on the mask is projected onto the photosensitive substrate using the projection optical system.
  • exposing exposure step
  • a micro device semiconductor element, imaging element, liquid crystal display element, thin film magnetic head, etc.
  • an example of a method for obtaining a semiconductor device as a micro device by forming a predetermined circuit pattern on a wafer or the like as a photosensitive substrate using the exposure apparatus of the above-described embodiment will be described. This will be described with reference to FIG.
  • a metal film is deposited on one lot of wafers.
  • a photoresist is applied on the metal film on the one lot wafer.
  • an image of the pattern on the mask is sequentially exposed and transferred to each shot area on the wafer of the lot through the projection optical system.
  • the photoresist on the one lot of wafers is developed, and in step 305, etching is performed on the one lot of wafers using the resist pattern as a mask, thereby forming a pattern on the mask. Corresponding circuit pattern forces are formed in each shot area on each wafer.
  • a device such as a semiconductor element is formed.
  • a semiconductor device manufacturing method a semiconductor device having an extremely fine circuit pattern can be obtained with high throughput.
  • a predetermined pattern is formed on a plate (glass substrate).
  • a liquid crystal display element By forming (a circuit pattern, an electrode pattern, etc.), a liquid crystal display element as a micro device can be obtained.
  • a so-called photolithography step of transferring and exposing a mask pattern onto a photosensitive substrate (a glass substrate coated with a resist) using the exposure apparatus of the above-described embodiment is executed.
  • a predetermined pattern including a large number of electrodes and the like is formed on the photosensitive substrate.
  • the exposed substrate goes through each process such as a developing process, an etching process, and a resist stripping process, so that a predetermined pattern is formed on the substrate, and the process proceeds to the next color filter forming process 402.
  • a large number of sets of three dots corresponding to R (Red), G (Green), and B (Blue) are arranged in a matrix, or R, G,
  • a color filter is formed by arranging a plurality of sets of filters of three stripes B in the horizontal scanning line direction.
  • a cell assembling step 403 is performed.
  • a liquid crystal panel liquid crystal cell
  • a liquid crystal is injected between the substrate having the predetermined pattern obtained in the pattern forming step 401 and the color filter obtained in the color filter forming step 402, Manufacture panels (liquid crystal cells). Thereafter, in a module assembling step 404, components such as an electric circuit and a backlight for performing a display operation of the assembled liquid crystal panel (liquid crystal cell) are attached to complete a liquid crystal display element. According to the above-described method for manufacturing a liquid crystal display element, a liquid crystal display element having an extremely fine circuit pattern can be obtained with a high throughput.
  • KrF excimer laser light or ArF excimer laser light is used as exposure light.
  • the present invention is not limited to this.
  • the present invention can also be applied to an F laser light source that supplies laser light having a wavelength of 157 nm.
  • the present invention has been described by taking a projection exposure apparatus having an illumination optical apparatus as an example.
  • the present invention is applied to a general illumination optical apparatus for illuminating an irradiated surface other than a mask. It is clear that can be applied.
  • a method of filling the optical path between the projection optical system and the photosensitive substrate with a medium (typically, a liquid) having a refractive index larger than 1.1 that is, a so-called immersion method
  • a method of filling the liquid in the optical path between the projection optical system and the photosensitive substrate a method of locally filling the liquid as disclosed in International Publication No.
  • a method of forming a liquid tank and holding the substrate in the liquid tank can be adopted.
  • International Publication No. WO 99Z49504 is incorporated by reference.
  • the liquid it is preferable to use a liquid that has transparency to exposure light and a refractive index as high as possible, and a liquid that is stable to the photoresist applied to the substrate surface.
  • a liquid that can transmit F laser light such as a fluorine-based perfluoropolyether (PFPE), can be used as the liquid! ,.
  • PFPE fluorine-based perfluoropolyether

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

An illumination optical device that realizes, when mounted for example on an exposure device, an illumination condition suitable for a mask pattern where two kinds of patterns having different characteristics are mixed. The illumination optical device has a first light flux conversion element (7) for converting light flux from a light source section (1) to light flux having a first cross-sectional shape corresponding to a first region on an illumination pupil surface, a second light flux conversion element (8) for converting the light flux from the light source section to light flux having a second cross-sectional shape corresponding to a second region on the illumination pupil surface, a beam splitter (5) for splitting the light flux from the light source section and guiding each of the split light flux to the first light flux conversion element and the second light flux conversion element, and intensity changing means (2, 3, 5) for changing the ratio between the intensity of light reaching the first region through the first light flux conversion element and the intensity of light reaching the second region through the second light flux conversion element.

Description

明 細 書  Specification
照明光学装置、露光装置および露光方法  Illumination optical device, exposure apparatus, and exposure method
技術分野  Technical field
[0001] 本発明は照明光学装置、露光装置および露光方法に関し、特に半導体素子、撮 像素子、液晶表示素子、薄膜磁気ヘッド等のマイクロデバイスをリソグラフィー工程で 製造するための露光装置に関する。  The present invention relates to an illumination optical device, an exposure device, and an exposure method, and more particularly, to an exposure device for manufacturing a micro device such as a semiconductor device, an imaging device, a liquid crystal display device, and a thin-film magnetic head by a lithography process.
背景技術  Background art
[0002] この種の典型的な露光装置においては、光源力 射出された光束力 オプティカル の光源力もなる実質的な面光源としての二次光源 (一般には照明瞳面における所定 の光強度分布)を形成する。二次光源力もの光束は、フライアイレンズの後側焦点面 の近傍に配置された開口絞りを介して制限された後、コンデンサーレンズに入射する  [0002] In a typical exposure apparatus of this type, a secondary light source (generally, a predetermined light intensity distribution on an illumination pupil plane) is used as a substantial surface light source that also has a light source power, an emitted light flux power, and an optical light source power. Form. The luminous flux of the secondary light source enters the condenser lens after being restricted via the aperture stop located near the rear focal plane of the fly-eye lens.
[0003] コンデンサーレンズにより集光された光束は、所定のパターンが形成されたマスクを 重畳的に照明する。マスクのパターンを透過した光は、投影光学系を介してウェハ上 に結像する。こうして、ウェハ上には、マスクパターンが投影露光 (転写)される。なお 、マスクに形成されたパターンは高集積ィ匕されており、この微細パターンをウェハ上 に正確に転写するにはウェハ上において均一な照度分布を得ることが不可欠である [0003] The light beam condensed by the condenser lens illuminates the mask on which a predetermined pattern is formed in a superimposed manner. The light transmitted through the mask pattern forms an image on the wafer via the projection optical system. Thus, the mask pattern is projected and exposed (transferred) on the wafer. The pattern formed on the mask is highly integrated, and it is essential to obtain a uniform illuminance distribution on the wafer in order to accurately transfer this fine pattern onto the wafer.
[0004] そこで、フライアイレンズの後側焦点面に円形状の二次光源を形成し、その大きさ を変化させて照明のコヒーレンシィ σ ( σ値 =開口絞り径 Ζ投影光学系の瞳径、ある いは σ値 =照明光学系の射出側開口数 Ζ投影光学系の入射側開口数)を変化させ る技術が注目されている。また、フライアイレンズの後側焦点面に輪帯状や 4極状の 二次光源を形成し、投影光学系の焦点深度や解像力を向上させる技術が注目され ている。 [0004] Therefore, a circular secondary light source is formed on the rear focal plane of the fly-eye lens, and the size of the secondary light source is changed to change the illumination coherency σ (σ value = aperture stop diameter 瞳 pupil diameter of the projection optical system. Or a technique that changes the σ value = numerical aperture on the exit side of the illumination optical system Ζ numerical aperture on the incident side of the projection optical system. Attention has also been focused on a technology that forms an annular or quadrupolar secondary light source on the rear focal plane of the fly-eye lens to improve the depth of focus and resolution of the projection optical system.
発明の開示  Disclosure of the invention
発明が解決しょうとする課題 [0005] 上述のような従来の露光装置では、マスクのパターン特性に応じて、円形状の二次 光源に基づく通常の円形照明を行ったり、輪帯状や 2極状や 4極状の二次光源に基 づく変形照明(輪帯照明や 2極照明や 4極照明)を行ったりしている。しかしながら、 特性の異なる 2種類のパターンが混在するようなマスクパターンを忠実に転写するた めに必要な適切な照明条件を光量損失を抑えつつ実現することができな力つた。 Problems the invention is trying to solve [0005] In the conventional exposure apparatus as described above, ordinary circular illumination based on a circular secondary light source is performed, or an annular, dipole, or quadrupole secondary illumination is performed in accordance with the pattern characteristics of the mask. They perform deformed illumination based on the light source (eg, annular illumination, dipole illumination, or quadrupole illumination). However, it was not possible to achieve appropriate illumination conditions necessary to faithfully transfer a mask pattern in which two types of patterns with different characteristics were mixed, while suppressing loss of light.
[0006] 本発明は、前述の課題に鑑みてなされたものであり、たとえば露光装置に搭載され た場合に、特性の異なる 2種類のパターンが混在するようなマスクパターンに適した 照明条件を光量損失を抑えつつ実現することのできる照明光学装置を提供すること を目的とする。また、本発明は、たとえば特性の異なる 2種類のパターンが混在するよ うなマスクパターンに適した照明条件を実現することのできる照明光学装置を用いて 、マスクのパターン特性に応じて実現された適切な照明条件のもとで良好な露光を 行うことのできる露光装置および露光方法を提供することを目的とする。  [0006] The present invention has been made in view of the above-described problems. For example, when mounted on an exposure apparatus, an illumination condition suitable for a mask pattern in which two types of patterns having different characteristics coexist is set to a light amount. An object is to provide an illumination optical device that can be realized while suppressing loss. Further, the present invention uses an illumination optical device capable of realizing illumination conditions suitable for a mask pattern in which, for example, two types of patterns having different characteristics are mixed, by using an appropriate optical mask realized in accordance with the pattern characteristics of the mask. An object of the present invention is to provide an exposure apparatus and an exposure method capable of performing good exposure under a variety of illumination conditions.
課題を解決するための手段  Means for solving the problem
[0007] 前記課題を解決するために、本発明の第 1形態では、光源部からの光束に基づい て被照射面を照明する照明光学装置において、 [0007] In order to solve the above-described problems, according to a first embodiment of the present invention, there is provided an illumination optical device that illuminates a surface to be irradiated based on a light beam from a light source unit.
前記光源部からの光束の光路中に配置されて、前記光束を第 1断面形状の光束に 変換する第 1光束変換素子と、  A first light beam conversion element that is arranged in the light path of the light beam from the light source unit and converts the light beam into a light beam having a first cross-sectional shape;
前記光源部からの光束の光路中に配置されて、前記光束を第 2断面形状の光束に 変換する第 2光束変換素子と、  A second luminous flux conversion element disposed in the optical path of the luminous flux from the light source unit, for converting the luminous flux into a luminous flux having a second cross-sectional shape;
前記第 1光束変換素子からの前記第 1断面形状の光束と前記第 2光束変換素子か らの前記第 2断面形状の光束との光路中に配置されて、前記第 1断面形状の光束を 前記照明光学装置の照明瞳面上の第 1領域へ導くと共に、前記第 2断面形状の光 束を前記照明瞳面上の前記第 1領域とは異なる第 2領域へ導く集光光学系と、 前記光源部と前記照明瞳面との間の光路中に配置されて、前記第 1領域に達する 光束の偏光状態と前記第 2領域に達する光束の偏光状態とを独立に制御するため の偏光状態変更手段を備えていることを特徴とする照明光学装置を提供する。  The luminous flux having the first cross-sectional shape is arranged in the optical path between the luminous flux having the first cross-sectional shape from the first luminous flux conversion element and the luminous flux having the second cross-sectional shape from the second luminous flux converting element. A condensing optical system that guides a light beam having the second cross-sectional shape to a second area different from the first area on the illumination pupil plane, while guiding the light flux to the first area on the illumination pupil plane of the illumination optical device; A polarization state changer arranged in an optical path between a light source unit and the illumination pupil plane to change the polarization state of the light flux reaching the first area and the polarization state of the light flux reaching the second area independently. There is provided an illumination optical device characterized by comprising means.
[0008] また、本発明の第 2形態では、被照射面を照明する照明光学装置において、 According to a second embodiment of the present invention, there is provided an illumination optical device for illuminating a surface to be illuminated,
照明瞳面上の第 1領域の偏光状態と前記照明瞳面上の第 2領域の偏光状態とを 独立に制御するための偏光状態制御手段を備えていることを特徴とする照明光学装 置を提供する。 The polarization state of the first region on the illumination pupil plane and the polarization state of the second region on the illumination pupil plane There is provided an illumination optical device including a polarization state control means for independently controlling.
[0009] 本発明の第 3形態では、被照射面を照明する照明光学装置において、  According to a third embodiment of the present invention, there is provided an illumination optical device for illuminating an irradiated surface,
光源部からの光束を照明瞳面上の第 1領域に対応する第 1断面形状の光束に変 換するための第 1光束変換素子と、  A first light beam conversion element for converting a light beam from the light source unit into a light beam having a first cross-sectional shape corresponding to a first region on the illumination pupil plane;
前記光源部からの光束を前記照明瞳面上の第 2領域に対応する第 2断面形状の 光束に変換するための第 2光束変換素子と、  A second light beam conversion element for converting a light beam from the light source unit into a light beam having a second cross-sectional shape corresponding to a second region on the illumination pupil plane;
前記光源部からの光束を分割して前記第 1光束変換素子および前記第 2光束変換 素子へそれぞれ導くためのビームスプリツターと、  A beam splitter for splitting a light beam from the light source unit and guiding the light beam to the first light beam conversion element and the second light beam conversion element, respectively;
前記第 1光束変換素子を介して前記第 1領域に達する光の強度と前記第 2光束変 換素子を介して前記第 2領域に達する光の強度との比を変更するための強度変更手 段とを備えていることを特徴とする照明光学装置を提供する。  Intensity changing means for changing the ratio of the intensity of light reaching the first region via the first light beam conversion device and the intensity of light reaching the second region via the second light beam conversion device. And an illumination optical device characterized by comprising:
[0010] 本発明の第 4形態では、被照射面を照明する照明光学装置において、 According to a fourth embodiment of the present invention, there is provided an illumination optical device for illuminating a surface to be irradiated,
光源部からの光束を照明瞳面上の第 1領域に対応する第 1断面形状の光束に変 換するための第 1光束変換素子と、  A first light beam conversion element for converting a light beam from the light source unit into a light beam having a first cross-sectional shape corresponding to a first region on the illumination pupil plane;
前記光源部からの光束を前記照明瞳面上の第 2領域に対応する第 2断面形状の 光束に変換するための第 2光束変換素子とを備え、  A second light beam conversion element for converting a light beam from the light source unit into a light beam having a second cross-sectional shape corresponding to a second region on the illumination pupil plane;
前記第 1光束変換素子および前記第 2光束変換素子は照明光路に対してそれぞ れ交換可能に構成されていることを特徴とする照明光学装置を提供する。  An illumination optical device is provided, wherein the first light beam conversion element and the second light beam conversion element are configured to be exchangeable with respect to an illumination light path.
[0011] 本発明の第 5形態では、光源部力 の光束に基づいて被照射面を照明する照明光 学装置において、 According to a fifth aspect of the present invention, there is provided an illumination optical apparatus for illuminating a surface to be illuminated based on a light flux of a light source unit,
前記光源部と前記被照射面との間に配置されて、前記光源部からの光束の偏光状 態の変動を防止する偏光変動解消手段を備え、  A polarization fluctuation eliminating unit disposed between the light source unit and the irradiated surface to prevent a change in the polarization state of a light beam from the light source unit;
前記偏光変動解消手段は、前記光源部からの光束を偏光状態に応じて分割する 偏光ビームスプリツターと、該偏光ビームスプリツターにより分割された光束の偏光状 態を揃える偏光調整部材と、前記偏光ビームスプリツターにより分割された光束を合 成する光束合成光学系とを有することを特徴とする照明光学装置を提供する。  The polarization fluctuation eliminating means includes: a polarization beam splitter that divides a light beam from the light source unit according to a polarization state; a polarization adjustment member that aligns the polarization state of the light beam divided by the polarization beam splitter; And a light beam combining optical system for combining the light beams split by the beam splitter.
[0012] 本発明の第 6形態では、マスクを照明するための第 1形態一第 5形態の照明光学装 置を備え、前記マスクのパターンを感光性基板上に露光することを特徴とする露光装 置を提供する。 According to a sixth aspect of the present invention, there is provided an illumination optical apparatus according to the first to fifth aspects for illuminating a mask. An exposure device, comprising: exposing a pattern of the mask onto a photosensitive substrate.
[0013] 本発明の第 7形態では、第 1形態一第 5形態の照明光学装置を介してマスクを照明 する照明工程と、照明された前記マスクに形成されたパターンを感光性基板上に露 光する露光工程とを含んでいることを特徴とする露光方法を提供する。  [0013] In a seventh aspect of the present invention, an illumination step of illuminating a mask via the illumination optical device according to the first to fifth aspects, and exposing a pattern formed on the illuminated mask to a photosensitive substrate. A light exposure step.
発明の効果  The invention's effect
[0014] 本発明の照明光学装置では、たとえば 2以上の光束変換素子と集光光学系と偏光 状態変更手段の作用により、照明瞳面上の第 1領域の偏光状態と第 2領域の偏光状 態とを独立に制御することができる。また、偏光ビームスプリツターと 2以上の光束変 換素子と偏光ビームスプリツターへの入射光の偏光状態を調整する偏光状態調整手 段との作用により、照明瞳面上の第 1領域に達する光の強度と第 2領域に達する光 の強度との比を変更することができる。  In the illumination optical device according to the present invention, for example, the polarization state of the first region and the polarization state of the second region on the illumination pupil plane are obtained by the action of two or more light beam conversion elements, the condensing optical system, and the polarization state changing means. State can be controlled independently. In addition, the light reaching the first area on the illumination pupil plane is formed by the action of the polarizing beam splitter, the two or more light beam converting elements, and the polarization state adjusting means for adjusting the polarization state of the light incident on the polarizing beam splitter. It is possible to change the ratio between the intensity of the light and the intensity of the light reaching the second region.
[0015] したがって、たとえば露光装置に本発明の照明光学装置を搭載した場合、特性の 異なる 2種類のパターンが混在するようなマスクパターンに適した照明条件を、光量 損失を抑えつつ実現することができる。また、本発明の照明光学装置を用いる露光 装置および露光方法では、特性の異なる 2種類のパターンが混在するようなマスクパ ターンに適した照明条件を実現することができるので、マスクのパターン特性に応じ て実現された適切な照明条件のもとで良好な露光を行うことができ、ひいては高いス ループットで良好なデバイスを製造することができる。  [0015] Therefore, for example, when the illumination optical device of the present invention is mounted on an exposure apparatus, it is possible to realize illumination conditions suitable for a mask pattern in which two types of patterns having different characteristics are mixed while suppressing loss of light amount. it can. Further, in the exposure apparatus and the exposure method using the illumination optical device of the present invention, it is possible to realize illumination conditions suitable for a mask pattern in which two types of patterns having different characteristics are mixed. Good exposure can be performed under appropriate lighting conditions realized by the above, and thus a good device can be manufactured with high throughput.
[0016] また、本発明の照明光学装置を用いる露光装置および露光方法では、縦または横 方向偏光と 45度または 135度方向偏光との偏光状態を別々に調整することが可能 であるので、照明光路中や投影光路中に配置される光路折曲げミラーによる偏光状 態の崩れを良好に補正して露光を行うことができる。  In the exposure apparatus and the exposure method using the illumination optical device of the present invention, the polarization states of the vertically or horizontally polarized light and the 45 or 135 degree polarized light can be separately adjusted. Exposure can be performed while favorably correcting polarization state collapse caused by an optical path bending mirror disposed in an optical path or a projection optical path.
図面の簡単な説明  Brief Description of Drawings
[0017] [図 1]本発明の第 1実施形態にかかる照明光学装置を備えた露光装置の構成を概略 的に示す図である。  FIG. 1 is a diagram schematically showing a configuration of an exposure apparatus provided with an illumination optical device according to a first embodiment of the present invention.
[図 2]第 1実施形態において照明瞳面に形成される輪帯状の 3極状の二次光源を示 す図である。 [図 3]第 1実施形態において照明瞳面に形成される 5極状の二次光源および変形輪 帯状を示す図である。 FIG. 2 is a diagram showing an annular tripolar secondary light source formed on an illumination pupil plane in the first embodiment. FIG. 3 is a diagram showing a pentapole secondary light source and a deformed annular shape formed on an illumination pupil plane in the first embodiment.
圆 4]本発明の第 2実施形態にかかる照明光学装置を備えた露光装置の要部構成を 概略的に示す図である。  {4} is a view schematically showing a configuration of a main part of an exposure apparatus provided with an illumination optical device according to a second embodiment of the present invention.
[図 5]第 1実施形態の変形例にかかる照明光学装置を備えた露光装置の要部構成を 概略的に示す図である。  FIG. 5 is a diagram schematically showing a main configuration of an exposure apparatus including an illumination optical device according to a modification of the first embodiment.
[図 6]第 2実施形態の変形例にかかる照明光学装置を備えた露光装置の要部構成を 概略的に示す図である。  FIG. 6 is a diagram schematically showing a main configuration of an exposure apparatus including an illumination optical device according to a modification of the second embodiment.
[図 7]第 1または第 2実施形態の変形例にかかる照明光学装置を備えた露光装置の 要部構成を概略的に示す図である。  FIG. 7 is a diagram schematically showing a main configuration of an exposure apparatus including an illumination optical device according to a modification of the first or second embodiment.
[図 8]図 7に示した変形例にかかる照明光学装置を備えた露光装置の要部構成を概 略的に示す図である。  8 is a diagram schematically showing a configuration of a main part of an exposure apparatus provided with an illumination optical device according to a modification shown in FIG. 7.
[図 9]図 7に示した変形例において照明瞳面に形成される 8極状の二次光源を示す 図である。  9 is a view showing an octupole secondary light source formed on an illumination pupil plane in the modification shown in FIG. 7.
[図 10]マイクロデバイスとしての半導体デバイスを得る際の手法のフローチャートであ る。  FIG. 10 is a flowchart of a method for obtaining a semiconductor device as a micro device.
[図 11]マイクロデバイスとしての液晶表示素子を得る際の手法のフローチャートである 発明を実施するための最良の形態  FIG. 11 is a flowchart of a method for obtaining a liquid crystal display element as a micro device. BEST MODE FOR CARRYING OUT THE INVENTION
[0018] 本発明の実施形態を、添付図面に基づいて説明する。図 1は、本発明の第 1実施 形態にかかる照明光学装置を備えた露光装置の構成を概略的に示す図である。図 1 において、感光性基板であるウェハ Wの法線方向に沿って Z軸を、ウェハ Wの面内に おいて図 1の紙面に平行な方向に Y軸を、ウェハ Wの面内において図 1の紙面に垂 直な方向に X軸をそれぞれ設定して!/、る。  An embodiment of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a view schematically showing a configuration of an exposure apparatus provided with an illumination optical device according to a first embodiment of the present invention. In FIG. 1, the Z axis is along the normal direction of the wafer W as the photosensitive substrate, the Y axis is in the plane of the wafer W, and the Y axis is in the direction parallel to the plane of FIG. Set the X-axis in the direction perpendicular to the page 1! /
[0019] 第 1実施形態の露光装置は、露光光 (照明光)を供給するための光源 1を備えてい る。光源 1として、たとえば 248nmの波長の光を供給する KrFエキシマレーザ光源や 193nmの波長の光を供給する ArFエキシマレーザ光源などを用いることができる。 光源 1から Z方向に沿って射出されたほぼ平行な光束は、折り曲げミラーにより Y方向 に偏向された後、第 1プリズム組立体 2および第 2プリズム組立体 3を介して、ビーム マッチングユニット 4に入射する。 The exposure apparatus according to the first embodiment includes a light source 1 for supplying exposure light (illumination light). As the light source 1, for example, a KrF excimer laser light source that supplies light having a wavelength of 248 nm or an ArF excimer laser light source that supplies light having a wavelength of 193 nm can be used. The almost parallel light flux emitted from the light source 1 along the Z direction is reflected by the folding mirror in the Y direction. After being deflected to the first prism assembly 2 and the second prism assembly 3, the light enters the beam matching unit 4.
[0020] 第 1プリズム組立体 2は、くさび形状の第 1水晶プリズム 2aと、この第 1水晶プリズム 2 aと相補的な形状を有するくさび形状の第 1石英プリズム 2bとにより一体的に構成さ れている。同様に、第 2プリズム組立体 3は、くさび形状の第 2水晶プリズム 3aと、この 第 2水晶プリズム 3aと相補的な形状を有するくさび形状の第 2石英プリズム 3bとにより 一体的に構成されている。第 1プリズム組立体 2および第 2プリズム組立体 3は、光軸 AXを中心としてそれぞれ回転可能に構成されて 、る。第 1プリズム組立体 2および 第 2プリズム組立体 3の作用につ 、ては後述する。  [0020] The first prism assembly 2 is integrally formed by a wedge-shaped first quartz prism 2a and a wedge-shaped first quartz prism 2b having a shape complementary to the first quartz prism 2a. Have been. Similarly, the second prism assembly 3 is integrally formed by a wedge-shaped second quartz prism 3a and a wedge-shaped second quartz prism 3b having a shape complementary to the second quartz prism 3a. I have. The first prism assembly 2 and the second prism assembly 3 are each configured to be rotatable about an optical axis AX. The operation of the first prism assembly 2 and the second prism assembly 3 will be described later.
[0021] 一方、ビームマッチングユニット 4は、光源 1から供給された平行ビームを所定の断 面形状を有する平行ビームに整形するためのビーム整形手段、光源 1から供給され た平行ビームの光軸 AXに対する角度を調整するためのビーム角度調整手段、光源 1から供給された平行ビームを光軸 AXに対して平行移動させるためのビーム平行移 動手段などを内蔵している。すなわち、ビームマッチングユニット 4は、入射光束を適 切な大きさおよび形状の断面を有する光束に変換しつつ後段の偏光ビームスプリツ ター 5へ導くとともに、偏光ビームスプリツター 5へ入射する光束の位置変動および角 度変動をアクティブに補正する機能を有する。  On the other hand, the beam matching unit 4 includes a beam shaping unit for shaping the parallel beam supplied from the light source 1 into a parallel beam having a predetermined sectional shape, and an optical axis AX of the parallel beam supplied from the light source 1 Beam angle adjusting means for adjusting the angle with respect to the laser beam, beam parallel moving means for parallel moving the parallel beam supplied from the light source 1 with respect to the optical axis AX, and the like. That is, the beam matching unit 4 converts the incident light beam into a light beam having a cross section of an appropriate size and shape, guides the light beam to the polarization beam splitter 5 at the subsequent stage, and changes the position and angle of the light beam incident on the polarization beam splitter 5. It has a function to actively correct the degree fluctuation.
[0022] ビームマッチングユニット 4に後続するプリズム型の偏光ビームスプリツター 5には、 反射手段としての直角プリズム 6が付設されている。直角プリズム 6は、偏光ビームス プリツター 5からの反射光を反射して、偏光ビームスプリツター 5の透過光の光路と平 行な光路に沿って導くように位置決めされている。したがって、偏光ビームスプリッタ 一 5に入射した光のうち、その偏光分割面で反射された S偏光の光は、直角プリズム 6の反射面で反射された後、第 1回折光学素子 7に入射する。一方、偏光ビームスプ リツター 5に入射した光のうち、その偏光分割面を透過した P偏光の光は、第 2回折光 学素子 8に入射する。  [0022] The prism type polarizing beam splitter 5 subsequent to the beam matching unit 4 is provided with a right-angle prism 6 as reflecting means. The right-angle prism 6 is positioned so as to reflect the reflected light from the polarizing beam splitter 5 and to guide the reflected light along the optical path parallel to the optical path of the transmitted light of the polarizing beam splitter 5. Therefore, of the light incident on the polarization beam splitter 15, the S-polarized light reflected on the polarization splitting surface is reflected on the reflection surface of the right-angle prism 6 and then incident on the first diffractive optical element 7. On the other hand, of the light incident on the polarization beam splitter 5, the P-polarized light transmitted through the polarization splitting surface is incident on the second diffractive optical element 8.
[0023] 一般に、回折光学素子は、基板に露光光 (照明光)の波長程度のピッチを有する段 差を形成することによって構成され、入射ビームを所望の角度に回折する作用を有 する。具体的には、第 1回折光学素子 7は、矩形状の断面を有する平行光束が入射 した場合に、そのファーフィールド (またはフラウンホーファー回折領域)に円形状の 光強度分布を形成する機能を有する。また、第 2回折光学素子 8は、矩形状の断面 を有する平行光束が入射した場合に、そのファーフィールドに X方向に沿って間隔を 隔てた 2極状の光強度分布を形成する機能を有する。 In general, a diffractive optical element is formed by forming a step having a pitch of about the wavelength of exposure light (illumination light) on a substrate, and has an action of diffracting an incident beam to a desired angle. Specifically, the first diffractive optical element 7 receives a parallel light beam having a rectangular cross section. In this case, it has the function of forming a circular light intensity distribution in the far field (or Fraunhofer diffraction region). In addition, the second diffractive optical element 8 has a function of forming a dipole-like light intensity distribution spaced along the X direction in the far field when a parallel light beam having a rectangular cross section is incident. .
[0024] 第 1回折光学素子 7および第 2回折光学素子 8は、照明光路に対して挿脱自在に 構成され、且つ特性の異なる他の第 1回折光学素子および第 2回折光学素子と交換 可能に構成されている。第 1回折光学素子 7および第 2回折光学素子 8を介した光束 は、ズームレンズ 9を介して、その後側焦点面の近傍に入射面が配置されたマイクロ レンズアレイ(またはフライアイレンズ) 10にそれぞれ入射する。すなわち、ズームレン ズ 9は、第 1回折光学素子 7および第 2回折光学素子 8とマイクロレンズアレイ 10の入 射面とを実質的にフーリエ変換の関係に配置して 、る。  [0024] The first diffractive optical element 7 and the second diffractive optical element 8 are configured to be detachable from the illumination optical path, and can be exchanged for other first and second diffractive optical elements having different characteristics. Is configured. The light beam passing through the first diffractive optical element 7 and the second diffractive optical element 8 passes through a zoom lens 9 to a microlens array (or fly-eye lens) 10 having an incident surface located near the rear focal plane. Each is incident. That is, the zoom lens 9 arranges the first diffractive optical element 7 and the second diffractive optical element 8 and the entrance surface of the microlens array 10 substantially in a Fourier transform relationship.
[0025] マイクロレンズアレイ 10は、縦横に且つ稠密に配列された多数の正屈折力を有す る微小レンズからなる光学素子である。一般に、マイクロレンズアレイは、たとえば平 行平面板にエッチング処理を施して微小レンズ群を形成することによって構成される 。ここで、マイクロレンズアレイを構成する各微小レンズは、フライアイレンズを構成す る各レンズエレメントよりも微小である。また、マイクロレンズアレイは、互いに隔絶され たレンズエレメントからなるフライアイレンズとは異なり、多数の微小レンズ (微小屈折 面)が互いに隔絶されることなく一体的に形成されている。し力しながら、正屈折力を 有するレンズ要素が縦横に配置されている点でマイクロレンズアレイはフライアイレン ズと同じ波面分割型のオプティカルインテグレータである。  [0025] The microlens array 10 is an optical element composed of a large number of microlenses having a positive refractive power arranged vertically and horizontally and densely. In general, a microlens array is formed by, for example, performing etching on a parallel flat plate to form a group of microlenses. Here, each micro lens constituting the micro lens array is smaller than each lens element constituting the fly-eye lens. Also, unlike a fly-eye lens composed of lens elements isolated from each other, the microlens array has a large number of microlenses (microrefractive surfaces) formed integrally without being isolated from each other. A microlens array is a wavefront splitting optical integrator similar to a fly-eye lens in that lens elements having positive refracting power are arranged vertically and horizontally.
[0026] こうして、第 1回折光学素子 7を介した光束は、ズームレンズ 9の後側焦点面に(ひ いてはマイクロレンズアレイ 10の入射面に)、たとえば光軸 AXを中心とした円形状の 照野を形成する。同様に、第 2回折光学素子 8を介した光束は、ズームレンズ 9の後 側焦点面に(ひいてはマイクロレンズアレイ 10の入射面に)、たとえば光軸 AXを中心 として X方向に沿って間隔を隔てた 2つの円形状の照野力もなる X方向 2極状の照野 を形成する。  [0026] Thus, the light beam passing through the first diffractive optical element 7 is transmitted to the rear focal plane of the zoom lens 9 (and thus to the incident surface of the microlens array 10), for example, in a circular shape centered on the optical axis AX. The territory is formed. Similarly, the luminous flux passing through the second diffractive optical element 8 is spaced at the rear focal plane of the zoom lens 9 (and, consequently, at the entrance plane of the microlens array 10), for example, along the optical axis AX in the X direction. It forms a dipole illumination field in the X direction that also has two separate circular illumination field forces.
[0027] マイクロレンズアレイ 10に入射した光束は二次元的に分割され、マイクロレンズァレ ィ 10の後側焦点面には、図 2 (a)に示すように、入射光束によって形成される照野と 同じ光強度分布を有する二次光源、すなわち光軸 AXを中心とした円形状の実質的 な面光源 3 laと、光軸 AXを中心として X方向に沿って間隔を隔てた 2つの円形状の 実質的な面光源 3 lbとからなる X方向 3極状の二次光源 (31a, 31b)が形成される。 The light beam incident on the microlens array 10 is two-dimensionally split, and the rear focal plane of the microlens array 10 has an illumination formed by the incident light beam, as shown in FIG. Field and A secondary light source having the same light intensity distribution, that is, a circular surface light source 3 la centered on the optical axis AX, and two circular light sources spaced apart along the X direction around the optical axis AX A three-pole secondary light source (31a, 31b) in the X direction consisting of a substantial surface light source of 3 lb is formed.
[0028] マイクロレンズアレイ 10の後側焦点面(照明瞳面)に形成された X方向 3極状の二 次光源からの光束は、コンデンサー光学系 11の集光作用を受けた後、マスクブライ ンド 12を重畳的に照明する。こうして、照明視野絞りとしてのマスクブラインド 12には 、マイクロレンズアレイ 10を構成する各微小レンズの形状と焦点距離とに応じた矩形 状の照野が形成される。マスクブラインド 12の矩形状の開口部 (光透過部)を介した 光束は、結像光学系 13の集光作用を受けた後、所定のパターンが形成されたマスク Mを重畳的に照明する。  The luminous flux from the secondary light source in the X direction formed on the rear focal plane (illumination pupil plane) of the microlens array 10 is subjected to the condensing operation of the condenser optical system 11 and then is subjected to mask brightening. The lamp 12 is illuminated in a superimposed manner. Thus, a rectangular illumination field corresponding to the shape and the focal length of each microlens constituting the microlens array 10 is formed on the mask blind 12 as the illumination field stop. The light flux passing through the rectangular opening (light transmitting portion) of the mask blind 12 irradiates the mask M on which a predetermined pattern is formed in a superimposed manner after receiving the light-condensing action of the imaging optical system 13.
[0029] こうして、結像光学系 13は、マスクブラインド 12の矩形状開口部の像をマスク M上 に形成することになる。マスク Mのパターンを透過した光束は、投影光学系 PLを介し て、感光性基板であるウェハ W上にマスクパターンの像を形成する。こうして、投影光 学系 PLの光軸 AXと直交する平面 (XY平面)内においてウェハ Wを二次元的に駆 動制御しながら一括露光またはスキャン露光を行うことにより、ウェハ Wの各露光領域 にはマスク Mのパターンが逐次露光される。第 1実施形態では、ズームレンズ 9の焦 点距離が変化すると、二次光源の全体が相似的に拡大または縮小される。  Thus, the imaging optical system 13 forms an image of the rectangular opening of the mask blind 12 on the mask M. The light flux transmitted through the pattern of the mask M forms an image of the mask pattern on the wafer W as a photosensitive substrate via the projection optical system PL. In this way, by performing batch exposure or scan exposure while controlling the wafer W two-dimensionally in a plane (XY plane) orthogonal to the optical axis AX of the projection optical system PL, each exposure area of the wafer W The pattern of the mask M is sequentially exposed. In the first embodiment, when the focal length of the zoom lens 9 changes, the entire secondary light source is similarly enlarged or reduced.
[0030] 上述したように、第 2回折光学素子 8は、光軸 AXを中心として X方向に沿って間隔 を隔てた 2極状の二次光源を形成する X方向 2極照明用の回折光学素子を構成して いる。なお、 X方向 2極照明用の第 2回折光学素子 8に代えて、 Z方向 2極照明用の 第 2回折光学素子 8a (不図示)を照明光路中に設定することによって Z方向 3極照明 を行うことができる。 Z方向 2極照明用の第 2回折光学素子 8aは、平行光束が入射し た場合に、そのファーフィールドに Z方向に沿って間隔を隔てた 2極状の光強度分布 を形成する機能を有する。  As described above, the second diffractive optical element 8 is a diffractive optical element for dipole illumination in the X direction that forms a dipole secondary light source spaced along the X direction about the optical axis AX. The element is configured. Note that, instead of the second diffractive optical element 8 for X-direction dipole illumination, a second diffractive optical element 8a (not shown) for Z-direction dipole illumination is set in the illumination optical path, so that the Z-direction tripole illumination can be performed. It can be performed. The second diffractive optical element 8a for dipole illumination in the Z direction has a function of forming a dipole-like light intensity distribution spaced along the Z direction in the far field when a parallel light beam enters. .
[0031] したがって、第 2回折光学素子 8aを介した光束は、マイクロレンズアレイ 10の入射 面に、たとえば光軸 AXを中心として Z方向に沿って間隔を隔てた 2極状の照野を形 成する。その結果、マイクロレンズアレイ 10の後側焦点面には、図 2 (b)に示すように 、光軸 AXを中心とした円形状の実質的な面光源 31aと、光軸 AXを中心として Z方向 に沿って間隔を隔てた 2つの円形状の実質的な面光源 31cとからなる Z方向 3極状の 二次光源(31a, 31c)が形成される。 Accordingly, the light beam passing through the second diffractive optical element 8a forms a dipole-shaped illumination field on the incident surface of the microlens array 10, for example, spaced along the optical axis AX in the Z direction. To achieve. As a result, as shown in FIG. 2 (b), the rear focal plane of the microlens array 10 has a substantially circular light source 31a centered on the optical axis AX and a Z-axis centered on the optical axis AX. direction , And a secondary light source (31a, 31c) having three poles in the Z direction is formed, which is composed of two substantially circular surface light sources 31c spaced apart from each other.
[0032] また、 4極照明用の第 2回折光学素子 8b (不図示)を照明光路中に設定することに よって 5極照明を行うことができる。 4極照明用の第 2回折光学素子 8bは、平行光束 が入射した場合に、そのファーフィールドに 4極状の光強度分布を形成する機能を有 する。したがって、第 2回折光学素子 8bを介した光束は、マイクロレンズアレイ 10の 入射面に、たとえば光軸 AXを中心とした 4極状の照野を形成する。その結果、マイク 口レンズアレイ 10の後側焦点面には、図 3 (a)に示すように、光軸 AXを中心とした円 形状の実質的な面光源 31aと、光軸 AXを中心として X方向に沿った一辺を有する正 方形または長方形の各頂点の位置に配置された 4つの円形状の実質的な面光源 31 dとからなる 5極状の二次光源(31a, 31d)が形成される。  Further, by setting the second diffractive optical element 8b (not shown) for quadrupole illumination in the illumination optical path, pentapole illumination can be performed. The second diffractive optical element 8b for quadrupole illumination has a function of forming a quadrupolar light intensity distribution in the far field when a parallel light beam enters. Therefore, the light beam passing through the second diffractive optical element 8b forms, for example, a quadrupole illumination field centered on the optical axis AX on the incident surface of the microlens array 10. As a result, as shown in FIG. 3 (a), the rear focal plane of the microphone-aperture lens array 10 has a substantially circular circular surface light source 31a centered on the optical axis AX, and a circular centered light source 31a A five-pole secondary light source (31a, 31d) consisting of four circular substantially surface light sources 31d arranged at the vertices of a square or rectangle having one side along the X direction is formed. Is done.
[0033] また、輪帯照明用の第 2回折光学素子 8c (不図示)を照明光路中に設定することに よって変形輪帯照明を行うことができる。輪帯照明用の第 2回折光学素子 8cは、平 行光束が入射した場合に、そのファーフィールドに輪帯状(円環状)の光強度分布を 形成する機能を有する。したがって、第 2回折光学素子 8cを介した光束は、マイクロ レンズアレイ 10の入射面に、たとえば光軸 AXを中心とした輪帯状の照野を形成する 。その結果、マイクロレンズアレイ 10の後側焦点面には、図 3 (b)に示すように、光軸 AXを中心とした円形状の実質的な面光源 31aと、光軸 AXを中心とした輪帯状の実 質的な面光源 31eとからなる変形輪帯状の二次光源(31a, 31e)が形成される。  Further, by setting a second diffractive optical element 8c (not shown) for annular illumination in the illumination optical path, modified annular illumination can be performed. The second diffractive optical element 8c for annular illumination has a function of forming an annular (annular) light intensity distribution in the far field when a parallel light beam enters. Therefore, the light beam passing through the second diffractive optical element 8c forms, for example, an annular illumination field around the optical axis AX on the incident surface of the micro lens array 10. As a result, as shown in FIG. 3 (b), the rear focal plane of the microlens array 10 has a substantially circular surface light source 31a centered on the optical axis AX and a circular surface light source 31a centered on the optical axis AX. A deformed annular secondary light source (31a, 31e) including the annular annular surface light source 31e is formed.
[0034] さらに、 X方向 2極照明用の第 2回折光学素子 8や Z方向 2極照明用の第 2回折光 学素子 8aや 4極照明用の第 2回折光学素子 8bや輪帯照明用の第 2回折光学素子 8 cに代えて、他の特性を有する第 2回折光学素子を照明光路中に設定することによつ て、光軸 AXから離れて形成される面光源の数および配置、並びに各面光源の形状 および大きさを変ィ匕させることができる。  Further, a second diffractive optical element 8 for dipole illumination in the X direction, a second diffractive optical element 8a for dipole illumination in the Z direction, a second diffractive optical element 8b for quadrupole illumination, and an annular illumination By setting a second diffractive optical element having other characteristics in the illumination optical path instead of the second diffractive optical element 8c, the number and arrangement of the surface light sources formed apart from the optical axis AX , And the shape and size of each surface light source can be changed.
[0035] また、上述したように、第 1回折光学素子 7は、光軸 AXを中心として比較的小さい 円形状の実質的な面光源を形成して σ値の比較的小さい円形照明を行うための回 折光学素子、すなわち小 σ照明用の回折光学素子を構成している。なお、小 σ照明 用の第 1回折光学素子 7に代えて、他の特性を有する第 1回折光学素子を照明光路 中に設定することによって、光軸 AXを中心とした比較的小さい面光源の形状および 大きさを変化させることができる。 Further, as described above, the first diffractive optical element 7 forms a relatively small circular substantially surface light source around the optical axis AX to perform circular illumination with a relatively small σ value. , Ie, a diffractive optical element for small σ illumination. In addition, instead of the first diffractive optical element 7 for small σ illumination, a first diffractive optical element having other characteristics is used in the illumination optical path. By setting to the middle, the shape and size of the relatively small surface light source centered on the optical axis AX can be changed.
[0036] なお、第 1実施形態では、光軸 AXを中心として形成される面光源 (31a)に達する 光は S偏光であり、光軸 AXから離れて形成される各面光源(31b— 31e)に達する光 は P偏光である。ただし、第 1回折光学素子 7を偏光ビームスプリツター 5とズームレン ズ 9との間の光路中に配置し、第 2回折光学素子 8を直角プリズム 6とズームレンズ 9と の間の光路中に配置することにより、光軸 AXを中心として形成される面光源に達す る光は P偏光になり、光軸 AXから離れて形成される各面光源に達する光は S偏光に なる。 In the first embodiment, the light that reaches the surface light source (31a) formed around the optical axis AX is S-polarized light, and each of the surface light sources (31b-31e) formed away from the optical axis AX. The light reaching) is P-polarized. However, the first diffractive optical element 7 is arranged in the optical path between the polarizing beam splitter 5 and the zoom lens 9, and the second diffractive optical element 8 is arranged in the optical path between the right-angle prism 6 and the zoom lens 9. As a result, the light reaching the surface light source formed around the optical axis AX becomes P-polarized light, and the light reaching each surface light source formed away from the optical axis AX becomes S-polarized light.
[0037] このように、第 1回折光学素子 7は、光源 1からの光束を照明瞳面上の第 1領域、具 体的には光軸を含む領域に対応する第 1断面形状の光束に変換するための第 1光 束変換素子を構成している。また、第 2回折光学素子 8は、光源 1からの光束を照明 瞳面上の第 2領域、具体的には光軸から離れた輪帯状または複数極状の領域に対 応する第 2断面形状の光束に変換するための第 2光束変換素子を構成している。さ らに、偏光ビームスプリツター 5は、光源 1からの光束を分割して、第 1光束変換素子 としての第 1回折光学素子 7および第 2光束変換素子としての第 2回折光学素子 8へ それぞれ導くためのビームスプリツターを構成している。  As described above, the first diffractive optical element 7 converts the light beam from the light source 1 into a light beam having the first cross-sectional shape corresponding to the first region on the illumination pupil plane, specifically, the region including the optical axis. It constitutes a first light beam conversion element for conversion. The second diffractive optical element 8 converts the light beam from the light source 1 into a second area on the illumination pupil plane, more specifically, a second sectional shape corresponding to an annular or multiple pole area away from the optical axis. And a second light beam conversion element for converting the light beam into a second light beam. Further, the polarizing beam splitter 5 splits the light beam from the light source 1 to a first diffractive optical element 7 as a first light beam converting element and a second diffractive optical element 8 as a second light beam converting element, respectively. It constitutes a beam splitter for guiding.
[0038] 次に、第 1プリズム組立体 2および第 2プリズム組立体 3の作用につ 、て説明する。  Next, the operation of the first prism assembly 2 and the second prism assembly 3 will be described.
第 1プリズム組立体 2では、第 1水晶プリズム 2aの頂点方向と第 1石英プリズム 2bの 頂点方向とが逆向きに設定され、第 1水晶プリズム 2aによる偏角作用を第 1石英プリ ズム 2bが補償 (補正)するように構成されている。同様に、第 2プリズム組立体 3では、 第 2水晶プリズム 3aの頂点方向と第 2石英プリズム 3bの頂点方向とが逆向きに設定 され、第 2水晶プリズム 3aによる偏角作用を第 2石英プリズム 3bが補償 (補正)するよ うに構成されている。  In the first prism assembly 2, the vertex direction of the first quartz prism 2a and the vertex direction of the first quartz prism 2b are set in opposite directions, and the deflective action of the first quartz prism 2a is reduced by the first quartz prism 2b. It is configured to compensate (correct). Similarly, in the second prism assembly 3, the vertex direction of the second quartz prism 3a and the vertex direction of the second quartz prism 3b are set in opposite directions, and the eccentric effect of the second quartz prism 3a is reduced by the second quartz prism. 3b is configured to compensate (correct).
[0039] なお、光源 1として KrFエキシマレーザ光源や ArFエキシマレーザ光源を用いる場 合、光源 1から供給されたほぼ直線偏光の光が第 1プリズム組立体 2に入射する。こ の場合、特開 2000-114157号公報に開示されているように、第 2プリズム組立体 3 を固定した状態で第 1プリズム組立体 2だけを光軸 AXを中心として回転させることに より、第 2プリズム組立体 3からの射出光に含まれる P偏光成分と S偏光成分との強度 比を連続的に変化させることができる。 When a KrF excimer laser light source or an ArF excimer laser light source is used as the light source 1, substantially linearly polarized light supplied from the light source 1 is incident on the first prism assembly 2. In this case, as disclosed in Japanese Patent Application Laid-Open No. 2000-114157, only the first prism assembly 2 is rotated about the optical axis AX while the second prism assembly 3 is fixed. Accordingly, the intensity ratio between the P-polarized light component and the S-polarized light component included in the light emitted from the second prism assembly 3 can be continuously changed.
[0040] また、特願 2003— 336869号明細書および図面に提案されているように、第 1水晶 プリズム 2aの結晶光学軸と第 2水晶プリズム 3aの結晶光学軸とが 45度の角度をなす ように設定することにより、第 1プリズム組立体 2への入射光の偏光状態にかかわらず 、第 2プリズム組立体 3からの射出光を実質的に非偏光状態の光に変換することがで きる。このように、第 1水晶プリズム 2aと第 2プリズム組立体 3とは、偏光ビームスプリツ ター 5への入射光の偏光状態を調整するための偏光状態調整手段を構成している。  [0040] Further, as proposed in the specification and drawings of Japanese Patent Application No. 2003-336869, the crystal optical axis of the first crystal prism 2a and the crystal optical axis of the second crystal prism 3a form an angle of 45 degrees. With such a setting, the light emitted from the second prism assembly 3 can be converted into substantially unpolarized light regardless of the polarization state of the light incident on the first prism assembly 2. . As described above, the first quartz prism 2a and the second prism assembly 3 constitute a polarization state adjusting means for adjusting the polarization state of the light incident on the polarization beam splitter 5.
[0041] 偏光状態調整手段(2, 3)の作用により偏光ビームスプリツター 5への入射光の偏 光状態が変化すると、偏光ビームスプリツター 5で反射される S偏光成分と偏光ビーム スプリツター 5を透過する P偏光成分との強度比が変化する。その結果、第 1回折光 学素子 7を介して照明瞳面上において光軸 AXを含むように形成される面光源(31a )に達する光の強度と、第 2回折光学素子 8を介して照明瞳面上において光軸 AXか ら離れて形成される面光源(31b— 31e)に達する光の強度との比が変化する。  When the polarization state of the light incident on the polarization beam splitter 5 changes due to the operation of the polarization state adjusting means (2, 3), the S-polarized light component reflected by the polarization beam splitter 5 and the polarization beam splitter 5 are separated. The intensity ratio with the transmitted P-polarized component changes. As a result, the intensity of light reaching the surface light source (31a) formed so as to include the optical axis AX on the illumination pupil plane via the first diffractive optical element 7 and the illumination via the second diffractive optical element 8 The ratio with the intensity of light reaching the surface light source (31b-31e) formed on the pupil plane away from the optical axis AX changes.
[0042] このように、偏光状態調整手段(2, 3)と偏光ビームスプリツター 5とは、第 1光束変 換素子としての第 1回折光学素子 7を介して第 1領域としての光軸 AXを含む面光源 ( 31a)に達する光の強度と、第 2光束変換素子としての第 2回折光学素子 8を介して 第 2領域としての光軸 AXから離れた面光源(31b— 31e)に達する光の強度との比を 変更するための強度変更手段を構成している。  As described above, the polarization state adjusting means (2, 3) and the polarization beam splitter 5 are connected to the optical axis AX as the first region via the first diffractive optical element 7 as the first light beam conversion element. And reaches the surface light source (31b-31e) distant from the optical axis AX as the second area via the second diffractive optical element 8 as the second light flux conversion element. It constitutes intensity changing means for changing the ratio with the light intensity.
[0043] 以上のように、第 1実施形態では、第 1光束変換素子としての第 1回折光学素子 7を 介して光軸 AXを含む面光源(31a)が照明瞳面上に形成され、第 2光束変換素子と しての第 2回折光学素子 8を介して光軸 AXから離れた面光源(31b— 31e)が照明 瞳面上に形成される。したがって、たとえば第 1回折光学素子 7を利用した小 σ照明 が適したパターンと第 2回折光学素子 8を利用した 2極照明や 4極照明や輪帯照明な どが適したパターンとが混在するようなマスクパターンに適した照明条件、すなわち 特性の異なる 2種類のパターンが混在するようなマスクパターンを忠実に転写するた めに必要な適切な照明条件を、光量損失を抑えつつ実現することができる。  As described above, in the first embodiment, the surface light source (31a) including the optical axis AX is formed on the illumination pupil plane via the first diffractive optical element 7 as the first light beam conversion element. A surface light source (31b-31e) distant from the optical axis AX is formed on the illumination pupil plane via the second diffractive optical element 8 as a two-beam conversion element. Therefore, for example, a pattern suitable for small σ illumination using the first diffractive optical element 7 and a pattern suitable for dipole illumination, quadrupole illumination, or annular illumination using the second diffractive optical element 8 are mixed. Lighting conditions suitable for such mask patterns, that is, appropriate lighting conditions necessary to faithfully transfer a mask pattern in which two types of patterns with different characteristics are mixed, while suppressing loss of light. it can.
[0044] また、第 1実施形態では、強度変更手段(2, 3, 5)の作用により、第 1回折光学素 子 7を介して照明瞳面上において光軸 AXを含むように形成される面光源(31a)に達 する光の強度と、第 2回折光学素子 8を介して照明瞳面上において光軸 AXから離れ て形成される面光源(31b— 31e)に達する光の強度との比を変更させることができる 。したがって、第 1回折光学素子 7を利用した小 σ照明における光強度と第 2回折光 学素子 8を利用した 2極照明や 4極照明や輪帯照明などにおける光強度との比を適 宜変化させて、光強度に関して多様性に富んだ照明条件を実現することができる。 In the first embodiment, the first diffractive optical element is actuated by the action of the intensity changing means (2, 3, 5). The intensity of light reaching the surface light source (31a) formed so as to include the optical axis AX on the illumination pupil plane via the element 7 and the optical axis AX on the illumination pupil plane via the second diffractive optical element 8 It is possible to change the ratio with the intensity of light reaching the surface light source (31b-31e) formed away from the light source. Therefore, the ratio of the light intensity in small σ illumination using the first diffractive optical element 7 to the light intensity in dipole illumination, quadrupole illumination, or annular illumination using the second diffractive optical element 8 is appropriately changed. In this way, it is possible to realize various illumination conditions with respect to light intensity.
[0045] また、第 1実施形態では、第 1光束変換素子としての第 1回折光学素子 7および第 2 光束変換素子としての第 2回折光学素子 8が、照明光路に対してそれぞれ交換可能 に構成されている。したがって、 X方向 3極照明と Ζ方向 3極照明と 5極照明と変形輪 帯照明との間で切り換えを行ったり、光軸 ΑΧから離れて形成される面光源の数およ び配置、並びに各面光源の形状および大きさを変化させたり、光軸 ΑΧを中心とした 比較的小さい面光源の形状および大きさを変化させたりして、二次光源の形態に関 して多様性に富んだ照明条件を実現することができる。  In the first embodiment, the first diffractive optical element 7 as the first light beam converting element and the second diffractive optical element 8 as the second light beam converting element are configured to be interchangeable with respect to the illumination light path. Have been. Therefore, it is possible to switch between X-direction tripole illumination, Ζ-direction tripole illumination, pentapole illumination, and modified annular illumination, and to determine the number and arrangement of surface light sources formed away from the optical axis 並 び に, and By changing the shape and size of each surface light source, and by changing the shape and size of a relatively small surface light source centered on the optical axis ΑΧ, there is a wide variety of secondary light source forms. Lighting conditions can be realized.
[0046] 図 4は、本発明の第 2実施形態に力かる照明光学装置を備えた露光装置の要部構 成を概略的に示す図である。第 2実施形態は、第 1実施形態と類似の構成を有する。 しかしながら、第 2実施形態では、直角プリズム 6と第 1回折光学素子 7との間の光路 中に 1Z2波長板 14が付設され、偏光ビームスプリツター 5と第 2回折光学素子 8との 間の光路中に 1Z2波長板 15が付設され、第 1回折光学素子 7とズームレンズ 9との 間の光路中にプリズム組立体 16が付設されている点が、第 1実施形態と相違してい る。したがって、図 4では、偏光ビームスプリツター 5および直角プリズム 6からマイクロ レンズアレイ 10までの構成だけを図示し、第 1実施形態と同じ他の構成については 図示を省略している。以下、第 1実施形態との相違点に着目して、第 2実施形態を説 明する。  FIG. 4 is a diagram schematically showing a main configuration of an exposure apparatus provided with an illumination optical device according to a second embodiment of the present invention. The second embodiment has a configuration similar to that of the first embodiment. However, in the second embodiment, a 1Z2 wavelength plate 14 is provided in the optical path between the right-angle prism 6 and the first diffractive optical element 7, and the optical path between the polarization beam splitter 5 and the second diffractive optical element 8 is provided. The difference from the first embodiment is that a 1Z2 wavelength plate 15 is provided therein, and a prism assembly 16 is provided in the optical path between the first diffractive optical element 7 and the zoom lens 9. Therefore, in FIG. 4, only the configuration from the polarizing beam splitter 5 and the right-angle prism 6 to the micro lens array 10 is illustrated, and other configurations that are the same as those in the first embodiment are omitted. Hereinafter, the second embodiment will be described by focusing on the differences from the first embodiment.
[0047] 第 2実施形態では、直角プリズム 6と第 1回折光学素子 7との間の光路中に、光軸 A Xを中心として結晶光学軸が回転自在に構成された 1Z2波長板 14が配置されてい る。同様に、偏光ビームスプリツター 5と第 2回折光学素子 8との間の光路中には、光 軸 AXを中心として結晶光学軸が回転自在に構成された 1Z2波長板 15が配置され ている。また、第 1回折光学素子 7とズームレンズ 9との間の光路中には、くさび形状 の水晶プリズム 16aと、この水晶プリズム 16aと相補的な形状を有するくさび形状の石 英プリズム 16bとにより一体的に構成されたプリズム組立体 16が配置されている。 In the second embodiment, in the optical path between the right-angle prism 6 and the first diffractive optical element 7, the 1Z2 wavelength plate 14 in which the crystal optical axis is rotatable around the optical axis AX is arranged. ing. Similarly, in the optical path between the polarizing beam splitter 5 and the second diffractive optical element 8, a 1Z2 wavelength plate 15 having a crystal optical axis rotatable around an optical axis AX is arranged. In the optical path between the first diffractive optical element 7 and the zoom lens 9, a wedge-shaped A prism assembly 16 integrally formed of a quartz prism 16a of this type and a wedge-shaped quartz prism 16b having a shape complementary to the quartz prism 16a is arranged.
[0048] プリズム組立体 16は、光軸 AXを中心として回転可能に構成されている。また、プリ ズム組立体 16では、水晶プリズム 16aの頂点方向と石英プリズム 16bの頂点方向と が逆向きに設定され、水晶プリズム 16aによる偏角作用を石英プリズム 16bが補償 ( 補正)するように構成されている。プリズム組立体 16では、入射する直線偏光の偏光 面に対して水晶プリズム 16aの結晶光学軸の方向が 45度の角度をなすように設定す ることにより、プリズム組立体 16からの射出光が実質的に非偏光状態の光に変換さ れる。一方、入射する直線偏光の偏光面に対して水晶プリズム 16aの結晶光学軸の 方向が 0度または 90度の角度をなすように設定すると、入射した直線偏光の偏光面 が変化することなくそのままプリズム組立体 16を通過する。  [0048] The prism assembly 16 is configured to be rotatable about the optical axis AX. In the prism assembly 16, the apex direction of the quartz prism 16a and the apex direction of the quartz prism 16b are set to be opposite, and the quartz prism 16b compensates (corrects) the deflection effect of the quartz prism 16a. Have been. In the prism assembly 16, by setting the direction of the crystal optic axis of the quartz prism 16a at an angle of 45 degrees with respect to the plane of polarization of the incident linearly polarized light, the light emitted from the prism assembly 16 is substantially reduced. It is converted to light in a non-polarized state. On the other hand, if the direction of the crystal optic axis of the quartz prism 16a is set at an angle of 0 or 90 degrees with respect to the plane of polarization of the incident linearly polarized light, the plane of polarization of the incident linearly polarized light will remain unchanged. Passes through assembly 16.
[0049] こうして、 1Z2波長板 14は、直角プリズム 6と第 1回折光学素子 7との間の光路中、 ひいては偏光ビームスプリツター 5と第 1光束変換素子としての第 1回折光学素子 7と の間の光路中に配置されて、入射する直線偏光 (すなわち S偏光)の偏光面の方向 を変化させるための第 1位相板を構成している。また、 1Z2波長板 15は、偏光ビー ムスプリッター 5と第 2光束変換素子としての第 2回折光学素子 8との間の光路中に配 置されて、入射する直線偏光 (すなわち P偏光)の偏光面の方向を変化させるための 第 2位相板を構成している。また、プリズム組立体 16は、第 1回折光学素子 7とズーム レンズ 9との間の光路中、ひいては第 1位相板としての 1Z2波長板 14とズームレンズ 9との間の光路中に配置されて、入射する直線偏光の光を非偏光の光に変換するた めの偏光解消素子を構成している。  [0049] Thus, the 1Z2 wavelength plate 14 is provided between the right-angle prism 6 and the first diffractive optical element 7 and thus between the polarizing beam splitter 5 and the first diffractive optical element 7 as the first light beam converting element. The first phase plate is arranged in the optical path between the first and second polarizers to change the direction of the plane of polarization of the incident linearly polarized light (ie, S-polarized light). Further, the 1Z2 wavelength plate 15 is disposed in the optical path between the polarizing beam splitter 5 and the second diffractive optical element 8 as the second light beam converting element, and polarizes incident linearly polarized light (ie, P-polarized light). It constitutes a second phase plate for changing the direction of the plane. Further, the prism assembly 16 is disposed in the optical path between the first diffractive optical element 7 and the zoom lens 9 and, consequently, in the optical path between the 1Z2 wavelength plate 14 as the first phase plate and the zoom lens 9. And a depolarizing element for converting incident linearly polarized light into unpolarized light.
[0050] 第 2実施形態では、 1Z2波長板 14とプリズム組立体 16との協働作用により、第 1回 折光学素子 7を介して照明瞳面上において光軸 AXを含むように形成される面光源( 31a)に達する光の偏光状態を、任意の方向に偏光面を有する直線偏光または非偏 光の光に設定することができる。また、 1Z2波長板 15の作用により、第 2回折光学素 子 8を介して照明瞳面上において光軸 AXから離れて形成される面光源(31b— 31e )に達する光の偏光状態を、任意の方向に偏光面を有する直線偏光の光に設定する ことができる。 [0051] このように、偏光ビームスプリツター 5と 1Z2波長板 14と 1Z2波長板 15とプリズム 組立体 16とは、第 1光束変換素子としての第 1回折光学素子 7を介して第 1領域とし ての光軸 AXを含む面光源(31a)に達する光、および第 2光束変換素子としての第 2 回折光学素子 8を介して第 2領域としての光軸 AXから離れた面光源(31b— 31e)に 達する光のうちの少なくとも一方の偏光状態を変更するための偏光状態変更手段を 構成している。 In the second embodiment, the 1Z2 wavelength plate 14 and the prism assembly 16 cooperate to form an optical axis AX on the illumination pupil plane via the first diffraction optical element 7. The polarization state of light reaching the surface light source (31a) can be set to linearly polarized light or non-polarized light having a polarization plane in an arbitrary direction. Further, by the action of the 1Z2 wavelength plate 15, the polarization state of light reaching the surface light source (31b-31e) formed apart from the optical axis AX on the illumination pupil plane via the second diffractive optical element 8 can be changed arbitrarily. Can be set to linearly polarized light having a polarization plane in the direction of. As described above, the polarizing beam splitter 5, the 1Z2 wavelength plate 14, the 1Z2 wavelength plate 15, and the prism assembly 16 form the first region via the first diffractive optical element 7 as the first light beam conversion element. The light reaching the surface light source (31a) including all the optical axes AX and the surface light source (31b-31e) separated from the optical axis AX as the second region via the second diffractive optical element 8 as the second light beam conversion element ) Constitutes a polarization state changing means for changing the polarization state of at least one of the light beams reaching the first and second light beams.
[0052] また、偏光状態変更手段 (5, 14, 15, 16)と第 1回折光学素子 7と第 2回折光学素 子 8とは、照明瞳面上の第 1領域としての光軸 AXを含む面光源(31a)の偏光状態と 、照明瞳面上の第 2領域としての光軸 AXから離れた面光源(31b— 31e)の偏光状 態とを独立に制御するための偏光状態制御手段を構成している。こうして、第 2実施 形態では、上述した第 1実施形態の作用効果に加えて、光軸 AXから離れて形成さ れる面光源の偏光状態と光軸 AXを含む面光源の偏光状態とを互いに独立に適宜 変化させて、二次光源の偏光状態に関して多様性に富んだ照明条件を実現すること ができる。  Further, the polarization state changing means (5, 14, 15, 16), the first diffractive optical element 7, and the second diffractive optical element 8 form an optical axis AX as a first area on the illumination pupil plane. Polarization state control means for independently controlling the polarization state of the surface light source (31a) including the surface light source (31a) and the polarization state of the surface light source (31b-31e) remote from the optical axis AX as the second area on the illumination pupil plane. Is composed. Thus, in the second embodiment, in addition to the operation and effect of the above-described first embodiment, the polarization state of the surface light source formed apart from the optical axis AX and the polarization state of the surface light source including the optical axis AX are independent of each other. It is possible to realize a variety of illumination conditions with respect to the polarization state of the secondary light source by appropriately changing.
[0053] なお、上述の第 2実施形態では、第 1位相板としての 1Z2波長板 14を、直角プリズ ム 6と第 1回折光学素子 7との間の光路中に配置している。し力しながら、これに限定 されることなぐたとえば第 1回折光学素子 7とズームレンズ 9との間の光路中に 1Z2 波長板 14を配置することもできる。また、上述の第 2実施形態では、第 2位相板として の 1Z2波長板 15を、偏光ビームスプリツター 5と第 1回折光学素子 8との間の光路中 に配置している。しかしながら、これに限定されることなぐたとえば第 2回折光学素子 8とズームレンズ 9との間の光路中に 1Z2波長板 15を配置することもできる。  In the above-described second embodiment, the 1Z2 wavelength plate 14 as the first phase plate is disposed in the optical path between the rectangular prism 6 and the first diffractive optical element 7. However, the present invention is not limited to this. For example, the 1Z2 wave plate 14 can be arranged in the optical path between the first diffractive optical element 7 and the zoom lens 9. Further, in the above-described second embodiment, the 1Z2 wavelength plate 15 as the second phase plate is disposed in the optical path between the polarization beam splitter 5 and the first diffractive optical element 8. However, the present invention is not limited to this. For example, the 1Z2 wavelength plate 15 can be arranged in the optical path between the second diffractive optical element 8 and the zoom lens 9.
[0054] また、上述の第 2実施形態では、偏光解消素子としてのプリズム組立体 16を、第 1 回折光学素子 7とズームレンズ 9との間の光路中に配置している。し力しながら、これ に限定されることなぐ第 1位相板としての 1Z2波長板 14と第 1回折光学素子 7との 間の光路中にプリズム組立体 16を配置することもできる。あるいは、第 2回折光学素 子 8とズームレンズ 9との間の光路中または第 2位相板としての 1Z2波長板 15と第 2 回折光学素子 8との間の光路中にプリズム組立体 16を配置することもできる。あるい は、 1Z2波長板 14とズームレンズ 9との間の光路および 1Z2波長板 15とズームレン ズ 9との間の光路の双方に、偏光解消素子としてのプリズム組立体を配置することも できる。 In the above-described second embodiment, the prism assembly 16 as a depolarizing element is arranged in the optical path between the first diffractive optical element 7 and the zoom lens 9. However, the prism assembly 16 can be arranged in the optical path between the 1Z2 wavelength plate 14 as the first phase plate and the first diffractive optical element 7 without being limited to this. Alternatively, the prism assembly 16 is arranged in the optical path between the second diffractive optical element 8 and the zoom lens 9 or in the optical path between the 1Z2 wavelength plate 15 as the second phase plate and the second diffractive optical element 8. You can also. Alternatively, the optical path between the 1Z2 wave plate 14 and the zoom lens 9 and the 1Z2 wave plate 15 and the zoom lens A prism assembly as a depolarizing element can be arranged on both sides of the optical path between the lens 9 and the prism 9.
[0055] 図 5は、第 1実施形態の変形例にかかる照明光学装置を備えた露光装置の要部構 成を概略的に示す図である。図 5の変形例は、第 1実施形態と類似の構成を有する 力 偏光ビームスプリツター 5と第 1回折光学素子 7との間の光路が第 1実施形態と相 違している。以下、第 1実施形態との相違点に着目して、図 6の変形例を説明する。  FIG. 5 is a diagram schematically showing a configuration of a main part of an exposure apparatus including an illumination optical device according to a modification of the first embodiment. 5 is different from the first embodiment in the optical path between the power polarizing beam splitter 5 and the first diffractive optical element 7 having a configuration similar to that of the first embodiment. Hereinafter, a modification of FIG. 6 will be described, focusing on differences from the first embodiment.
[0056] 図 5の変形例では、直角プリズム 6の反射面を振幅分割面 (典型的にはハーフミラ 一)とし、一対のミラー 17aおよび 17bを付設することにより振幅分割面を透過する光 に関して迂回光路を形成し、この迂回光路に沿って導かれた光を振幅分割面にて反 射される光と概略一致するように振幅分割面へ再入射させている。この構成により、 偏光ビームスプリツター 5にて反射される光 (すなわち S偏光の光)に関する時間的可 干渉性を低減することができる。  In the modified example of FIG. 5, the reflection surface of the right-angle prism 6 is an amplitude division surface (typically a half mirror), and a pair of mirrors 17a and 17b are provided to detour light transmitted through the amplitude division surface. An optical path is formed, and light guided along the bypass optical path is re-entered on the amplitude division plane so as to substantially match light reflected on the amplitude division plane. With this configuration, it is possible to reduce the temporal coherence of the light reflected by the polarization beam splitter 5 (that is, the S-polarized light).
[0057] 図 6は、第 2実施形態の変形例にかかる照明光学装置を備えた露光装置の要部構 成を概略的に示す図である。図 6の変形例は、第 2実施形態と類似の構成を有する 力 直角プリズム 6と第 1回折光学素子 7との間の光路中に 1Z2波長板 14が付設さ れて 、るだけで、 1Z2波長板 15およびプリズム組立体 16の配置が省略されて!、る 点が第 2実施形態と相違している。以下、第 2実施形態との相違点に着目して、図 6 の変形例を説明する。  FIG. 6 is a diagram schematically showing a main configuration of an exposure apparatus including an illumination optical device according to a modification of the second embodiment. The modification of FIG. 6 is similar to that of the second embodiment except that the 1Z2 wave plate 14 is provided in the optical path between the right-angle prism 6 and the first diffractive optical element 7, and the 1Z2 This embodiment is different from the second embodiment in that the arrangement of the wave plate 15 and the prism assembly 16 is omitted. Hereinafter, a modification of FIG. 6 will be described, focusing on differences from the second embodiment.
[0058] 図 6の変形例では、偏光ビームスプリツター 5で反射された S偏光の光が、直角プリ ズム 6を介して、 1Z2波長板 14に入射する。 1Z2波長板 14を介して P偏光に変換さ れた光は、第 1回折光学素子 7をおよびズームレンズ 9を介して、 P偏光状態でマイク 口レンズアレイ 10の入射面に達する。一方、偏光ビームスプリツター 5を透過した P偏 光の光は、第 2回折光学素子 8およびズームレンズ 9を介して、 P偏光状態のままマイ クロレンズアレイ 10の入射面に達する。  In the modification of FIG. 6, the S-polarized light reflected by the polarization beam splitter 5 is incident on the 1Z2 wavelength plate 14 via the right-angle prism 6. The light converted to P-polarized light via the 1Z2 wavelength plate 14 reaches the incident surface of the microphone lens array 10 in the P-polarized state via the first diffractive optical element 7 and the zoom lens 9. On the other hand, the P-polarized light transmitted through the polarizing beam splitter 5 reaches the incident surface of the microlens array 10 in the P-polarized state via the second diffractive optical element 8 and the zoom lens 9.
[0059] このように、図 6の変形例では、偏光ビームスプリツター 5により入射光を偏光方向に より分割し、位相部材としての 1Z2波長板 14を用いて偏光ビームスプリツター 5の反 射光の偏光状態を偏光ビームスプリツター 5の透過光の偏光状態と合致させた後、光 路合成光学系としてのズームレンズ 9 (あるいはコンデンサーレンズ)を介して偏光ビ 一ムスプリッター 5の反射光と透過光とを合成している。その結果、たとえば偏光ビー ムスプリッター 5よりも上流の光路中に配置され且つ複屈折性の蛍石により形成され た光透過部材の影響により、偏光ビームスプリツター 5への入射光の偏光状態が経 時的に変動することがあっても、ズームレンズ 9を介して合成された後の光の偏光状 態を常に一定に維持することができる。 As described above, in the modified example of FIG. 6, the incident light is divided by the polarization beam splitter 5 in the polarization direction, and the reflected light of the polarization beam splitter 5 is used by using the 1Z2 wavelength plate 14 as a phase member. After matching the polarization state to the polarization state of the transmitted light of the polarization beam splitter 5, the polarization beam splitter 5 passes through a zoom lens 9 (or a condenser lens) as an optical path combining optical system. The reflected light and transmitted light of one splitter 5 are combined. As a result, for example, the polarization state of the light incident on the polarization beam splitter 5 is changed by the influence of the light transmitting member that is disposed in the optical path upstream of the polarization beam splitter 5 and is formed of birefringent fluorite. Even if it fluctuates over time, the polarization state of the light combined via the zoom lens 9 can always be kept constant.
[0060] なお、上述の実施形態では、入射する直線偏光の偏光面の方向を変化させるため の部材として波長板 (位相部材)を用いている。し力しながら、入射する直線偏光の 偏光面の方向を変化させるための部材としては波長板に限定されることなぐ旋光子 を用いてもよい。ここで、旋光子としては、たとえば水晶から形成された旋光子を用い ることができる。また、第 2実施形態において、 1Z2波長板 15に代えて、たとえば特 開 2003— 35822号公報およびこれに対応する米国特許公開第 2002Z176166A 号公報に開示される偏光器を適用してもよい。これにより、第 2回折光学素子 8を介し て照明瞳面上において光軸 AXから離れて形成される面光源(31b— 31e)に達する 光の偏光状態を、光軸 AXを中心とした円周方向に偏光面を持つ偏光 (接線偏光) に設定することができる。なお、この接線偏光器を照明光路力 揷脱可能に設けるこ とが好ましい。なお、ここでは、米国特許公開第 2002Z176166A号公報を参照とし て援用する。 In the above-described embodiment, a wave plate (phase member) is used as a member for changing the direction of the plane of polarization of the linearly polarized light that enters. As a member for changing the direction of the plane of polarization of the incident linearly polarized light while applying force, an optical rotator not limited to a wave plate may be used. Here, as the optical rotator, for example, an optical rotator formed of quartz can be used. Further, in the second embodiment, for example, a polarizer disclosed in Japanese Patent Application Publication No. 2003-35822 and US Patent Publication No. 2002Z176166A corresponding thereto may be applied instead of the 1Z2 wavelength plate 15. Thereby, the polarization state of light reaching the surface light source (31b-31e) formed apart from the optical axis AX on the illumination pupil plane via the second diffractive optical element 8 is changed to a circumference around the optical axis AX. It can be set to polarized light with a plane of polarization in the direction (tangential polarized light). It is preferable that the tangential polarizer is provided so as to be able to remove the illumination optical path force. Here, U.S. Patent Publication No. 2002Z176166A is incorporated herein by reference.
[0061] なお、上述の実施形態では、マスク Mへの照明光(ひいてはウェハ Wへの露光光) の偏光状態が経時的に変化することは様々な観点力 好ましくない。このため、偏光 ビームスプリツター 5よりもマスク M側に配置される光学部材としては、光の偏光状態 を変化させな 、光学部材のみを配置すること、すなわち例えば蛍石により形成された 光透過部材を配置しないことが好ましい。また、上述の実施形態では 2つの光束変換 素子を用いたが、光束変換素子の数は 2つには限定されない。 3つ以上の光束変換 素子を用いるときには、光源部からの光束を 3分岐以上に分割すればよい。  In the above-described embodiment, it is not preferable that the polarization state of the illumination light to the mask M (and the exposure light to the wafer W) changes with time in various aspects. For this reason, as the optical member disposed closer to the mask M than the polarizing beam splitter 5, only the optical member without changing the polarization state of light is disposed, that is, for example, a light transmitting member formed of fluorite. Is not preferably arranged. Further, in the above embodiment, two light beam conversion elements are used, but the number of light beam conversion elements is not limited to two. When three or more light beam conversion elements are used, the light beam from the light source section may be split into three or more branches.
[0062] また、上述の実施形態において、投影光学系 PLとして屈折型投影光学系だけで はなぐ反射屈折型投影光学系や反射型投影光学系を用いることもできる。たとえば 反射屈折型投影光学系として、光路を偏向するための光路折曲げミラーを備えたォ フ ·ァクシス反射屈折型光学系を適用した例を変形例として図 7—図 9に示す。 [0063] 図 7 (a)は、光軸から外れた領域に視野領域または投影領域 (像形成領域)を有す るオフ ·ァクシス反射屈折型光学系として、物体の第 1中間像を形成する屈折型の第 1結像光学系 G1と、第 1中間像の像としての第 2中間像 (2次像)を形成する反射屈 折型の第 2結像光学系 G2と、第 2中間像の像を最終像 (3次像)として像面上に形成 する屈折型の第 3結像光学系 G3とを備えた投影光学系 PLを備えた露光装置の一 部を概略的に示す図である。図 7 (a)においては、照明光学装置として、ォプティカ ルインテグレータとしてのマイクロレンズアレイ 10からマスクブラインド 12の像を結像 する結像光学系 13までを図示している。図 7 (a)に示す変形例の照明光学装置にお いて、上述の各実施形態の照明光学装置とは異なる点は、照明光学装置の光軸と 投影光学系 PLの光軸とは共軸ではなぐ投影光学系 PLの視野領域のほぼ中心に 照明光学装置の光軸が位置している点である。 Further, in the above-described embodiment, a catadioptric projection optical system or a catoptric projection optical system that can be used instead of the refractive projection optical system can be used as the projection optical system PL. For example, FIGS. 7 to 9 show modified examples in which an off-axis catadioptric optical system having an optical path bending mirror for deflecting an optical path is applied as a catadioptric projection optical system. FIG. 7A shows a first intermediate image of an object as an off-axis catadioptric optical system having a field region or a projection region (image forming region) in a region off the optical axis. Refraction-type first imaging optical system G1, reflection-refraction-type second imaging optical system G2 that forms a second intermediate image (secondary image) as the first intermediate image, and second intermediate image FIG. 3 is a diagram schematically illustrating a part of an exposure apparatus including a projection optical system PL including a refraction-type third imaging optical system G3 that forms a third image on the image surface as a final image (a tertiary image). is there. FIG. 7 (a) shows the illumination optical device from the microlens array 10 as an optical integrator to the imaging optical system 13 for imaging the image of the mask blind 12. The illumination optical device of the modification shown in FIG. 7A is different from the illumination optical devices of the above embodiments in that the optical axis of the illumination optical device and the optical axis of the projection optical system PL are coaxial. The point that the optical axis of the illumination optical device is located almost at the center of the field of view of the projection optical system PL.
[0064] また、図 7 (b)は、オフ'ァクシス反射屈折型光学系として、物体の第 1中間像を形 成する反射屈折型の第 1結像光学系 (Gl, G2)と、第 1中間像の像としての最終像( 2次像)を像面上に形成する屈折型の第 2結像光学系 G3とを備えた投影光学系 PL を備えた露光装置の一部を概略的に示す図である。なお、図 7 (b)において、投影光 学系 PL以外の構成は図 7 (a)と同様であるので、ここでは説明を省略する。  FIG. 7B shows a catadioptric first imaging optical system (Gl, G2) that forms a first intermediate image of an object as an off-axis catadioptric optical system. (1) A part of an exposure apparatus including a projection optical system PL including a refraction type second imaging optical system G3 for forming a final image (secondary image) as an intermediate image on an image plane. FIG. Note that, in FIG. 7 (b), the configuration other than the projection optical system PL is the same as that in FIG. 7 (a), so that the description is omitted here.
[0065] なお、図 7 (a)に示したオフ'ァクシス型の反射屈折投影光学系としては、たとえば 米国特許公開第 2003ZOO 11755号公報や国際公開 WO2004Z019128号公報 に開示されており、図 7 (b)に示したオフ'ァクシス型の反射屈折投影光学系としては 、たとえば米国特許第 5805334号公報や米国特許公開第 2002Z0039175号公 報に開示されている。ここでは、米国特許公開第 2003Z0011755号公報、国際公 開 WO2004Z019128号公報、米国特許第 5805334号公報および米国特許公開 第 2002Z0039175号公報を参照として援用する。  The off-axis catadioptric projection optical system shown in FIG. 7A is disclosed, for example, in US Patent Publication No. 2003ZOO 11755 and International Publication WO2004Z019128, and FIG. The off-axis catadioptric projection optical system shown in b) is disclosed in, for example, US Pat. No. 5,805,334 and US Pat. No. 2002Z0039175. Here, US Patent Publication No. 2003Z0011755, International Publication WO2004Z019128, US Patent No. 5805334, and US Patent Publication No. 2002Z0039175 are incorporated by reference.
[0066] このような光路折曲げミラー FMを備えた投影光学系 PLを備えた露光装置におい て、偏光結像、特に像面に対して S偏光となる直線偏光 (光軸を中心とした円周偏光 )で結像させる場合において、マスクに対して s偏光となる直線偏光でマスクを照明し たときに、光路折曲げミラーの特性によって、 V偏光 (像面において図中 X方向に振 動面を持つ直線偏光)または H偏光 (像面にぉ ヽて図中 Y方向に振動面を持つ直線 偏光)の偏光度の劣化具合と、 ±45度偏光 (像面にぉ 、て図中 X方向に対して ±45 度方向に振動面を持つ直線偏光)または士 135度偏光 (像面にぉ 、て図中 X方向に 対して ± 135度方向に振動面を持つ直線偏光)の偏光度の劣化具合とが互いに異 なることがある。 In an exposure apparatus provided with a projection optical system PL provided with such an optical path bending mirror FM, a polarization image, in particular, a linearly polarized light (a circle centered on the optical axis) which becomes S-polarized with respect to the image plane. In the case of forming an image with peripheral polarized light, when illuminating the mask with linearly polarized light that becomes s-polarized light with respect to the mask, due to the characteristics of the optical path bending mirror, V-polarized light (vibrates in the image plane in the X direction in the figure) Linearly polarized light with a plane) or H-polarized light (a straight line with a vibration plane in the Y direction Polarization degree) and the degree of polarization of ± 45 degree polarization (ぉ on the image plane, and linear polarization with a vibration plane in the ± 45 degree direction to the X direction in the figure) or 135 degree polarization (ぉ on the image plane). Therefore, the degree of polarization degree of linearly polarized light having a vibration plane in ± 135 degrees with respect to the X direction in the drawing may be different from each other.
[0067] このとき、たとえば光源部からの光束を 4分岐に分割して 4つの光束変換素子を用 い、それぞれの光束変換素子によって V偏光、 H偏光、 ±45度偏光および ± 135度 偏光に対応する光束を生成して、光路折曲げミラーを経た後でも像面に対して S偏 光となるように各々の光束の偏光度を調整すればよい。以下、図 8、図 9を参照して、 V偏光、 H偏光、 ±45度偏光および ± 135度偏光などの偏光状態を各々独立に変 更することのできる偏光状態変更手段の変形例を説明する。  At this time, for example, the light beam from the light source unit is divided into four branches, and four light beam conversion elements are used. Each light beam conversion element converts the light beam into V polarized light, H polarized light, ± 45 degree polarized light, and ± 135 degree polarized light. A corresponding light beam is generated, and the degree of polarization of each light beam may be adjusted so as to be S-polarized with respect to the image plane even after passing through the optical path bending mirror. Hereinafter, with reference to FIGS. 8 and 9, a description will be given of a modification of the polarization state changing unit that can independently change the polarization state of each of V-polarized light, H-polarized light, ± 45-degree polarized light, and ± 135-degree polarized light. I do.
[0068] 図 8 (a)は 4分割型の偏光状態変更手段の斜視図であり、図 8 (b)は第 1の YZ断面 図、図 8 (c)は XY断面図、そして図 8 (d)は第 2の YZ断面図である。なお、図 8に示 す偏光状態変更手段は、たとえば図 1に示した実施形態の偏光状態変更手段(5— 6)または図 4に示した実施形態の変更状態変更手段(5, 14— 16)の位置に配置さ れるものであるので、偏光状態変更手段の光源側の光路の説明および光束変換素 子の集光光学系側の光路の説明は省略する。  FIG. 8 (a) is a perspective view of a four-part polarization state changing unit, FIG. 8 (b) is a first YZ sectional view, FIG. 8 (c) is an XY sectional view, and FIG. d) is a second YZ sectional view. The polarization state changing means shown in FIG. 8 is, for example, the polarization state changing means (5-6) of the embodiment shown in FIG. 1 or the polarization state changing means (5, 14-16) of the embodiment shown in FIG. ), The description of the light path on the light source side of the polarization state changing means and the description of the light path on the light condensing optical system side of the light flux conversion element will be omitted.
[0069] 図 8において、偏光状態変更手段は、第 1の偏光ビームスプリツター 17、第 2の偏 光ビームスプリツター 19a、第 3の偏光ビームスプリツター 19b、第 1の直角プリズム 20 a、第 2の直角プリズム 20b、第 3の直角プリズム 23、第 1位相板としての 1Z2波長板 18a、第 2位相板としての 1Z2波長板 18b、第 3位相板としての 1/2波長板 21a、第 4位相板としての 1Z2波長板 22a、第 5位相板としての 1/2波長板 21b、および第 6 位相板としての 1Z2波長板 22bを備えている。ここで、 1Z2波長板 18a, 18b, 21a , 21b, 22a, 22bはそれぞれ図中 Y軸回りに回転可能である。なお、図 8 (a)では、 第 1一第 4光束変換素子としての第 1一第 4回折光学素子 24a— 25bの図示を省略 している。  In FIG. 8, the polarization state changing means includes a first polarization beam splitter 17, a second polarization beam splitter 19a, a third polarization beam splitter 19b, a first rectangular prism 20a, The second right-angle prism 20b, the third right-angle prism 23, the 1Z2 wavelength plate 18a as the first phase plate, the 1Z2 wavelength plate 18b as the second phase plate, the 1/2 wavelength plate 21a as the third phase plate, and the fourth A 1Z2 wavelength plate 22a as a phase plate, a 1/2 wavelength plate 21b as a fifth phase plate, and a 1Z2 wavelength plate 22b as a sixth phase plate are provided. Here, the 1Z2 wave plates 18a, 18b, 21a, 21b, 22a, 22b are each rotatable around the Y axis in the figure. In FIG. 8A, the illustration of the first to fourth diffractive optical elements 24a to 25b as the first to fourth light beam conversion elements is omitted.
[0070] さて、図示なき偏光状態調整手段(図 1における第 1および第 2プリズム組立体 2, 3 )からの光は、第 1の偏光ビームスプリツター 17により偏光分離され、第 1の偏光ビー ムスプリッター 17を透過した P偏光 (偏光ビームスプリツター 17の偏光分離面に対す る P偏光: X方向に振動面を持つ直線偏光)は、第 1位相板としての 1Z2波長板 18a を介して、第 2の偏光ビームスプリツター 19aに入射する。第 2の偏光ビームスプリッタ 一 19aで偏光分離された光のうち、偏光分離面を透過した光は、第 2の偏光ビームス プリツター 19aから射出されて第 3位相板としての 1Z2波長板 21aへ向かう。一方、 第 2の偏光ビームスプリツター 19aの偏光分離面にて反射された光は第 1の直角プリ ズム 20aを介して第 4位相板としての 1Z2波長板 22aへ向かう。このとき、第 2の偏光 ビームスプリツター 19aの偏光分離面で 2分岐される光の光量比は、第 1位相板とし ての 1Z2波長板 18aの光軸 (Y軸)回りの回転角によって適切な値に設定される。 The light from the polarization state adjusting means (not shown) (the first and second prism assemblies 2 and 3 in FIG. 1) is polarized and separated by the first polarization beam splitter 17, and the first polarization beam is split. P-polarized light transmitted through the beam splitter 17 (with respect to the polarization separation surface of the polarization beam splitter 17). (P-polarized light: linearly polarized light having a vibration plane in the X direction) is incident on a second polarization beam splitter 19a via a 1Z2 wavelength plate 18a as a first phase plate. Of the light polarized and separated by the second polarization beam splitter 19a, the light transmitted through the polarization splitting surface is emitted from the second polarization beam splitter 19a and travels to the 1Z2 wavelength plate 21a as the third phase plate. On the other hand, the light reflected on the polarization splitting surface of the second polarization beam splitter 19a travels to the 1Z2 wavelength plate 22a as the fourth phase plate via the first right-angle prism 20a. At this time, the light amount ratio of the light split into two at the polarization splitting surface of the second polarization beam splitter 19a is appropriately determined by the rotation angle of the 1Z2 wavelength plate 18a as the first phase plate around the optical axis (Y axis). Value is set to
[0071] 一方、第 1の偏光ビームスプリツター 17にて反射した S偏光 (偏光ビームスプリッタ 一 17の偏光分離面に対する S偏光: Z方向に振動面を持つ直線偏光)は、第 3の直 角プリズム 23にて反射された後、第 2位相板としての 1Z2波長板 18bを介して、第 3 の偏光ビームスプリツター 19bに入射する。第 3の偏光ビームスプリツター 19bで偏光 分離された光のうち、偏光分離面を透過した光は、第 3の偏光ビームスプリツター 19b 力 射出されて第 5位相板としての 1Z2波長板 21bへ向かう。一方、第 3の偏光ビー ムスプリッター 19bの偏光分離面にて反射された光は、第 2の直角プリズム 20bを介 して第 6位相板 1Z2波長板 22bへ向かう。このとき、第 3の偏光ビームスプリツター 19 bの偏光分離面で 2分岐される光の光量比は、第 2位相板としての 1Z2波長板 18b の光軸 (Y軸)回りの回転角によって適切な値に設定される。  On the other hand, the S-polarized light reflected by the first polarizing beam splitter 17 (S-polarized light with respect to the polarization splitting plane of the polarizing beam splitter 17: linearly polarized light having a vibration plane in the Z direction) is the third orthogonal light. After being reflected by the prism 23, it is incident on a third polarizing beam splitter 19b via a 1Z2 wavelength plate 18b as a second phase plate. Of the light polarized and separated by the third polarization beam splitter 19b, the light transmitted through the polarization splitting surface is emitted by the third polarization beam splitter 19b and travels to the 1Z2 wavelength plate 21b as the fifth phase plate. . On the other hand, the light reflected on the polarization splitting surface of the third polarizing beam splitter 19b travels to the sixth phase plate 1Z2 wavelength plate 22b via the second right-angle prism 20b. At this time, the light intensity ratio of the light split into two at the polarization splitting surface of the third polarization beam splitter 19b is determined by the rotation angle of the 1Z2 wavelength plate 18b as the second phase plate around the optical axis (Y axis). Value is set to
[0072] 図 9は、オプティカルインテグレータとしてのマイクロレンズアレイ 10の後側焦点面 に形成される照明瞳面での光強度分布を説明するための図である。図 9に示すよう に、本変形例では、多極照明としての 8極照明を行っている。ここで、図 8に示した第 1光束変換素子としての第 1回折光学素子 24aからの光束は面光源 31fを形成し、第 2光束変換素子としての第 2回折光学素子 25aからの光束は面光源 31gを形成し、 第 3光束変換素子としての第 3回折光学素子 24bからの光束は面光源 31hを形成し 、第 4光束変換素子としての第 4回折光学素子 25bからの光束は面光源 31iを形成し ている。なお、図 9では、各々の面光源 31f— 31iに到達する光の偏光方向を矢印で 図示しており、面光源 31fでは V偏光、面光源 31gでは H偏光、面光源 31hでは ±4 5度方向偏光、面光源 31iでは ± 135度方向偏光となっている。 [0073] そして、図 8に示した第 3—第 6位相板としての 1Z2波長板 21a— 22bの光軸 (Y軸 )回りの回転角を適宜設定することにより、第 1一第 4光束変換素子としての第 1一第 4回折光学素子 24a— 25bへ入射する偏光方向を独立に設定することができ、ひい ては各々の面光源 31f— 3 からの光束の偏光方向を独立に設定することができる。 これにより、投影光学系 PL中の光路折曲げミラーを経た後でも像面に対して S偏光と なるように各々の面光源からの光束の偏光方向、ひいては偏光状態を調整すること ができる。 FIG. 9 is a diagram for explaining the light intensity distribution on the illumination pupil plane formed on the rear focal plane of the microlens array 10 as an optical integrator. As shown in FIG. 9, in this modification, octupole illumination is performed as multipole illumination. Here, the light beam from the first diffractive optical element 24a as the first light beam converting element shown in FIG. 8 forms a surface light source 31f, and the light beam from the second diffractive optical element 25a as the second light beam converting element is A light source 31g is formed, a light beam from a third diffractive optical element 24b as a third light beam conversion element forms a surface light source 31h, and a light beam from a fourth diffractive optical element 25b as a fourth light beam conversion element is used as a surface light source 31i. Is formed. In FIG. 9, the polarization direction of light reaching each of the surface light sources 31f-31i is indicated by an arrow. V polarization is used for the surface light source 31f, H polarization is used for the surface light source 31g, and ± 45 degrees for the surface light source 31h. The directional polarization is ± 135 degrees directional polarization in the surface light source 31i. Then, by appropriately setting the rotation angles of the 1Z2 wavelength plates 21a-22b as the third-sixth phase plates shown in FIG. 8 around the optical axis (Y-axis), the first-fourth light flux conversion is performed. The polarization directions incident on the first to fourth diffractive optical elements 24a to 25b as elements can be set independently, and the polarization directions of the light beams from the respective surface light sources 31f-3 can be set independently. Can be. As a result, it is possible to adjust the direction of polarization of the light flux from each surface light source, and thus the state of polarization, so that the light becomes s-polarized with respect to the image plane even after passing through the optical path bending mirror in the projection optical system PL.
[0074] なお、第 3—第 6位相板としての 1Z2波長板 21a— 22bに隣接して 1Z4波長板を 光軸 (Y軸)回りに回転可能に設ければ、各々の面光源 31f— 3 からの光束の偏光 度、ひいては偏光状態を独立に調整することもできる。また、第 1一第 4回折光学素 子 24a— 25bの近傍の光路に、図 4に示したプリズム組立体 16を揷脱可能に設けて ちょい。  Note that if a 1Z4 wavelength plate is provided adjacent to the 1Z2 wavelength plates 21a-22b as the third-sixth phase plates so as to be rotatable around the optical axis (Y axis), each of the surface light sources 31f-3 It is also possible to independently adjust the degree of polarization of the luminous flux from the light, and thus the state of polarization. Further, the prism assembly 16 shown in FIG. 4 may be detachably provided in the optical path near the first to fourth diffractive optical elements 24a to 25b.
[0075] 上述の実施形態に力かる露光装置では、照明光学装置によってマスク(レチクル) を照明し (照明工程)、投影光学系を用いてマスクに形成された転写用のパターンを 感光性基板に露光する(露光工程)ことにより、マイクロデバイス(半導体素子、撮像 素子、液晶表示素子、薄膜磁気ヘッド等)を製造することができる。以下、上述の実 施形態の露光装置を用いて感光性基板としてのウェハ等に所定の回路パターンを形 成することによって、マイクロデバイスとしての半導体デバイスを得る際の手法の一例 にっき図 10のフローチャートを参照して説明する。  In the exposure apparatus that is active in the above embodiment, the mask (reticle) is illuminated by the illumination optical device (illumination step), and the transfer pattern formed on the mask is projected onto the photosensitive substrate using the projection optical system. By exposing (exposure step), a micro device (semiconductor element, imaging element, liquid crystal display element, thin film magnetic head, etc.) can be manufactured. Hereinafter, an example of a method for obtaining a semiconductor device as a micro device by forming a predetermined circuit pattern on a wafer or the like as a photosensitive substrate using the exposure apparatus of the above-described embodiment will be described. This will be described with reference to FIG.
[0076] 先ず、図 10のステップ 301において、 1ロットのウェハ上に金属膜が蒸着される。次 のステップ 302において、その 1ロットのウェハ上の金属膜上にフォトレジストが塗布さ れる。その後、ステップ 303において、上述の実施形態の露光装置を用いて、マスク 上のパターンの像がその投影光学系を介して、その 1ロットのウェハ上の各ショット領 域に順次露光転写される。その後、ステップ 304において、その 1ロットのウェハ上の フォトレジストの現像が行われた後、ステップ 305において、その 1ロットのウェハ上で レジストパターンをマスクとしてエッチングを行うことによって、マスク上のパターンに 対応する回路パターン力 各ウェハ上の各ショット領域に形成される。その後、更に 上のレイヤの回路パターンの形成等を行うことによって、半導体素子等のデバイスが 製造される。上述の半導体デバイス製造方法によれば、極めて微細な回路パターン を有する半導体デバイスをスループット良く得ることができる。 First, in step 301 of FIG. 10, a metal film is deposited on one lot of wafers. In the next step 302, a photoresist is applied on the metal film on the one lot wafer. Thereafter, in step 303, using the exposure apparatus of the above-described embodiment, an image of the pattern on the mask is sequentially exposed and transferred to each shot area on the wafer of the lot through the projection optical system. Thereafter, in step 304, the photoresist on the one lot of wafers is developed, and in step 305, etching is performed on the one lot of wafers using the resist pattern as a mask, thereby forming a pattern on the mask. Corresponding circuit pattern forces are formed in each shot area on each wafer. Thereafter, by forming a circuit pattern of a further upper layer, a device such as a semiconductor element is formed. Manufactured. According to the above-described semiconductor device manufacturing method, a semiconductor device having an extremely fine circuit pattern can be obtained with high throughput.
[0077] また、上述の実施形態の露光装置では、プレート (ガラス基板)上に所定のパターン  Further, in the exposure apparatus of the above embodiment, a predetermined pattern is formed on a plate (glass substrate).
(回路パターン、電極パターン等)を形成することによって、マイクロデバイスとしての 液晶表示素子を得ることもできる。以下、図 11のフローチャートを参照して、このとき の手法の一例につき説明する。図 11において、パターン形成工程 401では、上述の 実施形態の露光装置を用いてマスクのパターンを感光性基板 (レジストが塗布された ガラス基板等)に転写露光する、所謂光リソグラフィー工程が実行される。この光リソ グラフィー工程によって、感光性基板上には多数の電極等を含む所定パターンが形 成される。その後、露光された基板は、現像工程、エッチング工程、レジスト剥離工程 等の各工程を経ることによって、基板上に所定のパターンが形成され、次のカラーフ ィルター形成工程 402へ移行する。  By forming (a circuit pattern, an electrode pattern, etc.), a liquid crystal display element as a micro device can be obtained. Hereinafter, an example of the technique at this time will be described with reference to the flowchart in FIG. In FIG. 11, in a pattern forming step 401, a so-called photolithography step of transferring and exposing a mask pattern onto a photosensitive substrate (a glass substrate coated with a resist) using the exposure apparatus of the above-described embodiment is executed. . By this photolithography process, a predetermined pattern including a large number of electrodes and the like is formed on the photosensitive substrate. After that, the exposed substrate goes through each process such as a developing process, an etching process, and a resist stripping process, so that a predetermined pattern is formed on the substrate, and the process proceeds to the next color filter forming process 402.
[0078] 次に、カラーフィルター形成工程 402では、 R (Red)、 G (Green)、 B (Blue)に対応し た 3つのドットの組がマトリックス状に多数配列されたり、または R、 G、 Bの 3本のストラ イブのフィルターの組を複数水平走査線方向に配列したカラーフィルターを形成する 。そして、カラーフィルター形成工程 402の後に、セル組み立て工程 403が実行され る。セル組み立て工程 403では、パターン形成工程 401にて得られた所定パターン を有する基板、およびカラーフィルター形成工程 402にて得られたカラーフィルター 等を用いて液晶パネル (液晶セル)を組み立てる。  Next, in the color filter forming step 402, a large number of sets of three dots corresponding to R (Red), G (Green), and B (Blue) are arranged in a matrix, or R, G, A color filter is formed by arranging a plurality of sets of filters of three stripes B in the horizontal scanning line direction. Then, after the color filter forming step 402, a cell assembling step 403 is performed. In the cell assembling step 403, a liquid crystal panel (liquid crystal cell) is assembled using the substrate having the predetermined pattern obtained in the pattern forming step 401, the color filter obtained in the color filter forming step 402, and the like.
[0079] セル組み立て工程 403では、例えば、パターン形成工程 401にて得られた所定パ ターンを有する基板とカラーフィルター形成工程 402にて得られたカラーフィルターと の間に液晶を注入して、液晶パネル (液晶セル)を製造する。その後、モジュール組 み立て工程 404にて、組み立てられた液晶パネル (液晶セル)の表示動作を行わせ る電気回路、バックライト等の各部品を取り付けて液晶表示素子として完成させる。上 述の液晶表示素子の製造方法によれば、極めて微細な回路パターンを有する液晶 表示素子をスループット良く得ることができる。  In the cell assembling step 403, for example, a liquid crystal is injected between the substrate having the predetermined pattern obtained in the pattern forming step 401 and the color filter obtained in the color filter forming step 402, Manufacture panels (liquid crystal cells). Thereafter, in a module assembling step 404, components such as an electric circuit and a backlight for performing a display operation of the assembled liquid crystal panel (liquid crystal cell) are attached to complete a liquid crystal display element. According to the above-described method for manufacturing a liquid crystal display element, a liquid crystal display element having an extremely fine circuit pattern can be obtained with a high throughput.
[0080] なお、上述の実施形態では、露光光として KrFエキシマレーザ光や ArFエキシマレ 一ザ光を用いているが、これに限定されることなぐ他の適当なレーザ光源、たとえば 波長 157nmのレーザ光を供給する Fレーザ光源などに対して本発明を適用するこ ともできる。さらに、上述の実施形態では、照明光学装置を備えた投影露光装置を例 にとつて本発明を説明したが、マスク以外の被照射面を照明するための一般的な照 明光学装置に本発明を適用することができることは明らかである。 In the above-described embodiment, KrF excimer laser light or ArF excimer laser light is used as exposure light. However, the present invention is not limited to this. The present invention can also be applied to an F laser light source that supplies laser light having a wavelength of 157 nm. Furthermore, in the above-described embodiment, the present invention has been described by taking a projection exposure apparatus having an illumination optical apparatus as an example. However, the present invention is applied to a general illumination optical apparatus for illuminating an irradiated surface other than a mask. It is clear that can be applied.
[0081] また、上述の実施形態において、投影光学系と感光性基板との間の光路中を 1. 1 よりも大きな屈折率を有する媒体 (典型的には液体)で満たす手法、所謂液浸法を適 用しても良い。この場合、投影光学系と感光性基板との間の光路中に液体を満たす 手法としては、国際公開番号 WO99Z49504号公報に開示されているような局所的 に液体を満たす手法や、特開平 6 - 124873号公報に開示されているような露光対 象の基板を保持したステージを液槽の中で移動させる手法や、特開平 10— 303114 号公報に開示されて ヽるようなステージ上に所定深さの液体槽を形成し、その中に 基板を保持する手法などを採用することができる。なお、ここでは国際公開番号 WO 99Z49504号公報を参照として援用する。  In the above-described embodiment, a method of filling the optical path between the projection optical system and the photosensitive substrate with a medium (typically, a liquid) having a refractive index larger than 1.1, that is, a so-called immersion method The law may be applied. In this case, as a method of filling the liquid in the optical path between the projection optical system and the photosensitive substrate, a method of locally filling the liquid as disclosed in International Publication No. A method of moving a stage holding a substrate to be exposed in a liquid tank as disclosed in Japanese Patent Application Laid-Open No. 124873, or a method in which a predetermined depth is placed on a stage as disclosed in Japanese Patent Application Laid-Open No. 10-303114. A method of forming a liquid tank and holding the substrate in the liquid tank can be adopted. Here, International Publication No. WO 99Z49504 is incorporated by reference.
[0082] なお、液体としては、露光光に対する透過性があってできるだけ屈折率が高ぐ投 影光学系や基板表面に塗布されているフォトレジストに対して安定なものを用いるこ とが好ましぐたとえば KrFエキシマレーザ光や ArFエキシマレーザ光を露光光とす る場合には、液体として純水、脱イオン水を用いることができる。また、露光光として F レーザ光を用いる場合は、液体としては Fレーザ光を透過可能な例えばフッ素系ォ ィルゃ過フッ化ポリエーテル(PFPE)等のフッ素系の液体を用いればよ!、。  As the liquid, it is preferable to use a liquid that has transparency to exposure light and a refractive index as high as possible, and a liquid that is stable to the photoresist applied to the substrate surface. For example, when KrF excimer laser light or ArF excimer laser light is used as the exposure light, pure water or deionized water can be used as the liquid. When F laser light is used as the exposure light, a liquid that can transmit F laser light, such as a fluorine-based perfluoropolyether (PFPE), can be used as the liquid! ,.
符号の説明  Explanation of symbols
[0083] 1 レーザ光源 [0083] 1 Laser light source
2, 3 プリズム組立体 (偏光状態調整手段)  2, 3 prism assembly (polarization state adjusting means)
2a, 3a 水晶プリズム  2a, 3a quartz prism
2b, 3b 石英プリズム  2b, 3b quartz prism
4 ビームマッチングユニット  4 Beam matching unit
5 偏光ビームスプリツター  5 Polarizing beam splitter
6 直角プリズム  6 Right angle prism
7, 8 回折光学素子 9 ズームレンズ 7, 8 Diffractive optical element 9 Zoom lens
10 マイクロレンズアレイ  10 micro lens array
11 コンデンサー光学系  11 Condenser optics
12 マスクブラインド  12 Mask blind
13 結像光学系  13 Imaging optics
14, 15 1Z2波長板  14, 15 1Z2 wave plate
16 プリズム組立体 (偏光解消素子) 16 Prism assembly (Depolarizing element)
16a 水晶プリズム 16a quartz prism
16b 石英プリズム  16b quartz prism
M マスク  M mask
PL 投影光学系  PL projection optical system
W ウェハ  W wafer

Claims

請求の範囲 The scope of the claims
[1] 光源部からの光束に基づいて被照射面を照明する照明光学装置において、  [1] An illumination optical device that illuminates a surface to be irradiated based on a light beam from a light source unit,
前記光源部からの光束の光路中に配置されて、前記光束を第 1断面形状の光束に 変換する第 1光束変換素子と、  A first light beam conversion element that is arranged in the light path of the light beam from the light source unit and converts the light beam into a light beam having a first cross-sectional shape;
前記光源部からの光束の光路中に配置されて、前記光束を第 2断面形状の光束に 変換する第 2光束変換素子と、  A second luminous flux conversion element disposed in the optical path of the luminous flux from the light source unit, for converting the luminous flux into a luminous flux having a second cross-sectional shape;
前記第 1光束変換素子からの前記第 1断面形状の光束と前記第 2光束変換素子か らの前記第 2断面形状の光束との光路中に配置されて、前記第 1断面形状の光束を 前記照明光学装置の照明瞳面上の第 1領域へ導くと共に、前記第 2断面形状の光 束を前記照明瞳面上の前記第 1領域とは異なる第 2領域へ導く集光光学系と、 前記光源部と前記照明瞳面との間の光路中に配置されて、前記第 1領域に達する 光束の偏光状態と前記第 2領域に達する光束の偏光状態とを独立に制御するため の偏光状態変更手段を備えていることを特徴とする照明光学装置。  The luminous flux having the first cross-sectional shape is arranged in the optical path between the luminous flux having the first cross-sectional shape from the first luminous flux conversion element and the luminous flux having the second cross-sectional shape from the second luminous flux converting element. A condensing optical system that guides a light beam having the second cross-sectional shape to a second area different from the first area on the illumination pupil plane, while guiding the light flux to the first area on the illumination pupil plane of the illumination optical device; A polarization state changer arranged in an optical path between a light source unit and the illumination pupil plane to change the polarization state of the light flux reaching the first area and the polarization state of the light flux reaching the second area independently. An illumination optical device comprising means.
[2] 前記偏光状態変更手段は、前記光源部と前記第 1光束変換素子との間の光路中で あって前記光源部と前記第 2光束変換素子との間の光路中に配置されて、前記光源 部からの光束を分割して前記第 1光束変換素子および前記第 2光束変換素子へそ れぞれ導くビームスプリツターを備えていることを特徴とする請求項 1に記載の照明光 学装置。 [2] The polarization state changing unit is disposed in an optical path between the light source unit and the first light beam conversion element and in an optical path between the light source unit and the second light beam conversion element. The illumination optical apparatus according to claim 1, further comprising a beam splitter that splits a light beam from the light source unit and guides the light beam to the first light beam conversion element and the second light beam conversion element, respectively. .
[3] 前記ビームスプリツターは偏光ビームスプリツターを備えて 、ることを特徴とする請求 項 2に記載の照明光学装置。  [3] The illumination optical device according to claim 2, wherein the beam splitter includes a polarizing beam splitter.
[4] 前記偏光状態変更手段は、前記偏光ビームスプリツターと前記第 1光束変換素子と の間の光路中または前記第 1光束変換素子と前記照明瞳面との間の光路中に配置 されて、入射する直線偏光の偏光面の方向を変化させるための第 1偏光面可変手段 と、 [4] The polarization state changing means is disposed in an optical path between the polarization beam splitter and the first light beam conversion element or in an optical path between the first light beam conversion element and the illumination pupil plane. First polarization plane changing means for changing the direction of the plane of polarization of the linearly polarized light incident thereon,
前記偏光ビームスプリツターと前記第 2光束変換素子との間の光路中または前記第 2光束変換素子と前記照明瞳面との間の光路中に配置されて、入射する直線偏光の 偏光面の方向を変化させるための第 2偏光面可変手段とをさらに備えていることを特 徴とする請求項 3に記載の照明光学装置。 The direction of the plane of polarization of linearly polarized light that is disposed in the optical path between the polarizing beam splitter and the second light beam converting element or in the optical path between the second light beam converting element and the illumination pupil plane 4. The illumination optical device according to claim 3, further comprising a second polarization plane changing unit for changing the polarization plane.
[5] 前記第 1光束変換素子を介して前記第 1領域に達する光の強度と前記第 2光束変換 素子を介して前記第 2領域に達する光の強度との比を変更するための強度変更手段 をさらに備えていることを特徴とする請求項 1乃至 4のいずれか 1項に記載の照明光 学装置。 [5] An intensity change for changing a ratio of an intensity of light reaching the first region via the first light beam conversion device and an intensity of light reaching the second region via the second light beam conversion device. The illumination optical device according to any one of claims 1 to 4, further comprising means.
[6] 前記強度変更手段は、前記光源部と前記第 1光束変換素子との間の光路中であつ て前記光源部と前記第 2光束変換素子との間の光路中に配置されて、前記光源部 からの光束を分割して前記第 1光束変換素子および前記第 2光束変換素子へそれ ぞれ導く偏光ビームスプリツターと、  [6] The intensity changing means is arranged in an optical path between the light source unit and the first light beam conversion element and in an optical path between the light source unit and the second light beam conversion element. A polarizing beam splitter that splits a light beam from the light source unit and guides the light beam to the first light beam conversion element and the second light beam conversion element, respectively;
前記光源部と前記偏光ビームスプリツターとの間の光路中に配置されて、前記偏光 ビームスプリツターへの入射光の偏光状態を調整するための偏光状態調整手段とを 備えていることを特徴とする請求項 5に記載の照明光学装置。  A polarization state adjusting unit disposed in an optical path between the light source unit and the polarization beam splitter to adjust a polarization state of light incident on the polarization beam splitter. 6. The illumination optical device according to claim 5, wherein:
[7] 前記第 1光束変換素子は、前記第 1光束変換素子とは異なる特性を有する別の光束 変換素子と交換可能であることを特徴とする請求項 1乃至 6のいずれか 1項に記載の 照明光学装置。 7. The method according to claim 1, wherein the first light beam conversion element is exchangeable with another light beam conversion element having characteristics different from those of the first light beam conversion element. Illumination optics.
[8] 前記第 2光束変換素子は、前記第 2光束変換素子とは異なる特性を有する別の光束 変換素子と交換可能であることを特徴とする請求項 7に記載の照明光学装置。  [8] The illumination optical device according to claim 7, wherein the second light beam conversion element is replaceable with another light beam conversion element having a characteristic different from that of the second light beam conversion element.
[9] 前記集光光学系と前記被照射面との間の光路中に配置されたオプティカルインテグ レータをさらに備えていることを特徴とする請求項 1乃至 8のいずれか 1項に記載の照 明光学装置。  9. The illumination device according to claim 1, further comprising an optical integrator disposed in an optical path between the light-collecting optical system and the irradiation surface. Ming optical device.
[10] 前記第 1領域は前記照明瞳面上において光軸を含む領域であり、前記第 2領域は 前記照明瞳面上において前記光軸から離れた領域であることを特徴とする請求項 1 乃至 9のいずれか 1項に記載の照明光学装置。  10. The method according to claim 1, wherein the first area is an area including an optical axis on the illumination pupil plane, and the second area is an area distant from the optical axis on the illumination pupil plane. 10. The illumination optical device according to any one of claims 1 to 9.
[11] 被照射面を照明する照明光学装置において、 [11] In an illumination optical device for illuminating an irradiation surface,
照明瞳面上の第 1領域の偏光状態と前記照明瞳面上の第 2領域の偏光状態とを 独立に制御するための偏光状態制御手段を備えていることを特徴とする照明光学装 置。  An illumination optical device comprising: a polarization state control unit for independently controlling a polarization state of a first area on an illumination pupil plane and a polarization state of a second area on the illumination pupil plane.
[12] 前記偏光状態制御手段は、  [12] The polarization state control means,
光源部からの光束を前記第 1領域に対応する第 1断面形状の光束に変換するため の第 1光束変換素子と、 To convert a light beam from the light source unit into a light beam having a first cross-sectional shape corresponding to the first region A first light beam conversion element of
前記光源部からの光束を前記第 2領域に対応する第 2断面形状の光束に変換する ための第 2光束変換素子と、  A second light beam conversion element for converting the light beam from the light source unit into a light beam having a second cross-sectional shape corresponding to the second region;
前記光源部からの光束を分割して前記第 1光束変換素子および前記第 2光束変換 素子へそれぞれ導くためのビームスプリツターと、  A beam splitter for splitting a light beam from the light source unit and guiding the light beam to the first light beam conversion element and the second light beam conversion element, respectively;
前記第 1光束変換素子を介して前記第 1領域に達する光および前記第 2光束変換 素子を介して前記第 2領域に達する光のうちの少なくとも一方の偏光状態を変更する ための偏光状態変更手段とを有することを特徴とする請求項 11に記載の照明光学 装置。  Polarization state changing means for changing the polarization state of at least one of light reaching the first region via the first light beam conversion element and light reaching the second region via the second light beam conversion element 12. The illumination optical device according to claim 11, comprising:
[13] 前記偏光状態変更手段は、  [13] The polarization state changing means,
前記ビームスプリツターとしての偏光ビームスプリツターと、  A polarizing beam splitter as the beam splitter,
前記偏光ビームスプリツターと前記第 1光束変換素子との間の光路中または前記第 1光束変換素子と前記照明瞳面との間の光路中に配置されて入射する直線偏光の 偏光面の方向を変化させるための第 1偏光面可変手段と、  The direction of the plane of polarization of linearly polarized light which is incident on the optical path between the polarizing beam splitter and the first light beam converting element or in the optical path between the first light beam converting element and the illumination pupil plane is changed. First polarization plane variable means for changing,
前記偏光ビームスプリツターと前記第 2光束変換素子との間の光路中または前記第 2光束変換素子と前記照明瞳面との間の光路中に配置されて入射する直線偏光の 偏光面の方向を変化させるための第 2偏光面可変手段とを有することを特徴とする請 求項 12に記載の照明光学装置。  The direction of the plane of polarization of the linearly polarized light incident on the optical path between the polarization beam splitter and the second light beam conversion element or in the light path between the second light beam conversion element and the illumination pupil plane is changed. 13. The illumination optical device according to claim 12, further comprising a second polarization plane changing unit for changing the polarization plane.
[14] 前記偏光状態変更手段は、前記第 1偏光面可変手段と前記照明瞳面との間の光路 中または前記第 2偏光面可変手段と前記照明瞳面との間の光路中に配置されて入 射する直線偏光の光を非偏光の光に変換するための偏光解消素子をさらに有する ことを特徴とする請求項 13に記載の照明光学装置。  [14] The polarization state changing unit is disposed in an optical path between the first polarization plane variable unit and the illumination pupil plane or in an optical path between the second polarization plane variable unit and the illumination pupil plane. 14. The illumination optical device according to claim 13, further comprising a depolarizing element for converting the linearly polarized light to be input into non-polarized light.
[15] 前記偏光解消素子は、光軸を中心として結晶光学軸が回転自在に構成されたくさび 形状の水晶プリズムを有することを特徴とする請求項 14に記載の照明光学装置。  15. The illumination optical device according to claim 14, wherein the depolarizing element has a wedge-shaped quartz prism whose crystal optical axis is rotatable about an optical axis.
[16] 前記第 1光束変換素子を介して前記第 1領域に達する光の強度と前記第 2光束変換 素子を介して前記第 2領域に達する光の強度との比を変更するための強度変更手段 をさらに備えていることを特徴とする請求項 12乃至 15のいずれか 1項に記載の照明 光学装置。 [16] An intensity change for changing a ratio of an intensity of light reaching the first area via the first light beam conversion element and an intensity of light reaching the second area via the second light beam conversion element. The illumination optical device according to any one of claims 12 to 15, further comprising: means.
[17] 前記強度変更手段は、前記ビームスプリツターとしての偏光ビームスプリツターと、該 偏光ビームスプリツターへの入射光の偏光状態を調整するための偏光状態調整手段 とを有することを特徴とする請求項 16に記載の照明光学装置。 [17] The intensity changing unit includes a polarization beam splitter as the beam splitter, and a polarization state adjusting unit for adjusting a polarization state of light incident on the polarization beam splitter. An illumination optical device according to claim 16.
[18] 前記偏光状態調整手段は、前記光源部と前記偏光ビームスプリツターとの間の光路 中に配置されて、光軸を中心として結晶光学軸が回転自在に構成された一対のくさ び形状の水晶プリズムを有することを特徴とする請求項 17に記載の照明光学装置。  [18] The polarization state adjusting unit is disposed in an optical path between the light source unit and the polarization beam splitter, and has a pair of wedge shapes in which a crystal optical axis is rotatable about an optical axis. 18. The illumination optical device according to claim 17, comprising: a quartz prism.
[19] 前記第 1光束変換素子および前記第 2光束変換素子は照明光路に対してそれぞれ 交換可能に構成されていることを特徴とする請求項 12乃至 18のいずれか 1項に記 載の照明光学装置。  [19] The illumination according to any one of claims 12 to 18, wherein the first light beam conversion element and the second light beam conversion element are configured to be exchangeable with respect to an illumination light path. Optical device.
[20] 前記第 1領域は前記照明瞳面上において光軸を含む領域であり、前記第 2領域は 前記照明瞳面上において前記光軸から離れた領域であることを特徴とする請求項 1 1乃至 19のいずれか 1項に記載の照明光学装置。  20. The method according to claim 1, wherein the first area is an area including an optical axis on the illumination pupil plane, and the second area is an area away from the optical axis on the illumination pupil plane. 20. The illumination optical device according to any one of 1 to 19.
[21] 前記第 2領域は輪帯状または複数極状であることを特徴とする請求項 11乃至 20の いずれか 1項に記載の照明光学装置。 21. The illumination optical device according to claim 11, wherein the second region has an annular shape or a plurality of polarities.
[22] 前記第 1光束変換素子および前記第 2光束変換素子からの光束に基づいて前記照 明瞳面に二次光源を形成するためのオプティカルインテグレータと、 [22] An optical integrator for forming a secondary light source on the illumination pupil plane based on the light beams from the first light beam conversion device and the second light beam conversion device;
前記オプティカルインテグレータカ の光束を前記被照射面へ導くための導光光 学系とをさらに備えていることを特徴とする請求項 12乃至 21のいずれか 1項に記載 の照明光学装置。  22. The illumination optical device according to claim 12, further comprising: a light guiding optical system for guiding a light beam of the optical integrator to the irradiated surface.
[23] 被照射面を照明する照明光学装置において、 [23] In an illumination optical device for illuminating a surface to be irradiated,
光源部からの光束を照明瞳面上の第 1領域に対応する第 1断面形状の光束に変 換するための第 1光束変換素子と、  A first light beam conversion element for converting a light beam from the light source unit into a light beam having a first cross-sectional shape corresponding to a first region on the illumination pupil plane;
前記光源部からの光束を前記照明瞳面上の第 2領域に対応する第 2断面形状の 光束に変換するための第 2光束変換素子と、  A second light beam conversion element for converting a light beam from the light source unit into a light beam having a second cross-sectional shape corresponding to a second region on the illumination pupil plane;
前記光源部からの光束を分割して前記第 1光束変換素子および前記第 2光束変換 素子へそれぞれ導くためのビームスプリツターと、  A beam splitter for splitting a light beam from the light source unit and guiding the light beam to the first light beam conversion element and the second light beam conversion element, respectively;
前記第 1光束変換素子を介して前記第 1領域に達する光の強度と前記第 2光束変 換素子を介して前記第 2領域に達する光の強度との比を変更するための強度変更手 段とを備えていることを特徴とする照明光学装置。 Intensity changing means for changing the ratio of the intensity of light reaching the first area via the first light beam conversion element and the intensity of light reaching the second area via the second light beam conversion element. An illumination optical device, comprising: a step;
[24] 前記強度変更手段は、前記ビームスプリツターとしての偏光ビームスプリツターと、該 偏光ビームスプリツターへの入射光の偏光状態を調整するための偏光状態調整手段 とを有することを特徴とする請求項 23に記載の照明光学装置。  [24] The intensity changing unit includes a polarization beam splitter as the beam splitter, and a polarization state adjusting unit for adjusting a polarization state of light incident on the polarization beam splitter. An illumination optical device according to claim 23.
[25] 前記偏光状態調整手段は、前記光源部と前記偏光ビームスプリツターとの間の光路 中に配置されて、光軸を中心として結晶光学軸が回転自在に構成された一対のくさ び形状の水晶プリズムを有することを特徴とする請求項 24に記載の照明光学装置。  [25] The polarization state adjusting unit is disposed in an optical path between the light source unit and the polarization beam splitter, and has a pair of wedges configured such that a crystal optical axis is rotatable about an optical axis. 25. The illumination optical device according to claim 24, further comprising: a quartz prism.
[26] 前記第 1光束変換素子および前記第 2光束変換素子は照明光路に対してそれぞれ 交換可能に構成されていることを特徴とする請求項 23乃至 25のいずれか 1項に記 載の照明光学装置。  26. The illumination according to claim 23, wherein the first light beam conversion element and the second light beam conversion element are configured to be exchangeable with respect to an illumination light path. Optical device.
[27] 前記第 1領域は前記照明瞳面上において光軸を含む領域であり、前記第 2領域は 前記照明瞳面上において前記光軸から離れた領域であることを特徴とする請求項 2 3乃至 26のいずれか 1項に記載の照明光学装置。  27. The method according to claim 2, wherein the first area is an area including an optical axis on the illumination pupil plane, and the second area is an area away from the optical axis on the illumination pupil plane. 27. The illumination optical device according to any one of 3 to 26.
[28] 前記第 2領域は輪帯状または複数極状であることを特徴とする請求項 23乃至 27の いずれか 1項に記載の照明光学装置。 [28] The illumination optical device according to any one of claims 23 to 27, wherein the second region has an annular shape or a plurality of polarities.
[29] 前記第 1光束変換素子および前記第 2光束変換素子からの光束に基づいて前記照 明瞳面に二次光源を形成するためのオプティカルインテグレータと、 [29] An optical integrator for forming a secondary light source on the illumination pupil plane based on the light beams from the first light beam conversion device and the second light beam conversion device;
前記オプティカルインテグレータカ の光束を前記被照射面へ導くための導光光 学系とをさらに備えていることを特徴とする請求項 23乃至 28のいずれか 1項に記載 の照明光学装置。  The illumination optical device according to any one of claims 23 to 28, further comprising: a light guiding optical system for guiding a light flux of the optical integrator to the irradiation surface.
[30] 被照射面を照明する照明光学装置において、 [30] In an illumination optical device for illuminating a surface to be irradiated,
光源部からの光束を照明瞳面上の第 1領域に対応する第 1断面形状の光束に変 換するための第 1光束変換素子と、  A first light beam conversion element for converting a light beam from the light source unit into a light beam having a first cross-sectional shape corresponding to a first region on the illumination pupil plane;
前記光源部からの光束を前記照明瞳面上の第 2領域に対応する第 2断面形状の 光束に変換するための第 2光束変換素子とを備え、  A second light beam conversion element for converting a light beam from the light source unit into a light beam having a second cross-sectional shape corresponding to a second region on the illumination pupil plane;
前記第 1光束変換素子および前記第 2光束変換素子は照明光路に対してそれぞ れ交換可能に構成されていることを特徴とする照明光学装置。  The illumination optical device, wherein the first light beam conversion element and the second light beam conversion element are configured to be exchangeable with respect to an illumination light path.
[31] 前記光源部からの光束を分割して前記第 1光束変換素子および前記第 2光束変換 素子へそれぞれ導くためのビームスプリツターをさらに備えていることを特徴とする請 求項 30に記載の照明光学装置。 [31] The light beam from the light source unit is split into the first light beam conversion element and the second light beam conversion device. 31. The illumination optical device according to claim 30, further comprising a beam splitter for guiding each to an element.
[32] 前記第 1領域は前記照明瞳面上において光軸を含む領域であり、前記第 2領域は 前記照明瞳面上において前記光軸から離れた領域であることを特徴とする請求項 332. The method according to claim 3, wherein the first area is an area including an optical axis on the illumination pupil plane, and the second area is an area away from the optical axis on the illumination pupil plane.
0または 31に記載の照明光学装置。 32. The illumination optical device according to 0 or 31.
[33] 前記第 2領域は輪帯状または複数極状であることを特徴とする請求項 30乃至 32の いずれか 1項に記載の照明光学装置。 [33] The illumination optical device according to any one of claims 30 to 32, wherein the second region has an annular shape or a plurality of polarities.
[34] 前記第 1光束変換素子および前記第 2光束変換素子からの光束に基づいて前記照 明瞳面に二次光源を形成するためのオプティカルインテグレータと、 [34] An optical integrator for forming a secondary light source on the illumination pupil plane based on the light beams from the first light beam conversion device and the second light beam conversion device;
前記オプティカルインテグレータカ の光束を前記被照射面へ導くための導光光 学系とをさらに備えていることを特徴とする請求項 30乃至 33のいずれか 1項に記載 の照明光学装置。  The illumination optical device according to any one of claims 30 to 33, further comprising: a light guiding optical system for guiding a light beam of the optical integrator to the irradiation surface.
[35] 光源部からの光束に基づいて被照射面を照明する照明光学装置において、  [35] In an illumination optical device that illuminates an irradiated surface based on a light beam from a light source unit,
前記光源部と前記被照射面との間に配置されて、前記光源部からの光束の偏光状 態の変動を防止する偏光変動解消手段を備え、  A polarization fluctuation eliminating unit disposed between the light source unit and the irradiated surface to prevent a change in the polarization state of a light beam from the light source unit;
前記偏光変動解消手段は、前記光源部からの光束を偏光状態に応じて分割する 偏光ビームスプリツターと、該偏光ビームスプリツターにより分割された光束の偏光状 態を揃える偏光調整部材と、前記偏光ビームスプリツターにより分割された光束を合 成する光束合成光学系とを有することを特徴とする照明光学装置。  The polarization fluctuation eliminating means includes: a polarization beam splitter that divides a light beam from the light source unit according to a polarization state; a polarization adjustment member that aligns the polarization state of the light beam divided by the polarization beam splitter; An illumination optical device, comprising: a light beam combining optical system that combines light beams split by a beam splitter.
[36] マスクを照明するための請求項 1乃至 35のいずれ力 1項に記載の照明光学装置を 備え、前記マスクのパターンを感光性基板上に露光することを特徴とする露光装置。 [36] An exposure apparatus, comprising: the illumination optical device according to any one of claims 1 to 35 for illuminating a mask, and exposing a pattern of the mask onto a photosensitive substrate.
[37] 前記マスクのパターンの像を前記感光性基板上に形成する投影光学系を備えて!/ヽ ることを特徴とする請求項 36に記載の露光装置。 37. The exposure apparatus according to claim 36, further comprising a projection optical system for forming an image of the pattern of the mask on the photosensitive substrate.
[38] 前記投影光学系は、光路折曲げミラーを備えていることを特徴とする請求項 37に記 載の露光装置。 38. The exposure apparatus according to claim 37, wherein the projection optical system includes an optical path bending mirror.
[39] 請求項 1乃至 35のいずれか 1項に記載の照明光学装置を介してマスクを照明する照 明工程と、  [39] An illumination step of illuminating a mask via the illumination optical device according to any one of claims 1 to 35,
照明された前記マスクに形成されたパターンを感光性基板上に露光する露光工程 とを含んで ヽることを特徴とする露光方法。 Exposure step of exposing a pattern formed on the illuminated mask to a photosensitive substrate An exposure method characterized by comprising:
[40] 前記露光工程は、前記マスクのパターンの像を前記感光性基板上に形成する投影 工程を含んでいることを特徴とする請求項 39に記載の露光方法。  40. The exposure method according to claim 39, wherein the exposing step includes a projecting step of forming an image of the mask pattern on the photosensitive substrate.
[41] 前記投影工程は、光路を折り曲げる光路折曲げ工程を含んでいることを特徴とする 請求項 40に記載の露光方法。  41. The exposure method according to claim 40, wherein the projecting step includes an optical path bending step of bending an optical path.
PCT/JP2004/014323 2003-10-09 2004-09-30 Illumination optical device, and exposure device and method WO2005036619A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005514555A JPWO2005036619A1 (en) 2003-10-09 2004-09-30 Illumination optical apparatus, exposure apparatus, and exposure method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003350399 2003-10-09
JP2003-350399 2003-10-09

Publications (1)

Publication Number Publication Date
WO2005036619A1 true WO2005036619A1 (en) 2005-04-21

Family

ID=34431048

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/014323 WO2005036619A1 (en) 2003-10-09 2004-09-30 Illumination optical device, and exposure device and method

Country Status (2)

Country Link
JP (1) JPWO2005036619A1 (en)
WO (1) WO2005036619A1 (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007058240A1 (en) 2005-11-16 2007-05-24 Nikon Corporation Substrate processing method, photomask manufacturing method, photomask and device manufacturing method
EP1953805A1 (en) * 2005-11-10 2008-08-06 Nikon Corporation Lighting optical system, exposure system, and exposure method
WO2009050966A1 (en) * 2007-10-16 2009-04-23 Nikon Corporation Light transmission optical system, illumination optical system, exposure apparatus, and device manufacturing method
JP2009099629A (en) * 2007-10-12 2009-05-07 Nikon Corp Illumination optical device, exposure method and apparatus, and method of manufacturing electronic device
JP2009212487A (en) * 2008-03-05 2009-09-17 Nanya Technology Corp Feedback system and feedback method for controlling power ratio of incident light
WO2009128293A1 (en) * 2008-04-14 2009-10-22 株式会社ニコン Spatial light modulation unit, lighting optical system, exposure apparatus and method for manufacturing device
JPWO2008007632A1 (en) * 2006-07-12 2009-12-10 株式会社ニコン Illumination optical apparatus, exposure apparatus, and device manufacturing method
EP2200070A1 (en) * 2007-10-12 2010-06-23 Nikon Corporation Illuminating optical apparatus, and exposure method and apparatus
JP2011040618A (en) * 2009-08-12 2011-02-24 Nikon Corp Diffraction optical element, illumination optical system, exposure apparatus, method of manufacturing device, and method of designing diffraction optical element
JP2011040646A (en) * 2009-08-17 2011-02-24 Nikon Corp Illumination optical system, exposure device, and method of manufacturing device
US8339578B2 (en) 2004-01-27 2012-12-25 Nikon Corporation Optical system, exposure system, and exposure method
US8379187B2 (en) 2007-10-24 2013-02-19 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US8446579B2 (en) 2008-05-28 2013-05-21 Nikon Corporation Inspection device and inspecting method for spatial light modulator, illumination optical system, method for adjusting the illumination optical system, exposure apparatus, and device manufacturing method
US8451427B2 (en) 2007-09-14 2013-05-28 Nikon Corporation Illumination optical system, exposure apparatus, optical element and manufacturing method thereof, and device manufacturing method
US8462317B2 (en) 2007-10-16 2013-06-11 Nikon Corporation Illumination optical system, exposure apparatus, and device manufacturing method
US8520291B2 (en) 2007-10-16 2013-08-27 Nikon Corporation Illumination optical system, exposure apparatus, and device manufacturing method
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US8675177B2 (en) 2003-04-09 2014-03-18 Nikon Corporation Exposure method and apparatus, and method for fabricating device with light amount distribution having light larger in first and second pairs of areas
US8854601B2 (en) 2005-05-12 2014-10-07 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US8861084B2 (en) 2004-01-16 2014-10-14 Carl Zeiss Smt Ag Polarization-modulating optical element
US9097981B2 (en) 2007-10-12 2015-08-04 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US9116346B2 (en) 2007-11-06 2015-08-25 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US9140992B2 (en) 2003-10-28 2015-09-22 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9164209B2 (en) 2003-11-20 2015-10-20 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power having different thicknesses to rotate linear polarization direction
US9581911B2 (en) 2004-01-16 2017-02-28 Carl Zeiss Smt Gmbh Polarization-modulating optical element
WO2023117611A1 (en) * 2021-12-23 2023-06-29 Asml Netherlands B.V. Systems and methods for generating multiple illumination spots from a single illumination source

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0653120A (en) * 1992-07-27 1994-02-25 Nikon Corp Illuminating optic device
JPH06204121A (en) * 1992-12-28 1994-07-22 Canon Inc Illuminator and projection aligner using the same
JPH07283121A (en) * 1994-04-15 1995-10-27 Fujitsu Ltd Aligner
JP2000114157A (en) * 1998-09-29 2000-04-21 Nikon Corp Illuminator and projection aligner provided therewith
JP2002359176A (en) * 2001-05-31 2002-12-13 Canon Inc Luminaire, illumination control method, aligner, device and manufacturing method thereof
JP2003090978A (en) * 2001-09-17 2003-03-28 Canon Inc Illumination device, exposure device and method for manufacturing device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0653120A (en) * 1992-07-27 1994-02-25 Nikon Corp Illuminating optic device
JPH06204121A (en) * 1992-12-28 1994-07-22 Canon Inc Illuminator and projection aligner using the same
JPH07283121A (en) * 1994-04-15 1995-10-27 Fujitsu Ltd Aligner
JP2000114157A (en) * 1998-09-29 2000-04-21 Nikon Corp Illuminator and projection aligner provided therewith
JP2002359176A (en) * 2001-05-31 2002-12-13 Canon Inc Luminaire, illumination control method, aligner, device and manufacturing method thereof
JP2003090978A (en) * 2001-09-17 2003-03-28 Canon Inc Illumination device, exposure device and method for manufacturing device

Cited By (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9146474B2 (en) 2003-04-09 2015-09-29 Nikon Corporation Exposure method and apparatus, and method for fabricating device with light amount distribution having light larger and different linear polarization states in an on-axis area and a plurality of off-axis areas
US9885959B2 (en) 2003-04-09 2018-02-06 Nikon Corporation Illumination optical apparatus having deflecting member, lens, polarization member to set polarization in circumference direction, and optical integrator
US9164393B2 (en) 2003-04-09 2015-10-20 Nikon Corporation Exposure method and apparatus, and method for fabricating device with light amount distribution having light larger in four areas
US8675177B2 (en) 2003-04-09 2014-03-18 Nikon Corporation Exposure method and apparatus, and method for fabricating device with light amount distribution having light larger in first and second pairs of areas
US9244359B2 (en) 2003-10-28 2016-01-26 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9423697B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9140992B2 (en) 2003-10-28 2015-09-22 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9760014B2 (en) 2003-10-28 2017-09-12 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9146476B2 (en) 2003-10-28 2015-09-29 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9140993B2 (en) 2003-10-28 2015-09-22 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US10281632B2 (en) 2003-11-20 2019-05-07 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power to rotate linear polarization direction
US9164209B2 (en) 2003-11-20 2015-10-20 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power having different thicknesses to rotate linear polarization direction
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US9316772B2 (en) 2004-01-16 2016-04-19 Carl Zeiss Smt Gmbh Producing polarization-modulating optical element for microlithography system
US9581911B2 (en) 2004-01-16 2017-02-28 Carl Zeiss Smt Gmbh Polarization-modulating optical element
US8861084B2 (en) 2004-01-16 2014-10-14 Carl Zeiss Smt Ag Polarization-modulating optical element
US8351021B2 (en) 2004-01-27 2013-01-08 Nikon Corporation Optical system, exposure system, and exposure method
US8436983B2 (en) 2004-01-27 2013-05-07 Nikon Corporation Optical system, exposure system, and exposure method
US8339578B2 (en) 2004-01-27 2012-12-25 Nikon Corporation Optical system, exposure system, and exposure method
US9423694B2 (en) 2004-02-06 2016-08-23 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9429848B2 (en) 2004-02-06 2016-08-30 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10007194B2 (en) 2004-02-06 2018-06-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10234770B2 (en) 2004-02-06 2019-03-19 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9140990B2 (en) 2004-02-06 2015-09-22 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10241417B2 (en) 2004-02-06 2019-03-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9360763B2 (en) 2005-05-12 2016-06-07 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US8854601B2 (en) 2005-05-12 2014-10-07 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9429851B2 (en) 2005-05-12 2016-08-30 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9310696B2 (en) 2005-05-12 2016-04-12 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
EP1953805A1 (en) * 2005-11-10 2008-08-06 Nikon Corporation Lighting optical system, exposure system, and exposure method
EP1953805A4 (en) * 2005-11-10 2010-03-31 Nikon Corp Lighting optical system, exposure system, and exposure method
JP2012182479A (en) * 2005-11-10 2012-09-20 Nikon Corp Illumination optical apparatus, exposure device, and exposure method
JP5067162B2 (en) * 2005-11-10 2012-11-07 株式会社ニコン Illumination optical apparatus, exposure apparatus, and exposure method
WO2007058240A1 (en) 2005-11-16 2007-05-24 Nikon Corporation Substrate processing method, photomask manufacturing method, photomask and device manufacturing method
JPWO2008007632A1 (en) * 2006-07-12 2009-12-10 株式会社ニコン Illumination optical apparatus, exposure apparatus, and device manufacturing method
US9057963B2 (en) 2007-09-14 2015-06-16 Nikon Corporation Illumination optical system, exposure apparatus, optical element and manufacturing method thereof, and device manufacturing method
US8451427B2 (en) 2007-09-14 2013-05-28 Nikon Corporation Illumination optical system, exposure apparatus, optical element and manufacturing method thereof, and device manufacturing method
US9366970B2 (en) 2007-09-14 2016-06-14 Nikon Corporation Illumination optical system, exposure apparatus, optical element and manufacturing method thereof, and device manufacturing method
JP2009099629A (en) * 2007-10-12 2009-05-07 Nikon Corp Illumination optical device, exposure method and apparatus, and method of manufacturing electronic device
US9097981B2 (en) 2007-10-12 2015-08-04 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
EP2200070A4 (en) * 2007-10-12 2012-11-21 Nikon Corp Illuminating optical apparatus, and exposure method and apparatus
EP2200070A1 (en) * 2007-10-12 2010-06-23 Nikon Corporation Illuminating optical apparatus, and exposure method and apparatus
US8508717B2 (en) 2007-10-16 2013-08-13 Nikon Corporation Illumination optical system, exposure apparatus, and device manufacturing method
JP5459482B2 (en) * 2007-10-16 2014-04-02 株式会社ニコン Light transmission optical system, illumination optical system, exposure apparatus, and device manufacturing method
US8462317B2 (en) 2007-10-16 2013-06-11 Nikon Corporation Illumination optical system, exposure apparatus, and device manufacturing method
US8520291B2 (en) 2007-10-16 2013-08-27 Nikon Corporation Illumination optical system, exposure apparatus, and device manufacturing method
WO2009050966A1 (en) * 2007-10-16 2009-04-23 Nikon Corporation Light transmission optical system, illumination optical system, exposure apparatus, and device manufacturing method
US8379187B2 (en) 2007-10-24 2013-02-19 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9057877B2 (en) 2007-10-24 2015-06-16 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9857599B2 (en) 2007-10-24 2018-01-02 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US9116346B2 (en) 2007-11-06 2015-08-25 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
JP2009212487A (en) * 2008-03-05 2009-09-17 Nanya Technology Corp Feedback system and feedback method for controlling power ratio of incident light
WO2009128293A1 (en) * 2008-04-14 2009-10-22 株式会社ニコン Spatial light modulation unit, lighting optical system, exposure apparatus and method for manufacturing device
US8446579B2 (en) 2008-05-28 2013-05-21 Nikon Corporation Inspection device and inspecting method for spatial light modulator, illumination optical system, method for adjusting the illumination optical system, exposure apparatus, and device manufacturing method
US8456624B2 (en) 2008-05-28 2013-06-04 Nikon Corporation Inspection device and inspecting method for spatial light modulator, illumination optical system, method for adjusting the illumination optical system, exposure apparatus, and device manufacturing method
JP2011040618A (en) * 2009-08-12 2011-02-24 Nikon Corp Diffraction optical element, illumination optical system, exposure apparatus, method of manufacturing device, and method of designing diffraction optical element
JP2011040646A (en) * 2009-08-17 2011-02-24 Nikon Corp Illumination optical system, exposure device, and method of manufacturing device
WO2023117611A1 (en) * 2021-12-23 2023-06-29 Asml Netherlands B.V. Systems and methods for generating multiple illumination spots from a single illumination source

Also Published As

Publication number Publication date
JPWO2005036619A1 (en) 2007-11-22

Similar Documents

Publication Publication Date Title
WO2005036619A1 (en) Illumination optical device, and exposure device and method
EP2273305B1 (en) Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
TWI612338B (en) Optical illuminating apparatus, exposure device, exposure method, and device manufacturing method
US9195069B2 (en) Illumination optical apparatus, exposure apparatus, and device manufacturing method
KR20060129409A (en) Optical system, exposure system, and exposure method
JP2006196715A (en) Luminous-flux converting element, illuminating optical apparatus, exposure apparatus, and exposure method
JP4470095B2 (en) Illumination optical apparatus, exposure apparatus, and exposure method
US8223318B2 (en) Illuminating optical apparatus, exposure apparatus and device manufacturing method
KR20130083897A (en) Illuminating optical system, expose device, and device production method
JP4952801B2 (en) Illumination optical system, exposure apparatus, and exposure method
JP4952800B2 (en) Illumination optical system, exposure apparatus, and exposure method
JP2014116612A (en) Illumination optical device, exposure device and exposure method
JP5644921B2 (en) Illumination optics
JP2015172749A (en) Illumination optical apparatus, exposure device and exposure method
JP2006039076A (en) Depolarizer, illumination optical device, adjusting method of illumination optical device, exposure device, and manufacturing method of microdevice
JP6330830B2 (en) Illumination optical apparatus, exposure apparatus, and exposure method
JP2019023732A (en) Illumination optical system, light exposure device, and device manufacturing method
JP2011254086A (en) Illumination optical apparatus, exposure device, and exposure method
JP6493445B2 (en) Illumination optical apparatus, exposure apparatus, and exposure method
JP2008021767A (en) Illuminating optical device, exposure device and manufacturing method for devices

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005514555

Country of ref document: JP

122 Ep: pct application non-entry in european phase