JPH06204121A - Illuminator and projection aligner using the same - Google Patents

Illuminator and projection aligner using the same

Info

Publication number
JPH06204121A
JPH06204121A JP4360795A JP36079592A JPH06204121A JP H06204121 A JPH06204121 A JP H06204121A JP 4360795 A JP4360795 A JP 4360795A JP 36079592 A JP36079592 A JP 36079592A JP H06204121 A JPH06204121 A JP H06204121A
Authority
JP
Japan
Prior art keywords
light
optical
light beams
beams
projection exposure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4360795A
Other languages
Japanese (ja)
Inventor
Takanaga Shiozawa
崇永 塩澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP4360795A priority Critical patent/JPH06204121A/en
Publication of JPH06204121A publication Critical patent/JPH06204121A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To manufacture a semiconductor element capable of projection alignment of high resolution, by selecting the optimum illumination system through the direction, the line width, etc., of a pattern form. CONSTITUTION:The light flux from a light source 1 is subjected to amplitude division into a plurality of incoherent light fluxes by an optical means. A plurality of secondary light sources are formed by applying a plurality of the light fluxes to an optical integrator 10. The light fluxes from a plurality of the secondary light sources are converged by a condenser lens, and illuminate a pattern on a surface to be irradiated. The pattern is subjected to projection exposure on the substrate surface by a projection optical system 13. The optical means has an adjusting member which independently adjusts the respective relative light quantities of a plurality of the light fluxes.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は照明装置及びそれを用い
た投影露光装置に関し、具体的には半導体素子の製造装
置である所謂ステッパーにおいてレチクル面上のパター
ンを適切に照明し、高い解像力が容易に得られるように
した照明装置及びそれを用いた投影露光装置に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an illuminating device and a projection exposure apparatus using the same, and more specifically, a so-called stepper, which is a semiconductor device manufacturing apparatus, appropriately illuminates a pattern on a reticle surface and has a high resolution. The present invention relates to an illumination device which can be easily obtained and a projection exposure apparatus using the same.

【0002】[0002]

【従来の技術】最近の半導体素子の製造技術の進展は目
覚ましく、又それに伴う微細加工技術の進展も著しい。
特に光加工技術は1MDRAMの半導体素子の製造を境
にサブミクロンの解像力を有する微細加工の技術まで達
している。解像力を向上させる手段としてこれまで多く
の場合、露光波長を固定して、光学系のNA(開口数)
を大きくしていく方法を用いていた。しかし最近では露
光波長をg線からi線に変えて、超高圧水銀灯を用いた
露光法により解像力を向上させる試みも種々と行なわれ
ている。
2. Description of the Related Art The recent progress in manufacturing technology of semiconductor devices is remarkable, and accompanying it, the progress of fine processing technology is remarkable.
In particular, the optical processing technology has reached the level of fine processing technology having submicron resolution at the border of the production of semiconductor elements of 1M DRAM. In many cases, the exposure wavelength has been fixed and the NA (numerical aperture) of the optical system has been fixed as a means for improving the resolution.
Was used. However, recently, various attempts have been made to change the exposure wavelength from g-line to i-line and improve the resolution by an exposure method using an ultra-high pressure mercury lamp.

【0003】露光波長としてg線やi線を用いる方法の
発展と共にレジストプロセスも同様に発展してきた。こ
の光学系とプロセスの両者が相まって、光リソグラフィ
が急激に進歩してきた。
Along with the development of the method of using g-line or i-line as the exposure wavelength, the resist process has also developed. The combination of this optical system and the process has led to a rapid advance in optical lithography.

【0004】一般にステッパーの焦点深度はNAの2乗
に反比例することが知られている。この為サブミクロン
の解像力を得ようとすると、それと共に焦点深度が浅く
なってくるという問題点が生じてくる。
It is generally known that the depth of focus of a stepper is inversely proportional to the square of NA. Therefore, when trying to obtain submicron resolution, a problem arises that the depth of focus becomes shallower with it.

【0005】これに対してエキシマレーザーに代表され
る更に短い波長の光を用いることにより解像力の向上を
図る方法が種々と提案されている。短波長の光を用いる
効果は一般に波長に反比例する効果を持っていることが
知られており、波長を短くした分だけ焦点深度は深くな
る。
On the other hand, various methods have been proposed for improving the resolution by using light having a shorter wavelength, which is represented by an excimer laser. It is known that the effect of using light having a short wavelength generally has an effect that is inversely proportional to the wavelength, and the depth of focus becomes deeper as the wavelength becomes shorter.

【0006】短波長化の光を用いる他に解像力を向上さ
せる方法として位相シフトマスクを用いる方法(位相シ
フト法)が種々と提案されている。この方法は従来のマ
スクの一部分に他の部分とは通過光に対し180度の位
相差を与える薄膜を形成し、解像力を向上させようとす
るものであり、IBM社(米国)のLevensonらにより提
案されている。解像力RPは波長をλ、パラメータをk
1 、開口数をNAとすると一般に式 RP=k1 λ/NA で示される。通常0.7〜0.8が実用域とされるパラ
メータk1 は、位相シフト法によれば0.35ぐらい迄
大幅に改善できることが知られている。
In addition to the use of light with a short wavelength, various methods using a phase shift mask (phase shift method) have been proposed as methods for improving resolution. This method is intended to improve the resolution by forming a thin film that gives a 180-degree phase difference with respect to the passing light on one part of the conventional mask and the other part. According to Levenson et al. Of IBM (USA) Proposed. Resolving power RP is wavelength λ, parameter k
1 , where NA is the numerical aperture, it is generally expressed by the equation RP = k 1 λ / NA. It is known that the parameter k 1 , which is usually in the practical range of 0.7 to 0.8, can be greatly improved to about 0.35 by the phase shift method.

【0007】位相シフト法には種々のものが知られてお
り、それらは例えば日経マイクロデバイス1990年7
月号108ページ以降の福田等の論文に詳しく記載され
ている。
Various types of phase shift methods are known, for example, Nikkei Microdevice 1990 7
It is described in detail in the papers by Fukuda et al.

【0008】しかしながら実際に空間周波数変調型の位
相シフトマスクを用いて解像力を向上させるためには未
だ多くの問題点が残っている。例えば現状で問題点とな
っているものとして以下のものがある。 (イ).位相シフト膜を形成する技術が未確立。 (ロ).位相シフト膜用の最適なCADの開発が未確
立。 (ハ).位相シフト膜を付けれないパターンの存在。 (ニ).(ハ)に関連してネガ型レジストを使用せざる
を得ないこと。 (ホ).検査、修正技術が未確立。
However, many problems still remain in order to actually improve the resolution by using a spatial frequency modulation type phase shift mask. For example, there are the following as problems at present. (I). The technology for forming the phase shift film has not been established. (B). The development of the optimum CAD for the phase shift film has not been established. (C). The existence of a pattern that cannot have a phase shift film. (D). There is no choice but to use a negative resist in relation to (c). (E). Inspection and correction techniques have not been established.

【0009】このため実際に、この位相シフトマスクを
利用して半導体素子を製造するには様々な障害があり、
現在のところ大変困難である。
Therefore, actually, there are various obstacles in manufacturing a semiconductor device using this phase shift mask.
At present it is very difficult.

【0010】これに対して、本出願人はより解像力を高
めた露光方法及びそれを用いた露光装置を特願平3−2
8631号公報(平成3年2月22日出願)で提案して
いる。
On the other hand, the applicant of the present invention has proposed an exposure method and an exposure apparatus using the same with a higher resolution.
Proposed in Japanese Patent No. 8631 (filed on February 22, 1991).

【0011】そこでは照明光(有効光源)を4つの部分
に分割し、4重極状の照明光とすることにより高解像度
の投影を行なっている。
Therein, the illumination light (effective light source) is divided into four parts to form a quadrupole illumination light for high-resolution projection.

【0012】図9は本出願人が先に提案した高解像度用
の投影露光装置の要部概略図である。
FIG. 9 is a schematic view of a main part of a high resolution projection exposure apparatus previously proposed by the present applicant.

【0013】同図においてはエキシマレーザー101か
ら射出した光束をビーム整形光学系(不図示)によりビ
ーム整形した後、光分割手段109aで互いにインコヒ
ーレントな複数の光束に振幅分割して射出してオプティ
カルインテグレータ110に入射している。
In the figure, after the light beam emitted from the excimer laser 101 is beam-shaped by a beam shaping optical system (not shown), it is amplitude-divided into a plurality of incoherent light beams by the light splitting means 109a and is emitted to the optical beam. It is incident on the integrator 110.

【0014】オプティカルインテグレータ110の入射
面110aにおける光強度分布は、例えば図10に示す
ようになっている。このとき射出面110bもそれに対
応した光強度分布となっている。
The light intensity distribution on the incident surface 110a of the optical integrator 110 is, for example, as shown in FIG. At this time, the exit surface 110b also has a light intensity distribution corresponding thereto.

【0015】尚、図10では光分割手段109aで入射
光束を4つの光束の分割した場合を示している。
Incidentally, FIG. 10 shows a case where the incident light beam is split into four light beams by the light splitting means 109a.

【0016】オプティカルインテグレータ110からの
光束をコンデンサーレンズ111で集光し、被照射面で
あるレチクル112を照明している。そしてレチクル1
12面上のパターンを投影光学系113によりウエハ1
14面上に投影している。
A light flux from the optical integrator 110 is condensed by a condenser lens 111 to illuminate a reticle 112 which is a surface to be illuminated. And reticle 1
The pattern on the 12th surface is projected onto the wafer 1 by the projection optical system 113.
It is projected on 14 planes.

【0017】同図ではオプティカルインテグレータ11
0の射出面110bの光強度分布を図10に示すような
形状とし、かつコンデンサーレンズ111で射出面11
0bを投影光学系113の瞳に結像させるようにしてい
る。これによりレチクル112の特定のパターンについ
て高解像度のパターン投影を行なっている。
In the figure, the optical integrator 11 is shown.
0 has a light intensity distribution on the exit surface 110b of 0, and the condenser lens 111 is used for exit surface 11b.
0b is focused on the pupil of the projection optical system 113. As a result, high-resolution pattern projection is performed on a specific pattern of the reticle 112.

【0018】[0018]

【発明が解決しようとする課題】一般にウエハ面上に転
写されるパターン像質(解像度)は照明装置の性質、例
えば被照射面上の照射光の角度分布(配光特性)に大き
く影響される。
Generally, the pattern image quality (resolution) transferred onto the wafer surface is greatly influenced by the property of the illumination device, for example, the angular distribution (light distribution characteristic) of the irradiation light on the surface to be irradiated. .

【0019】半導体素子の製造用の投影露光装置では組
立精度のバラツキや各要素の経時的な変動のために被照
射面であるレチクル面上の配光特性を均一に維持するの
が大変難しい。この為、被照射面上の配光特性の非対称
性によりパターン像の解像力が低下してくる場合があっ
た。
In a projection exposure apparatus for manufacturing semiconductor devices, it is very difficult to maintain uniform light distribution characteristics on the reticle surface, which is the surface to be illuminated, due to variations in assembly accuracy and temporal changes in each element. Therefore, the asymmetry of the light distribution characteristic on the illuminated surface may reduce the resolution of the pattern image.

【0020】本発明は本出願人が先に出願した投影露光
装置において、照明装置の一部を構成するオプティカル
インテグレータの入射面上の複数の光束に基づく照度分
布を任意に調整できるようにし、これにより被照射面上
の配光特性を任意に調整し、高い解像度のパターン像が
容易に得られる半導体素子の製造に好適な照明装置及び
それを用いた投影露光装置の提供を目的とする。
According to the present invention, in the projection exposure apparatus previously filed by the present applicant, it is possible to arbitrarily adjust the illuminance distribution based on a plurality of light fluxes on the incident surface of the optical integrator which constitutes a part of the illumination apparatus. Accordingly, it is an object of the present invention to provide an illumination apparatus suitable for manufacturing a semiconductor element in which a light distribution characteristic on an illuminated surface is arbitrarily adjusted and a pattern image with high resolution can be easily obtained, and a projection exposure apparatus using the same.

【0021】[0021]

【課題を解決するための手段】本発明の照明装置は、光
源からの光束を光学手段でインコヒーレントな複数の光
束に振幅分割し、該複数の光束をオプティカルインテグ
レータを介して複数の2次光源を形成し、該複数の2次
光源からの光束を集光レンズにより集光して被照射面を
照射する際、該光学手段は複数の光束の各々の相対光量
を独立に調整する調整部材を有していることを特徴とし
ている。
In the illumination device of the present invention, the light beam from the light source is amplitude-divided into a plurality of incoherent light beams by the optical means, and the plurality of light beams are transmitted through the optical integrator to the plurality of secondary light sources. Is formed, and when the light beams from the plurality of secondary light sources are condensed by a condenser lens to irradiate the surface to be irradiated, the optical means independently adjusts the relative light amount of each of the plurality of light beams. It is characterized by having.

【0022】本発明の投影露光装置は、光源からの光束
を光学手段によりインコヒーレントな複数の光束に振幅
分割し、該複数の光束をオプティカルインテグレータを
介して複数の2次光源を形成し、該複数の2次光源から
の光束を集光レンズで集光して被照射面上のパターンを
照明し、該パターンを投影光学系により基板面上に投影
露光する際、該光学手段は複数の光束の各々の相対光量
を独立に調整する調整部材を有していることを特徴とし
ている。
The projection exposure apparatus of the present invention amplitude-divides the light beam from the light source into a plurality of incoherent light beams by the optical means, forms the plurality of secondary light sources through the optical integrator, and When a light beam from a plurality of secondary light sources is condensed by a condenser lens to illuminate a pattern on a surface to be illuminated and the pattern is projected and exposed on a substrate surface by a projection optical system, the optical means is configured to emit a plurality of light beams. It is characterized in that it has an adjusting member for independently adjusting the relative light amount of each.

【0023】この他本発明の投影露光装置では、(イ)
前記光学手段は入射光束を所定の偏光特性を有する2つ
の光束に分割する第1偏光ビームスプリッターと該第1
偏光ビームスプリッターからの2つの光束を更に2つの
光束に分割する第2,第3偏光ビームスプリッターとを
有していること、(ロ)前記調整部材は前記第1,第
2,第3偏光ビームスプリッターの前方に配置した回動
可能な位相素子より成っていること、(ハ)前記調整部
材は前記第1偏光ビームスプリッターで分割した2つの
光束のうち一方の光束の光路中に減光量が一定又は可変
の固定又は着脱可能な減光部材を有していること、
(ニ)前記減光部材はNDフィルター又はハーフミラー
から成ること、等を特徴としている。
Besides, in the projection exposure apparatus of the present invention, (a)
The optical means divides an incident light beam into two light beams having a predetermined polarization characteristic, and a first polarization beam splitter and the first polarization beam splitter.
A second and a third polarization beam splitter for splitting the two light fluxes from the polarization beam splitter into two light fluxes, and (b) the adjusting member has the first, second and third polarization beams. (C) The adjusting member has a constant dimming amount in the optical path of one of the two light beams split by the first polarization beam splitter. Or having a variable fixed or removable light reducing member,
(D) The dimming member is composed of an ND filter or a half mirror, and the like.

【0024】[0024]

【実施例】図1は本発明の実施例1の要部概略図であ
る。
Embodiment 1 FIG. 1 is a schematic view of the essential portions of Embodiment 1 of the present invention.

【0025】図中1は光源であり、例えば狭帯域化した
エキシマレーザ等から成っている。エキシマレーザ1か
らの光束はプリズム、グレーティング若しくはそれらと
エタロン等の組み合わせにより狭帯域化され、非常に強
い偏光特性を有している。
Reference numeral 1 in the figure denotes a light source, which is composed of, for example, a narrow band excimer laser. The light flux from the excimer laser 1 has a narrow band due to a prism, a grating, or a combination thereof with an etalon or the like, and has a very strong polarization characteristic.

【0026】1aはビーム整形光学系であり、光源1か
らの光束をビーム整形して射出している。20は光学手
段であり、ビーム整形光学系1aからの光束をインコヒ
ーレントな複数の光束に振幅分割し、かつ調整部材によ
り複数の光束の各々の相対強度を独立に調整した後に射
出し、オプティカルインテグレータ10の入射面10a
に入射している。入射面10aには、例えば図10に示
すような複数の光束に基づく複数の光量分布が形成され
ている。
Reference numeral 1a denotes a beam shaping optical system, which beam-shapes the light beam from the light source 1 and emits it. Reference numeral 20 denotes an optical means, which divides the light beam from the beam shaping optical system 1a into a plurality of incoherent light beams by amplitude, and independently adjusts the relative intensity of each of the plurality of light beams by an adjusting member to emit the light beams. 10 incident surfaces 10a
Is incident on. On the incident surface 10a, for example, a plurality of light amount distributions based on a plurality of light fluxes are formed as shown in FIG.

【0027】オプティカルインテグレータ10は複数の
微小レンズを2次元的に所定のピッチで配列して構成し
ている。オプティカルインテグレータ10の射出面10
bには複数の2次元光源が形成されている。
The optical integrator 10 is composed of a plurality of minute lenses arranged two-dimensionally at a predetermined pitch. Exit surface 10 of optical integrator 10
A plurality of two-dimensional light sources are formed in b.

【0028】11はコンデンサーレンズであり、オプテ
ィカルインテグレータ10の射出面10bからの光束を
集光し、ハーフミラー21に入射している。ハーフミラ
ー21で反射した一部の光束により被照射面であるレチ
クル12を照明している。
Reference numeral 11 denotes a condenser lens, which collects the light flux from the exit surface 10b of the optical integrator 10 and makes it enter the half mirror 21. A part of the light flux reflected by the half mirror 21 illuminates the reticle 12, which is the illuminated surface.

【0029】尚、以上の光源1からレチクル12に至る
各要素は照明装置の一要素を構成している。
Each element from the light source 1 to the reticle 12 described above constitutes one element of the illumination device.

【0030】13は投影光学系であり、レチクル12面
上のパターンをウエハ14面上に縮小投影している。2
2はピンホールであり、ハーフミラー21を介してレチ
クル12と光学的に等価な位置に配置している。
A projection optical system 13 projects the pattern on the reticle 12 surface onto the wafer 14 surface in a reduced scale. Two
Reference numeral 2 denotes a pinhole, which is arranged at a position optically equivalent to the reticle 12 via the half mirror 21.

【0031】23は光検出器であり、ハーフミラー21
を透過し、ピンホール22を通過してきた光束を検出
し、間接的にレチクル12面上の照度をモニターしてい
る。光検出器23は2次元CCDや4分割センサー等か
ら成り、ピンホール22を通過してくる全光量を計測す
ると共に、後述するようにオプティカルインテグレータ
10の射出面10bに形成された複数の領域(例えば4
つの領域)の有効光源の強度比をモニターしている。オ
プティカルインテグレータ10の射出面10b上の複数
の領域の強度比が等しくなるように後述する光学手段2
0内の調整部材で調整している。
Reference numeral 23 is a photodetector, which is a half mirror 21.
The illuminance on the surface of the reticle 12 is indirectly monitored by detecting the light flux that has passed through the pinhole 22 and transmitted. The photodetector 23 is composed of a two-dimensional CCD, a four-division sensor, or the like, and measures the total amount of light passing through the pinhole 22 and, as will be described later, a plurality of regions (formed on the exit surface 10b of the optical integrator 10 Eg 4
The intensity ratio of the effective light source in one area is monitored. The optical means 2 described later so that the intensity ratios of a plurality of regions on the exit surface 10b of the optical integrator 10 become equal.
The adjustment member within 0 is used for adjustment.

【0032】尚、コンデンサーレンズ11はオプティカ
ルインテグレータ10の射出面10b近傍に形成した複
数の2次光源をハーフミラー21を介して投影光学系1
3の瞳13aに2次光源像として形成している。
The condenser lens 11 has a plurality of secondary light sources formed in the vicinity of the exit surface 10b of the optical integrator 10 via the half mirror 21 and the projection optical system 1
A secondary light source image is formed on the third pupil 13a.

【0033】本実施例では投影光学系13の瞳面13a
に形成される2次光源像の光強度分布を種々と変更して
前述の特願平3−28613号で提案したのと同様の照
明方法(高解像度照明)を採ることにより高解像度の回
路パターンの投影露光を行なっている。
In this embodiment, the pupil plane 13a of the projection optical system 13 is
A high-resolution circuit pattern is obtained by changing the light intensity distribution of the secondary light source image formed in FIG. 3 and adopting the same illumination method (high-resolution illumination) as proposed in Japanese Patent Application No. 3-28613. Projection exposure.

【0034】次に本実施例の光学手段20の構成につい
て説明する。図2は本実施例の光学手段20の実施例1
の要部概略図である。
Next, the structure of the optical means 20 of this embodiment will be described. FIG. 2 shows a first embodiment of the optical means 20 of the present embodiment.
FIG.

【0035】本実施例ではビーム整形光学系1aからの
入射光束をインコヒーレントな4つの光束に振幅分割し
て射出する場合を示している(尚、分割する光束の数は
4つに限らずいくつであっても良い)。
The present embodiment shows a case where the incident light beam from the beam shaping optical system 1a is amplitude-divided into four incoherent light beams and emitted (however, the number of light beams to be divided is not limited to four). May be).

【0036】1は光源であり、偏光特性の強い光束を射
出している。図中、2,5a,5b,8a,8b,8
c,8dは各々調整部材としてのλ/2板等の位相板で
あり、光軸中心に回転調整可能になっている。3,6
a,6bは各々第1,第2,第3偏光ビームスプリッタ
ーである。4,7a,7bは各々ミラーである。
A light source 1 emits a light beam having a strong polarization characteristic. In the figure, 2, 5a, 5b, 8a, 8b, 8
Reference numerals c and 8d denote phase plates such as a λ / 2 plate as an adjusting member, which can be rotationally adjusted about the optical axis. 3,6
Reference numerals a and 6b are first, second and third polarization beam splitters, respectively. Reference numerals 4, 7a and 7b are mirrors.

【0037】図3は図2の各点(A〜F4 )における光
束の偏光状態及び振幅を図2の各位置(A〜F4 )に対
応させて示している。
FIG. 3 shows the polarization state and amplitude of the light beam at each point (A to F 4 ) in FIG. 2 corresponding to each position (A to F 4 ) in FIG.

【0038】図3に示すAのような偏光状態(0°直線
偏光)で光源1より射出された光束は調整部材としての
λ/2板2を適当に調整することにより図3のBのよう
な偏光状態(45°直線偏光)の光束に変換され、第1
偏光ビームスプリッタ3を通過することにより、図3の
1 ,C2 のように互いに直交した偏光状態(0°直線
偏光と90°直線偏光)をもつ等強度の2つの光束に分
割される。
The light beam emitted from the light source 1 in the polarization state (0 ° linearly polarized light) as shown in A of FIG. 3 is shown in B of FIG. 3 by appropriately adjusting the λ / 2 plate 2 as an adjusting member. Is converted into a light beam with a different polarization state (45 ° linear polarization),
By passing through the polarization beam splitter 3, it is split into two light beams of equal intensity having mutually orthogonal polarization states (0 ° linearly polarized light and 90 ° linearly polarized light) like C 1 and C 2 in FIG.

【0039】これらの光束C1 ,C2 は適当に調整され
た調整部材としてのλ/2板5a,5bにより再び光束
1 ,D2 のような45°直線偏光に変換される。そし
て第2,第3偏光ビームスプリッタ6a,6bを通過す
ることにより光束E1 ,E2,E3 ,E4 のように等強
度の4つの光束に分割される。
These luminous fluxes C 1 and C 2 are again converted into 45 ° linearly polarized light like the luminous fluxes D 1 and D 2 by appropriately adjusted λ / 2 plates 5a and 5b as adjusting members. Then, by passing through the second and third polarization beam splitters 6a and 6b, the light beams are split into four light beams of equal intensity like light beams E 1 , E 2 , E 3 and E 4 .

【0040】そして図4(A)に示すようにオプティカ
ルインテグレータ10の入射面10aの各所定の位置に
指向され、その面10a上に4つの分布G1〜G4を形
成し、射出面10b近傍に4つの2次光源群を形成す
る。
Then, as shown in FIG. 4A, the optical integrator 10 is directed to respective predetermined positions on the entrance surface 10a, four distributions G1 to G4 are formed on the surface 10a, and four distributions G1 to G4 are formed near the exit surface 10b. Two secondary light source groups are formed.

【0041】図2中のλ/2板8a,8b,8c,8d
はオプティカルインテグレータ10の入射面10aに入
射する各光束の偏光方向を任意に変えるためのものであ
り、その調整によって4つの光束を図4(B),(C)
のように設定することができる。
Λ / 2 plates 8a, 8b, 8c and 8d in FIG.
Is for arbitrarily changing the polarization direction of each light beam incident on the incident surface 10a of the optical integrator 10, and by adjusting the four light beams, the four light beams shown in FIGS.
Can be set like.

【0042】図5は図2の光学手段20において、調整
部材としてのλ/2板2を光転に対して回転させ上記位
置からずらした場合の各位置での偏光状態を示してい
る。このとき、図2の位置Bでの偏光状態は図5の光束
Bのように45°直線偏光から若干ずれ、第1偏光ビー
ムスプリッター3を通過した光量の比が等しくなくな
る。このような原理によりオプティカルインテグレータ
10の入射面10aに入射する各光束の相対強度比を調
整している。
FIG. 5 shows the polarization state at each position when the λ / 2 plate 2 as the adjusting member is rotated with respect to the optical rotation and shifted from the above position in the optical means 20 of FIG. At this time, the polarization state at the position B in FIG. 2 is slightly deviated from the 45 ° linearly polarized light like the light beam B in FIG. 5, and the ratio of the amounts of light passing through the first polarization beam splitter 3 becomes unequal. Based on such a principle, the relative intensity ratio of each light beam incident on the incident surface 10a of the optical integrator 10 is adjusted.

【0043】本実施例においては光源1として直線偏光
のレーザーを用いたが、例えば円偏光や楕円偏光の光束
を放射する光源を用いた場合、位相板2をλ/4板やλ
/4板とλ/2板の組み合わせとすることにより同様の
効果を達成することができる。又レーザー光に若干の無
偏光成分が含まれていた場合、光量の調整巾が若干小さ
くなる程度で支障はない。
In this embodiment, a linearly polarized laser is used as the light source 1. However, when a light source which emits a circularly polarized light or an elliptically polarized light beam is used, the phase plate 2 is a λ / 4 plate or a λ plate.
The same effect can be achieved by combining the / 4 plate and the λ / 2 plate. Further, when the laser light contains a small amount of non-polarized component, the adjustment range of the light quantity may be slightly reduced, which causes no problem.

【0044】各偏光ビームスプリッター3,6a,6b
はS偏光が透過率1%以下、P偏光が反射率1%以下と
いうように消光比が小さいものが望ましいが、実際には
ある偏光が透過率40%以下、それと直交する偏光が反
射率40%以下程度であれば必要な光量調整は可能であ
る。
Each polarization beam splitter 3, 6a, 6b
It is desirable that the extinction ratio is small such that S-polarized light has a transmittance of 1% or less and P-polarized light has a reflectance of 1% or less. However, in practice, a certain polarized light has a transmittance of 40% or less, and a polarized light orthogonal thereto has a reflectance of 40% or less. It is possible to adjust the amount of light as required as long as it is about% or less.

【0045】図6は本発明に係る光学手段の実施例2の
要部概略図である。
FIG. 6 is a schematic view of the essential portions of Embodiment 2 of the optical means according to the present invention.

【0046】同図は図2の第1偏光ビームスプリッター
3により分割された2つの光束の光路中に切替え可能な
NDフィルター板31,32を設けたものである。ND
フィルター板31,32は図7に示したようなものであ
り、例えば光束を100%透過させるNDフィルター3
1aと様々な透過率をもつ複数のNDフィルター31a
〜31hを基板上にターレット式に設けて構成してい
る。
In the figure, switchable ND filter plates 31 and 32 are provided in the optical paths of the two light beams split by the first polarization beam splitter 3 in FIG. ND
The filter plates 31 and 32 are as shown in FIG. 7, and for example, the ND filter 3 that transmits 100% of the luminous flux.
1a and a plurality of ND filters 31a having various transmittances
˜31 h are provided on the substrate in a turret manner.

【0047】NDフィルター31aを透過率100%,
NDフィルター31bを透過率95%というように各光
路中に所望のNDフィルターを挿入することにより、第
1偏光ビームスプリッター3により分割された2つの光
束の光量費を調整している。
The ND filter 31a has a transmittance of 100%,
By inserting a desired ND filter in each optical path such that the ND filter 31b has a transmittance of 95%, the light amount costs of the two light beams split by the first polarization beam splitter 3 are adjusted.

【0048】本実施例の場合、光源1からの光束が全く
無偏光の場合においても有効である。又、NDフィルタ
ー板を第2,第3ビームスプリッター6a,6bにより
分割された4光束の光路中に配置し、直接4光束の光量
比を調整してもよい。
The present embodiment is also effective when the light beam from the light source 1 is completely non-polarized. Further, the ND filter plate may be arranged in the optical path of the four light beams divided by the second and third beam splitters 6a and 6b, and the light quantity ratio of the four light beams may be directly adjusted.

【0049】図8は本発明に係る光学手段の実施例3の
要部概略図である。
FIG. 8 is a schematic view of the essential portions of Embodiment 3 of the optical means according to the present invention.

【0050】本実施例は光源1が全く無偏光、もしくは
極めて偏光度の小さい光束を射出する場合である。
In the present embodiment, the light source 1 emits a light beam having no polarization or an extremely small degree of polarization.

【0051】図中、41は消光比の小さい第1偏光ビー
ムスプリッターであり、光源1からの光束が第1偏光ビ
ームスプリッター41を通過することにより、ほぼ完全
に2つの直交した直線偏光の光に分けられる。42a,
42b,42cは各々固定されたλ/4板であり、第1
偏光ビームスプリッターを通過してきた直線偏光光を円
偏光光に変換するように設定されている。42d,42
eは設定可変な調整部材としてのλ/4板であり、第
2,第3ビームスプリッター6a,6bによる光束の分
割比(光束b1 :光束b2 及び光束b3 :光束b4 )を
調整する為のものである。
In the figure, reference numeral 41 denotes a first polarization beam splitter having a small extinction ratio, and when the light beam from the light source 1 passes through the first polarization beam splitter 41, it becomes almost completely two orthogonal linearly polarized light beams. Be divided. 42a,
42b and 42c are fixed λ / 4 plates, respectively.
It is set to convert linearly polarized light that has passed through the polarization beam splitter into circularly polarized light. 42d, 42
Reference numeral e is a λ / 4 plate as an adjustable member for adjusting the setting, and adjusts the splitting ratio (light flux b 1 : light flux b 2 and light flux b 3 : light flux b 4 ) of the light flux by the second and third beam splitters 6a, 6b. It is for doing.

【0052】43,44は反射率を変えることのできる
複数のハーフミラーを有するハーフミラー部材であり、
図9のNDフィルター板と同じような構成を持つ。
Reference numerals 43 and 44 denote half mirror members having a plurality of half mirrors whose reflectance can be changed,
It has the same structure as the ND filter plate of FIG.

【0053】今、ハーフミラー部材43,44の無調整
のとき(ハーフミラー部材43,44内の光軸上のハー
フミラーの透過率が共に100%のとき)、光束b1
光束b2 の光量が100、光束b3 +光束b4 の光量が
80のときに双方の光量を等しくしたいとする。このと
きハーフミラー部材43を透過率90%、反射率10%
のハーフミラーに切り替えると両者の光量が等しくな
る。
Now, when the half mirror members 43 and 44 are not adjusted (when the transmittances of the half mirrors on the optical axis in the half mirror members 43 and 44 are both 100%), the light flux b 1 +
When the light amount of the light beam b 2 is 100 and the light amount of the light beam b 3 + the light beam b 4 is 80, it is assumed that both light amounts are equal. At this time, the half mirror member 43 has a transmittance of 90% and a reflectance of 10%.
When switched to the half mirror, both light amounts become equal.

【0054】以下、このときの原理を説明する。偏光ビ
ームスプリッター41は分割面に対してP偏光光を透
過、S偏光光を反射するものとする。光源1からの光束
は偏光ビームスプリッター41を通過することにより9
0%の透過光(P偏光光)と10%の反射光(S偏光
光)に分割される。90%の透過光(P偏光光)はλ/
4板42bを通過することにより円偏光光に変換され
る。
The principle at this time will be described below. The polarization beam splitter 41 transmits P-polarized light and reflects S-polarized light with respect to the split surface. The light flux from the light source 1 passes through the polarization beam splitter 41,
It is split into 0% transmitted light (P polarized light) and 10% reflected light (S polarized light). 90% of transmitted light (P polarized light) is λ /
It is converted into circularly polarized light by passing through the four plates 42b.

【0055】この光のうちハーフミラー43によって反
射された10%の光束は、再びλ/4板42bを通過し
S偏光光に変換される。この光は偏光ビームスプリッタ
ー41により反射され、λ/4板42aを介してミラー
44により反射され、再び偏光ビームスプリッター41
に入射するときにはP偏光となり、反射されずにミラー
4の方向(b3 ,b4 の方)へ指向される。
Of this light, 10% of the light flux reflected by the half mirror 43 passes through the λ / 4 plate 42b again and is converted into S-polarized light. This light is reflected by the polarization beam splitter 41, is reflected by the mirror 44 via the λ / 4 plate 42a, and is again reflected by the polarization beam splitter 41.
When it is incident on, it becomes P-polarized light and is directed to the direction of the mirror 4 (toward b 3 and b 4 ) without being reflected.

【0056】そして10%の光束はλ/4板42cを通
り、ハーフミラー部44に入射する。これにより光束
(b1 +b2 )の光量が90、光束(b3 +b4 )の光
量が90となり、双方は一致する。
Then, 10% of the light flux passes through the λ / 4 plate 42c and enters the half mirror section 44. As a result, the light quantity of the light flux (b 1 + b 2 ) is 90, and the light quantity of the light flux (b 3 + b 4 ) is 90, which are the same.

【0057】本実施例では以上のような原理により、光
量のロス無しに複数の光束の光量を調整している。
In this embodiment, the light amounts of a plurality of light fluxes are adjusted without loss of light amount based on the above principle.

【0058】[0058]

【発明の効果】本発明によれば以上のように各要素を設
定することにより、投影露光装置において照明装置の一
部を構成するオプティカルインテグレータの入射面上の
複数の光束に基づく照度分布を任意に調整できるように
し、これにより被照射面上の照度分布を任意に調整し、
高い解像度のパターン像が容易に得られる半導体素子の
製造に好適な照明装置及びそれを用いた投影露光装置を
達成している。
According to the present invention, by setting each element as described above, the illuminance distribution based on a plurality of luminous fluxes on the incident surface of the optical integrator which constitutes a part of the illumination device in the projection exposure apparatus can be arbitrarily set. To adjust the illuminance distribution on the illuminated surface,
An illumination device suitable for manufacturing a semiconductor element in which a pattern image with high resolution can be easily obtained and a projection exposure apparatus using the same are achieved.

【0059】この他本発明によれば、光源からの光束の
偏光状態を変えることにより、もしくは減光手段を用い
ることにより、分割する光束の光量比を制御し、有効光
源の強度分布を制御することが可能であり、有効光源の
非対称性を原因とする結像性能の劣化を防ぐことがで
き、良好な結像性能を得ることができる。
In addition, according to the present invention, by changing the polarization state of the light flux from the light source or by using the light reducing means, the light quantity ratio of the split light flux is controlled and the intensity distribution of the effective light source is controlled. It is possible to prevent deterioration of the imaging performance due to the asymmetry of the effective light source, and it is possible to obtain good imaging performance.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施例1の要部概略図FIG. 1 is a schematic view of a main part of a first embodiment of the present invention.

【図2】 図1の一部分の説明図FIG. 2 is an explanatory diagram of a part of FIG.

【図3】 図2の各位置における光束の偏光状態の説明
FIG. 3 is an explanatory diagram of a polarization state of a light beam at each position in FIG.

【図4】 図1のオプティカルインテグレータの射出面
上の光束の説明図
FIG. 4 is an explanatory diagram of a light flux on an exit surface of the optical integrator of FIG.

【図5】 図1のオプティカルインテグレータの射出面
上の光束の説明図
5 is an explanatory diagram of a light flux on an exit surface of the optical integrator of FIG.

【図6】 本発明に係る光学手段の実施例2の要部概略
FIG. 6 is a schematic view of the essential portions of Embodiment 2 of the optical means according to the present invention.

【図7】 図6の一部分の説明図FIG. 7 is an explanatory diagram of a part of FIG.

【図8】 本発明に係る光学手段の実施例3の要部概略
FIG. 8 is a schematic view of the essential portions of Embodiment 3 of the optical means according to the present invention.

【図9】 従来の投影露光装置の要部概略図FIG. 9 is a schematic view of a main part of a conventional projection exposure apparatus.

【図10】 図9の一部分の説明図FIG. 10 is an explanatory diagram of a part of FIG.

【符号の説明】[Explanation of symbols]

1 光源 1a ビーム整形光学系 2,5a,5b 調整部材 3,6a,6b 偏光ビームスプリッター 10 オプティカルインテグレータ 12 レチクル 13 投影光学系 14 ウエハ 20 光学手段 21 ハーフミラー 22 ピンホール 23 光検出器 DESCRIPTION OF SYMBOLS 1 light source 1a beam shaping optical system 2, 5a, 5b adjusting member 3, 6a, 6b polarizing beam splitter 10 optical integrator 12 reticle 13 projection optical system 14 wafer 20 optical means 21 half mirror 22 pinhole 23 photodetector

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 光源からの光束を光学手段でインコヒー
レントな複数の光束に振幅分割し、該複数の光束をオプ
ティカルインテグレータを介して複数の2次光源を形成
し、該複数の2次光源からの光束を集光レンズにより集
光して被照射面を照射する際、該光学手段は複数の光束
の各々の相対光量を独立に調整する調整部材を有してい
ることを特徴とする照明装置。
1. A light beam from a light source is amplitude-divided into a plurality of incoherent light beams by an optical means, and the plurality of light beams are formed into a plurality of secondary light sources through an optical integrator. The illuminating device characterized in that the optical means has an adjusting member for independently adjusting the relative amount of light of each of the plurality of light fluxes when the light flux of .
【請求項2】 光源からの光束を光学手段によりインコ
ヒーレントな複数の光束に振幅分割し、該複数の光束を
オプティカルインテグレータを介して複数の2次光源を
形成し、該複数の2次光源からの光束を集光レンズで集
光して被照射面上のパターンを照明し、該パターンを投
影光学系により基板面上に投影露光する際、該光学手段
は複数の光束の各々の相対光量を独立に調整する調整部
材を有していることを特徴とする投影露光装置。
2. A light beam from a light source is amplitude-divided into a plurality of incoherent light beams by an optical means, and the plurality of light beams are formed into a plurality of secondary light sources through an optical integrator. When a pattern on the surface to be illuminated is illuminated by the condenser lens to illuminate the pattern and the pattern is projected and exposed on the substrate surface by the projection optical system, the optical means determines the relative light amount of each of the plurality of beams. A projection exposure apparatus having an adjusting member that adjusts independently.
【請求項3】 前記光学手段は入射光束を所定の偏光特
性を有する2つの光束に分割する第1偏光ビームスプリ
ッターと、該第1偏光ビームスプリッターからの2つの
光束を更に2つの光束に分割する第2,第3偏光ビーム
スプリッターとを有していることを特徴とする請求項2
の投影露光装置。
3. The optical means divides an incident light beam into two light beams having a predetermined polarization characteristic, and a second light beam from the first polarization beam splitter and further divides the two light beams into two light beams. The second and third polarization beam splitters are included.
Projection exposure equipment.
【請求項4】 前記調整部材は前記第1,第2,第3偏
光ビームスプリッターの前方に配置した回動可能な位相
素子より成っていることを特徴とする請求項3の投影露
光装置。
4. The projection exposure apparatus according to claim 3, wherein the adjusting member comprises a rotatable phase element arranged in front of the first, second and third polarization beam splitters.
【請求項5】 前記調整部材は前記第1偏光ビームスプ
リッターで分割した2つの光束のうち一方の光束の光路
中に減光量が一定又は可変の固定又は着脱可能な減光部
材を有していることを特徴とする請求項3の投影露光装
置。
5. The adjusting member has a fixed or removable dimming member having a constant or variable dimming amount in an optical path of one of the two light beams split by the first polarization beam splitter. The projection exposure apparatus according to claim 3, wherein:
【請求項6】 前記減光部材はNDフィルター又はハー
フミラーから成ることを特徴とする請求項5の投影露光
装置。
6. The projection exposure apparatus according to claim 5, wherein the dimming member comprises an ND filter or a half mirror.
JP4360795A 1992-12-28 1992-12-28 Illuminator and projection aligner using the same Pending JPH06204121A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4360795A JPH06204121A (en) 1992-12-28 1992-12-28 Illuminator and projection aligner using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4360795A JPH06204121A (en) 1992-12-28 1992-12-28 Illuminator and projection aligner using the same

Publications (1)

Publication Number Publication Date
JPH06204121A true JPH06204121A (en) 1994-07-22

Family

ID=18470956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4360795A Pending JPH06204121A (en) 1992-12-28 1992-12-28 Illuminator and projection aligner using the same

Country Status (1)

Country Link
JP (1) JPH06204121A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11317348A (en) * 1998-04-30 1999-11-16 Canon Inc Projection aligner and method for manufacturing device using the same
WO2004051717A1 (en) * 2002-12-03 2004-06-17 Nikon Corporation Illumination optical system, exposure system, and exposure method
WO2005027207A1 (en) * 2003-09-12 2005-03-24 Canon Kabushiki Kaisha Illumination optical system and exposure apparatus using the same
WO2005036619A1 (en) * 2003-10-09 2005-04-21 Nikon Corporation Illumination optical device, and exposure device and method
JP2005354050A (en) * 2004-05-27 2005-12-22 Asml Netherlands Bv Optical position evaluating device and method
JP2006191064A (en) * 2004-12-28 2006-07-20 Asml Netherlands Bv Polarized radiation for lithographic device and method of manufacturing device
JP2010153875A (en) * 2008-12-23 2010-07-08 Carl Zeiss Smt Ag Illumination system of microlithographic projection exposure apparatus
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
CN103777363A (en) * 2007-10-24 2014-05-07 株式会社尼康 Illumination optical apparatus, exposure apparatus, illumination method, exposure method and device manufacturing method
US8861084B2 (en) 2004-01-16 2014-10-14 Carl Zeiss Smt Ag Polarization-modulating optical element
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
JP2016212434A (en) * 2003-11-20 2016-12-15 株式会社ニコン Light flux conversion element, illumination optical device, exposure apparatus, and exposure method
US9581911B2 (en) 2004-01-16 2017-02-28 Carl Zeiss Smt Gmbh Polarization-modulating optical element
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11317348A (en) * 1998-04-30 1999-11-16 Canon Inc Projection aligner and method for manufacturing device using the same
US7423731B2 (en) 2002-12-03 2008-09-09 Nikon Corporation Illumination optical system, exposure apparatus, and exposure method with polarized switching device
WO2004051717A1 (en) * 2002-12-03 2004-06-17 Nikon Corporation Illumination optical system, exposure system, and exposure method
JP2010010701A (en) * 2002-12-03 2010-01-14 Nikon Corp Illumination optical system, exposure apparatus, and exposure method
US7515248B2 (en) 2002-12-03 2009-04-07 Nikon Corporation Illumination optical system, exposure apparatus, and exposure method with polarized state detection result and adjustment
US7515247B2 (en) 2002-12-03 2009-04-07 Nikon Corporation Illumination optical system, exposure apparatus, and exposure method with polarized state fluctuation correcting device
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9885959B2 (en) 2003-04-09 2018-02-06 Nikon Corporation Illumination optical apparatus having deflecting member, lens, polarization member to set polarization in circumference direction, and optical integrator
EP1668679A1 (en) * 2003-09-12 2006-06-14 Canon Kabushiki Kaisha Illumination optical system and exposure apparatus using the same
EP1668679A4 (en) * 2003-09-12 2008-04-30 Canon Kk Illumination optical system and exposure apparatus using the same
KR100731255B1 (en) * 2003-09-12 2007-06-25 캐논 가부시끼가이샤 Illumination optical system and exposure apparatus using the same
US7196773B2 (en) 2003-09-12 2007-03-27 Canon Kabushiki Kaisha Illumination optical system and exposure apparatus using the same
WO2005027207A1 (en) * 2003-09-12 2005-03-24 Canon Kabushiki Kaisha Illumination optical system and exposure apparatus using the same
WO2005036619A1 (en) * 2003-10-09 2005-04-21 Nikon Corporation Illumination optical device, and exposure device and method
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9760014B2 (en) 2003-10-28 2017-09-12 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US10281632B2 (en) 2003-11-20 2019-05-07 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power to rotate linear polarization direction
JP2017227906A (en) * 2003-11-20 2017-12-28 株式会社ニコン Flux conversion element, illumination optical device, exposure device, and exposure method
JP2016212434A (en) * 2003-11-20 2016-12-15 株式会社ニコン Light flux conversion element, illumination optical device, exposure apparatus, and exposure method
US9316772B2 (en) 2004-01-16 2016-04-19 Carl Zeiss Smt Gmbh Producing polarization-modulating optical element for microlithography system
US9581911B2 (en) 2004-01-16 2017-02-28 Carl Zeiss Smt Gmbh Polarization-modulating optical element
US8861084B2 (en) 2004-01-16 2014-10-14 Carl Zeiss Smt Ag Polarization-modulating optical element
US10241417B2 (en) 2004-02-06 2019-03-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10234770B2 (en) 2004-02-06 2019-03-19 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10007194B2 (en) 2004-02-06 2018-06-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
JP2005354050A (en) * 2004-05-27 2005-12-22 Asml Netherlands Bv Optical position evaluating device and method
JP2006191064A (en) * 2004-12-28 2006-07-20 Asml Netherlands Bv Polarized radiation for lithographic device and method of manufacturing device
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9857599B2 (en) 2007-10-24 2018-01-02 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
CN103777363A (en) * 2007-10-24 2014-05-07 株式会社尼康 Illumination optical apparatus, exposure apparatus, illumination method, exposure method and device manufacturing method
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
JP2010153875A (en) * 2008-12-23 2010-07-08 Carl Zeiss Smt Ag Illumination system of microlithographic projection exposure apparatus

Similar Documents

Publication Publication Date Title
JP3275575B2 (en) Projection exposure apparatus and device manufacturing method using the projection exposure apparatus
US5673103A (en) Exposure apparatus and method
US5715089A (en) Exposure method and apparatus therefor
US5016149A (en) Illuminating method and illuminating apparatus for carrying out the same, and projection exposure method and projection exposure apparatus for carrying out the same
JPH06204121A (en) Illuminator and projection aligner using the same
KR100731255B1 (en) Illumination optical system and exposure apparatus using the same
KR100856976B1 (en) Exposure apparatus and device manufacturing method
TWI569308B (en) Optical illumination device, exposure device, exposure method and device manufacturing method
US5347356A (en) Substrate aligning device using interference light generated by two beams irradiating diffraction grating
JP2000021748A (en) Method of exposure and exposure equipment
JPH0254103A (en) Alignment device of exposure apparatus
JP2001284228A (en) Exposure system and device manufacturing method
JP2002359176A (en) Luminaire, illumination control method, aligner, device and manufacturing method thereof
JP2000021742A (en) Method of exposure and exposure equipment
JP2000114157A (en) Illuminator and projection aligner provided therewith
JP2619473B2 (en) Reduction projection exposure method
TW200921285A (en) Adjustment method, exposure method, device manufacturing method, and exposure apparatus
JP2003090978A (en) Illumination device, exposure device and method for manufacturing device
JP3647272B2 (en) Exposure method and exposure apparatus
JP2000021720A (en) Exposure method and manufacture of aligner
JP2005108925A (en) Lighting optical device, exposure apparatus and exposure method
JP3024220B2 (en) Projection type exposure method and apparatus
JPH06204123A (en) Illuminator and projection aligner using the same
JP2692660B2 (en) Projection exposure apparatus and projection exposure method
JP2005333001A (en) Lighting optical device, exposure system and exposing method

Legal Events

Date Code Title Description
A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20031126

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20031215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060530

A61 First payment of annual fees (during grant procedure)

Effective date: 20060605

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20090623

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100623

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20100623

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110623

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20120623

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130623

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250